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Monotone extremal functions and the weighted
Hilbert’s inequality

Emanuel Carneiro and Friedrich Littmann

Abstract. In this note we find optimal one-sided majorants of exponential type for the signum
function subject to certain monotonicity conditions. As an application, we use these special
functions to obtain a simple Fourier analysis proof of the (non-sharp) weighted Hilbert–
Montgomery–Vaughan inequality.

1. Introduction

An entire function F W C ! C is said to be of exponential type if

�.F / WD lim sup
jzj!1

jzj�1 log jF.z/j <1:

In this case, the number �.F / is called the exponential type of F . An entire function
F W C ! C is said to be real entire if its restriction to R is real-valued. In this note
we solve the following extremal problem with a monotonicity constraint.

Theorem 1. Let F W C ! C be a real entire function such that

(i) F has exponential type at most 2�;

(ii) F.x/ � sgn.x/ for all x 2 R;

(iii) F is non-decreasing on .�1; 0/ and non-increasing on .0;1/.

Then Z 1
�1

®
F.x/ � sgn.x/

¯
dx � 2: (1.1)

Moreover, there exists a unique real entire function M W C ! C verifying properties
(i), (ii) and (iii) for which the equality in (1.1) holds. This function is given by

M.z/ D �2

Z z

�1

sin2 �s
�2s.s C 1/2

ds � 1: (1.2)
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Remark. The integral in (1.2) is understood to be along the path .�1; 0� [ Œ0; z�,
where the latter is the line segment connecting 0 to z.

Without the monotonicity constraint (iii) in Theorem 1, this problem was solved
by Beurling in the late 1930s, and the value of the minimal integral on the right-hand
side of (1.1) is actually equal to 1; see J. D. Vaaler’s classical survey [9] on the subject.
The unique extremal function in this case is

B.z/ D
�sin�z

�

�2� 1X
nD0

1

.z � n/2
�

�1X
mD�1

1

.z �m/2
C
2

z

�
: (1.3)

See Figure 1 for the plots of these functions on R.
As an application of Theorem 1 we revisit the following result of Montgomery

and Vaughan [5].

Corollary 2 (Weighted Hilbert–Montgomery–Vaughan inequality). Let N 2 N. Let
�1; : : : ;�N be a set of distinct real numbers and define ın WDmin¹j�n � �mj Wm¤ nº.
If a1; : : : ; aN 2 C then ˇ̌̌̌ NX

m;nD1;
m¤n

aman

.�m � �n/

ˇ̌̌̌
� C

NX
nD1

janj
2

ın
(1.4)

holds with C D 2� .

Inequality (1.4) has a long history. In the case �m D m, inequality (1.4) with con-
stant C D 2� was first proved by Hilbert. This was later improved by Schur [8], who
obtained the sharp constant C D � on the right-hand side. The equally-spaced case
of (1.4) (i.e., when the ¹ınºNnD1 on the right-hand side are replaced by a uniform ı)
with the sharp constant C D � was established by Montgomery and Vaughan in [5]
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Figure 1. The monotone extremal majorant M.x/ on the left, and the classical Beurling major-
ant B.x/ on the right.
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with a spectral analysis approach, and by Vaaler [9] with a Fourier analysis approach
based on Beurling’s extremal functions. The general weighted case was first proposed
by Montgomery and Vaughan [5], who proved inequality (1.4) with constant C D 3

2
� .

This was later improved by Preissmann [7] who obtained

C D

r
1C 2

3

q
6
5
� D .1:3154 : : :/�;

currently the best known bound in the literature. Selberg privately reported to
Montgomery a proof of (1.4) with constant C D 3:2, but the ideas of such a proof
were never made public. It is conjectured that (1.4) should hold with constant C D � ,
and this has been an open problem since 1974.

Our contribution in this application is to provide, for the first time, a Fourier ana-
lysis proof of the weighted Hilbert–Montgomery–Vaughan inequality. Such a proof
turns out to be simple, with the caveat of giving a slightly worse constantC D 2� . The
previous proofs of Montgomery and Vaughan [5] and of Preissmann [7] live within
the realm of linear algebra, relying on an intricate series of estimates to directly bound
the largest eigenvalue of the associated hermitian matrix.

Weighted inequalities like (1.4) have many applications in number theory, e.g., [3]
and [4]. Other works related to the weighted Hilbert–Montgomery–Vaughan inequal-
ity include [2] and [10].

2. A Fourier analysis proof of the weighted Hilbert–Montgomery–
Vaughan inequality

In this section, we assume the validity of Theorem 1 and prove Corollary 2.

Proof of Corollary 2. Let  .x/ WDM.x/� sgn.x/. Throughout this proof we use the
notation ı.x/ WD .ıx/, for ı > 0. By construction, 2L1 \L2.R/, and we denote
its Fourier transform on the real line by

y .t/ WD

Z 1
�1

 .x/e�2�ixt dx:

We remark that

c ı.t/ D ı�1 y .ı�1t /;
and hence, by the Paley–Wiener theorem,

c ı.t/ D �.�it/�1 for jt j � ı:
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Reorder the sequence ¹�nºNnD1 so that ı1 � ı2 � � � � � ıN > 0. Then, evidently,
j�m � �nj � ımin.m;n/. We adopt the convention  0 � 0. From the monotonicity con-
dition we note that  ıj .x/ �  ıj �1

.x/ for all x 2 R and j D 1; 2; : : : ; N . Hence

0 �

NX
jD1

Z 1
�1

�
 ıj .x/ �  ıj �1

.x/
�ˇ̌̌̌ NX
mDj

ame
�2�i�mx

ˇ̌̌̌2
dx (2.1)

D

NX
jD1

NX
m;nDj

aman
�b ıj .�m � �n/ �1 ıj �1

.�m � �n/
�

D

NX
m;nD1

aman

min.m;n/X
jD1

�b ıj .�m � �n/ �1 ıj �1
.�m � �n/

�
D

NX
m;nD1

amanc ımin.m;n/.�m � �n/

D �

NX
m;nD1;
m¤n

aman

�i.�m � �n/
C y .0/

NX
nD1

janj
2

ın
:

It then follows that

NX
m;nD1;
m¤n

aman

�i.�m � �n/
� y .0/

NX
nD1

janj
2

ın
:

The function �M.�x/ is a minorant of sgn.x/ which is non-increasing on .�1; 0/,
and non-decreasing on .0;1/. Repeating the above argument with '.x/ WD sgn.x/C
M.�x/ � 0 yields

�y .0/

NX
nD1

janj
2

ın
�

NX
m;nD1;
m¤n

aman

�i.�m � �n/
;

and this concludes the proof of Corollary 2 since y .0/ D 2.

Remark. One might wonder whether these techniques can be used to prove the sharp
weighted Hilbert–Montgomery–Vaughan inequality. If one replaces the function M
from Theorem 1 by the original Beurling majorant B described in (1.3), and defines
 .x/ WD B.x/ � sgn.x/ instead, one would need to verify the non-negativity of the
corresponding expression appearing in (2.1).
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3. Monotone extremal functions: Proof of Theorem 1

To simplify the calculations let us consider the analogous extremal problem replacing
sgn.x/ by the upper semi-continuous Heaviside function x0C (i.e., x0C D 1 for x � 0,
and x0C D 0 for x < 0).

We first find necessary conditions that the optimal function must satisfy, and then
construct a function that satisfies these conditions. Let G be an entire majorant of x0C
of exponential type at most 2� that is non-decreasing on .�1; 0/ and non-increasing
on .0;1/, and such that G � x0C 2 L

1.R/. Then g D G0 is of one sign on each of the
half-lines. Since limx!�1G.x/ D 0, it follows that

G.x/ D

Z x

�1

g.x/ dx:

Also, from the fact that limx!1G.x/ D 1, it follows that g 2 L1.R/ andZ 1
�1

g.x/ dx D 1: (3.1)

Since G � x0C 2 L
1.R/, Fubini’s theorem and (3.1) imply that the following two

integrals are finite:Z 0

�1

G.x/ dx D
Z 0

�1

Z x

�1

g.u/ du dx D �
Z 0

�1

ug.u/ du; (3.2)

and Z 1
0

®
G.x/ � 1

¯
dx D

Z 1
0

�
�

Z 1
x

g.u/ du
�

dx D �
Z 1
0

ug.u/ du: (3.3)

Define H W C ! C by H.u/ D �ug.u/. Then H is a real entire function of
exponential type at most 2� that is non-negative on R. From (3.2) and (3.3) we find
also that H 2 L1.R/. Moreover, since g is entire, H has a zero at the origin of even
order at least 2. It follows by Krein’s decomposition1 [1, p. 154] that there exists
h W C ! C entire of exponential type at most � such that

H.z/ D z2h.z/h.z/

for all z 2 C. From (3.2), (3.3) and Poisson summation (that holds pointwise every-
where since H 0 2 L1.R/ by a classical result of Plancherel and Pólya [6], and hence
H has bounded variation on R) we haveZ 1

�1

®
G.x/ � x0C

¯
dx D

Z 1
�1

H.x/ dx D
X
n2Z

H.n/ D
X
n2Z

jnh.n/j2:

1If f W C! C is a real entire function of exponential type at most 2� , that is non-negative
and integrable on R, then there exists g W C! C entire of exponential type at most � such that
f .z/ D g.z/g.z/ for all z 2 C.
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Another application of Poisson summation, together with (3.1), yields

�

X
n2Z

njh.n/j2 D
X
n2Z

g.n/ D yg.0/ D

Z 1
�1

g.x/ dx D 1: (3.4)

HenceZ 1
�1

®
G.x/ � x0C

¯
dx D

X
n2Z

jnh.n/j2 �
X
n2Z

jnjjh.n/j2 � �
X
n2Z

njh.n/j2 D 1;

(3.5)

which establishes the desired inequality.
In order to have equality in (3.5) we must have h.n/ D 0 if n ¤ �1; 0. From

(3.4), this implies that jh.�1/j D 1. Since zh.z/ 2 L2.R/ and has exponential type at
most � , the classical Shannon–Whittaker interpolation formula yields

zh.z/ D h.�1/
sin�z
�.z C 1/

;

which implies that

g.z/ D �zh.z/h.z/ D �jh.�1/j2
sin2 �z

�2z.z C 1/2
D �

sin2 �z
�2z.z C 1/2

:

One can check directly that this g satisfies (3.1) (e.g., via Poisson summation) and
that

G.x/ D �

Z x

�1

sin2 �u
�2u.uC 1/2

du (3.6)

is indeed a majorant of xC0 withZ 1
�1

®
G.x/ � x0C

¯
dx D

Z 1
�1

jug.u/j du D 1:

See Figure 2 for the plot of G.x/. Finally, observe that G W R! R defined by (3.6)
is the restriction to R of the entire function

G.z/ D G.0/ �

Z z

0

sin2 �s
�2s.s C 1/2

ds: (3.7)

The integration is over the line segment connecting 0 to z, and the value G.0/ is a
linear combination of known constants with decimal expansion G.0/ D 1:0749 : : :

If z D x C iy, it is clear from (3.7) that jG.z/j � C jzje2�jyj for some C > 0, and
therefore G has exponential type at most 2� . This concludes the proof in the case
of x0C.

Naturally, in the case of sgn.x/ our unique extremal function is then M.z/ WD
2G.z/ � 1.
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Figure 2. The extremal function G.x/
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