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On generalized Wilf conjectures

Mahir Bilen Can and Naufil Sakran

Abstract. We investigate complement-finite submonoids of the monoid of nonnegative integer
points of a unipotent linear algebraic group G. These monoids are in general noncommutative
but they specialize to the generalized numerical monoids of Cisto et al.. We show that every
unipotent numerical monoid has a unique finite minimal generating set. We propose a gen-
eralization of the Wilf conjecture in our setting. We contrast our Wilf conjecture against the
generalized Wilf conjecture. Then we isolate two new families of unipotent numerical monoids
called the thick and the thin unipotent numerical monoids. We prove that our Wilf conjecture
holds for every thick (commutative) unipotent numerical monoid. Under additional assump-
tions on the conductors, we prove that our Wilf conjecture holds for every thin (commutative)
unipotent numerical monoid.

1. Introduction

The classification of the isomorphism classes of the subgroups of .Z;C/ is a rather
easy problem. There are essentially two isomorphism classes; one class for the trivial
subgroup 0, and the other class for the subgroups of the form nZ, where n 2 Z n ¹0º.
In contrast, the classification of the isomorphism classes of the submonoids of N

is a deep problem. We pin the starting point of this classification to the following
concept. Let S be a submonoid of a monoid M . We assume that S is not isomorphic
to M . If the complement of S in M is a finite set, then we call S a complement-finite
submonoid. For M D N, the complement-finite submonoids are called the numerical
monoids.

It is peculiar to N that if an infinite submonoid S 0 �N is not a complement-finite
submonoid, then S 0 is isomorphic to a complement-finite submonoid of N. In general,
for other families of infinite monoids this property does not hold. The reader will
recognize in retrospect that this is one of the starting points of our research. For now
let us continue with N as our ambient monoid. It is now evident that for understanding
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the nature of a submonoid S of N, we need to understand the complement N n S .
The aim of this manuscript is to offer a generalization of a conjecture of Wilf, which
ties together several important invariants of these complements. Let us introduce its
ingredients,

F.S/ WD max.N n S/; called the Frobenius number of S I

c.S/ WD F.S/C 1; called the conductor of S I

g.S/ WD jN n S j; called the genus of S:

Let us call the elements of S in Œ0; F.S/� the sporadic elements of S . Then the dif-
ference c.S/ � g.S/, denoted n.S/, is nothing but the number of sporadic elements
of S . We know from elementary algebra that every submonoid of N is finitely gen-
erated. The minimum number of generators of a numerical semigroup S is called the
embedding dimension of S , denoted e.S/. In his short but insightful article [7], Wilf
posed a question that is equivalent to the following inequality:

c.S/ � e.S/n.S/;

which is now commonly called the Wilf conjecture. We will call it the ordinary Wilf
conjecture. There is a vast literature on this conjecture. Many papers are dedicated
to the proofs of its special cases. However, it is still an open problem at large. We
refer the reader to a relatively recent survey article of Delgado [3] that summarizes
the advances on the conjecture up to the year 2020.

In this manuscript, among other things, we extend the Wilf conjecture to a setting
of the group of integer points of a unipotent complex linear algebraic group. To spell
this out more precisely, let us consider a closed subgroup G of GL.V /, where V is
a finite dimensional vector space defined over C. Let 1 denote the neutral element
of G. If an element x 2 G has the property that x � 1 is nilpotent, then we call x
unipotent. If every element of G is unipotent, then G is said to be a unipotent linear
algebraic group. It is well known that [6, Proposition 2.4.12] every unipotent linear
algebraic group G is isomorphic to a closed subgroup of the unipotent group of all
upper triangular unipotent n � n matrices, denoted U.n;C/, for some n 2 ZC, where
ZC denotes the set of positive integers. Therefore, we proceed with the assumption
that G is a subgroup of U.n;C/. An additional assumption that we maintain through-
out our manuscript is thatG is defined over Q. In other words, as an algebraic variety,
the defining equations of G have rational coefficients.

Let U.n;Z/ denote the group of integer points of U.n;C/. Then the group of
integer points of G, denoted GZ, is a subgroup of U.n;Z/. The set

U.n;N/ WD ¹x 2 U.n;Z/ W all entries of x are from Nº
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is a submonoid of U.n;Z/. Likewise, the set

GN WD ¹x 2 GZ W all entries of x are from Nº

is a submonoid ofGZ. Disregarding n, let us call U.n;N/ a trivial numerical monoid.
Notice that .N;C/ is a trivial numerical monoid since it is given by our simplest
example, that is, U.2;N/. Our first nontrivial definition is the following.

Definition 1.1. Let M be a monoid of the form M WD GN , where G is a unipotent
complex linear algebraic group. We assume that M is a finitely generated monoid.
If S is a complement-finite submonoid of M , then we call S a unipotent numerical
monoid in M .

Let G denote, as above, a closed subgroup of U.n;C/. We denote by dG the
dimension of G as an algebraic variety. Let M denote GN . Let S be a unipotent
numerical monoid in M . We will introduce the notions of the conductor, genus, and
the sporadicity of S relative to M . We call these numbers, including the “embedding
dimension” which will be introduced below, the basic invariants of S relative to M .
If we specialize to the case of U.2;N/, then the basic invariants will agree with the
notions that their names indicate. For k 2 ZC, let U.n;N/k denote the following
subset of U.n;N/:

U.n;N/k WD ¹.xij /1�i;j�n 2 U.n;N/ W k � max
1�i;j�n

xij º [ ¹1nº;

where 1n is the identity matrix of size n. We will show later that U.n;N/k is indeed a
submonoid of U.n;N/. We call it the k-th fundamental submonoid of U.n;N/. Notice
that for every k 2ZC we have U.n;N/kC1�U.n;N/k and that U.n;N/1DU.n;N/.
The generating number of S relative to M , denoted rM .S/, is the smallest positive
integer k 2 ZC such that U.n;N/k \M � S . We then define

cM .S/ WD rM .S/
dG ; called the conductor of S relative to M I

gM .S/ WD jM n S j; called the genus of S relative to M I

nM .S/ WD j¹1nº [ S n U.n;N/rM .S/j; called the sporadicity of S relative M:

The elements of the set ¹1nº [ S n U.n;N/rM .S/ are called the sporadic elements of
S relative to M . Next, we define the embedding dimension of S , denoted e.S/, as
follows:

e.S/ WD min¹jG j W G is a generating set for S n ¹1nºº:

The definition of embedding dimension raises the question of whether there exists
a unique finite generating set for S . We answer this question affirmatively in our
first main result. Before we state our first theorem, we present two simple examples
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demonstrating that the monoid of N-valued points of an algebraic group need not be
finitely generated but most notions we introduced are defined on them.

Example 1.2. Let

G WD

8̂<̂
:
2641 a b

0 1 a

0 0 1

375 W a; b 2 C

9>=>; :
Then G is a two dimensional nonabelian unipotent algebraic group. Its submonoid
GN is given by

M WD GN D

8̂<̂
:x.a;b/ WD

2641 a b

0 1 a

0 0 1

375 W a; b 2 N

9>=>; :
We claim that M is not finitely generated. Indeed, for any a 2 N, the element x.a;0/

cannot be written as a product of two non-identity elements in M . In other words,
every generating set of M contains the infinite set ¹x.a;0/ W a 2 Nº.

Next, we give an example of a finitely generated complement-finite unipotent sub-
monoid.

Example 1.3. Let

G WD

8̂̂̂<̂
ˆ̂:x.a;b;c;d;e/ WD

26664
1 a b c

0 1 0 d

0 0 1 e

0 0 0 0

37775 W a; b; c; d; e 2 C

9>>>=>>>; :
Then G is a five dimensional nonabelian unipotent algebraic group. Let M WD GN .
Let S denote the following complement-finite submonoid of M ,

S WD ¹x.a;b;c;d;e/ 2M W .a; b; c; d; e/ ¤ .0; 0; 0; 0; i/ for i 2 ¹1; 2; 3; 4; 5ºº:

Then the smallest positive integer k 2 ZC such that U.4;N/k \M � S is k D 6.
Hence, the generating number of S relative to M is given by rM .S/ D 6. It follows
that the conductor of S relative toM is cM .S/ D 6

5 D 7776. Clearly, the genus of S
relative to M is 5. Let us calculate the sporadicity of S relative to M :

nM .S/ D j¹14º [ S n U.4;N/6j
D j¹x.a;b;c;d;e/ 2 S W max¹a; b; c; d; eº < 6ºj

D 65
� 5

D 7771:
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Finally, we observe that the set

¹x.1;0;0;0;0/; x.0;1;0;0;0/; x.0;0;1;0;0/; x.0;0;0;1;0/º [ ¹x.0;0;0;0;j / W j 2 ¹6; 7; : : : ; 11ºº

is the minimal generating set for S . Hence, the embedding dimension of S relative to
M is e.S/ D 10.

Theorem 1.4. Let G be a unipotent linear algebraic group such that M WD GN is
finitely generated. If S is a unipotent numerical monoid in M , then S is finitely gen-
erated. Furthermore, S possesses a unique minimal set of generators.

We now have all the ingredients in place to state our conjecture.

Conjecture 1.5 (Unipotent Wilf conjecture). Let G be a unipotent linear algebraic
group. Let M D GN . If S is a unipotent numerical monoid in M , then we have

dGcM .S/ � e.S/nM .S/:

Example 1.6. In Example 1.3, we found that dG D 5, cM .S/ D 7776, e.S/ D 10,
and nM .S/ D 7771. These numbers satisfy the inequality in Conjecture 1.5.

In this paper, we will prove our conjecture in several important special cases.
If M D U.2;N/, then every complement-finite monoid S in M can be viewed as
an ordinary numerical monoid. Moreover, every basic invariant of S relative to M
becomes a basic invariant of S as a numerical monoid. Finally, since we have dG D 1,
where G D U.2;C/, our conjecture becomes the ordinary Wilf conjecture for numer-
ical monoids.

The Wilf conjecture for numerical monoids has been generalized in the papers [2,
5], where the main foci are on the commutative monoids only. In a sense, our general-
ization of the Wilf conjecture offers further generalization. Let us explain this casual
remark. We will consider the following abelian group of unipotent matrices:

P.n;C/ WD

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

26666664
1 a1 a2 : : : an�1

0 1 0 : : : 0

0 0 1 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : 1

37777775 W ¹a1; : : : ; an�1º � C

9>>>>>>=>>>>>>;
.n � 2/: (1)

As a linear algebraic group, G WD P.n;C/ is isomorphic to the additive linear group,
.Cn�1;C/. Hence, we have dimG D n � 1 D dG . The monoid M WD P.n;N/ is
isomorphic to .Nn�1;C/. Now, for M , our Conjecture 1.5 becomes the following
assertion.
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Conjecture 1.7. Let S be a unipotent numerical monoid in M WD P.n;N/. Then we
have

.n � 1/kn�1
� e.S/nM .S/;

where k is the generating number rM .S/ of S relative to M .

Let ' be the monoid isomorphism defined by

' W P.n;N/! N � � � � �N;

.aij /1�i;j�n 7! .a12; a13; : : : ; a1n/:

By using ', we transfer the unipotent numerical monoids in P.n;N/ to the comple-
ment-finite submonoids in Nn�1. Although a unipotent numerical monoid in P.n;N/
is isomorphic to its image in Nn�1, to stress the ambient monoid, we will follow the
terminology of [4]. Later we will relax this aspect of our language. We call such a
complement-finite submonoid of Nn�1 a generalized numerical monoid (GNM, for
short). Let T be a GNM. The complement of T in Nn�1, that is H.T / WD Nn�1 n T ,
is called the hole set of T . In [4], Failla, Peterson and Utano show that every GNM has
a unique minimal set of generators. Let us denote the cardinality of a minimal system
of generators by e.T /. Of course, if '.S/ D T , then we have e.S/ D e.T /. Let 6
denote the partial order on Nn�1 defined by .a1; : : : ; an�1/ 6 .b1; : : : ; bn�1/ if and
only if ai � bi for every i 2 ¹1; : : : ; n � 1º. Let c.T / and n.T / denote the following
numbers:

c.T / WD j¹a 2 Nn�1
W a 6 b for some b 2 H.T /ºj;

n.T / WD j¹a 2 T W a 6 b for some b 2 H.T /ºj:

In the article [2], the authors propose the following conjecture.

Conjecture 1.8 (Generalized Wilf conjecture). Let T be a GNM in Nn�1. Then we
have

.n � 1/c.T / � e.T /n.T /:

In their article, the authors prove Conjecture 1.8 for several interesting families
of generalized numerical monoids. Furthermore, they establish a deep connection, [2,
Theorem 5.7], between the zero dimensional monomial ideals and the generalized
Wilf conjecture.

We will compare the generalized Wilf conjecture and the unipotent Wilf conjec-
ture. It is not difficult to see that if S is a unipotent numerical monoid in M WD
P.n;N/, then we have c.'.S// � cM .S/ and n.'.S// � nM .S/. In other words, we
always have

e.'.S//n.'.S// � e.S/nM .S/: (2)
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Let us point out a family of unipotent numerical monoids where (2) is an equality. Let
S be a unipotent numerical monoid inM with generating number k. If the all-.k � 1/
vector .k � 1; : : : ; k � 1/ is not an element of '.S/, then it is easily seen that

c.'.S// D kn�1
D cS .M/ and n.'.S// D nM .S/:

Thus, for such a generalized numerical monoid S , the validity of the unipotent Wilf
conjecture implies the validity of the generalized Wilf conjecture for '.S/.

Independently of the relationship between the two conjectures, we think that the
following inequality will hold true for every unipotent numerical monoid in P.n;N/.

Conjecture 1.9. Let M WD P.n;N/. Let S be a unipotent numerical monoid in M .
Then we have

cM .S/

c.'.S//
�

nM .S/

n.'.S//
:

Next, we want to mention a related work of García-García, Marín-Aragón, and
Vigneron-Tenorio without providing any details. In [5], they propose another general-
ization of the Wilf conjecture, called the extended Wilf conjecture, for a broad family
of affine semigroups called the C -semigroups. It turns out that every GNM is a C -
semigroup. In [2, Proposition 6.3] Cisto et al., shows that for a GNM, the generalized
Wilf conjecture is a stronger assertion than the extended Wilf conjecture.

We now go back to our discussion of the basic invariants of a unipotent numer-
ical monoid. We have the following question regarding the relationship between the
generating number and the genus of S relative to M .

Question 1.10. Let S be a unipotent numerical monoid in M WD GN , where G is a
unipotent linear algebraic group. Is it true that�

rM .S/

2

�
� gM .S/ < cM .S/‹ (3)

We have a partial affirmative answer for Question 1.10.

Theorem 1.11. Let M 2 ¹U.n;N/;P.n;N/º. If S is a unipotent numerical monoid
in M , then the inequalities in (3) hold true.

We are now ready to describe the structure of our paper. Meanwhile we will men-
tion our more specific results. In Section 2, we solve the finite generation problem for
the unipotent numerical monoids. We prove our first main result Theorem 1.4 in that
section. Also in this section, we determine the minimal generating set for the funda-
mental monoids of U.n;N/. The purpose of the short Section 3 is to show that the
unipotent Wilf conjecture holds for a fundamental monoid. In Section 4, we prove
our second main result that is Theorem 1.11. In Section 5, we investigate the relation-
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ship between the basic invariants of a unipotent monoid and its coordinate monoids.
Here, by a coordinate monoid we mean roughly the following concept. Let Ui;j .n;C/

denote the one dimensional unipotent subgroup of U.n;C/ that is generated by the
elementary unipotent matrix Ei;j D .ei;j /1�i;j�n whose only nonzero non-diagonal
entry is given by ei;j D 1. Then the .i; j /-th coordinate submonoid of a unipotent
monoid S in M WD GN is given by S \ Ui;j .n;N/. It turns out that the coordinate
monoids can be used for providing estimates for the basic invariants of the ambient
unipotent. We do this for the genera and the conductors. Finally, in Section 6 we
introduce two new classes of unipotent numerical monoids by using the coordinate
submonoids. We call them the thick monoids and the thin monoids. We prove that the
unipotent Wilf conjecture holds for every commutative thick monoid (Theorem 6.5).
It is interesting to note that our proof does not assume the validity of the ordinary
Wilf conjecture. For thin monoids, we show that there is a big subfamily in P.n;N/
for which the unipotent Wilf conjecture holds true (Theorem 6.11). In particular, we
observe that, for the members of this subfamily, the unipotent Wilf conjecture is equiv-
alent to the generalized Wilf conjecture. Unlike our hypothesis of Theorem 6.5, we
have the ordinary Wilf conjecture as part of our hypothesis in Theorem 6.11.

2. Finite generation

In this section, we present our preliminary observations regarding the finite generation
properties of the unipotent numerical monoids. First, we setup our notation.

Definition 2.1. Let P be a subset of a monoid M . Let � denote the multiplication
in M . We denote by hP i the submonoid generated by P and the unit e of M , that is,

hP i D ¹a1 � a2 � � � � � ak W ¹a1; : : : ; akº � P; k 2 Nº [ ¹eº:

Now we will prove the first part of our first main result, Theorem 1.4. Let us recall
its statement for convenience.

Let G be a unipotent linear algebraic group in U.n;C/. Let M WD GN . If S is
a unipotent numerical monoid in M , then S is finitely generated. Furthermore, S
possesses a unique minimal generating set.

Proof of Theorem 1.4. We begin with showing that S is a finitely generated monoid.
The definition of a unipotent numerical monoid requires that the ambient monoid
M possesses a finite generating set, A WD ¹g1; : : : ; gmº � M . Here, without loss of
generality, we assume that 1n … A. Thus, every element x 2 M is a product of the
form

x D g
a1

i1
� � �g

al

il
(4)
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for some ¹i1; : : : ; ilº � ¹1; : : : ; mº and ¹a1; : : : ; alº � ZC. Then, for each positive
integer k 2 ZC, letM 0

k
denote the set of elements x 2M such that a multiplicand gas

is

of x as in (4) has exponent as such that k � as . Clearly, the union Mk WD ¹1nº [M
0
k

is a submonoid ofM . Let us check thatMk is a numerical unipotent submonoid ofM .
First, we observe that the elements ofM nMk are precisely the elements y 2M such
that y D ga1

i1
� � � g

al

il
, where max¹a1; : : : ; alº < k. This argument shows that Mk is

a complement-finite submonoid of M . Next, we observe that
Sl

jD1¹g
k
j ; : : : ; g

2k
j º is

a finite generating set for Mk . Hence, Mk is finitely generated. Therefore, Mk is a
numerical unipotent submonoid of M .

We notice that theMk’s are nested,M1 DM © M2 © M3 © � � � . SinceM n S is
a finite set, there is a smallest index k > 1 such that Mk � S and Mk�1 6� S . Since
both Mk and S are complement-finite monoids, we see that S nMk is a finite set. It
follows that the union

G WD .S nMk/ [

� l[
jD1

¹gk
j ; : : : ; g

2k
j º

�
is a finite generating set for S . This finishes the proof of the fact that S is a unipotent
numerical monoid in M .

We now know that S possesses at least one finite generating set, G , as above. It
remains to show that G contains the unique minimal generating subset of S . To this
end, let us define the following subset of S :

T WD ¹x 2 S n ¹1nº W x ¤ x1 � x2 � � � xr for any subset ¹x1; : : : ; xrº � S n ¹x; 1nºº:

On one hand, the finite generating set G has to contain T . Otherwise, G cannot gen-
erate S . Indeed, if we assume that there is x 2 T n G , then at least one entry of x
is greater than 2k. This implies that x 2 hG i n G . This means that x can be written
as a product of some elements of G . Hence, we see that x … T , which is a contra-
diction. On the other hand, by using an easy induction argument, we see that every
element of G n T can be written as a product of some elements of T . (We demonstrate
this inductive argument in the computations below.) It follows that T is the required
unique minimal finite generating set for S . This finishes the proof of our first main
result.

Remark 2.2. The anonymous referee brought to our attention that some of the con-
clusion of the second part of the proof of our Theorem 1.4 can be derived by consid-
ering the fact that S is a cancellative monoid since S is a submonoid of a group.

Consider a unipotent algebraic monoid denoted by G. We mentioned in the intro-
duction, specifically in Example 1.2, that the monoid GN is not always finitely gen-
erated. Unlike the monoid GN , the group GZ is always finitely generated. In fact,
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a well-known result of Borel and Harish-Chandra [1] asserts that if H is a complex
linear algebraic group defined over Q, its subgroup of integer points HZ is always
finitely generated. It would be very interesting to determine the unipotent algebraic
groupsG such thatGN is a finitely generated monoid. In the rest of the paper, we will
consider two important examples of such groups.

Let us identify for U.n;N/ (n � 2) the unique minimal system of generators. Let
Mn denote the monoid of n� nmatrices with entries from C. Let ¹i; j º � ¹1; : : : ; nº.
The .i; j /-th elementary matrix in Mn, denoted by Ei;j , is the matrix .er;s/1�r;s�n

such that

er;s WD

8̂̂<̂
:̂
1 if r D sI

1 if r D i; s D j I

0 otherwise.

Lemma 2.3. Let n � 2. Let A be an element of U.n;N/. If A is given by A WD
.aij /1�i;j�n, then it has a unique expression of the form

E
an�1;n

n�1;n E
an�2;n

n�2;n E
an�2;n�1

n�2;n�1 E
an�3;n

n�3;n � � �E
a1;2

1;2 ; (5)

where the ordering of the elementary matrices in (5) is given by the reverse lexico-
graphic ordering on the pairs of indices.

Proof. Let us first show the uniqueness. LetAD .ai;j /1�i;j�n an element of U.n;N/.
Let us assume that A has two expressions as in

E
an�1;n

n�1;n E
an�2;n

n�2;n E
an�2;n�1

n�2;n�1 E
an�3;n

n�3;n � � �E
a1;2

1;2

D E
bn�1;n

n�1;n E
bn�2;n

n�2;n E
bn�2;n�1

n�2;n�1 E
bn�3;n

n�3;n � � �E
b1;2

1;2 : (6)

The matrix Ean�1;n

n�1;n is the unique factor in (6) that adds the entry an�1;n to the fac-
tor A0 WD E

an�2;n

n�2;n E
an�2;n�1

n�2;n�1 E
an�3;n

n�3;n � � � E
a1;2

1;2 . Indeed, it is easy to check that the
.n � 1; n/-th entry of A0 is 0. Now, since Ean�1;n

n�1;n is invertible, we see from equa-
tion (6) that an�1;n must be equal to bn�1;n. We proceed along the same lines to show
that an�2;n D bn�2;n. First we remove Ean�1;n

n�1;n from both sides of equation (6). Let
A00 denote Ean�2;n�1

n�2;n�1 E
an�3;n

n�3;n � � �E
a1;2

1;2 . It is easy to check that the .n � 2; n/-th entry
of A00 is 0. Therefore, the equation

E
an�2;n

n�2;n E
an�2;n�1

n�2;n�1 E
an�3;n

n�3;n � � �E
a1;2

1;2 D E
bn�2;n

n�2;n E
bn�2;n�1

n�2;n�1 E
bn�3;n

n�3;n � � �E
b1;2

1;2

implies that an�2;n D bn�2;n. Continuing in this manner by the reverse lexicographic
ordering on the pairs of indices, we see that ai;j D bi;j for every 1 � i < j � n. This
finishes the proof of uniqueness. But our algorithmic proof of the uniqueness shows
also thatA can be written as a product of the elements of the set ¹Ei;j W 1� i < j � nº.
Hence, the proof of our lemma is finished.
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Proposition 2.4. The set ¹Ei;j W 1 � i < j � nº is the unique minimal generating set
for U.n;N/.

Proof. In Lemma 2.3, we already showed that ¹Ei;j W 1 � i < j � nº is a generating
set. Let us assume towards a contradiction that an elementary matrix Ei;j (1 � i <
j � n) can be written as a product of some other elements from U.n;N/. By using
the expressions (5) for the factors ofEi;j , we assume that it can be written in the form

Ei;j D E
xi1;j1

i1;j1
� � �E

xir ;jr

ir ;jr
(7)

for some multiset of pairs of indices ¹¹.i1; j1/; : : : ; .ir ; jr/ºº and for some multiset
of exponents, ¹¹xi1;j1

; : : : ; xir ;jr
ºº. Of course, by our assumption, these exponents are

all positive integers. But in a product of the form (7), for each factor Exis ;js

is ;js
, the

.is; js/-th entry of the product has the exponent xis ;js
as a summand. In other words,

unless the multiset ¹¹.i1; j1/; : : : ; .ir ; jr/ºº is equal to the set ¹.i; j /º, the right-hand
side of (7) cannot be equal to the left-hand side. This gives us the desired contradic-
tion. In conclusion, we see that the basis ¹Ei;j W 1 � i < j � nº is minimal. Hence,
by Theorem 1.4, it is the unique minimal generating set for U.n;N/. This finishes the
proof of our proposition.

Our previous proposition yields many examples of unipotent numerical monoids.
For .i; j / 2 ¹1; : : : ; nº � ¹1; : : : ; nº, let Xi;j denote the .i; j /-th coordinate function
on U.n;C/ defined by

Xi;j ..ak;l/1�k;l�n/ D

´
ai;j if .i; j / D .k; l/;

0 otherwise;
where .ak;l/1�k;l�n 2 U.n;C/:

In this notation, we have the following consequence of Proposition 2.4.

Corollary 2.5. LetA be a subset of ¹.i; j / 2 ¹1; : : : ; nº � ¹1; : : : ; nº W 1� i < j � nº,
where 3 � n, such that the set

G WD ¹.ak;l/1�k;l�n 2 U.n;C/ W Xi;j ..ak;l/1�k;l�n/ D 0 for every .i; j / 2 Aº

is an algebraic subgroup of U.n;C/. Then the monoid GN is finitely generated.

Proof. The arguments of the proof of Proposition 2.4 show also that the unique mini-
mal generating set for GN is given by the set ¹Ei;j W .i; j / … Aº. In particular, these
arguments shows that GN has a finite generating set.

Remark 2.6. Let G be a unipotent algebraic monoid as in Corollary 2.5. There are
many examples of submonoids S � GN such that S is not finitely generated. For
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example, if G is equal to P.3;C/, which is defined as in (1), then the following sub-
monoid of P.3;N/ is not finitely generated:

S WD

8̂<̂
:
2641 a b

0 1 0

0 0 1

375 W .a; b/ 2 ZC � ZC [ ¹.0; 0/º

9>=>; :
To show this, we observe that S is isomorphic to

S WD ¹.x; y/ 2 ZC � ZC W xy ¤ 0º [ ¹.0; 0/º:

Clearly, the elements .m; 1/ 2 S , where m 2 ZC, cannot be written as a sum of two
other nonzero elements of S . Hence, S does not possess any finite generating set.

Alternatively, to reach to the same conclusion, we can use the fact that S is not
a complement-finite submonoid of P.n;C/. Therefore, by Theorem 1.4 and Corol-
lary 2.5, it cannot be a finitely generated submonoid of GN .

We proceed to show that U.n;N/ is filtered by a distinguished family of sub-
monoids by using the ideas of the proof of Theorem 1.4.

Lemma 2.7. Let n � 2. For k 2 ZC, let U.n;N/k denote the subset of U.n;N/ that
is defined by

U.n;N/k WD ¹1nº [ ¹.xij /1�i;j�n 2 U.n;N/ W k � max
1�i;j�n

xij º:

Then U.n;N/k is a unipotent numerical monoid in U.n;N/.

Proof. LetA andB be two elements of U.n;N/k . We will show thatAB 2U.n;N/k .
Let us assume that the entries of A and B are given by

A D .aij /1�i;j�n and B D .bij /1�i;j�k :

Let C WD AB . Since the .i; j /-th entry of C , denoted cij , is defined by the formula
cij D

Pn
rD1 airbrj , we see that ai ibij C aij bjj is a summand of cij . In other words,

we always have

aij C bij � cij for every ¹i; j º � ¹1; : : : ; nº:

It follows that k � maxC , whence C 2 U.n;N/k . Since we have the identity matrix
is contained in U.n;N/k as well, we see that U.n;N/k is a submonoid of U.n;N/. At
the same time, the complement U.n;N/nU.n;N/k consists of matrices .xij /1�i;j�n2

U.n;N/ such that max1�i;j�n xij < k. Hence, we see that U.n;N/k is a complement-
finite monoid. This finishes the proof of our assertion.
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Remark 2.8. For every n � 2, the unipotent monoid U.n;N/ is a filtered monoid.
Indeed, for k 2 N, let Mk denote U.n;N/kC1. Then we have the containments,

U.n;N/ DM0 �M1 �M2 � � � � :

Let k � 2, and define

Qk WD ¹.xij /1�i;j�n 2 U.n;N/ W k � max
1�i;j�n

xij < 2kº:

Lemma 2.9. The set Qk is a generating set for U.n;N/k .

Proof. The proof follows from Lemma 2.3 and the division algorithm applied to the
exponents.

We now sieve Qk to extract a minimal generating set from it,

Uk WD ¹X 2 Qk W all but one entry of X is not contained in ¹0; : : : ; k � 1ºº:

It is easy to see that the number of elements of Uk is
�

n
2

�
k.

n
2/. Indeed, to construct

an element X 2 Uk , we have exactly
�

n
2

�
coordinates to place some numbers from

the sets ¹0; : : : ; k � 1º and ¹k; : : : ; 2k � 1º under the condition that, from the latter
set, we are allowed to use only one element ˛ 2 ¹k; : : : ; 2k � 1º. Of course, we can
choose ˛ in j¹k; : : : ; 2k � 1ºj different ways, and it can be placed in one the

�
n
2

�
different coordinates. Now there are

�
n
2

�
� 1 remaining coordinates. In each of these

coordinates we have k elements to choose from ¹0; : : : ; k � 1º. Hence, we see that in
total there are

�
n
2

�
k � k.

n
2/�1 possible ways of constructing our X .

Example 2.10. Let n D 3 and k D 2. The following are the 24 elements of U2:

E2
12; E13E

2
12; E23E

2
12; E23E13E

2
12; E

3
12; E13E

3
12; E23E

3
12; E23E13E

3
12;

E2
13; E

2
13E12; E23E

2
13; E23E

2
13E12; E

3
13; E

3
13E12; E23E

3
13; E23E

3
13E12;

E2
23; E

2
23E12; E

2
23E13; E

2
23E13E12; E

3
23; E

3
23E12; E

3
23E13; E

3
23E13E12:

Lemma 2.11. The set Uk is the unique minimal generating set for U.n;N/k . In
particular, the embedding dimension of U.n;N/k is given by

e.U.n;N/k/ D
�
n

2

�
k.

n
2/:

Proof. The proof has two parts. First, we will show that Uk is an independent set,
that is, for every X and Y from Uk the product XY is not an element of Uk . This
will show the minimality of Uk . Secondly, we will show that every element of Qk

can be written as a product of some elements of Uk .
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Now, let us assume towards a contradiction that there exist X and Y in Uk such
that XY 2 Uk . Since the .i; j /-th entry of XY is bigger than or equal to the sum of
the .i; j /-th entries of X and Y , we see that XY has at least two entries in the set
¹k; : : : ; 2k � 1º. This contradicts with the definition of Uk .

To prove that every element of Qk can be written as a product of some elements
of Uk , we will use a similar argument. Let X 2 Qk be given by X WD .xi;j /1�i;j�n.
Let us assume that the .i; j /-th and the .l; t/-th entries of X are contained in the set
¹k; : : : ; 2k � 1º. By using Lemma 2.3 we express X in the form

E
xn�1;n

n�1;n E
xn�2;n

n�2;n E
xn�2;n�1

n�2;n�1 E
xn�3;n

n�3;n � � �E
x1;2

1;2 D X: (8)

Recall that the ordering of the elementary matrices is given by the reverse lexico-
graphic ordering on the pairs of indices. Without loss of generality, we assume that
.i; j / < .l; t/ in the reverse lexicographic ordering. Then we split the expression (8)
as follows:

.E
xn�1;n

n�1;n � � �E
xi;j

i;j /.E
xr;s
r;s � � �E

x1;2

1;2 / D X;

where .r; s/ is the predecessor of .i; j / in the reverse lexicographic ordering. Now
both of the factors, Exn�1;n

n�1;n � � �E
xi;j

i;j and Exr;s
r;s � � �E

x1;2

1;2 are contained Qk . Clearly,
we can repeat this factorization until each factor has only one entry that is contained
in the set ¹k; : : : ; 2k � 1º. In other words, we can write X as a product of elements
from Uk . But this observation shows also that the elements of Uk are precisely those
elements of U.n;N/k that cannot be expressed as a product of some other elements
from U.n;N/k . In other words, every element X 2 Uk has to be contained in every
generating set for U.n;N/k . This finishes the proof of our assertion that Uk is the
unique minimal generating set for U.n;N/k . We already pointed out that the number
of elements of Uk is

�
n
2

�
k.

n
2/. Hence, our proof is finished.

3. Some special cases

Let us denote the k-th fundamental monoid of P.n;N/ by P.n;N/k . In other words,
P.n;N/k D U.n;N/k \ P.n;N/. Let us summarize the basic invariants of the unipo-
tent numerical monoids S WD U.n;N/k in M WD U.n;N/ and S 0 WD P.n;N/k in
M 0 WD P.n;N/. We begin with the former submonoid. Recall the minimal generating
set for U.n;N/k

Uk D
®
X WD .xij /1�i;j�n 2 U.n;N/ W k � max

1�i;j�n
xij < 2k; all but one entry

of X is not contained in ¹0; : : : ; k � 1º
¯
:
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Then we have

cM .S/ WD k
.n

2/;

gM .S/ WD k
.n

2/ � 1;

nM .S/ WD 1;

e.S/ WD
�
n

2

�
k.

n
2/:

Next, we have the basic invariants for P.n;N/k in P.n;N/. We let Pk denote the
corresponding set for P.n;N/k , that is,

Pk D
®
X WD .xij /1�i;j�n 2 P.n;N/ W k � max

1�i;j�n
xij < 2k; all but one entry of X

is not contained in ¹0; : : : ; k � 1º
¯
:

Then we have

cM 0.S
0/ WD kn�1;

gM 0.S
0/ WD kn�1

� 1;

nM 0.S
0/ WD 1;

e.S 0/ WD .n � 1/kn�1:

In the rest of this section we will verify a number of special cases of the unipo-
tent Wilf conjectures from the introduction. Let us recall its claim for the unipotent
numerical submonoids of U.n;N/,

dGcU.n;N/.S/ � e.S/nU.n;N/.S/:

Example 3.1. Let M WD U.n;N/. For k � 2, let S denote U.n;N/k . Then we have
the equalities, �

n

2

�
cM .S/ D

�
n

2

�
k.

n
2/ D e.S/ � nM .S/;

confirming the unipotent Wilf conjecture.

Let us recall the statement of the specialization of our unipotent Wilf conjecture
to P.n;N/. Let S be a unipotent numerical submonoid of P.n;N/. Then our Conjec-
ture 1.7 states that

.n � 1/cP.n;N/.S/ � e.S/nP.n;N/.S/:
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Example 3.2. LetM 0 D P.n;N/. For k � 2, let S 0 denote P.n;N/k . In this case, we
have the equalities,

.n � 1/cM 0 D .n � 1/k
n�1
D e.S 0/ � nM 0.S

0/:

Again, the unipotent Wilf conjecture holds true in this case.

Next, we have a two dimensional example.

Example 3.3. Let S denote the unipotent numerical monoid in P.3;N/ that is gen-
erated by the set A WD ¹E2

1;3; E
2
1;2E1;3º [P4, where P4 is the minimal generating

set for P.3;N/4. Then P4 D ¹E
i
1;2E

j
1;3; E

j
1;2E

i
1;3 W i 2 ¹0; : : : ; 3º; j 2 ¹4; : : : ; 7ºº.

Notice that A, as a generating set, contains many redundant elements. To show which
elements are not needed, we will visualize S by viewing it as a subset of N �N as
in Figure 1. Indeed, P.3;N/ is isomorphic to N �N via the isomorphism ' that we
mentioned in the introduction. Now, the shaded boxes in Figure 1 represent the ele-
ments of S . The boxes with coordinates in them correspond to the elements of the
generating set A. Finally, the blue colored boxes correspond to the minimal genera-
tors of S . It is now easily seen that e.S/D 13, nP.3;N/.S/D 4, and cP.3;N/.S/D 16.

.0; 2/

.2; 1/

.0; 4/

.0; 5/

.0; 6/

.0; 7/

.1; 4/

.1; 5/

.1; 6/

.1; 7/

.2; 4/

.2; 5/

.2; 6/

.2; 7/

.3; 4/

.3; 5/

.3; 6/

.3; 7/

.4; 0/ .5; 0/ .6; 0/ .7; 0/

.4; 1/ .5; 1/ .6; 1/ .7; 1/

.4; 2/ .5; 2/ .6; 2/ .7; 2/

.4; 3/ .5; 3/ .6; 3/ .7; 3/

Figure 1. A unipotent numerical monoid whose minimal generators are highlighted.
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Then we have

2 � cP.3;N/.S/ D 32 � e.S/nP.3;N/.S/ D 52:

This confirms the unipotent Wilf conjecture in this case.

4. Proof of Theorem 1.11

In this section, we give a partial affirmative answer to Question 1.10. More precisely,
we will prove the following statement:

If S is a unipotent numerical monoid inM , whereM 2 ¹U.n;N/;P.n;N/º, then
the inequalities �

rM .S/

2

�
� gM .S/ < cM .S/

hold true.
In the proof of this statement, our implicit assumption will be that the generating

number of S relative to M is at least two. In fact, if rM .S/ D 1, then we see that
S DM . In this case, we have

0 D

�
rM .S/

2

�
D gM .S/ < cM .S/ D 1:

We are now ready to start our proof.

Proof of Theorem 1.11. We will present the proof for M D U.n;N/ only. The case
of P.n;N/ is similar.

We begin with introducing some new notation and terminology. First, we will
abbreviate U.n;N/k to U.k/. Now recall that cM .S/ D k.

n
2/, where k is the gen-

erating number, rM .S/. We interpret k.
n
2/ as the number of integer points of the

hypercube

Œ0; k � 1� � � � � � Œ0; k � 1� � R.
n
2/:

This interpretation is justified by the fact that M can be identified as a set (not as a
monoid) with N.

n
2/. Here, each coordinate of N.

n
2/ corresponds to the submonoid of

U.n;N/ that is generated by the elementary matrix Ei;j (1 � i < j � n). Then the
complement M n U.k/ corresponds to the set of integer points of Œ0; k � 1�.

n
2/. Let

us call this cube the enveloping hypercube of M n S . Thus, we stress the fact that
cM .S/ is the volume of the enveloping hypercube. Equivalently, we have cM .S/ D

jM n U.k/j. Since the genus of S relative to M is the cardinality of the hole set, that
is, gM .S/ D jM n S j, the validity of the inequality gM .S/ < cM .S/ is obvious.
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We proceed to the proof of the inequality, bk
2
c � gM .S/. Towards a contradiction

let us assume that bk
2
c > gM .S/. Here, we have a simple but crucial observation:

Since k is the generating number of S relative to M , the monoid S does not
contain the generating set Uk�1 of U.k � 1/. Hence, there exists a matrix of the form

V WD E
vn�1;n

n�1;n E
vn�2;n

n�2;n � � �E
v1;2

1;2 2 Uk�1 n S;

where ¹vi;j W 1 � i < j � nº � ¹0; : : : ; k � 1º. Let a WD vr;s be the exponent such
that

max¹v1;2; : : : ; vn�1;nº D a and k � 1 � a < 2.k � 1/:

All of the other elements of ¹v1;2; : : : ; vn�1;nº are contained in ¹0; : : : ; k � 2º. But
since V …Uk , we must have a … ¹k; : : : ; 2k � 1º. Hence, we conclude that aD k � 1.
We now have two distinct possibilities here,

(1) ¹v1;2; : : : ; vn�1;nº n ¹aº ¤ ¹0º, or,

(2) ¹v1;2; : : : ; vn�1;nº n ¹aº D ¹0º.

Let us proceed with (1). For this part of the proof we will use a counting argument.
We factorize V as follows:

V WD .E
vn�1;n

n�1;n � � �E
a
r;s/ � .E

vr0;s0

r 0;s0 � � �E
v1;2

1;2 /;

where .r 0; s0/ is the predecessor of .r; s/ in the reverse lexicographic ordering on N2.
Since V … S , if Evn�1;n

n�1;n � � �E
a
r;s is an element of S , then E

vr0;s0

r 0;s0 � � �E
v1;2

1;2 is not an
element of S . Conversely, if E

vr0;s0

r 0;s0 � � �E
v1;2

1;2 is an element of S , then Evn�1;n

n�1;n � � �E
a
r;s

is not an element of S . Another possibility here is that neither Evn�1;n

n�1;n � � �E
a
r;s nor

E
vr0;s0

r 0;s0 � � �E
v1;2

1;2 is an element of S . Likewise, if Evn�1;n

n�1;n � � �E
a�1
r;s is an element of S ,

then Er;sE
vr0;s0

r 0;s0 � � �E
v1;2

1;2 is not an element of S . Conversely, if Er;sE
vr0;s0

r 0;s0 � � �E
v1;2

1;2 is
an element of S , then Evn�1;n

n�1;n � � �E
a�1
r;s is not an element of S . Another possibility is

that neitherEvn�1;n

n�1;n � � �E
a�1
r;s norEr;sE

vr0;s0

r 0;s0 � � �E
v1;2

1;2 is an element of S . We continue

in this manner for each matrix of the formE
vn�1;n

n�1;n � � �E
a�j
r;s , where j 2 ¹0; : : : ;k � 1º.

At the end, we see that there are at least k elements in the complement M n S . This
means that the genus gM .S/ is at least k, which contradicts our initial assumption
that bk

2
c > gM .S/.

We now proceed with the case of (2). We will apply a similar counting argument.
In this case, our matrices are given by the powers of Er;s only. Similarly to the pre-
vious case, we observe that, for j 2 ¹0; : : : ; k � 1º, either Ej

r;s or Ea�j
r;s is not an

element of S . Thus there are at least bk
2
c elements in M n S . Once again this con-

tradicts with our initial assumption that bk
2
c > gM .S/. This finishes the proof of our

second inequality. Hence, the proof is complete.
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5. Coordinate monoids

Let n � 2. Let Mi;j (1 � i < j � n) denote the monoid generated by the elementary
matrix Ei;j , that is,

Mi;j WD hEi;j i D ¹E
s
i;j W s 2 Nº Š N:

Definition 5.1. Let S be a submonoid of U.n;N/. The .i; j /-th coordinate sub-
monoid of S , denoted by Si;j , is the monoid defined by

Si;j WD S \Mi;j :

Lemma 5.2. LetM be an element of ¹U.n;N/;P.n;N/º. If S is a unipotent numeri-
cal monoid inM , then Si;j is a numerical monoid. In other words, Si;j is isomorphic
to a complement-finite submonoid of N. Here, it is understood that if M D P.n;N/,
then i D 1.

Proof. Since M n S is a finite set, the intersection .M n S/ \Mi;j is a finite set as
well. But we have .M nS/\Mi;j DM \Mi;j nS \Mi;j DMi;j nSi;j . Hence, Si;j

is a complement-finite submonoid ofMi;j . This finishes the proof of our assertion.

The purpose of this section is to discuss the relationship between the basic in-
variants of S in relation with the basic invariants of the numerical monoids Si;j ’s.
Although our results hold for both of the ambient monoids U.n;N/ and P.n;N/, we
will state our theorems for the latter monoid only.

Notation 5.3. In the rest of this section, M will stand for the commutative monoid
P.n;N/. If the index n is evident from the context, then we write P.k/ instead of
P.n;N/k . Also, by using the isomorphism ' from the introduction, we will view M

as the monoid Nn�1 without mentioning it again. If S is a submonoid of M , then
we will list the coordinate submonoids of S as S1; : : : ; Sn�1. More precisely, for
j 2 ¹1; : : : ; n � 1º, we set

Sj WD S \ .¹0º � � � � �N � � � � � ¹0º/;

where N appears at the j -th coordinate of the product.

The question that we want to answer is the following: How do the basic invariants
of S relate to the basic invariants of the numerical monoids, S1; : : : ; Sn�1?

Hereafter, to make sure that S ¤M , we assume that the generating number of S
relative to M is at least two.
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5.1. Conductors

Let k denote the generating number of S relative to M . Then the conductor of S
relative toM is .n� 1/kn�1. It is easy to check that the conductor of every coordinate
submonoid Sj is at most k. Thus, unless n D 2, we have an absolute inequality,

c.S1/ � � � c.Sn�1/ � k
n�1 < .n � 1/kn�1

D dGcM .S/; (9)

where G D P.n;C/. The following inequality always holds as well:

c.S1/C � � � C c.Sn�1/ � .n � 1/k < .n � 1/k
n�1
D dGcM .S/: (10)

However, we want to emphasize the fact, even if the generating number of S relative
to M is fixed, the conductors c.S1/; : : : ; c.Sn�1/ usually vary in a wide range of
numbers. We will justify our remark by presenting several examples.

Example 5.4. Let S denote the following submonoid of P.3;N/:

S WD h.1; 0/; .1; 1/; .1; 2/; A W A 2 P.3/i:

Then we have rM .S/ D 3, c.S1/ D 1 and c.S2/ D 3.

Example 5.5. Let S denote the monoid P.3/ � P.3;N/. Then we have rM .S/ D 3,
c.S1/ D 3 and c.S2/ D 3.

Example 5.6. Let S denote the monoid

S WD h.2; 0/; .0; 2/; A W A 2 P.3/i � P.3;N/:

Then we have rM .S/ D 3, c.S1/ D 2 and c.S2/ D 2.

These examples show that the sign of the difference

max¹c.S1/; : : : ; c.Sn�1/º � rM .S/

varies in the set ¹�1; 0º. In the next section, we will discuss some important examples
of unipotent numerical semigroups such that max¹c.S1/; : : : ; c.Sn�1/º D rM .S/.

5.2. Genera

In Theorem 1.11 we proved the inequalities, b rM .S/
2
c � gM .S/ < cM .S/. In (9) we

found the most straightforward relationship between the conductors of S and the Sj ’s.
It turns out that the relationship between the genera is more complicated but leads to
an interesting bound.

Let j 2 ¹1; : : : ; n � 1º. It follows directly from the definition of Sj that the hole
setM n S contains more elements than the hole setMj n Sj . In other words, we have
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g.Sj / � gM .S/. In fact, similarly to (10), the following inequality always holds is
easily seen:

g.S1/C � � � C g.Sn�1/ � gM .S/: (11)

But as we will show in our next examples, unlike (9), the product g.S1/ � � �g.Sn�1/ is
not necessarily smaller than gM .S/.

Example 5.7. In Figure 2 we have two examples of unipotent numerical monoids in
P.3;N/, each represented by the shaded boxes in the corresponding grid.

The first one is given by

S .1/
D h.1; 1/; .1; 2/; .1; 3/; .2; 1/; A W A 2 P.4/i:

The second one, denoted S .2/, is the fourth fundamental monoid in P.3;N/.
Then the genus of S .1/ relative to P.3;N/ is 7. Likewise, the genus of S .2/ relative

to P.3;N/ is 15. At the same time, we have

S
.1/
1 D h.4; 0/i Š S

.1/
2 D h.0; 4/i;

hence, g.S .1/
1 / D g.S .1/

2 / D 3. It follows that

g.S .1/
1 /g.S .1/

2 / D 9 > gP.3;N/.S
.1// D 7:

On the other hand, the genus of S .2/ relative to P.3;N/ is 15. Also, we have
S

.2/
1 Š S

.2/
2 Š h4i with g.S .2/

1 /D 3. Thus, in this case, we have the opposite inequal-
ity,

g.S .2/
1 /g.S .2/

2 / D 9 < gP.3;N/.S
.2// D 15:

To find a good estimate for the genera, the following lemma on the sporadicity
will be helpful.

Lemma 5.8. For every unipotent numerical monoid S in M , we have

n.S1/ � � � n.Sn�1/ � nM .S/:

Proof. Let k denote the generating number of S relative to M . Recall that the en-
veloping hypercube of M n S is the complement M n P.k/. Clearly, for every j 2
¹1; : : : ; n � 1º, the set of sporadic elements of the coordinate monoid Sj is contained
in the enveloping hypercube of S . Since S is a monoid, all sums of the form

aC b where a 2 Si and b 2 Sj

for 1 � i ¤ j � n � 1 are contained in the enveloping hypercube of M n S . In other
words, the set of sporadic elements of S relative toM contains all possible sums (with
no repetitions) of the sporadic elements of S1; : : : ; Sj . This finishes the proof of our
lemma.
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.1; 1/

.1; 2/

.1; 3/

.2; 1/

.0; 4/

.0; 5/

.0; 6/

.0; 7/

.1; 4/

.1; 5/

.1; 6/

.1; 7/

.2; 4/

.2; 5/

.2; 6/

.2; 7/

.3; 4/

.3; 5/

.3; 6/

.3; 7/

.4; 0/ .5; 0/ .6; 0/ .7; 0/

.4; 1/ .5; 1/ .6; 1/ .7; 1/

.4; 2/ .5; 2/ .6; 2/ .7; 2/

.4; 3/ .5; 3/ .6; 3/ .7; 3/

.0; 4/

.0; 5/

.0; 6/

.0; 7/

.1; 4/

.1; 5/

.1; 6/

.1; 7/

.2; 4/

.2; 5/

.2; 6/

.2; 7/

.3; 4/

.3; 5/

.3; 6/

.3; 7/

.4; 0/ .5; 0/ .6; 0/ .7; 0/

.4; 1/ .5; 1/ .6; 1/ .7; 1/

.4; 2/ .5; 2/ .6; 2/ .7; 2/

.4; 3/ .5; 3/ .6; 3/ .7; 3/

Figure 2. Two examples with different genera.



On generalized Wilf conjectures 43

Let ¹x1; : : : ; xn�1º be a set of n� 1 algebraically independent variables. The j -th
elementary symmetric polynomial, for j 2 ¹1; : : : ;n� 1º, is the polynomial ej defined
by the formula

ej .x1; : : : ; xn�1/ D
X

1�i1<���<ij�n�1

xi1 � � � xij :

Proposition 5.9. Let g1; : : : ; gn�1 denote the genera of S1; : : : ; Sn�1, respectively.
Then we have

e1.g1; : : : ; gn�1/ � gM .S/ �

n�1X
jD1

.�1/j�1kn�1�j ej .g1; : : : ; gn�1/: (12)

Proof. Since e1.g1; : : : ;gn�1/D
Pn�1

jD1 gj , the first inequality is a restatement of (11).
We proceed to show that the upper bound holds.

Similarly to the ordinary numerical monoids, for every unipotent numerical mo-
noid S in M D P.n;N/, the sum of genus and the sporadicity gives the conductor

nM .S/C gM .S/ D cM .S/ D k
n�1;

where k denotes, as before, the generating number of S relative to M . Then the con-
ductors of the coordinate monoids of S are bounded by k. In particular, for every
j 2 ¹1; : : : ; n � 1º we have

n.Sj / � k � gj :

Thus, it follows from Lemma 5.8 that

.k � g1/ � � � .k � gn�1/ � k
n�1
� gM .S/: (13)

After expanding the left-hand side of (13) by using the elementary symmetric poly-
nomials, and then reorganizing the result, we find our desired inequality in (12). This
finishes the proof of our proposition.

The proof of the following corollary readily follows from Proposition 5.9.

Corollary 5.10. Let S be a unipotent numerical submonoid of P.3;N/. Let g1; g2

denote the genera of the coordinate submonoids S1; S2, respectively. Then we have

g1 C g2 � gP.3;N/.S/ � k.g1 C g2/ � g1g2;

where k is the generating number of S relative to P.3;N/.
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6. The thick and the thin unipotent numerical groups

In this section, we follow the notational conventions of the previous section. In par-
ticular, we will not distinguish between P.n;N/ and Nn�1. The generalized monoids
that attain the lower bound in Proposition 5.9 are rather special. Indeed, if the equality
g1 C � � � C gn�1 D gM .S/ holds, then the elements of M n S are all contained in the
union

Sn�1
jD1 Sj . This means that the set M n

Sn�1
jD1Mj is a subsemigroup of S .

Definition 6.1. Let S be a unipotent numerical monoid in M with coordinate sub-
monoids S1; : : : ; Sn�1. Let g1; : : : ; gn�1 denote the genera of S1; : : : ; Sn�1, respec-
tively. Let n1; : : : ; nn�1 denote the sporadicities of S1; : : : ; Sn�1, respectively. IfPn�1

jD1 gj D gM .S/ holds, then we call S a thick (unipotent numerical) monoid inM .
If
Qn�1

jD1 nj D nM .S/ holds, then we call S a thin (unipotent numerical) monoid inM .

Clearly, if n D 2, then every unipotent numerical monoid is simultaneously a thin
monoid and a thick monoid. In our next result, we prove that, for n � 3, the intersec-
tion of the families of thin and thick monoids is trivial.

Theorem 6.2. For n � 3, a unipotent numerical monoid S in M is simultaneously a
thin monoid and a thick monoid if and only if S DM .

Proof. (() If S DM , then we have gM .S/ D 0 and nM .S/ D 1. Hence, the condi-
tions

Pn�1
jD1 gj D gM .S/ and

Qn�1
jD1 nj D nM .S/ are automatically satisfied. In other

words, if S DM , then S is both a thin and a thick monoid.
()) The following simple lemma will be useful.

Lemma 6.3. Let k � 2. Let �1 � � � � � �m be a weakly increasing sequence of non-
negative integers such that �m � k � 1. Then we have 1

k
.
Pm

iD1 �i / �
Pm

iD2 �i .

Proof. We will show that
Pm

iD1 �i � k.
Pm

iD2 �i /. Let us look closely at the right-
hand side of the following decomposition:

k

� mX
iD2

�i

�
D .k � 1/

� mX
iD2

�i

�
C

� mX
iD2

�i

�
:

Since k � 2, we have .k � 1/.
Pm

iD2 �i / �
Pm

iD2 �i . Since
Pm

iD2 �i � �1, we have

.k � 1/

� mX
iD2

�i

�
C

� mX
iD2

�i

�
�

� mX
iD2

�i

�
C �1 D

mX
iD1

�i :

This finishes the proof of our lemma.
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Now let S �M D P.n;N/ be a unipotent numerical semigroup which is both thin
and thick at the same time. Let k denote generating number of S . Our goal is to show
that k D 1. Towards a contradiction, we proceed with the assumption that k � 2.

Since S is a thick monoid, it follows from the general identity

nM .S/C gM .S/ D cM .S/ D k
n�1

that the sporadicity of S relative to M is given by nM .S/ D k
n�1 �

Pn�1
iD1 gi , where

k denotes the conductor of S relative to M . Since gi C ni � k for every i 2 ¹1; : : : ;
n � 1º, and since S is a thin monoid, we obtain the following inequality:

kn�1
�

n�1X
iD1

gi D nM .S/ D

n�1Y
iD1

ni �

n�1Y
iD1

.k � gi /: (14)

The following lemma will provide us with the last step of our proof.

Lemma 6.4. Let m; k � 2. Let �1 � � � � � �m be a weakly increasing sequence of
nonnegative integers such that �m � k � 1. If the inequality

km
�

mX
iD1

�i �

mY
iD1

.k � �i / (15)

is satisfied, then we have �1 D � � � D �m D 0.

Proof. We prove this direction by using induction onm. The base case is whenmD 2.
Then our inequality is given by k2 � .�1 C �2/ � .k � �1/.k � �2/. After reorganiz-
ing it, we find that .�1C�2/.k � 1/� �1�2. Since k � 2 and �i � k � 1 for i 2 ¹1;2º,
the last inequality holds if and only if �1 D �2 D 0. We now assume that our claim
holds true for every l 2 ¹2; : : : ;m� 1º, and we proceed to prove it for l D m. To this
end, we divide both sides of (15) by k, and reorganize it,

km�1
�
1

k

mY
iD1

.k � �i /C
1

k

mX
iD1

�i :

Note that .k � �1/=k � 1. Then by applying Lemma 6.3, we obtain

km�1
�

mY
iD2

.k � �i /C

mX
iD2

�i :

After relabeling our new inequality and then applying the induction assumption, we
see that �2 D � � � D �m D 0. But �1 satisfies 0 � �1 � �2. Hence, the proof of our
lemma is finished.
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We are now ready to finish the proof of our theorem. We apply Lemma 6.4 to
inequality (14) with �i D gi for i 2 ¹1; : : : ; n � 1º. Then we see that g1 D � � � D

gn�1 D 0. But if the genera of all coordinate submonoids of S are 0, then the genus of
S relative to M must be 0. This means that S DM . Hence, the proof of our theorem
is finished.

We proceed to show that the unipotent Wilf conjecture holds for the thick monoids
when n is at least 3.

Theorem 6.5. Let n � 3, and let M WD P.n;N/. If S is a thick unipotent numerical
monoid in S , then the unipotent Wilf conjecture 1.7 holds true for S .

Proof. Let Si (i 2 ¹1; : : : ; n� 1º) denote the i -th coordinate monoid of S . Let ei and
ni denote the embedding dimension and the sporadicity of Si , respectively. Clearly,
every generator of Si is a generator of S . Hence, we have the basic estimate,

n�1X
iD1

ei � e.S/:

Let k denote the generating number of S relative toM . Without loss of generality, we
assume that k � 2. Hence, one of the numbers e1; : : : ; en�1 must be at least two. It
follows that

n �

n�1X
iD1

ei � e.S/: (16)

At the same time, since S is a thick monoid, the number of sporadic elements is found
by the following formula:

nM .S/ D k
n�1
�

n�1X
iD1

gi : (17)

Here, kn�1 is the cardinality of the enveloping hypercube of M n S . By putting (16)
and (17) together, we obtain .kn�1 �

Pn�1
iD1 gi /n as a lower bound for e.S/nM .S/.

Notice that �
kn�1

�

n�1X
iD1

gi

�
n D .n � 1/kn�1

C kn�1
� n

� n�1X
iD1

gi

�
:

This means that if the inequality 0 � kn�1 � n.
Pn�1

iD1 gi / holds, then the proof of our
claim will follow. Since the conductor of Si (i 2 ¹1; : : : ; n � 1º) is at most k, we see
that gi � k � 1. Therefore, we see that

kn�1
� n.n � 1/.k � 1/ � kn�1

� n

� n�1X
iD1

gi

�
:
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To analyze the lower bound, we view it as a function on Z2,

f W Z � Z! Z;

.n; k/ 7! kn�1
� n.n � 1/.k � 1/:

We are interested in the values f .n;k/, where k � 2 and n� 3. For such a pair .n; k/,
it is easy to see by using calculus that

f .n; k/ < 0 if .n; k/ 2 ¹.3; 2/; .3; 3/; .3; 4/; .4; 2/; .5; 2/º:

But it is easy to see by using calculus that, for every k � 5 and n � 3, the function
.k; n/ 7! kn�1 � n.n � 1/.k � 1/ takes values in ZC. Hence, for such .n; k/, our
claim holds true. For .n; k/ 2 ¹.3; 2/; .3; 3/; .3; 4/; .4; 2/; .5; 2/º, it is easy to check
(by hand) that the unipotent Wilf conjecture holds true. This finishes the proof of our
theorem.

Example 6.6. In this example, for the convenience of the reader, we will check on an
example, where .n; k/ D .5; 2/, that the unipotent Wilf conjecture holds. Recall that
we identify P.5;N/ with N4. Let S be the thick monoid in N4 defined by

S D h.1; 0; 0; 0/; .0; 0; 0; 1/; .1; 1; 1; 1/; A W A 2 P2i:

Then it is easy to verify that the minimal generating set is given by8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

.1; 0; 0; 0/; .0; 0; 0; 1/; .1; 1; 1; 1/;

.1; 0; 0; 1/; .0; 2; 0; 0/; .0; 3; 0; 0/;

.0; 1; 1; 2/; .0; 0; 1; 2/; .0; 1; 0; 2/;

.0; 2; 1; 0/; .0; 3; 1; 0/; .0; 0; 2; 0/;

.0; 0; 3; 0/; .0; 1; 2; 0/; .0; 1; 3; 0/;

.2; 1; 1; 0/; .2; 0; 1; 0/; .2; 1; 0; 0/

9>>>>>>>=>>>>>>>;
:

In particular, we see that e.S/ D 18. The elements of S that are contained in the
enveloping hypercube of M n S are

.0; 0; 0; 0/; .1; 0; 0; 0/; .0; 0; 0; 1/; .1; 0; 0; 1/; .1; 1; 1; 1/:

Hence, the sporadicity of S relative to M is 5. It follows that e.S/ � nM .S/ D 90

while 4cM .S/ D 64 since the generating number is 2.

Next, we will consider the thin monoids. First we introduce the well-known notion
of a multiplicity of a numerical monoid. If T is a numerical monoid, then the number

min¹a W a 2 T n ¹0ºº

is called the multiplicity of T .
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Lemma 6.7. Let S be a thin unipotent numerical monoid in M WD P.3;N/ with
coordinate monoids S1 and S2. Then the embedding dimension of S is given by

e.S/ WD e1 C e2 C .m1 � 1/m2 C m1.m2 � 1/;

where mi (i 2 ¹1; 2º) is the multiplicity of Si .

Proof. Let A denote the enveloping square of M n S . The minimal generators of a
unipotent numerical monoid S inM are always contained in the union of the envelop-
ing hypercube of M n A and the set of minimal generators of the k-th fundamental
monoid of S , where k is the conductor of S relative to M . Since S is a thin monoid,
the set A n S1 [ S2 does not share any elements with A. In other words, all mini-
mal generators of S that are contained in A are actually contained in the coordinate
submonoids. In fact, more is true. The minimal generators of the coordinate monoids
are always among the minimal generators for S . Let us denote the set of minimal
generators of S that are contained in S1 [ S2 by A. Hence, we have jAj D e1 C e2.
Thus, it remains to characterize those minimal generators of S that are contained in
Pk n S1 [ S2, where Pk is the minimal generating set for P.k/.

Let .a1; : : : ; am1
/ WD .1; 2; : : : ; m1/ and .b1; : : : ; bm2

/ WD .1; 2; : : : ; m2/. It is not
difficult to see that each pair of the form .k C s; ai /, where i 2 ¹1; 2; : : : ;m1 � 1º and
s 2 ¹0;1; : : : ;m2 � 1º is one of the minimal generators of S contained in Pk n S1 [ S2.
Let A1 denote the set of all such pairs. Clearly, the cardinality of A1 is given by
.m1 � 1/m2. Likewise, it is not difficult to see that each pair of the form .bj ; k C s/,
where j 2 ¹1; 2; : : : ; m2 � 1º and s 2 ¹0; 1; : : : ; m1 � 1º is a minimal generator in
Pk n S1 [ S2 as well. Let A2 denote the set of all such pairs. The cardinality of A2 is
given by m1.m2 � 1/. Then, the union A1 tA2 is a subset of the minimal generating
set of S . We now observe that, if we translate A1 (resp. A2) to the origin by subtract-
ing .k; 0/ from its elements, then the resulting set becomes a generating set for N2.
Likewise the translated set A2 � .0; k/ generates N2. But this means that the union
A tA1 tA2 generates S . Since this union is already a subset of the minimal gener-
ating set of S , it must be equal to it. Finally, we notice that e1 C e2 C .m1 � 1/m2 C

m1.m2 � 1/ D jA tA1 tA2j. This finishes the proof of our proposition.

We will illustrate the proof of our previous proposition on an example.

Example 6.8. Let S denote the unipotent numerical monoid in P.3;N/ that is de-
picted in Figure 3. As usual, the shaded boxes in this figure represent the elements
of S . Let S1 and S2 denote the coordinate monoids of S . Let A WD ¹.0; 3/; .0; 4/;

.2; 0/; .7; 0/º. Then A consists of the minimal generators of S contained in S1 [ S2.
The following sets give the remaining part of the minimal generating set of S :

A1 D ¹.1; 6/; .1; 7/; .1; 8/º and A2 D ¹.6; 1/; .6; 2/; .7; 1/; .7; 2/º:
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.2; 0/

.0; 3/

.0; 4/

.7; 0/

.1; 6/

.1; 7/

.1; 8/

.6; 1/ .7; 1/

.6; 2/ .7; 2/

Figure 3. A thin monoid.

It is easy to check that A1 tA2 tA is a partitioning of the minimal generating set
of S .

Next, we are now going to extend the conclusion of Lemma 6.7 to higher dimen-
sions.

Lemma 6.9. Let S be a thin unipotent numerical monoid in M WD P.n;N/ with
coordinate monoids S1; : : : ; Sn�1. We have the following identity for the embedding
dimension of S :

e.S/ WD
n�1X
iD1

ei C

X
I�¹1;:::;n�1º;
jI j�2

�X
i2I

mi

Y
j2In¹iº

.mj � 1/

�
:
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Proof. The proof follows the line of reasoning that we used in Lemma 6.7. This time
we have n � 1 stages of computation instead of two. Since the details of the specific
computations are very similar to the details of the proof of Lemma 6.7, we provide
the final formulas only. For a nonempty subset I � ¹1; : : : ; n � 1º, let Nn�1

I denote
the coordinate subspace consisting of vectors .v1; : : : ; vn�1/ 2 Nn such that vi D 0

for every i … I .
In the first stage of our calculation, we count the minimal generators that are

contained in the sets Nn�1
I \ S , where I varies over all 1-element subsets of ¹1; : : : ;

n � 1º. In other words, we count the number of minimal generators in the union,
S1 [ � � � [ Sn�1. This is given by the sum

n�1X
iD1

ei : (18)

In the second step, we calculate the number of minimal generators that are con-
tained in the sets Nn�1

I \ S , where I varies over all 2-element subsets of ¹1; : : : ;
n � 1º. This number is given by X

¹i;j º�¹1;:::;n�1º

.mi � 1/mj : (19)

More generally, in the r-th stage, where r 2 ¹3; : : : ; n� 1º, we calculate the num-
ber of minimal generators that are contained in the sets Nn�1

I \ S , where I varies
over all r-element subsets of ¹1; : : : ; n � 1º. This number is given byX

I�¹1;:::;n�1º;
jI jDr

X
i2I

mi

Y
j2In¹iº

.mj � 1/: (20)

Putting (18)–(20) together we obtain our formula for the number of minimal genera-
tors for S .

Theorem 6.10. Let S be a thin unipotent numerical monoid in M WD P.n;N/ with
coordinate monoids S1; : : : ; Sn�1. Then we have the following lower bound for the
embedding dimension of S :

.n � 1/

n�1Y
iD1

ei � e.S/:

Proof. Since the embedding dimension of a numerical monoid is less than or equal to
its multiplicity, by Lemma 6.9, we have

n�1X
iD1

ei C

X
I�¹1;:::;n�1º;
jI j�2

�X
i2I

ei

Y
j2In¹iº

.ej � 1/

�
� e.S/: (21)
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We will use induction on n to prove that the right-hand side of (21) is given by
.n � 1/

Qn�1
iD1 ei . For n D 2, we already proved our claim in Lemma 6.7. We assume

that our claim holds for n � 1. Let us proceed to prove it for n. We split the sumX
I�¹1;:::;nº;
jI j�2

�X
i2I

ei

Y
j2In¹iº

.ej � 1/

�

into three parts, denoting them by A and B ,X
I�¹1;:::;n�1º;
jI j�2

�X
i2I

ei

Y
j2In¹iº

.ej � 1/

�
„ ƒ‚ …

A

C

X
I�¹1;:::;nº;
n2I; jI j�2

�X
i2I

ei

Y
j2In¹iº

.ej � 1/

�
„ ƒ‚ …

B

:

Then we have
nX

iD1

ei C AC B D

� n�1X
iD1

ei C A

�
C en C B

D .n � 1/

n�1Y
iD1

ei C en C B .by induction/:

Let I be an indexing subset in B . Then, denoting them by B1.I / and B2.I /, we split
the inner sum of B corresponding to I into two parts,X

i2I

ei

Y
j2In¹iº

.ej � 1/

D en

Y
j2In¹nº

.ej � 1/„ ƒ‚ …
B1.I /

C .en � 1/

� X
i2In¹nº

ei

Y
j2In¹i;nº

.ej � 1/

�
„ ƒ‚ …

B2.I /

:

Note that I n ¹nºmay have one element only. We distinguish these possibilities in the
sums

P
I�¹1;:::;nº;n2I B2.I /,

X
I�¹1;:::;nº;
n2I; jI j�2

B2.I / D .en � 1/

� n�1X
iD1

ei C

X
I 0�¹1;:::;n�1º;
jI 0j�2

X
i2I 0

ei

Y
j2I 0n¹iº

.ej � 1/

�
:

Now our induction hypothesis is applicable to the sum in the parenthesis. We obtain,X
I�¹1;:::;nº;
n2I; jI j�2

B2.I / D .en � 1/.n � 1/

n�1Y
iD1

ei :
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In summary, our sum .n � 1/
Qn�1

iD1 ei C en C B becomes

.n � 1/

n�1Y
iD1

ei C en C

X
I�¹1;:::;nº;
n2I; jI j�2

B1.I /C .en � 1/.n � 1/

n�1Y
iD1

ei :

We perform the obvious cancellation. Then we carefully expand the summation in-
volving B1.I /,

.n � 1/

nY
iD1

ei C en C en

X
I�¹1;:::;n�1º;
jI j�1

Y
j2I

.ej � 1/: (22)

But it is a simple combinatorial exercise to show that

n�1Y
iD1

.1C xi / D 1C
X

I�¹1;:::;n�1º;
I¤;

Y
i2I

xi :

In particular, if we set xi D ei � 1 in (22), then we see that our sum becomes

.n � 1/

nY
iD1

ei C en C en

� n�1Y
iD1

ei � 1

�
: (23)

A final round of cancellations show that (23) is equal to n
Qn

iD1 ei . This finishes the
proof of our theorem.

In the introduction we mentioned that for certain unipotent numerical monoids,
the ingredients of the generalized Wilf conjecture are the same as those of the unipo-
tent Wilf conjecture. In our next result we have one of these situations.

Theorem 6.11. We follow the notation of our previous theorem. Let S be a thin
monoid in M WD P.n;N/. Let k denote the generating number of S . We assume that
the ordinary Wilf conjecture holds for the coordinate monoids S1; : : : ; Sn�1. If the
identity

Qn�1
iD1 ci D k

n�1 holds for the conductors of the Si ’s, then the unipotent Wilf
conjecture holds for S . Furthermore, in this case, the unipotent Wilf conjecture is
equivalent to the generalized Wilf conjecture.

Before we start our proof, let us point out that our conclusion of the equivalence
of the unipotent Wilf conjecture to the generalized Wilf conjecture is independent of
the ordinary Wilf conjecture.

Proof. Since we know that ci (i 2 ¹1 : : : ; n� 1º) is at most k, the identity
Qn�1

iD1 ci D

kn�1 holds if and only if the equalities c1 D � � � D cn�1 D k hold. This means that
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the hole set of S in Nn�1 contains the vector .k � 1; : : : ; k � 1/. It follows that
c.S/ D cM .S/ and n.S/ D nM .S/. In other words, the unipotent Wilf conjecture is
equivalent to the generalized Wilf conjecture under our assumptions.

We are now ready to prove our main claim. By Theorem 6.10, we have
.n � 1/

Qn�1
iD1 ei � eM .S/. Multiplying both sides of this inequality with nM .S/, and

using the ordinary Wilf conjecture, yield the following inequalities:

.n � 1/

n�1Y
iD1

ci D .n � 1/k
n�1
� .n � 1/

n�1Y
iD1

eini � eM .S/nM .S/:

This finishes the proof of our theorem.

We close our paper by an example of a thin monoid for which the generalized Wilf
conjecture and the unipotent Wilf conjecture assert different inequalities.

Example 6.12. Let S denote the thin monoid depicted in Figure 4, where the shaded
boxes represent the elements of S .

The boxes with coordinates in them correspond to the minimal generators of S .
Then, we have e.S/D 16, nM .S/D 12, and rM .S/D 6. The unipotent Wilf conjec-
ture predicts correctly the following inequality:

2 � cM .S/ D 72 � 16 � 12 D e.S/ � nM .S/:

At the same time, the generalized Wilf conjecture predicts correctly the following
inequality:

2 � c.S/ D 68 � 16 � 8 D e.S/ � n.S/:

Finally, let us point out that Conjecture 1.9 holds true for this example,

cM .S/

c.S/
D
36

34
� 1:0588 �

nM .S/

n.S/
D
12

8
D 1:5:
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.2; 0/

.0; 4/

.0; 5/

.0; 6/

.0; 7/

.5; 0/

.1; 6/

.1; 7/

.1; 8/

.1; 9/

.6; 1/ .7; 1/

.6; 2/

.6; 3/

.7; 2/

.7; 3/

Figure 4. A thin monoid that admits two different Wilf conjectures.
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