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Existence of solutions for critical Klein—-Gordon equations
coupled with Born-Infeld theory in higher dimensions

Zhenyu Guo and Xueqgian Yan

Abstract. In this paper, we investigate the existence of nontrivial solutions for nonlinear Klein—
Gordon equations coupled with Born—Infeld theory with critical Sobolev exponents by vari-
ational methods.

1. Introduction and main results

We consider the existence of solutions for the following critical Klein—-Gordon equa-
tion coupled with Born—Infeld theory

{—Au + (Mm% —0H)u — Qo + ¢)pu = Af(x,u) + [u* 2u, x eRYV, (L)

AP + BAsp = dr(w + P)u?, x e RV,

where m, w > 0 are real constants, u, ¢ : RY — R, Ag¢p = div(|V$|*V¢) and 8 > 0.
2* = 2N/(N —2) is the critical Sobolev exponent. Klein—-Gordon equations can be
used to develop the theory of electrically charged fields (see [13]), and Born—Infeld
theory is proposed by Born to overcome the infinite energy problems associated with
a point-charge source in the original Maxwell theory (see [3,4]). The presence of the
nonlinear term f : RY x R — R simulates the interaction between many particles or
external nonlinear perturbations.

In recent years, the Born—Infeld nonlinear electromagnetism has regained its im-
portance due to its relevance in the theory of superstring and membranes. When
f(u) = |u|P~2u, d’Avenia and Pisani [12] established the following system that
has infinitely many radially symmetric solutions under the assumptions |m| > w and
4<p<6:

{—Au +[mg — (@ + ¢)*Ju = u|!?u, xR, (1.2)

Ag + BA4p = 4 (w + P)u?, x € R3.
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Later, more and more scholars considered the systems of a coupled Klein—-Gordon
equation with Born-Infeld theory by using variational methods. Particularly, Mug-
nai [21] studied the existence of infinitely many nontrivial radially symmetric solitary
waves for the problem (1.2). Yong [27] studied a Klein—-Gordon equation coupled with
the original Born—Infeld equation, and obtained infinitely many solitary wave solu-
tions. Recently, Wen et al. [25] proved the existence of infinitely many solutions and
least energy solution for the following Klein—Gordon equation coupled with Born—
Infeld theory:

{—Au +V(X)u — Qo + ¢)pu = f(x,u), x € R3, (1.3)

A¢ + BAyp = drt(w + P)u?, x € R3.

For other references related to (1.3), we refer to [9,23].

It is worth mentioning that Teng and Zhang [24] obtained the existence of solitary
wave solutions for the following Klein—Gordon equation coupled with Born—Infeld
theory by using variational methods:

Au = [m?> — (o + ¢)*Ju — [u|?2u — [u|* 2u, x eR3,
A¢ + BAyp = dt(w + P)u?, x € R3,

and other problems involving critical exponents can be seen in [6,7, 14,16, 17].

In proving our results, we have to deal with various difficulties. For instance, the
fact that the problem gets more complicated by the lack of compactness in the entire
R¥ space, and we consider more general nonlinearities, even more in the critical case.
Hence, it is significant to study the problem (1.1). When ¢ # 0, a process of plugging
¢ into the main equation is used, which can transfer the system into a single equation.
This technique was also employed in [1,8,9, 11, 18].

Before we state our main results, we assume that f satisfies the following condi-
tions:

(f1) f € CRN xR, R), and there exists Cy > 0 for 2 < p < 2* such that
|0l < Co(1 + [P, V(x.1) e RV xR.

(f») f(x,1)/t = 0,ast — 0, uniformly for x € RV

(f3) There exists 2 < p < 2* such that 0 < uF(x,t) < f(x,t)t, forallt € R,
where F(x,t) = fol f(x,tt)tdr.

The major results hold.
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Theorem 1.1. Assume that ( f1)—(f3) hold. Either \m| > |w| and 4 < u < 2* or
Vit =2|m| > V2|w| and 2 < . < 4. Then problem (1.1) possesses at least a non-
trivial radially symmetric solution provided that

i) N=5and N =4for2 <pu<2*ifA>0;
(i) N =3andeitherd <u <2%if A >0o0r2 < u <4if Ais sufficiently large.

The plan of the paper is as follows. Section 2 is devoted to the variational setting
of the problem, and some preliminary results. In Section 3, we analyse the variational
structure and present the results on weak solutions satisfying problem (1.1), as well
as prove the solution is nontrivial.

2. Preliminaries
Considering the Hilbert space H!(R") defined by
H'®RY) = {u e L2(RY) : Vu € L*RY)},

with the norm

g = (/Rquz +u2)dx)2.

D2RYN) = {ue L RY): Vu € L2(RV))

And the space

is equipped with the norm

1
2
el prz = (/ |Vu|2dx)
RN

Denote by D(RY) the completion of C{°(RY) with the norm

Iollo = ([ 1voPax)"+ ([ 1volar)’

From [15, Proposition 8], we infer that the Banach space D (R”Y) is continuously

embedded in L>°(R"). And we know that D(RY) — DL2(RY), DI2(RV) —

L2"(R¥) are continuous. The best Sobolev constant S is given by
Vu|?dx

S= _inf Jax V] -
uedD!-2(RN)\{0} (fRN |u|2*dx) 3%

2.1)
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Due to the variational characteristic of problem (1.1), its weak solutions (u, ¢) €
H'(RY) x D(RY) are critical points of the functional given by

I(u,¢) = %/RN |Vu|?dx + %/ (m? — w?)udx — l/ Qo + ¢)purdx

= | ¢|2dx——/ |V¢|4dx—/\/ F(x,u)dx

2*
~ 3 | lu|* dx. (2.2)

However, since the functional 7 is strongly indefinite, we need the following technical
results to reduce the study of (2.2) to the study of a functional in the only variable u.

Lemma 2.1. For eachu € H'(RY), there exists a unique ¢ = ¢, € D(RY), which
solves

Ap + BAsp = drt(w + ¢)u?. (2.3)
Moreover, —w < ¢, < 0 on the set {u # 0}, where w > 0.

Proof. The existence and uniqueness of ¢ = ¢, € D(RY) follow from the Lax—
Milgram theorem. Arguing as in the proof of [10, Proposition 2.1], fix u € H'(RY),
multiply (2.3) by (w + ¢,,)— = min{w + ¢y, 0}, to have that

/ Ve Pdx + B Ve |*dx = —dr / (© + ) u2dx,
{w+¢y, <0} {w+¢y, <0} {w+¢y, <0}

which implies —w < ¢, where u # 0. Then, let (¢,,) + = max{¢,,0} as a test function
in (2.3), we have

—[ |V¢u2dx—ﬂ/ V|4
{pu>0}

= 47r/ wpyurdx + 471/ p2utdx,
{¢u >0} {¢u >0}

which implies (¢, )+ = 0. Hence, we obtain ¢,, < 0. |

By means of Lemma 2.1, ® can be defined by ® : H'(RY) — D(RY), which
is of class C'! and maps each u € H'(R™) to the unique solution of A¢ + BA4p =
47 (w + ¢)u?. By the definition of ®, we have

Iy, ¢y) =0, Yue H'(RY).
Let us consider the functional

J:H'RY) >R, J) = I(u, ),



Critical Klein—Gordon equations coupled with Born—Infeld theory 5

then, J is CY(H'(RV),R) and J'(u) = I/ (u, ¢,). Multiplying both members of
(2.3) by ¢, and integrating by parts, we get

— |V¢u [2dx + —/ |V |*dx = —/ (0 + ¢u)puu®dx.  (2.4)
4 RN

Then, it follows from the definition of I and (2.4) that the functional associated to
(1.1) is given by

1 1
Ju) = - / |Vu|*dx + = / (m? — 0H)udx + - [ P2u*dx
2 RN 2 RN
1 2 3p 4
+ — |V |“dx + — [Vou|"dx — A F(x,u)dx
8 JrN 167 JrN RN

*
o u|* dx,

and for any u,v € H'(R"), we have
(J'(u),v) = / (Vu, Vuv)dx + / (m? — 0*)uvdx —/ Qo + ¢u)puuvdx
RN RN RN
—A/ f(x,u)vdx —/ |u|2*_2uvdx.
RN RN

From [21], we infer that the following results hold.

Lemma 2.2. The following statements are equivalent:
i) (u,¢) € H'RN) x DRN) is a critical point of I, i.e., (u, $) is a solution
of (1.1);

(1) u is a critical point of J and ¢ = ¢y.

Lemma 2.3. Ifu € H'(RY) is radially symmetric, then ¢, obtained by Lemma 2.1
is also radially symmetric.

Proof. The proof is the same as the argument of [12, Lemma 5]. However, we want
to state it again for the reader’s convenience. Combined with [2], for every field v
defined almost everywhere in RY | and for every g € O(N), set

(Tev)(x) = v(gx).

By the well-known principle of symmetric criticality (see [19]), it is enough to prove
that / is Tg-invariant, i.e., for every u € H'(RM)and g € O(N),

J(Tgu) = J(u).
The main point is to prove that, for every u € H'(RV),

D[Teu] = T, Plu].
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It is well known that
ATy ®u] = Ty (AD[u)).

Similarly, we can get that
AyTo®u] = Tg(AsPu)).
It is simple to verity that ®[T,u] and T ®[u] solve the same equation
A¢ + BAsp = 4r(0 + ) (Tgu).

Then, the conclusion follows from the T -invariance of the norms in H L(RY),
DRN) and L?(RY). "

In order to overcome the lack of compactness since critical growth and the invari-
ance by translations of J, we shall restrict the functional J on the subspace of radial
functions

H'®RY):={ue H'®RY) : u(x) = u(|x])},

which can be compactly embedded into L (RY), 2 < g < 2*. The conclusion is that
any critical point u € H}(RY) of J |Hrl ®N) 1s also a critical point of J |1 grw) (see
[2]). We also denote D, (RY), defined by

Dr®RY) :={u e DRY) : u(x) = u(|x|)},
which is the radial Sobolev subspace of D(RY).

Lemma 2.4. Suppose f satisfies ( f1)—(f3). Then there exist a constant ¢ > 0 and a
sequence {u,y C HY(RN) such that

J(uy) —c, J'(up) =0, asn— oo. (2.5)
Proof. Since ( f1) and ( /), for any & > 0, there exists C; > 0 such that
|f (e, 0)] < elt] + Cele|P~,

and C
|F(x, )| < gzz 22
P

Consequently,

C
‘/ F(x,u)dx‘ < f/ uzdx+—8/ u|Pdx. (2.6)
RN 2 Jrn P JrN
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In view of (2.6), it follows from Lemma 2.1 and the Sobolev inequality that

1 1
J(u) > —/ |Vu|?dx + —/ (m* — w?)u’dx
2 RN 2 RN

1 *
—)L/ F(x,u)dx——f lu|?" dx
RN 2% RN

2 2*
> Cillull = Callullyyy = Csllullg -

Thus, there exist &, p > 0 such that

inf J(u) > a.
lull=p

Moreover, by ( f1)—( f3), we can infer that there exist C4, C5 such that
F(x,t) = Ca|t|"* — Cst2.

It follows from Lemma 2.1 and (2.7) that forz > O and u € Hr1 (RM)\ {0}

12
s <5 [ VP o - oo + C ol
R

t *
-1 F(x,tu)dx — —/ [u|?" dx
RN 2% RN

12 , ¥ -
< —Ce¢llu - — u|” dx
< S Callul 5= [ W

— —00,

7

2.7

as t — +o00. Consequently, by setting e = tu with ¢ sufficiently large, we have |e|| > p

and J(e) < 0.

It follows from Lemma 2.4 and a variant of the mountain pass theorem [26] that a

(PS). sequence of the functional J at the level

¢ = inf max J(y(t)), c>a>0
y€r tel0,1]

can be constructed, and the set of paths is defined as

I:={yeC(0, 1], H' ®RY)): y(0) = 0and y(1) = e}.

3. Proof of Theorem 1.1

(2.8)

Lemma 3.1. Under the assumptions of Theorem 1.1 any (PS). sequence {u,} C

H(RN) satisfying (2.5) is bounded. Moreover, {¢y,, } is bounded in D, (RV).
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Proof. Let {u,} C H}(R™) be a (PS). sequence of J. There are two cases need to
be considered: either 4 < u < 2*or2 < pu < 4.
Case (i) 4 < u < 2*. In view of Lemma 2.1 and ( f3), we obtain

1
c+ 1+ lupllgr = J(un) — ;(J’(un),uw

(5= L, 9P+ 0n2 - P

( )/ b updx + = / @, dx

38

1o |V¢un |4d)C

1 2
+ — |V¢u,,| dx + —

+/\/ |: f(x,uy)u, — F(x, u,,)}dx

2*
# () [ e

1 1
= (5 - ;) /RN [|Vun|2 + (m* — a)z)u,zl]dx
2 2 1 2
‘|‘ - (a) + Gu, ) Pu, updx + 3 |V, |~dx
T JRN

1 1
= (5 - ;) /]RN [qunl2 + (m? — wz)u,zl]dx

> Crlunll?,

which implies that {u,,} is bounded in H!(R").
Case (ii) 2 < u < 4. It follows from (2.2) and (2.4) that

J(u) = %/RN [|Vu|2 + (m* — w?)u® — wqﬁuuz]dx — %/ (@ + ) puu’dx

1

~ % |V¢u|2dx——/ |V¢u|4dx—)L/ F(x,u)dx

— o lu|? dx
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1
- E/N [IVul]® + (m* — 0?)u? — wpyu® dx+—/ |V |*dx
R

1 *
—)L[ F(x,u)dx——/ |u|?" dx.
RN 2% RN

Thereupon, by applying Lemma 2.1, we have
¢+ 1+ |lunllg

> Ttn) — (1) t)
n

1 1 1
= (5 - ;) [1;{1\’ [IVun|? + (m* — w?)u;]dx + m /]RN ¢y updx
1 2 B
— (_ - —) /]RN 0Py, U ndx + ?/ |V¢un|4dx
1 1 o
+ A f(x Uy — F(x,uy) |dx + | — — — |un|” dx
2 2% RN
> (— — —)/ |Vu, |*dx
2 12 RN
1 1 1 2
+/ [(— - —)(m2 — %) + (— - —)w2:|u,2,dx.
RVL\2 nu 2
Then, by virtue of 2 < . < 4 and /i — 2|m| > +/2|w|, we can also deduce that {u,, }

is bounded in H!(RY).
Furthermore, it follows from Lemma 2.1 and the Holder inequality that

/ Yy, Pdx + B [ |V |*dx
RN RN
= —4x / (@ + Pu, ) pu, uzdx
]RN

< —47(/ a)qﬁunu,zldx
RN

*—1

. 5F - %
< —4nw |, |~ dx |up|2¥=Tdx
RN RN

< Cligu, llolunlF-

Consequently, by Lemma 2.3, {@,, } is bounded in O, (RV). ]
Lemma 3.2. Ifu, — uin H}(RN), then, up to a subsequence, ¢, — ¢y, in Dy (RV).
Proof. Letu, — u in H}(R"). Note that {u, } is bounded in H,}(R"), then we have

up —u in LYARY) for2 < g < 2*. 3.1
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In addition, Lemma 3.1 implies that {¢,,, } is bounded in D, (R"). Hence, there exists
buy € Dy (RY) such that ¢y, — ¢y, in Dy (RY), and

bu, = Pug  in LYRY) for2 < g < 2*. (3.2)

Next, we can show that ¢,,, = ¢,,. Since Lemma 2.1, we know that ¢, satisfies (2.3).
Letg € C§° (R™) be a test function. By virtue of Agy,, + BA4y, = 47(w + py, u2,
we have

[y Vohax B [ (196, PV, Vo)
RN RN
= —47(/ a)u,zl(pdx—4n/ ¢unu,2l<pdx.
RN RN
It follows from (3.1), (3.2) and the Holder inequality that
[ WV V00ax > [ (960, Vo,
RN RN
[ 1900, 2900,. 010 = [ (1964, PV Vihax,
RN RN
and
/ [(¢un M;% - ¢uou2)§0]dx
RN
< bl 1 = Plav ero + [ Gy = b i

Hence,

/RN ¢unuﬁ(pdx — /1;{1\1 ¢u0u2(pdx,

and we can easily get

[1;1\7 ¢5nuﬁ<pdx — /]RN ¢50u2<pdx.

By the uniqueness result in Lemma 2.1, we have ¢, = ¢,. Next, we show ¢, — ¢y,
in D, (RY) actually. Since ¢,,,, and ¢, satisfy the equation (2.3), we have

| 9@, = V0 + BV, PV, — V9PV Vo]
= —471/ [a)(u,zl —u?)v + (¢unuﬁ - q’)uuz)v]dx
RN

for each v € D, (RY). Letting v = ¢,,,, — ¢, be a test function, and combining with
the following inequality:

[(xI772x = [y[P2y)(x — )] = Cplx — y|P, forx,yinRY, p>2,
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we deduce that
< / V(G — ) Pdx + A4 / VG, — ) *dx
RN RN

< [ TG, = 80P + (b, PV, = 98T 8)(V o, — )

<an [ [0l =g, —
RN
+ [Pu,, | Pu, — ¢u|“;21 + [PullPu, — ¢u|u2]dx
< 47|0||pu, — Pulax iy — 1P |2x j25 1) + |Puy |2+ [ Pu
- ¢u|2*|un|§.2*/(2*_2) + |¢u|2*|¢un - ¢u|2*|u|%.2*/(2*_2).
In view of (3.1) and (3.2), we obtain that ¢, — ¢, in D, (RY). ]
Lemma 3.3. Let ¢ be given by (2.8). Then ¢ < %S%, where S is given by (2.1).

Proof. This proof uses a technique by Brfezis and Nirenberg [5] and some of its
variants. Moreover, similar to the arguments from Miyagaki [20], fixed R > 0 and
Y oe Cy® (R™) is a non-increasing cut-off function such that

V|Br =1, 0<vy <linBsg and suppy C Bag.

Let ¢ > 0 and define w, = u,y, where u, is the Talenti’s function, which can be
found in [22], and has the following explicit expression:
[NV —2)]

— xGRN,s>O.
(e + |x[2)"7°

ug(x) =

Furthermore, let ve € Cg° be denoted by

We

Vg = ————. 3.3)
[well 2 (B2R)
It follows from the estimates given in [5] and as ¢ — 0 that
N—=2
[Vvel53 <S4+ 0@ 7). (3.4)

Due to the definition of ¢, it is sufficient to prove that there exists € > 0 small enough
such that

1
sup J(tvg) < NS%.

>0
Moreover, since Lemma 2.1, we have

1
167 RN

1
Voulax+ 1t [ vt =~ [0+ g)pacar,
T JrN 4 JrnN
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and substituting this equality into the expression of J, we obtain

1 1 1
J(u) = —/ |Vu|?dx + —/ (m?* — 0*)uldx — —/ p2udx
2 JrN 2 JrN 4 Jrn

1 3
- — |V¢u|2dx——/ a)q&uuzdx—)u/ F(x,u)dx
167 JrN 4 JrN RN
- — |u|2*dx.
2* RN

By virtue of Lemma 2.4, we see that J(tve) > 0 for ¢ > 0 small, and J(tvs) = —o0
as t — +o0. Then there exists 7, > 0 such that J(t;ve) = sup,~¢ J(fve) > 0. Next
we will prove that ¢, is upper and lower bounded. For any & > 0 small enough, we

1/(2*=2)
tp < (/ [Vvg|?dx —1—/ mzvg) = to.
Bsr Bsr

Indeed, let ¥(¢) = J(¢tve). Then, we have
V(1) = (J'(tve), ve)

- f t(IVvel + [m? = (@ + o) J07 ) dx
Brr

claim that

—A f(x, tvg)vedx —tz*_lf vsz*dx
Bor BoRr

<2221

’

which implies that W/(z) < 0if ¢ > ty. Therefore, the claim holds. Moreover, we may
assume that there is a positive constant Cg > 0 such that 7, > Cg for ¢ > 0 small.
Otherwise, we suppose there exists a sequence &, — 0 as n — oo such that 7, — 0
as n — oo. Thus, we have

0<c <supJ(tve) = J(te,ve) = 0,
>0

which is a contradiction. Consequently, z, < Cg. Since (2.7), we have
/ F(x,t0s)dx > 04[ |teve|*dx — c5/ |tove|?dx. (3.5)
RN RN RN

It follows from (3.4)—(3.5) and Lemma 2.1 that

12 12
J(teve) = é/B |Vvg|[2dx + é/ (m?* — 0*)vZdx
2R

B>r
2
e ¢,2FUF vfdx — L |V¢,€U€|2dx
4 BZR T 167T BZR
312 12"
— WP, v2dx — A/ F(x, teve)dx — 2 lve|?" dx
4 Bor BaR 2 By R
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t2 2 t2 2,2 317 2.2
. |Vug|"dx + £ m7vidx + —=£ wv;dx
2 2 4

Bagr Bogr Bsr

—A / F(t.ve)dx
Brr

1 _
—(S + 0(8N22) —i—/ m2v82dx)
N Brr

—Acl()/ |U8|de.
Bor

IA

=

IA

+ Gy / v2dx
Brr

By applying the inequality
(@a+b)° <a®+o(a+b)° b, foroc>1,anda,b>0,
we have

1 _
J(teve) < NS% 10T + cu/

B>r

vfdx — )\,Clo/ |ve|Mdx.

B>r

Next, we will show that

N—=2
lime™ 2 (V% — A|ve|*)dx = —o0.
e—>0 B2R

As in [5], one has
* N 1 N
|we|? dx = [N(N —2)12/ —————dx + 0(2). (3.6)
/BZR ° rY (14 [x]H)N

On account of (3.3), by using w, instead of vy, it is sufficient to prove that

e—>0

lim e 7" / (w2 — A|wg|*)dx = —oo, 3.7)
BRr

and
N—2

8_2/ (vZ — A [*)dx (3.8)
B>Rr\BRr

is bounded.
Let

K. = g—Nz”/ (w2 — Aw,|*)dx.
Br

Arguing as in the proof of [6, Lemma 7], by substitution of variables, we obtain

4N /f N1 LA
Ke = (1+r2)N2

AC e~ it 51 v v d 3.9
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Now we consider the cases N > 5, N = 4 and N = 3 respectively as follows:

Case 1: N > 5.

By means of p > 2, it is easy to prove that all integrals in (3.9) are convergent
as ¢ — 0. Moreover, since 2 < u < 2*, then —%,u + % — 1 < 0. Hence, we have
K, — —ococase — 0.

Case2: N = 4.

By employing u < 2* = 4, and calculating

R
Ve r3 1 R? g
" _dar=~(log(1+ = —1
/0 1+ 22" 2(0g(+8)+8+R2 )

/55 r3 q 1 &*(e+3R?
—_dr=—=—,
s (422 2 12(c + R2)?

and

we have

C’ R? € 2u (1 &*e+3R?
Ko< —(log (1+ = 1) —ACe T = = TR
£=7 (Og( + s)+e 2 ) to¢ (12 12(8+R2)3)

In view of

we deduce that K, — —oo as ¢ — 0.
Case 3: N = 3.
By simple calculation, one has

[55 r2 oo R o R
r = — — arctan| — |,
o 1+7r2 Je JE

then, similar arguments to those in the proof of the case N = 4, we get

R
R _ e 2
K: <C'R-— C's% arctan(—) — )LC1084TM /f r—udr
Ve o (1+r?»2
u [V r?
<C'R- )tCl()é‘TM / —dr.
o (1+r?)>2

Next, we will discuss it case by case: either 2 < u < 4or4 < u < 2*.
For 4 < pu < 2%, %2 < 0 and the integral

w3 r?
[ LS
o (1+r2)%

is convergent, as ¢ — 0. Thus, we get the conclusion that K, — —oo as ¢ — 0.
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As for 2 < u < 4, we know that
o] 2
/ — L _ar=Z
o (1+r2)2 2

4—u

K, <Cqip— (% — 1)AC1084.

which implies that

Then, we can also obtain K, — —o0 as ¢ — 0 by choosing A = e3,

As a consequence, we have completed the argument of (3.7).
Now, let us estimate for all N > 3. Fix ¢ sufficiently small, and by (3.6), we have

/

_ C
P / (V2 — AMve|")dx < —— / Yrw2dx
B>Rr\BR & 2 JBar\BRr

< C"ellY a1

where R large is chosen such that ws2 < 8%, for all |[x| > R. Thereupon, the equation
(3.8) is bounded. This completes the proof of Lemma 3.3. ]

Lemma 3.4. The weak limit (u, ¢,,) solves problem (1.1).

Proof. Let {u,} be a (PS). sequence as given in (2.5). From Lemma 3.1, we know
that {u, } is bounded in H}'(R¥), then, up to subsequence, there exists u € H!(RY)
such that

Up — U in H}(RN),

up —u in LYLRY)for g € (2,2%).

And we know that

(J (up),v) = /N(Vun,Vv)dx—l— N(mz—a)z)unvdx
R R

—/ (2w+¢un)¢ununvdx—/ f(x, up)vdx
RN RN

2%—2
_ " )
/ [Upl U vdx
RN

Moreover,

/ (Vu,,Vv)dx — (Vu, Vu)dx,
RN RN
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which follows from the weak convergence. Furthermore, it follows from the strong

convergences in LY (RV), 2 < g < 2* and the Holder inequality that
/ (Pu, un — Ppyu)vdx
RN
= [, i — i+ [ (6, — gy
RN RN

=< |Puy, l2* [un — M|2~2*/(2*—2)|U|2 + |Pu, — ¢u|2*|u|2~2*/(2*—2)|v

2

as n — oo. Similarly, we deduce that
| @2un = Sy
RV "

- f 62 (tn — u)vdx + [ 62 — 2 uvdx
RN RN

< |Pup 3 [ttn — Ul2.2% )25 —2) [V ] 2.2% ) (25 —2)

1 Puy — Pul22 /@5 —2) | Puyy + Pul22x @ —2) [ul2x V]2,
as 1 — 0o. On account of {u,} is bounded in L2", then
> 20 = w2 in (L7

And it follows from ( /1) and ( f>) that

/]RN f(uy)vdx — /]RN f(u)vdx.

This completes the proof.

Proof of Theorem 1.1. Now, we show that u is nontrivial. Assume by contradiction

that ¥ = 0, and hence ¢,, = 0. By means of Lemma 2.1, we infer that

_/ Qw + ¢un)¢unui = _2/ w¢unu;21dx
RN RN
= C|un|%.2*/(2*_1)”¢un lo.

which converges to zero as n — 0o. And by ( /1) and ( f>), we obtain

lim F(x,u,)dx = 0.
n—>+oo JpN
Let
L := lim [|Vu,1|2 + (m? —a)z)ui]dx and [ := lim |un|2*dx.

n—>oo [pn n—o00 JpN
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Moreover, in view of {J'(uy),u,) = 0,(1), we deduce that L = [. Since (2.1), we

have
/ [IVun|® + (m* — 0*)ul]dx > /
RN

|Vu, |*dx > S|u,,|§*,
RN

which implies L > § z. Consequently,

which contradicts with Lemma 3.3. Thus, u is a nontrivial solution of the problem
(L.1). ]
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