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Rank-one ECS manifolds of dilational type

Andrzej Derdzinski and Ivo Terek

Abstract. We study ECS manifolds, that is, pseudo-Riemannian manifolds with parallel Weyl
tensor which are neither conformally flat nor locally symmetric. Every ECS manifold has rank 1
or 2, the rank being the dimension of a distinguished null parallel distribution discovered by
Olszak, and a rank-one ECS manifold may be called translational or dilational, depending on
whether the holonomy group of a natural flat connection in the Olszak distribution is finite
or infinite. Some such manifolds are in a natural sense generic, which refers to the algebraic
structure of the Weyl tensor. Various examples of compact rank-one ECS manifolds are known:
translational ones (both generic and nongeneric) in every dimension n � 5, as well as odd-di-
mensional nongeneric dilational ones, some of which are locally homogeneous. As we show,
generic compact rank-one ECS manifolds must be translational or locally homogeneous, pro-
vided that they arise as isometric quotients of a specific class of explicitly constructed “model”
manifolds. This result is relevant since the clause starting with “provided that” may be dropped:
according to a theorem which we prove in another paper, the models just mentioned include the
isometry types of the pseudo-Riemannian universal coverings of all generic compact rank-one
ECS manifolds. Consequently, all generic compact rank-one ECS manifolds are translational.

1. Introduction

By ECS manifolds [3] one means those pseudo-Riemannian manifolds of dimen-
sions n � 4 which have parallel Weyl tensor, but not for one of two obvious reasons:
conformal flatness or local symmetry. Both their existence, for every n� 4, and indef-
initeness of their metrics, are results of Roter [13, Corollary 3], [2, Theorem 2]. Their
local structure has been completely described in [4].

The acronym “ECS” stands for essentially conformally symmetric. On every ECS
manifold .M; g/ there exists a naturally distinguished null parallel distribution D ,
known as the Olszak distribution [12], [4, p. 119]. Its dimension, necessarily equal
to 1 or 2, is referred to as the rank of .M; g/. We call a rank-one ECS manifold
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translational, or dilational, when the holonomy group of the flat connection in D ,
induced by the Levi-Civita connection, is finite or, respectively, infinite.

Examples of compact rank-one ECS manifolds are known [5,6] to exist for every
dimension n � 5. They are all geodesically complete, translational, and none of them
is locally homogeneous. Quite recently [8] we constructed dilational type compact
rank-one ECS manifolds, including locally-homogeneous ones, in all odd dimensions
n � 5. It remains an open question whether a compact ECS manifold may have rank
two, or be of dimension four.

In Section 4 we describe specific rank-one ECS model manifolds [13, p. 93], rep-
resenting all dimensions n � 4 and all indefinite metric signatures. Some of them are
generic, which refers to a self-adjoint linear endomorphism A of a pseudo-Euclidean
vector space used in constructing the model manifold, and means that there are only
finitely many linear isometries commuting with A. (In Remark 4.4 we point out that
this genericity is an intrinsic geometric property of the metric, and not just a condition
imposed on the construction.)

The dilational examples of [8], mentioned earlier, are all nongeneric, while among
the translational ones in [5, 6], some are generic, and others are not, which raises an
obvious question: Can a dilational type compact rank-one ECS manifold be generic?
Theorem C of the present paper, combined with results of [9] mentioned below,
answers this question in the negative:

all generic compact rank-one ECS manifolds are translational. (1.1)

Here are some details. Since the Olszak distribution D is a real line bundle over
the compact rank-one ECS manifold in question, the holonomy group K of the flat
connection in D induced by the Levi-Civita connection is a countable multiplicative
subgroup of R X ¹0º (see Section 2), and we will repeatedly refer to

the positive holonomy group KC D K \ .0;1/ of the flat connection in D : (1.2)

Our first main result, established in Section 9, can be stated as follows.

Theorem A. In a generic compact isometric quotient of a rank-one ECS model man-
ifold, the group KC in (1.2) is not infinite cyclic.

The next fact, which we prove at the very end of Section 3, holds in a more abstract
setting, with no reference to either genericity or model manifolds.

Theorem B. Given a compact rank-one ECS manifold .M; g/, with KC in (1.2) not
infinite cyclic, KC may be trivial, which makes .M; g/ translational, or else KC is
dense in .0;1/, and then .M; g/ must be locally homogeneous.
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The third result trivially follows from Theorems A and B.

Theorem C. Every generic compact isometric quotient of a rank-one ECS model
manifold is either translational or locally homogeneous.

In the locally-homogeneous case the group (1.2) is dense in .0;1/.

According to the final clause of our Theorem 3.3, compact locally homogeneous
rank-one ECS manifolds are necessarily dilational. Theorem C thus has the following
consequence.

Corollary D. For a generic compact rank-one ECS manifold arising as an isometric
quotient of a model manifold, the property of being dilational is equivalent to local
homogeneity.

Both Theorem C and Corollary D do not really require assuming that the manifold
is an isometric quotient of a model. Namely, as we show in [9, Corollary D], the pseu-
do-Riemannian universal covering of any generic compact rank-one ECS manifold is
necessarily isometric to one of the model manifolds.

Furthermore, according to another result of the same paper [9, Theorem E], a
generic compact rank-one ECS manifold cannot be locally homogeneous. Thus, the
final clause of our Theorem C is actually vacuous, and (1.1) follows. However, Theo-
rem C, precisely as stated here, is a crucial step in the arguments of [9].

The paper is organized as follows. Sections 3 and 4, dealing with rank-one ECS
manifolds, are followed by some material from linear algebra and algebraic number
theory (genericity of nilpotent self-adjoint linear endomorphisms of pseudo-Euclid-
ean spaces, and the cyclic root-group condition for GL.Z/-polynomials), in Sections 5
and 7. Those two are separated by a section devoted to subspaces of certain spaces
E of vector-valued functions on .0;1/, invariant under an operator CT W E ! E

which is relevant to the existence question for generic compact isometric quotients of
rank-one ECS model manifolds. After Section 8, presenting a combinatorial argument
(Theorem 8.1) needed to establish Theorem A, comes the final Section 9, where we
prove Theorem A by contradiction, assuming that its hypotheses hold and yet KC in
(1.2) is infinite cyclic. Lemma 9.2 provides the first important consequence of this
assumption: the existence of a CT -invariant vector subspace, of the type discussed in
Section 6, with the additional properties (9.5). Such a subspace necessarily satisfies
further conditions, listed in Lemma 9.4, and leading – for reasons stated at the very
end of Section 9 – to a combinatorial structure, the existence of which contradicts
Theorem 8.1.
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2. Preliminaries

Unless stated otherwise, manifolds and mappings are smooth, the former connected.
The group Aff.R/ of affine transformations t 7! qt C p of R, with real p and q ¤ 0,
has the index-two subgroup AffC.R/ D ¹.q; p/ 2 Aff.R/ W q > 0º, and

nontrivial finite subgroups of Aff.R/ have the form ¹.1; 0/; .�1; 2c/º (2.1)

with any center c 2 R of the reflection .�1; 2c/. In fact, the square of any .q; p/ in
such a subgroup „ lies in the intersection „ \ AffC.R/, which due to its finiteness
must consist of translations, and hence be trivial.

Every .q; p/ 2 AffC.R/ X ¹.1; 0/º is either a translation (q D 1), or has a unique
fixed point c (and then we call it a dilation with center c, since by choosing c as the
new origin we turn c into 0 and .q; p/ into .q; 0/). Now,

any Abelian subgroup of AffC.R/ consists of

translations, or of dilations with a single center,
(2.2)

as two commuting self-mappings of a set preserve each other’s fixed-point sets, and
so in AffC.R/ X ¹.1; 0/º two dilations with different centers cannot commute with
each other or with a translation.

Lemma 2.1. Let .�; �/ be a symmetric bilinear form in a real vector space. If a coset S
of a .�; �/-null one-dimensional subspace Q is not contained in the .�; �/-orthogonal
complement of Q, then S contains a unique .�; �/-null vector.

In fact, S is parametrized by t 7! x D v C tu, where u spans Q and .v; u/ ¤ 0,
so that .x; x/ D .v; v/C 2t.v; u/ vanishes for a unique t 2 R.

Let a group � act on a manifold �M freely by diffeomorphisms. One calls the
action of � properly discontinuous if there exists a locally diffeomorphic surjective
mapping � W �M !M onto some manifold M such that the �-preimages of points of
M coincide with the orbits of the � action. One then refers to M as the quotient of�M under the action of � and writes M D �M=� .

For �; �M;M;� as above and a flat linear connection r in a vector bundle Z over
M , let yZ and �r be the �-pullbacks of Z;r to �M . If �M is also simply connected,
the vector space F of all �r-parallel sections of yZ trivializes yZ, and a homomorphism
� ! GL.F /, known as the holonomy representation of r, assigns to 
 2 � the com-
posite isomorphism

F ! yZy ! Zx !
yZ
.y/ ! F ; (2.3)

described with the aid of any given y 2 �M and x D �.y/, where the two middle
arrows denote the identity automorphism of yZy D Zx D

yZ

.y/

, and the first/last one
is the evaluation operator or its inverse. Note that (2.3) does not depend on the choice
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of y 2 �M , being locally (and hence globally) constant as a function of y. To see this,
we choose connected neighborhoods �U of y in �M and U of x D �.y/ inM such that
Z restricted to U is trivialized by the space FU of its r-parallel sections and � maps�U diffeomorphically onto U . The isomorphism F ! FU arising as the restriction to�U followed by the “identity” identification via � then allows us to apply (2.3) to a
fixed section from F , using all y 2 �U at once.

When Z is a real line bundle, with the multiplicative group GL.F / D R X ¹0º,

for any x 2M; the image of the holonomy representation

� ! R X ¹0º coincides with the holonomy group of r at x;
(2.4)

the latter meaning the group of the r-parallel transports Zx ! Zx along all the loops
at x. In fact, if (2.3) assigns to 
 2� the multiplication by q 2RX ¹0º and y 2��1.x/
is fixed, ther-parallel transport‚ along the �-image of any curve joining y to 
.y/ in�M is F  yZy  Zx followed by IdF followed by Zx  

yZ

.y/
 F , the reversed

arrows representing the inverses of those in (2.3). Writing IdF as q�1 times (2.3), we
get ‚ equal to q�1 times the identity of Zx .

Lemma 2.2. Suppose that q 2 R X ¹1;�1º and a diffeomorphism 
 2 Diff �M of a
manifold �M pushes a complete nontrivial vector field w forward onto qw. If R 3 t 7!

�.t; � / 2 Diff �M denotes the flow of w, while a subgroup � � Diff �M contains 
 and
�.t; � / for some t ¤ 0, then the action of � on �M cannot be properly discontinuous.

Proof. The kth iteration 
k of 
 , for k 2 Z, pushes w forward onto qkw, giving

k ı �.t; � / D �.qkt; � / ı 
k for all t and all k 2 Z, so that �.qkt; � / 2 � with our
fixed t . Choosing x 2 �M such that wx ¤ 0, and setting � D sgn.1� jqj/, we thus get
a sequence �.q�kt; x/ with mutually distinct terms when k is large, tending to x as
k !1, which obviously precludes proper discontinuity.

The conclusion of Lemma 2.2 remains valid when, instead of �.qt; � / 2 � for
some t , one assumes periodicity of the flow of w, while replacing the condition

; �.t; � / 2 � with just 
 2 � (and then using t equal to the period of the flow).

Remark 2.3. A submersion from a compact manifold into a connected manifold is a
bundle projection, which is the compact case of Ehresmann’s fibration theorem [10,
Corollary 8.5.13].

3. Compact rank-one ECS manifolds

Throughout this section, . �M; yg/ is the pseudo-Riemannian universal covering space
of a compact rank-one ECS manifold .M; g/ of dimension n � 4, defined as in the
Introduction, D stands for the (one-dimensional, null, parallel) Olszak distribution
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on .M; g/, and D? for its orthogonal complement, while yD , yD? are the analogous
distributions on . �M; yg/. Thus, M D �M=� for a subgroup � of the full isometry
group Iso. �M; yg/ isomorphic to the fundamental group of M , and acting on �M freely
and properly discontinuously via deck transformations. The connection in yD induced
by the Levi-Civita connection �r of . �M; yg/ is always flat [7, Sect. 10]. Thus, due to
simple connectivity of �M ,

yD is spanned by the parallel gradient�rt of a surjective function t W �M ! I
(3.1)

onto an open interval I � R (which is the case even without assuming the existence
of a compact quotient). The Olszak distribution being a local geometric invariant of
the ECS metric in question [4, Sect. 2], (3.1) determines �rt and t uniquely up to
multiplication by nonzero constants and, respectively, affine substitutions, meaning
replacements of t with qt C p, where .q; p/ 2 Aff.R/ (for Aff.R/ as in Section 2:
q; p 2 R and q ¤ 0). Consequently, we have group homomorphisms

Iso. �M; yg/ 3 
 7! .q; p/ 2 Aff.R/; (3.2a)

Iso. �M; yg/ 3 
 7! q 2 R X ¹0º; (3.2b)

characterized, for any 
 2 Iso. �M; yg/, by t ı 
 D qt C p and 
� dt D q dt , that is,

.d
/�rt D q�1�rt: (3.3)

According to [7, formula (6.4) and the end of Sect. 12],

yD? D Ker dt; the levels of t W �M ! I are all

connected and coincide with the leaves of yD?:
(3.4)

Lemma 3.1. The above hypotheses imply that the image of � under (3.2a) is infinite,
while its image under (3.2b) coincides with the holonomy group of the flat connection
in D .

Proof. The first image, if finite, would lie within some ¹.1; 0/; .�1; 2c/º, cf. (2.1),
causing .t � c/2 to descend to a nonconstant function with at most one critical value
on the compact manifoldM . The second claim follows from (2.4): by (3.1) and (3.3),
the action (2.3) of any 
 2 � on the parallel section �rt spanning yD equals the mul-
tiplication by the corresponding q�1. Namely, the two middle arrows in (2.3) now
are restrictions of d�y and Œd�


.y/
��1, so that their composite yZy ! Zx !

yZ

.y/

equals d
y . (From � ı 
 D � we get d�

.y/
ı d
y D d�y .) Thus, (2.3) takes w D�rt first to wy , then (two successive arrows) to d
ywy which – by (3.3) – equals

q�1w

.y/

, the evaluation at 
.y/ of q�1w.
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The translational/dilational dichotomy of the Introduction, meaning finiteness/in-
finiteness of the holonomy group of the flat connection in D induced by the Levi-
Civita connection of g, can now be summarized in terms of the homomorphism (3.2b)
restricted to � . Specifically, by Lemma 3.1, the two cases are

translational: jqj D 1 for each 
 2 �; (3.5a)

dilational: jqj ¤ 1 for some 
 2 �: (3.5b)

Lemma 3.2. With the assumptions and notations as above,

(a) the parallel vector field �rt on �M , spanning yD , is complete,

(b) in case (3.5b), �.t; � / … � for all t 2 R X ¹0º,

R 3 t 7! �.t; � / 2 Diff �M being the flow of �rt .
In fact, (a) appears in [7, the second italicized conclusion in Sect. 12], while (b)

follows from (a) and Lemma 2.2 combined with (3.3).
The remainder of this section uses the assumptions preceding (3.1) along with

transversal orientability of D? which, by (3.4), reads � � IsoC. �M; yg/; (3.6)

for the normal subgroup IsoC. �M; yg/ forming the (3.2b)-preimage of .0;1/. This can
always be achieved by replacing .M; g/ (or, �) with a two-fold isometric covering
(or, an index-two subgroup), and has an obvious consequence: the translational case
then means precisely that the holonomy group is trivial.

Theorem 3.3. In the dilational case (3.5b), with (3.6), the image of � under (3.2a)
consists of dilations with a single center. The replacement of t in (3.1) by a suitable
affine function of t then makes this center appear as t D 0, the interval I as .0;1/,
and all .q; p/ in the (3.2a)-image of � as having p D 0.

Then the image of � under (3.2a), always an infinite multiplicative subgroup of
.0;1/, must be infinite cyclic unless . �M; yg/ is locally homogeneous. On the other
hand, (3.5b) follows if one assumes local homogeneity of . �M; yg/.

Proof. As shown in [7, the beginning of Sect. 12], (3.6) implies the existence of a
C1 function  W �M ! .0;1/ such that the 1-form  dt is �-projectable onto M
(in other words, �-invariant), and closed. According to (3.4), the t -levels in �M are all
connected, and so closedness of  dt makes t globally a function of t , with  D � ı t
for some C1 function � W I ! .0;1/. A fixed antiderivative � of � thus constitutes
a strictly increasing C1 diffeomorphism � W I ! J onto some open interval J � R,
while �-invariance of d.� ı t / D  dt means that � acts on � ı t by translations:
� ı t ı 
 D � ı t C a with constants a 2 R depending on 
 2 � . The mappings
t W �M ! I and � ı t W �M ! J are �-equivariant relative to � acting on I and J
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via the homomorphisms (3.2a), restricted to � , and 
 7! a. As the diffeomorphism
� W I ! J makes the two mappings equivariantly equivalent, the two homomorphisms
have the same kernel † � � , leading to an isomorphism .q; p/ 7! 
† 7! a between
the images of the two homomorphisms. The former image must thus be Abelian (as
that of 
 7! a is a group of translations) and so, due to (3.5b) and (2.2), it consists of
dilations with a single center. An affine substitution of t turns this center into 0, and
elements of the (3.2a)-image of � into pairs .q; p/ with q > 0 and p D 0. As a result,
for our open interval I ,

(i) 0 lies in the closure of I , but not in I itself.

The first claim of (i) is obvious: by (3.5b)–(3.6), for some q 2 .0;1/ X ¹1º,

(ii) I is closed under multiplications by powers of q with integer exponents.

To verify the second one, note that, as shown in [7, formulae (6.6)–(6.8)], some non-
constant C1 function f W �M ! R has

(iii) f ı 
 D q�2f for all 
 2 � and .q; p/ 2 AffC.R/ with t ı 
 D qt C p.

This f is also globally a function of t [7, the end of Sect. 12]. Treating f , informally,
as a function I !R, and noting that all .q;p/ in the (3.2a)-image of � now have q > 0
and p D 0, we get f .t/D q2f .qt/ for such q, while these q, due to Lemma 3.1, form
an infinite subgroup of .0;1/. Thus, 0 … I , or else, fixing any t in the equality f .t/D
q2f .qt/ and letting q ! 0, we would get f .t/ D 0, even though f is nonconstant.

By (i) and (ii), I equals .0;1/ or .�1; 0/ and, replacing t with �t if necessary,
we get I D .0;1/, proving the first assertion of the theorem.

To establish the second one, suppose that the (3.2a)-image of � , infinite as a con-
sequence of Lemma 3.1, is not cyclic. This makes the image dense in .0;1/, so that,
from continuity of f , our equation f .t/ D q2f .qt/ holds for all t; q 2 .0;1/. Set-
ting t D 1, we get f .q/ D f .1/=q2. The resulting linearity of the function jf j�1=2

amounts – see [7, Theorem 7.3] – to local homogeneity of . �M; yg/.
Finally, suppose that . �M; yg/ is locally homogeneous. The preceding lines now

yield linearity of jf j�1=2, that is, f .t/ D f .1/=t2 for all t 2 .0;1/, and so f is
unbounded on .0;1/. This gives (3.5b), since (3.5a) would, by (iii), imply �-invari-
ance of f , leading to its boundedness, as M D �M=� is compact.

Proof of Theorem B. Due to Lemma 3.1 we may, without loss of generality, assume
(3.5b) and (3.6). Our claim now follows from Theorem 3.3.
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4. The rank-one ECS model manifolds

In this section, we fix the data f , I , n, V , h�; �i, A consisting of

an integer n � 4; a real vector space V of dimension n � 2;

a pseudo-Euclidean inner product h�; �i on V; a nonzero, traceless,

h�; �i-self-adjoint linear endomorphism A of V , and a nonconstant

C1 function f W I ! R on an open interval I � R:

(4.1)

Treating h�; �i as a flat (constant) metric on V , and following [13], we define the simply
connected n-dimensional pseudo-Riemannian manifold

. �M; yg/ D .I �R � V; � dt2 C dt ds C h�; �i/; (4.2)

where t; s are the Cartesian coordinates on I �R, we identify dt; ds and h�; �i with
their pullbacks to �M , and the function � W �M ! R is defined by

�.t; s; v/ D f .t/hv; vi C hAv; vi:

Thus, translations in the s direction are isometries of . �M; yg/.
It is well known [4, Theorem 4.1] that (4.2) is a rank-one ECS manifold. To

describe its isometry group, we need two ingredients. The first is

the subgroup S of Aff.R/ � O.V / formed by

triples .q; p; C / such that CAC�1 D q2A; while

qt C p 2 I and f .t/ D q2f .qt C p/ for all t 2 I;

(4.3)

O.V / being the group of linear h�; �i-isometries C W V ! V .
The second ingredient is the 2.n � 2/-dimensional real

vector space E of all solutions u W I ! V to the second-order ordinary

differential equation Ru D f uC Au; carrying the symplectic

form � W E � E ! R given by �.uC; u�/ D h PuC; u�i � huC; Pu�i:

(4.4)

Note that q; .q; p/; C all depend homomorphically on the triple � D .q; p; C /, and S
acts from the left on C1.I; V / via

Œ�u�.t/ D Cu..t � p/=q/; (4.5)

while the operator u 7! �u leaves the solution space E invariant.
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Theorem 4.1. For . �M; yg/ and S as in (4.1)–(4.3), the full isometry group Iso. �M; yg/

is isomorphic to the set GD S�R� E � Aff.R/�O.V /�R� E endowed with the
group operation

.q; p; C; r; u/. Oq; Op; OC ; Or; Ou/

D .q Oq; q Op C p;C OC ;��.u; .q; p; C / Ou/C r C Or=q; .q; p; C / OuC u/ (4.6)

or, in the notation of (4.4)–(4.5), with � D .q; p; C /,

.�; r; u/. O�; Or; Ou/ D .� O�;�.� Ou; u/C r C Or=q; � OuC u/:

The required isomorphism amounts to the following left action on �M by the group G
with the operation (4.6):

.q; p; C; r; u/.t; s; v/

D .qt C p;�h Pu.qt C p/; 2Cv C u.qt C p/i C r C s=q; Cv C u.qt C p//:

(4.7)

Proof. This is precisely [1, Theorem 2], plus [1, p. 24, formula (22)] describing the
group operation, except for the fact that [1] assumes real-analyticity of f along with
I D R, and it is because of these assumptions that jqj D 1 whenever .q; p; C / 2 S,
cf. (4.3). If one ignores the last conclusion and the assumptions that led to it, the
proof in [1] repeated almost verbatim in our case yields our assertion. However, the
resulting right-hand side in (4.7) is not ours, but instead reads

.qt C p;�h Pu.t/; 2Cv C u.t/i C r C s=q; Cv C u.t//

due to the fact that u, instead of E , now lies in the solution space Eq of the q-de-
pendent equation Ru D f uC q2Au. We reconcile both versions by observing that the
replacement of u with t 7! u.qt C p/ defines an isomorphism Eq ! E .

The notation of [1] differs from ours: our q; p; C; r; u; t; s; v; V; f; �; A; h�; �i; �
correspond to "; T;H�

� ; r; C
�; x1; 2xn;Rn�2; A; '; a

��
; k
��
; 2! in [1].

By (4.6), G 3 
 D .�; r; u/ 7! � 2 S is a group homomorphism, leading to

the normal subgroup H D ¹.1; 0; Id/º �R � E of G: (4.8)

The group operation (4.6) restricted to H becomes

(a) .1; 0; Id; Or; Ou/.1; 0; Id; r; u/ D .1; 0; Id; �.u; Ou/C Or C r; OuC u/,

and the action (4.7) of H on �M is explicitly given by

(b) .1; 0; Id; r; u/.t; s; v/ D .t;�h Pu.t/; 2v C u.t/i C r C s; v C u.t//.

Treating the vector space E as an Abelian group we get, from (a), an obvious

(c) group homomorphism H 3 .1; 0; Id; r; u/ 7! u 2 E .
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Also, as stated in [7, formula (6.5)], with a suitable affine substitution,

(d) t in (4.2) can always be made equal to t chosen as in (3.1),

so that, in view of (4.6)–(4.7),

(e) the homomorphism G 3 .q; p; C; r; u/ 7! .q; p/ coincides with (3.2a).

Furthermore, according to [6, the lines following formula (3.6)], �rt in (3.1) equals
twice the coordinate vector field in the s coordinate direction, and so

(f) the flow of �rt on �M is given by R 3 r 7! .1; 0; Id; 2r; 0/ 2 H � G.

In other words, cf. (b), the flow acts on �M via .�; .t; s; v// 7! .t; s C 2�; v/. Also,

(g) ��� D q�1�, as an obvious consequence of (4.4)–(4.5).

The subgroup H (canonically identified with R � E) acts both on the product
I � R � E , by left H-translations of the H � R � E factor, and on �M , via (b). The
following mapping is H-equivariant for these two actions:

I �R�E 3 .t; z;u/ 7! .t; s;v/D .t; z � h Pu.t/;u.t/i;u.t// 2 �M D I �R� V (4.9)

as one easily verifies using (a), (b) and the definition of � in (4.4).

Remark 4.2. It is useful to note that .�; r; u/�1 D .��1;�qr;���1u/ in G, which
yields, for .�; Or; Ou/ D .q; p; C; Or; Ou/ 2 G and .1; 0; Id; r; u/ 2 H, the equality

.�; Or; Ou/.1; 0; Id; r; u/.�; Or; Ou/�1 D .1; 0; Id; 2�.�u; Ou/C r=q; �u/:

Remark 4.3. Nondegeneracy of � gives dim L0 D dim E � dim L for any vector
subspace L� E and its�-orthogonal complement L0. Thus, 2dim L � dim E when-
ever L is isotropic in the sense that �.u; u0/ D 0 for all u; u0 2 L.

Remark 4.4. We refer to a rank-one ECS model manifold (4.2) as generic when so
is A in (4.1), by which we mean that A commutes with only finitely many linear
h�; �i-isometries of V . Genericity of A in (4.1) is an intrinsic property of the metric yg,
rather than just a condition imposed on the construction (4.1)–(4.2): as stated in [7,
the paragraph following formula (7.3)], the algebraic type of the pair h�; �i; A, up to
rescaling of A, can be explicitly defined in terms of yg and its Weyl tensor.

Remark 4.5. The relation CAC�1 D q2A in (4.3) with jqj ¤ 1 implies nilpotency
of A, as all complex characteristic roots of A then obviously equal 0.

5. Generic self-adjoint nilpotent endomorphisms

Throughout this section, V denotes a real vector space of dimension m � 2.
Given a pseudo-Euclidean inner product h�; �i on V , we refer to h�; �i as semi-

neutral if its positive and negative indices differ by at most one, and – following the
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terminology of Remark 4.4 – call a h�; �i-self-adjoint endomorphism of V generic
when it commutes with only a finite number of linear h�; �i-isometries of V . As we
show below (Remark 5.4), for h�; �i-self-adjoint endomorphisms A of V which are
nilpotent, genericity is equivalent to having Am�1 ¤ 0 (while Am D 0).

Nilpotent endomorphisms are relevant to our discussion due to Remark 4.5. Gen-
erally, for any endomorphism A of our vector space V and any integer j � 1, the
inclusions KerAj�1 � KerAj lead to the quotient spaces KerAj =KerAj�1, and
then A obviously descends to injective linear operators

A W KerAjC1=KerAj ! KerAj =KerAj�1; j D 1; : : : ; m � 1: (5.1)

Setting dj D dimŒKerAj =KerAj�1� we thus have dj � djC1 and, if A is nilpotent,

d1 � � � � � dm � 0 and dimV D d1 C � � � C dm; (5.2)

while, whenever j D 0; : : : ; m,

dim KerAj D d1 C � � � C dj ; rankAj D djC1 C � � � C dm: (5.3)

Thus, dm � 1 in the case where A is nilpotent and Am�1 ¤ 0, and then, by (5.2),

d1 D � � � D dm D 1 and (5.1) is an isomorphism for j D 1; : : : ; m � 1: (5.4)

Theorem 5.1. Let a h�; �i-self-adjoint nilpotent endomorphismA of anm-dimensional
pseudo-Euclidean vector space V haveAm�1¤ 0. Then the inner product h�; �i is sem-
i-neutral and there exist exactly two bases e1; : : : ; em of V , differing by an overall sign
change, as well as a unique sign factor "D˙1, such that Aej D ej�1 and hei ; eki D
"ıij for all i; j 2 ¹1; : : : ; mº, where e0 D 0 and k D mC 1 � j . Equivalently, the
matrix representing A or, respectively, h�; �i in our basis has zero entries except those
immediately above the main diagonal, all equal to 1 or, respectively, except those on
the main antidiagonal, all equal to ".

Conversely, if A and h�; �i are of the above form in some basis e1; : : : ; em of V ,
then A is h�; �i-self-adjoint, nilpotent and Am�1 ¤ 0.

Proof. For j D 0; : : : ; m, the symmetric bilinear form .v; v0/ 7! hAj v; v0i on V ,
briefly denoted by hAj �; � i, and the subspaces Vj D A

j .V / � V , we have

(a) dimVj D m � j and Vj � Vj�1 if j � 1,

(b) hAm�j �; � i descends to the j -dimensional quotient space V=Vj ,

with (a) being obvious from (5.3)–(5.4), and (b) from

(c) self-adjointness of A along with the relation Am D 0.

As Am�1 ¤ 0, the form resulting from (b) on the line V=V1 is nonzero, and hence
positive or negative definite, which proves the existence and uniqueness of a sign
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factor " 2 ¹1;�1º such that hAm�1v; vi D " for some v 2 V . More precisely, " is the
semidefiniteness sign of hAm�1�; � i, and

(d) vectors with hAm�1v; vi D " form a pair of opposite cosets of V1 in V .

We now prove, by induction on j D 1; : : : ; m, the existence of an ordered j -tuple
.S1; : : : ; Sj / 2 V=V1 � � � � � V=Vj of cosets such that Sj � � � � � S1 while, for " in
(d) and every v 2 Sj ,

hAm�1v; vi D "; hAm�2v; vi D � � � D hAm�j v; vi D 0; (5.5)

along with uniqueness of .S1; : : : ; Sj / up to its replacement by .�S1; : : : ;�Sj /. As
(d) yields our claim for j D 1, suppose that it holds for some j � 1 � 1. Since Vj �
Vj�1 � � � � � V1 , cf. (a),

(e) the spaces Vj�1; : : : ; V1 project onto subspaces Q1; : : : ;Qj�1 of dimensions
1; : : : ; j � 1 in the j -dimensional quotient Qj D V=Vj ,

and Q1 � � � � � Qj�1, while the cosets Sj�1; : : : ; S1 of Vj�1; : : : ; V1 in V , assumed
to exist (and be unique up to an overall sign), project onto an ascending chain of
cosets of Q1; : : : ;Qj�1 in Qj . Let us fix a vector v 2 Sj�1, denote by yR1; : : : ; yRj�1
the latter cosets (of dimensions 1; : : : ; j � 1), and by .�; �/ the symmetric bilinear
form on Qj induced by hAm�j �; � i via (b). Since (5.5) is assumed to hold for our v,
with j replaced by j � 1, if we set vi D Aj�iv, i D 1; : : : ; j , then, for all i; k 2
¹1; : : : ; j º, due to (c) and the first equality in this version of (5.5), .vi ; vk/ D 0 if
i C k � j and .vi ; vk/ D " when i C k D j C 1. The j � j matrix of these .�; �/-
inner products thus has the entries all equal to " on the main antidiagonal, and all
zero above it. Due to the resulting nondegeneracy of the matrix and the presence
of the zero entries, v1; : : : ; vj project onto a basis yv1; : : : ; yvj of Qj , with yvi 2 Qi ,
i D 1; : : : ; j , and .�; �/ is a semi-neutral pseudo-Euclidean inner product inQj . Thus,
yv1 2 Q1 is .�; �/-orthogonal to the basis yv1; : : : ; yvj�1 of Qj�1, which makes Qj�1
the .�; �/-orthogonal complement of the .�; �/-null lineQ1. At the same time, the coset
yR1 of Q1 is not contained in the .�; �/-orthogonal complement Qj�1 of Q1, since
.v1; v/ D .A

j�1v; v/ D hAm�1v; vi D " ¤ 0 in the j � 1 version of (5.5), and so the
vector v D vj 2 Sj�1, projecting onto yvj 2 yR1, is not .�; �/-orthogonal to yv1 spanning
the lineQ1. By Lemma 2.1, yR1 intersects the .�; �/-null cone at exactly one point, and
so does � yR1. This “point” in the j -dimensional quotient Qj D V=Vj is actually a
coset Sj of Vj in V , contained in Sj�1, and its lying in the .�; �/-null cone amounts to
hAm�j v; vi D 0 for all v 2 Sj , which establishes the inductive step and thus proves
the existence and uniqueness claim about (5.5).

This last claim, for j D m, yields a unique (up to a sign) coset Sm of Vm D ¹0º,
that is, a unique pair ¹v;�vº of opposite vectors in V , with

hAm�1v; vi D " and hAiv; vi D 0 whenever i � 0 and i ¤ m � 1; (5.6)



A. Derdzinski and I. Terek 82

the case of i < m� 1 being due to (5.5) for j Dm, that of i �m immediate from (c).
Note that Sm uniquely determines the other cosets Sj as Sm � � � � � S1. Setting
ei D A

m�iv, i D 1; : : : ;m, we obtain anm-tuple of vectors leading to matrices for A
and h�; �i described in the statement of the theorem, cf. (c) and (5.6). Nondegeneracy
of the latter matrix, along with the abundance of zero entries in it, establishes both
linear independence of e1; : : : ; em and the semi-neutral signature of h�; �i. Unique-
ness of ¹v;�vº clearly implies uniqueness of e1; : : : ; em up to their replacement by
�e1; : : : ;�em.

For the converse statement it suffices to note that the basis e1; : : : ; em has the form
Am�1v;Am�2v; : : : ; Av; v, and so self-adjointness of A amounts to requiring that the
matrix of h�; �i has a single value of the entries in each antidiagonal.

Corollary 5.2. The only linear isometries of a pseudo-Euclidean space of dimension
m commuting with a given generic nilpotent self-adjoint endomorphism A such that
Am�1 ¤ 0 are Id and �Id.

In fact, due to the up-to-a-sign uniqueness of the basis in Theorem 5.1, such a
linear isometry must transform this basis into itself or its opposite.

Corollary 5.3. Let a nilpotent self-adjoint endomorphism A of a pseudo-Euclidean
space V haveAm�1 ¤ 0, wheremD dimV . Then, for every q 2 .0;1/, there exists a
unique pair ¹C;�C º of mutually opposite linear isometries of V withCAC�1D q2A.

Such C is diagonalized by a basis e1; : : : ; em chosen as in Theorem 5.1, with
the respective eigenvalues qm�1; qm�3; : : : ; q1�m, or their opposites, so that Cej D
˙qmC1�2j ej for j D 1; : : : ; m and some fixed sign˙.

Proof. Uniqueness is immediate from Corollary 5.2 since two such linear isometries
differ, composition-wise, by one commuting with A. Existence: defining the line-
ar automorphism C by Cej D Qej , for Qej D qmC1�2j ej , we get the inner products
h Qei ; Qeki D "ıij , and q2A Qej D Qej�1, for all i; j 2 ¹1; : : : ;mº, with k DmC 1� j and
Qe0 D 0, as required.

Remark 5.4. For a nilpotent self-adjoint endomorphism A of an m-dimensional
pseudo-Euclidean space V , five conditions are mutually equivalent:

(i) Am�1 ¤ 0.

(ii) rankA D m � 1 (in other words, dim KerA D 1).

(iii) ˙Id are the only linear self-isometries of V commuting with A.

(iv) A is generic (commutes with only finitely many linear isometries).

(v) 0 is the only skew-adjoint endomorphism of V commuting with A.
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In fact, (i) yields (ii) due to (5.3)–(5.4), and the converse is immediate as (ii) and (5.2)–
(5.3) force all dj to equal 1. The implications (i) H) (iii) H) (iv) H) (v) are
obvious from Corollary 5.2. Finally, (v) implies (ii) as any two vectors v; v0 2 KerA
are linearly dependent: the skew-adjoint endomorphism v ^ v0 D hv; � iv0 � hv0; � iv,
where h�; �i is the inner product, commutes with A.

6. Invariant subspaces

This section uses the following assumptions and notations.
First, we fix q 2 .0;1/ X ¹1º, an integer m � 2, a generic self-adjoint nilpo-

tent endomorphism A of an m-dimensional pseudo-Euclidean space V with the inner
product h�; �i, and a linear h�; �i-isometry C of V having positive eigenvalues and
satisfying the condition CAC�1 D q2A.

According to Remark 5.4, Theorem 5.1 and Corollary 5.3, the algebraic type of the
above quadruple .V; h�; �i; A;C / is uniquely determined bym;q and a sign parameter
" D ˙1. More precisely, we may choose a basis e1; : : : ; em of V such that, for some
" 2 ¹1;�1º and all i; j 2 ¹1; : : : ; mº, with e0 D 0 and k D mC 1 � j ,

Aej D ej�1; hei ; eki D "ıij ; Cej D q
mC1�2j ej : (6.1)

Let the operator T act on functions .0;1/ 3 t 7! u.t/, valued anywhere, by

ŒT u�.t/ D u.t=q/: (6.2)

We also fix a C1 function

f W .0;1/! R with q2f .qt/ D f .t/ whenever t 2 .0;1/; (6.3)

and define W ;E to be the vector spaces of dimensions 2 and 2m formed by all real-
valued (or, V -valued) functions y (or, u) on .0;1/ such that

Ry D fy (6.4-i)

or, respectively,
Ru D f uC q2Au; (6.4-ii)

with . /P D d=dt . The operator T obviously preserves W , and so we may select a
basis yC; y� of the space of complex-valued solutions to (6.4-i) having

TyC D �CyC and Ty� equal to ��y� plus a multiple of yC; (6.5)



A. Derdzinski and I. Terek 84

for some eigenvalues �˙ 2 C, the multiple being zero unless �C D �� 2 R. Since
the formula ˛.yC; y�/ D PyCy� � yC Py� (a constant!) defines an area form on W

such that T �˛ D q�1˛, we have detT D q�1 in W . Consequently,

�C�� D q�1: (6.6)

In general, E is not preserved by either T or by C applied valuewise via u 7! Cu.
Their composition CT D TC however, does leave E invariant,

CT W E ! E; (6.7)

as it coincides with the operator u 7! �u in (4.5). The solution space E of (6.4-ii) has
an ascending m-tuple of CT -invariant vector subspaces

E1 � � � � � Em D E with dim Ej D 2j; (6.8)

each Ej consisting of solutions taking values in the space KerAj . (Note that, as a
consequence of (5.3)–(5.4), dim KerAj D j .)

Theorem 6.1. Given q;m; V; h�; �i; A; C; e1; : : : ; em; T; f;W ;E; y˙; �˙ introduced
earlier in this section, let L be any CT -invariant subspace of E . Then in some basis
uC1 ; u

�
1 ; : : : ; u

C
m; u

�
m of the complexification EC of E , containing a basis of LC , the

matrix of CT is upper triangular with the diagonal .�C1 ; �
�
1 ; : : : ; �

C
m; �

�
m/ where, for

some combination coefficients .0;1/! C,

�˙j D q
mC1�2j�˙ and u˙j equals y˙ej plus a combination of e1; : : : ; ej�1; (6.9)

j D 1; : : : ; m. If �C; �� 2 R, we may replace “complex-valued” by “real-valued”
and the complexifications C;EC;EC

j by the original real forms R;E;Ej .

Proof. The equation RuD f uCAu imposed on uD y1e1C � � � C yj ej , with 1� j �
m and complex-valued functions y1; : : : ; yj , reads

Ryj D fyj and Ryi D fyi C yiC1 for i < j: (6.10)

Since, by (6.1), e1; : : : ; ej span Ker Aj , such u lies in EC
j , for Ej appearing in

(6.8), and we can now define u˙j by (6.9), declaring yj in (6.10) to be y˙ and then
solving the equations Ryi D fyi C yiC1 in the descending order i D j � 1; : : : ; 1,
with a 2.j � 1/-dimensional freedom of choosing the functions yi . As u˙j … EC

i for
i < j , the 2m solutions u˙j are linearly independent, and hence constitute a basis
uC1 ; u

�
1 ; : : : ; u

C
m; u

�
m of EC which makes CT upper triangular with the required diag-

onal. More precisely, by (6.1)–(6.5), CT uCj (or, CT u�j ) equals qmC1�2j�CuCj (or,
qmC1�2j��u�j plus a multiple of uCj ), plus a linear combination of u˙i with i < j ,
the multiple being 0 unless �C D �� 2 R.
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The freedom of choosing yi will now ensure that some uC1 ; u
�
1 ; : : : ; u

C
m; u

�
m as

above also contains a basis of LC . Namely, for Lj D L \ Ej , we get inclusion-
induced, obviously injective operators Lj =Lj�1 ! Ej =Ej�1, where 1 � j � m and
L0DE0D¹0º, so that, by (6.8), ıj 2 ¹0;1;2º, with ıj D dim.Lj =Lj�1/. Our u˙j may
now be left completely arbitrary, as before, when ıj D 0. If j is fixed and ıj D 2, our
operator Lj =Lj�1 ! Ej =Ej�1 is an isomorphism, and so the cosets of u˙j , forming a
basis of ŒEj =Ej�1�

C , are also realized as LC
j�1 cosets of solutions in LC

j , which we
select as the required modified versions of u˙j . Finally, in the case ıj D 1, the embed-
ded line ŒLj =Lj�1�

C in ŒEj =Ej�1�
C , due to its CT -invariance, must be one of the

two eigenvector cosets represented by u˙j , and the latter can thus be modified (within
our 2.j � 1/-dimensional freedom) so as to lie in LC

j . Since ıj D dim.Lj =Lj�1/,
the total number of modified solutions, ı1 C � � � C ım, equals dim L. Therefore, they
form a basis of LC .

7. GL.Z/-polynomials

By a root of unity, or a GL.Z/-polynomial we mean here any complex number z such
that zk D 1 for some integer k � 1 or, respectively, any polynomial of degree d � 1
with integer coefficients, the leading coefficient .�1/d , and the constant term 1 or �1.
It is well known, cf. [5, p. 75], that

GL.Z/-polynomials of degree d are precisely the

characteristic polynomials of matrices in GL.d;Z/:
(7.1)

Every complex root a of a GL.Z/-polynomial P is an invertible algebraic integer and
P , if also assumed irreducible, is the minimal monic polynomial of a. Then, due to
minimality, a is not a root of the derivative of P , showing that

the complex roots of an irreducible GL.Z/-polynomial are all distinct. (7.2)

Irreducibility is always meant here to be over Z or, equivalently, over Q.
We say that a GL.Z/-polynomial has a cyclic root group if its (obviously nonzero)

complex roots generate a cyclic multiplicative group of nonzero complex numbers.
The goal of this section is to show that

the only irreducible GL.Z/-polynomials with a cyclic

root group are the cyclotomic and quadratic ones.
(7.3)

We call an irreducible GL.Z/-polynomial cyclotomic if all of its roots are roots of
unity which, up to a sign, agrees with the standard terminology [11]. The cyclic root-
group condition clearly does hold for all cyclotomic polynomials and all quadratic
GL.Z/-polynomials.
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First, if an irreducible GL.Z/-polynomial P has among its roots a and ak , for
some a 2 C X ¹1;�1º and an integer k … ¹0; 1;�1º, then

every complex root of P is a root of unity. (7.4)

In fact, if k � 2, then, for such P , a, all � 2 C, all integers r � 1, and some GL.Z/-
polynomial Q,

P.�k
r

/ D Q.�/Q.�k/ � � �Q.�k
r�1

/P.�/; (7.5)

as one sees using induction on r , the case r D 1 being obvious as � 7! P.�k/ has
a as a root, which makes it divisible by the minimal polynomial P of a, and the
induction step amounts to replacing � in (7.5) by �k . Now (7.4) follows, or else P
would have infinitely many roots. The extension of (7.4) to negative integers k is in
turn immediate if one notes that .PQ/� D P �Q� and P �� D P for the inversion
P � of a degree d polynomial P , defined by P �.�/ D �dP.1=�/ or, equivalently,
P �.�/D a0�

d C � � � C a
d�1

�C a
d

wheneverP.�/D a0C a1�C � � � C ad�
d . More

precisely, we then replace (7.5) with P.�k
r
/DQ�.�/Q.�k/ � � �QŒr�.�k

r�1
/P Œr�.�/,

where P Œr� equals P or P � depending on whether r is even or odd.

Remark 7.1. If a GL.Z/-polynomial has the complex roots c1; : : : ; cd , and k is an
integer, then ck1 ; : : : ; c

k
d

are the roots of a GL.Z/-polynomial. (By (7.1), we may
choose the latter polynomial to be the characteristic polynomial of the kth power
of a matrix in GL.d;Z/ with the characteristic roots c1; : : : ; cd .)

Lemma 7.2. Let an irreducible GL.Z/-polynomial P of degree d have a root ak for
some a 2 C X ¹1;�1º and an integer k ¤ 0. Then

a is an invertible algebraic integer, (7.6)

having some GL.Z/-polynomial S as its minimal polynomial, and the complex roots
c1; : : : ; cr of S can be rearranged so that, with d � r ,

P.�/ D .ck1 � �/ � � � .c
k
d � �/ and ¹ck1 ; : : : ; c

k
d º D ¹c

k
1 ; : : : ; c

k
r º; (7.7)

Proof. If k > 0, the polynomial � 7! P.�k/ has the root a, which yields (7.6) and the
equality P.�k/ D Q.�/S.�/ for all � 2 C and some GL.Z/-polynomial Q. Thus,
the kth powers of all the roots c1; : : : ; cr of S are roots of P . The polynomial R
with the roots ck1 ; : : : ; c

k
r is a GL.Z/-polynomial (Remark 7.1), while each factor

in its unique irreducible factorization has simple roots by (7.2), which are also roots
of P , and irreducibility of P thus implies that the factor must equal P . In other
words, R is a power of P , and (7.7) follows. When k < 0, the preceding assumptions
(and conclusions) hold with k, P replaced by jkj, P � (and a, S unchanged), so that
P �.�/ D .c

jkj
1 � �/ � � � .c

jkj

d
� �/, as required in (7.7).
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Lemma 7.3. If an irreducible GL.Z/-polynomial P has two roots of the form ak and
a` for a 2 C X ¹1; 0;�1º and two distinct nonzero integers k; ` � 2, then all roots of
P have modulus 1.

Proof. Let k > `. The two versions of (7.7), one for k and one for `, involve the same
roots c1; : : : ; cr of the same polynomial S , so that

¹jc1j
k; : : : ; jcr j

k
º D ¹jc1j

`; : : : ; jcr j
`
º: (7.8)

If the greatest (or, least) of the moduli jc1j; : : : ; jcr j were greater (or, less) than 1,
its kth (or, `th) power would lie on the left-hand (or, right-hand) side of (7.8) and be
greater than any number on the opposite side, contrary to the equality in (7.8). Thus,
jc1j D � � � D jcr j D 1.

Lemma 7.4. If all roots of an irreducible GL.Z/-polynomial P have modulus 1, then
they are roots of unity, that is, P is cyclotomic.

Proof. A matrix in GL.d;Z/with the characteristic polynomialP , cf. (7.1), treated as
an automorphism of Cd is, in view of (7.2), diagonalized by a suitable basis, with unit
diagonal entries, so that its powers form a bounded sequence, with a convergent sub-
sequence. As these powers preserve the real form Rd � Cd , the convergence takes
place in GL.d;R/ and discreteness of the subset GL.d;Z/ makes the subsequence
ultimately constant.

Proof of (7.3). Consider an irreducible GL.Z/-polynomial with a cyclic root group
generated by a 2 C. By (7.2), we may assume that a … ¹1; 0;�1º. If a is (or is not) a
root, our claim follows from (7.4) (or, Lemmas 7.3–7.4).

8. The combinatorial argument

The main result of this section, Theorem 8.1, will serve as the final step needed to
prove Theorem A in Section 9.

Anym;k 2 Z withm � 2 give rise to functions E;ˆ W Z! Z and integers a0; a1
such that, for all a; b 2 Z,

E.a/ D m � .�1/ak � a; (8.1-i)

ˆ.a/ D 2m � 2.�1/ak � a; (8.1-ii)

E is bijective and ˆ is an involution, (8.1-iii)

E�1.b/ D m � .�1/mCkCbk � b; (8.1-iv)

ˆ.a/ D E�1.�E.a//; (8.1-v)

a1 D E
�1.1/ D mC .�1/mCkk � 1; (8.1-vi)
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a0 D E
�1.0/ D m � .�1/mCkk; (8.1-vii)

a0 C a1 D 2m � 1: (8.1-viii)

Let integers m � 2 and k be fixed, V D ¹1; : : : ; 2mº, and j j denote cardinality.

Theorem 8.1. There is no set � � V with the following properties:

(a) a1 2 � and ˆ.a1/ … � .

(b) a0 2 � if and only if m is even.

(c) If a; b 2 V and aC b D 2mC 1, then exactly one of a; b lies in � .

(d) For every a 2 � X ¹a1º there exists b 2 � with E.b/ D �E.a/.

(e) j� \ ¹1; 2; : : : ; 2j ºj � j whenever j 2 ¹1; : : : ; mº.

Proof. Equivalently, (c) states that � is a selector for the m-element family ¹¹a; bº �
V W aC b D 2mC 1º. Hence j� j D m. In addition,

j� j D m � 3; (8.2-i)

jkj � m � 1; (8.2-ii)

ˆ.� X ¹a1º/ D � X ¹a1º: (8.2-iii)

In fact, as a1¤ a0 and a0C a1D 2m� 1 by (8.1-viii), havingmD 2 in (8.2-i) would,
by (a)–(b), give � D ¹a0; a1º � ¹1; 2; 3; 4º and a0C a1 D 3, implying that � D ¹1; 2º,
contrary to (e) for j D 1. Next, (d) and (8.1-v) give ˆ.� X ¹a1º/ � � X ¹a1º, cf.
(8.1-iii), with the image not containing a1, as otherwise, by (8.1-iii), ˆ.a1/ would lie
in � , which contradicts (8.1-i); and (8.1-iii) makes the inclusion an equality, proving
(8.2-iii). Finally, using (8.2-i), we may fix a 2 � X ¹a1; 2mº. Thus, by (8.2-iii) and
(8.1-ii), 1 � ˆ.a/ D 2m � 2.�1/ak � a � 2m. When a is even (odd) this becomes
2� 2m� 2k � a� 2m (or, 1� 2mC 2k � a� 2m� 1), yielding 1�m� k �m� 2
(or, 1 �m � k � m � 1), and (8.2-ii) follows.

Let us now define c
˙
2 Z by

c˙ D m� k; so that 1 � c˙ � 2m � 1 due to (8.2-ii), (8.3)

denote by V
˙

(or, �
˙

) the set of all a 2 V (or, a 2 � X ¹a1º) having .�1/a D˙1 and,
finally, given a; b 2 V

˙
with a � b, set Œa; b�

˙
D Œa; b� \ V

˙
, referring to any such

Œa; b�
˙

as an even/odd subinterval of V . Finally, we let R
˙

stand for the maximal
even/odd subinterval of V which is symmetric about c

˙
. Then

� D �C [ �� [ ¹a1º; ˆ.�˙/ D �˙; �˙ � R˙; (8.4-i)

RC D Œ2; 2m � 2k � 2�C; R� D Œ2k C 1; 2m � 1�� if k � 0; (8.4-ii)

RC D Œ�2k; 2m�C; R� D Œ1; 2mC 2k � 1�� if k < 0; (8.4-iii)

ˆ restricted to even/odd integers is the reflection about c˙: (8.4-iv)
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In fact, the first relation in (8.4-i) is obvious, the second immediate from (8.2-iii)
since, by (8.1-ii), ˆ W Z! Z preserves parity. Also, (8.1-ii) yields (8.4-iv), which in
turn shows that �

˙
D ˆ.�

˙
/ is a (possibly empty) union of sets ¹a; bº having c

˙
as

the midpoint, and so �
˙
� R

˙
. Finally, depending on whether c

˙
D m� k is less

(or, greater) than the midpoint mC 1=2 of V , one endpoint of R
˙

must lie in ¹1; 2º
(or, in ¹2m� 1; 2mº), and the other endpoint added to this one must yield 2c

˙
, which

proves (8.4-ii)–(8.4-iii).
Note that, as an obvious consequence of (8.4),

� X ¹a1º fails to include specific integers from V ; which are:

the lowest k odd and highest k C 1 even ones when k > 0;

the highest jkj odd and lowest jkj � 1 even ones for k < 0;

the integer 2m if k D 0:

(8.5)

Furthermore, one necessarily has

k 2 ¹0;�1º: (8.6)

To see this, we begin by excluding the possibility that k � 2 (or, k � �3). Namely,
if this was the case, (8.5) would give 1; 3; 2m � 2; 2m … � X ¹a1º (when k � 2), or
2;4;2m� 3;2m� 1 … � X ¹a1º (for k ��3). From the two pairs ¹1;2mº; ¹3;2m� 2º
(or, ¹2; 2m � 1º; ¹4; 2m � 3º) we would choose one, ¹a; bº, having a1 … ¹a; bº and
aC b D 2mC 1, as well as a; b … � , which contradicts (c).

The next two cases that need to be excluded are k D 1 and k D �2. If one of
them occurred, (8.5) would give 1; 2m … � X ¹a1º (if k D 1), or 2; 2m� 1 … � X ¹a1º

(for k D �2), which would again contradict (c), unless a1 2 ¹1; 2mº and k D 1, or
a1 2 ¹2; 2m � 1º and k D �2. However, each of the resulting four possible values
.1; 1/; .2m; 1/; .2;�2/; .2m � 1;�2/ for the ordered pair .a1; k/ leads, via (8.1-vi),
to the immediate conclusion that m � 1, contrary to (8.2-i), and so (8.6) follows.

As the next step, we writemD 2j (m even) ormD 2j C 1 (m odd), so that j � 1
by (8.2-i), and proceed to establish the inclusion

� 0 [ ¹a�º � � \ ¹1; 2; : : : ; 2j º; with j� 0 [ ¹a�ºj D j C 1; (8.7)

which will contradict (e), thus completing the proof of the theorem. Here � 0 is the j -
element set consisting of all integers from ¹1; 2; : : : ; 2j º with a specific parity (even
if k D �1, odd for k D 0), and a� D a0 (m even) or a� D a1 (m odd).

To derive (8.7), we list various conclusions in two separate columns (one for either
possible value of k),

k D 0; k D �1; (A)

� 0 D ¹1; 3; : : : ; 2j � 1º; � 0 D ¹2; 4; : : : ; 2j º; (B)

a� D 2j 2 � ; a� D 2j � 1 2 � ; (C)
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a1 D m � 1; a1 D m � 1C .�1/
m; (D)

a0 D m; a0 D m � .�1/
m; (E)

2m … � ; 2m � 1 … � ; (F)

1 2 � ; 2 2 � : (G)

In fact, (B) is the definition of � 0, (E), (D), (C) follow from (8.1-vii)–(8.1-viii), with
a� 2 � due to (a)–(b), while (F) is immediate from (8.5) for k 2 ¹�1; 0º, and (G) from
(F) and (c). What still remains to be shown, for (8.7), is the inclusion

� 0 � � ; (8.8)

as (8.8) combined with (B)–(C) obviously yields (8.7).
To this end, consider ‰ W Z ! Z given by ‰.a/ D 2m C 1 � a, so that (c)

amounts to j� \ ¹a; ‰.a/ºj D 1 for all a 2 V or, equivalently, ‰.�/ D V X � and
‰.V X �/ D � . Now, in our case, given an integer i ,

if 1 � i < m � 2 and i 2 � ; then i C 2 2 � : (8.9)

Namely, for the sign˙ such that .�1/i D ˙1, (8.2-iii) and (8.4-iv) yield

i ��!
ˆ

2m� 2k � i ��!
‰

i ˙ 2k C 1 ��!
ˆ

2m � i � 1 ��!
‰

i C 2
in in out out in

“in” or “out” meaning lying in � or in V X � . In fact, the four sums of pairs of adjacent
integers in the above displayed line are 2.m� k/ D 2c

˙
, 2mC 1, 2.m˙ k/ D 2c�,

2mC 1, as required in the definitions of the reflections ‰ and ˆ, the latter restricted
to even/odd integers. On the other hand, the inequality i < m � 2 implies, via (D),
that i ¤ a1 ¤ 2m � i � 1 (and so 2m � i � 1 … � , for otherwise i ˙ 2k C 1 D
ˆ.2m � i � 1/ would lie in �).

Now (8.9) combined with (G) and (B) proves (8.8) by induction on i . Specifically,
the highest value of odd (or, even) i such that this yields i 2 � is the one with i � 2 <
m� 2 � i , which is the required value 2j � 1 (or, 2j ) except for evenm and k D�1.
In the latter case, although we get 2j � 2 instead of 2j Dm, we have 2j DmD a1 2 �

nevertheless, due to (D) and (a).

9. Proof of Theorem A

We argue by contradiction. Suppose that, for some rank-one ECS model manifold
. �M; yg/ defined by (4.2), with (4.1), and for G as in Theorem 4.1, there exists

a subgroup � � G acting on �M freely and properly discontinuously

with a generic compact quotient manifold M D �M=� ,
(9.1)
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yetKC in (1.2) is infinite cyclic. AsKC D K \ .0;1/, by Lemma 3.1, for the image
K of the homomorphism � 3 .q; p; C; r; u/ 7! q, we get (3.5b). Theorem 3.3 now
allows us to set I D .0;1/ in (4.1), and all .q; p; C; r; u/ 2 � have p D 0. We fix

y
 D .q; 0; C; Or; Ou/ 2 � such that q is a generator of KC: (9.2)

From (4.3) and Theorem 4.1, we have (6.3) and CAC�1 D q2A, for f; A in (4.1).
Using the notations of (6.2)–(6.7), with m D n � 2, we replace � , without loss of
generality, by a finite-index subgroup �C, which allows us to assume that

q 2 .0;1/ X ¹1º; C has positive eigenvalues, and �˙ 2 C X .�1; 0�: (9.3)

Namely, each of these additional requirements amounts to passing from � to a sub-
group of index at most 2 (or, equivalently, from M to the corresponding finite iso-
metric covering). Specifically, we successively intersect � with the kernels of the
homomorphisms � ! ¹1;�1º sending .q; 0; C; r; u/ to sgn q and sgnC , the latter
sign accounting for positivity or negativity of the eigenvalues of C . (According to
Corollary 5.3, one of these cases must take place, and all C occurring in G form an
Abelian group.) The last condition (positivity of �˙ when they are real) is achieved
by replacing y
; q; C; �˙ with their squares and � with the corresponding homomor-
phic preimage of the index-two subgroup of KC generated by q2, which is to be
done only if �˙ are real and negative, cf. (6.6). Finally, we define a linear operator
… W R � E ! R � E by

….r; u/ D .2�.CT u; Ou/C r=q; CT u/: (9.4)

From the assumption that KC is infinite cyclic we will derive, in Lemma 9.2, the
existence of a vector subspace L � E having the following properties:

dim L D m, where m D n � 2I (9.5-A)

CT leaves L invariant; (9.5-B)

….†0/ D †0 for some lattice †0 in R �LI (9.5-C)

�.u; u0/ D 0 whenever u; u0 2 LI (9.5-D)

u 7! u.t/ is an isomorphism L! V for every t 2 .0;1/: (9.5-E)

Remark 9.1. For any rank-one ECS model manifold (4.1)–(4.2), with H and the solu-
tion space E defined in (4.8) and (4.4), if a vector subspace L � E satisfies (9.5-E),
with any I instead of I D .0;1/, then, restricting (4.9) to .0;1/�R�L we clearly
obtain an H-equivariant diffeomorphism

I �R �L! �M D I �R � V;
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its bijectivity being due to (9.5-E), and smoothness of its inverse – to the smooth
dependence of the isomorphism L 3 u 7! u.t/ 2 V on t along with real-analyticity
of the isomorphism-inversion operation.

Lemma 9.2. A vector subspace L � E with (9.5) exists if the conditions preceding
(9.4) are all satisfied.

Proof. The surjective submersion �M 3 .t; s; v/ 7! .log t /=.log q/ 2 R, being clearly
equivariant relative to the homomorphism

�C 3 

0
D .q0; 0; C 0; r 0; u0/ 7! .log q0/=.log q/ 2 Z (9.6)

along with the obvious actions of � on �M , via (4.7) with p D 0, and Z on R by
translations, descends to a surjective submersion M ! S1 which is

a bundle projection �M=�C ! R=Z D S1; (9.7)

according to Remark 2.3. The kernel† of (9.6) equals†D ¹.1; 0; Id/º �†0 for some
set †0 � R � E , since C 0 in (9.6), due to its positivity, (4.3) and Corollary 5.3, is
uniquely determined by q0. Thus, † � H, for H given by (4.8). As a consequence of
Lemma 3.2 (b) and assertion (f) in Section 4, the restriction to † of the homomor-
phism (c) in Section 4 is injective, making † Abelian. Now (a) in Section 4 implies
that the image of †0 under the projection .r; u/ 7! u spans a vector subspace L � E

satisfying condition (9.5-D), and so Remark 4.3 gives dim L � n� 2. Due to (9.5-D)
and (a) in Section 4, H0D¹.1;0; Id/º �R�L is an Abelian subgroup of H, containing
†, and the group operation in H0 identified with R �L coincides with the addition in
the vector space R �L.

At the same time, the (necessarily compact) fiber of the bundle (9.7) over the Z-co-
set of .log t /=.log q/ is obviously the quotientMt D Œ¹tº �R � V �=†. Compactness
of Mt implies surjectivity of the linear operator L 3 u 7! u.t/ 2 V for every t 2
.0;1/, since otherwise a nonzero linear functional vanishing on its image, composed
with the projection ¹tº �R� V ! V , would descend – according to (b) in Section 4 –
to an unbounded functionMt ! R. Thus, dim L � n� 2D dimV which, due to the
opposite inequality in the last paragraph, gives both (9.5-A) and (9.5-E). Remark 9.1
with I D .0;1/ and the italicized conclusion of the preceding paragraph, combined
with compactness of each of the quotients Mt (and the obvious proper discontinuity
of the action of † on ¹tº �R � V ) show that †0 is a lattice in R �L.

Finally, according to Remark 4.2, the right-hand side of (9.4) describes the con-
jugation by our y
 in (9.2) applied to .1; 0; Id; r; u/ 2 †, which we identify here with
.r; u/. As this conjugation obviously sends the kernel † onto itself, we get (9.5-C),
and so….R�L/D R�L (since†0 is a lattice in R�L). Now (9.4) yields (9.5-B),
which completes the proof.
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Lemma 9.3. Under the hypotheses preceding (9.4), let a vector subspace L � E sat-
isfy (9.5-A)–(9.5-C), a basis uC1 ; u

�
1 ; : : : ; u

C
m; u

�
m of EC containing a basis u1; : : : ; um

of LC be chosen as in Theorem 6.1, and �1; : : : ; �m be the corresponding complex
characteristic roots of CT W E ! E selected from �C1 ; �

�
1 ; : : : ; �

C
m; �

�
m given by (6.9).

Then

(i) �0 D q
�1 and �1; : : : ; �m form a GL.Z/-spectrum,

in the sense that they are the complex roots of some GL.Z/-polynomial of degree
mC 1, defined as in Section 7, and

(ii) the product �1 � � ��m equals q or �q.

Furthermore, assuming in addition that

(iii) one of �˙ is a power of q with a rational exponent,

we have the following conclusions:

(iv) Both �˙ are powers of q with integer exponents.

(v) �C1 ; �
�
1 ; : : : ; �

C
m; �

�
m are all distinct, real and positive.

(vi) Exactly one of �1; : : : ; �m equals q.

(vii) Just one, or none of �1; : : : ; �m equals 1 if n is even, or odd.

(viii) Those �1; : : : ; �m not equal to q or 1 form pairs of mutual inverses.

(ix) �.u˙i ; u
˙
j / D 0 for all i; j 2 ¹1; : : : ; mº and both signs˙.

(x) �.u˙i ; u
�

j / ¤ 0 if and only if i C j D mC 1.

Proof. Assertion (i) is immediate from (9.4) and (9.5-C) along with (7.1), and (ii)
from (i). Assuming (iii), we see – using (6.9), (6.6) and (7.3) – that, for the GL.Z/-
polynomial P with the roots �0; : : : ; �m,

(xi) the irreducible factors of P must all be linear or quadratic,

higher degree cyclotomic polynomials being excluded since the roots are all real.
Thus, one of �1; : : : ; �m equals q, to match �0 D q

�1, and (6.9) combined with (6.6)
yields (iv). Since j�˙j j is, for either sign˙, a strictly monotone function of j , to prove
(v) it suffices to consider the case qmC1�2j�˙ D qmC1�2i��, that is, �˙=�� D
q2.j�i/. Multiplied by �˙�� D q�1, cf. (6.6), this makes .�˙/2 a power of q with
an odd integer exponent, contrary to (iv), so that (v) follows. From (iii) and (xi) we
now get (viii).

For our basis u˙j of E , diagonalizingCT with the eigenvalues �˙j D q
mC1�2j�˙,

(g) in Section 4 gives

q�1�.u˙i ; u
˙
j / D q

2mC2�2i�2j .�˙/2�.u˙i ; u
˙
j /;

q�1�.u˙i ; u
�

j / D q
2mC2�2i�2j�C���.u˙i ; u

�

j /:
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Thus, the inequality �.u˙i ; u
˙
j / ¤ 0 would, again, make .�˙/2 a power of q with an

odd integer exponent, contradicting (iv), which yields (ix). Similarly, assuming that
�.u˙i ; u

�

j / ¤ 0, we now get, from (6.6), i C j D mC 1. The converse implication
needed in (x) follows, via (ix), from nondegeneracy of �.

Lemma 9.4. With the assumptions and notations of Lemma 9.3, let L this time satisfy
all of (9.5). Then conditions (i)–(x) in Lemma 9.3 all hold, so that �˙ and �˙j are all
real, while

(i) the number of pluses is different from that of minuses

among the˙ superscripts of those �C1 ; �
�
1 ; : : : ; �

C
m; �

�
m which form the characteristic

roots �1; : : : ; �m of CT W L ! L. Finally, for the basis B D ¹u1; : : : ; umº of L

contained in the basis ¹uC1 ; u
�
1 ; : : : ; u

C
m; u

�
mº of E , with j j denoting cardinality,

(ii) jB \ ¹uC1 ; u
�
1 ; : : : ; u

C

j ; u
�
j ºj � j whenever j D 1; : : : ; m,

(iii) jB \ ¹uCi ; u
�
j ºj D 1 if i; j 2 ¹1; : : : ; mº and i C j D mC 1.

Proof. If (ii) failed to hold, the evaluation operator in (9.5-E), complexified if neces-
sary, would send ¹u1; : : : ; ujC1º into the span of the vectors e1; : : : ; ej appearing in
(6.9), contrary to its injectivity. From (ii) we obtain

(iv) k.j / � j for all j D 1; : : : ; m,

k.j / 2 ¹1; : : : ; mº being such that uj D u
˙
k.j /

with some sign ˙, since, otherwise,
B \ ¹uC1 ; u

�
1 ; : : : ; u

C

k.j /
; u�
k.j /
º would have at least j > k.j / elements.

To prove (i), we now assume its negation, and evaluate the product of those �˙j D
qmC1�2j�˙ in (6.9) which constitute �1; : : : ; �m. Both factors �C; �� appear in this
product the same number of times, m=2, which makes m even, and by (6.6) their
occurrences contribute to our product �1 � � � �m a total factor of q�m=2. On the other
hand, the set ¹qmC1�2j W 1 � j � mº D ¹qm�1; qm�3; : : : ; q1�mº is closed under
taking inverses, so that

Qm
jD1 q

mC1�2j D 1. Writing k.j /D j C `.j /, with `.j /� 0
due to (iv), we now have

�j D �
˙
k.j / D q

mC1�2k.j /�˙ D qmC1�2j�˙q�2`.j /; (9.8)

making �1 � � � �m equal to 1 times q�m=2 times
Qm
jD1 q

�2`.j /, that is, a power of q
with a negative exponent, contrary to Lemma 9.3 (ii).

Next, (i) implies that �˙ and �˙j are all real, for otherwise �j in (9.8), forming
along with �0 D q

�1 the spectrum of a real matrix, would come in nonreal conjugate
pairs, with the same number of positive real parts as negative ones. Thus, by (9.3),
�˙ > 0. Using (i) and reality of �˙ we now evaluate the product �1 � � � �m D ˙q
in Lemma 9.3 (ii), observing that not all �C; �� undergo pairwise “cancellations”
(forming the product q�1), but instead Lemma 9.3 (ii) equates some power of �C
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or ��, with a positive integer exponent, to a power of q, and so positivity of �˙

yields condition (iii) in Lemma 9.3, which in turn implies (iv)–(x).
Finally, them-element family P D ¹¹uCi ; u

�
j º W i C j DmC 1º forms a partition

of ¹uC1 ; u
�
1 ; : : : ; u

C
m; u

�
mº into disjoint two-element subsets, while the mapping F W

B ! P given by u 2 F.u/ is injective: jB \ ¹uCi ; u
�
j ºj � 1 if i C j D mC 1, or

else Lemma 9.3 (x) would contradict (9.5-D). As jBj D m, surjectivity of F thus
follows, proving (iii).

We now complete the proof of Theorem A by observing that a vector subspace
L�E with (9.5) gives rise to a subset � of V D¹1; : : : ; 2mº, formD n� 2, satisfying
conditions (a)–(e) in Theorem 8.1, which – according to Theorem 8.1 – cannot exist.
Namely, using Lemma 9.3 (iv) we define k 2 Z by �C D qk , so that, by (6.6), �� D
q�k�1. Next, the obvious order-preserving bijection

V D ¹1; : : : ; 2mº ! ¹uC1 ; u
�
1 ; : : : ; u

C
m; u

�
mº (9.9)

(notation of Lemma 9.3) which, explicitly, sends a 2 V to u�j when aD 2j is even, or
to uCj for odd aD 2j � 1, is used from now on to identify the two sets, and we declare
� to be the subset of V corresponding under (9.9) to the basis B D ¹u1; : : : ; umº of L.
The function assigning to each u˙j the corresponding eigenvalue �˙j D q

mC1�2j�˙

treated, via (9.9), as defined on V , is now easily seen to be given by V 3 a 7! qE.a/,
with (8.1-i). Referring to (a)–(e) in Theorem 8.1 simply as (a)–(e), we observe that
assertions (ii) and (iii) of Lemma 9.4 yield (e) and (c), while (b), the first claim in
(a), and (d) trivially follow from Lemma 9.3 (vi)–(viii) (the latter guaranteed to hold
by Lemma 9.4). Finally, the relation ˆ.a1/ … � in (a) which, in view of (8.1-iii) and
(8.1-v), amounts to q�1 … ¹�1; : : : ; �mº, is thus immediate since otherwise, due to
Lemma 9.3 (viii), the inverse q of q�1 would occur on the list �1; : : : ; �m twice,
contradicting Lemma 9.3 (v).

Acknowledgments. The authors wish to thank the anonymous referee, whose sug-
gestions helped us improve the exposition.

Funding. The first author’s research was supported in part by a FAPESP-OSU 2015
Regular Research Award (FAPESP grant: 2015/50265-6).

References
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tech. Śl., Mat.-Fiz. 68 (1993), 213–225 Zbl 0841.53033

[13] W. Roter, On conformally symmetric Ricci-recurrent spaces. Colloq. Math. 31 (1974),
87–96 Zbl 0292.53014 MR 372768

Received 25 January 2023; revised 9 June 2023.

Andrzej Derdzinski
Department of Mathematics, The Ohio State University, 231 W. 18th Avenue, Columbus,
OH 43210, USA; andrzej@math.ohio-state.edu

Ivo Terek
Department of Mathematics, The Ohio State University, 231 W. 18th Avenue, Columbus,
OH 43210, USA; terekcouto.1@osu.edu

https://zbmath.org/?q=an:0379.53027
https://mathscinet.ams.org/mathscinet-getitem?mr=467596
https://zbmath.org/?q=an:1140.53034
https://mathscinet.ams.org/mathscinet-getitem?mr=2497674
https://doi.org/10.36045/bbms/1235574196
https://zbmath.org/?q=an:1165.53011
https://mathscinet.ams.org/mathscinet-getitem?mr=2498963
https://doi.org/10.1007/s10455-009-9173-9
https://doi.org/10.1007/s10455-009-9173-9
https://zbmath.org/?q=an:1193.53147
https://mathscinet.ams.org/mathscinet-getitem?mr=2575471
https://arxiv.org/abs/2210.03660
https://doi.org/10.1017/S0013091523000408
https://arxiv.org/abs/2306.01600
https://arxiv.org/abs/2304.10388
https://doi.org/10.1017/9781108349130
https://zbmath.org/?q=an:1397.57001
https://mathscinet.ams.org/mathscinet-getitem?mr=3793640
https://doi.org/10.1090/crmp/046/06
https://zbmath.org/?q=an:1186.11010
https://mathscinet.ams.org/mathscinet-getitem?mr=2437967
https://zbmath.org/?q=an:0841.53033
https://doi.org/10.4064/cm-31-1-87-96
https://zbmath.org/?q=an:0292.53014
https://mathscinet.ams.org/mathscinet-getitem?mr=372768
mailto:andrzej@math.ohio-state.edu
mailto:terekcouto.1@osu.edu

	1. Introduction
	2. Preliminaries
	3. Compact rank-one ECS manifolds
	4. The rank-one ECS model manifolds
	5. Generic self-adjoint nilpotent endomorphisms
	6. Invariant subspaces
	7. GL(Z)-polynomials
	8. The combinatorial argument
	9. Proof of Theorem A
	References

