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Transposed Poisson structures on the Lie algebra of upper
triangular matrices

Ivan Kaygorodov and Mykola Khrypchenko

Abstract. We describe transposed Poisson structures on the upper triangular matrix Lie algebra
Tn.F /, n > 1, over a field F of characteristic zero. We prove that, for n > 2, any such structure
is either of Poisson type or the orthogonal sum of a fixed non-Poisson structure with a structure
of Poisson type, and for n D 2, there is one more class of transposed Poisson structures on
Tn.F /. We also show that, up to isomorphism, the full matrix Lie algebra Mn.F / admits only
one non-trivial transposed Poisson structure, and it is of Poisson type.

Introduction

Since their origin in the 1970s in Poisson geometry, Poisson algebras have appeared in
several areas of mathematics and physics, such as algebraic geometry, operads, quan-
tization theory, quantum groups, and classical and quantum mechanics. One of the
natural tasks in the theory of Poisson algebras is the description of all such algebras
with fixed Lie or associative part [7, 9, 19].

Recently, Bai, Bai, Guo, and Wu [1] have introduced a dual notion of the Poisson
algebra, called a transposed Poisson algebra, by exchanging the roles of the two
multiplications in the Leibniz rule defining a Poisson algebra. A transposed Pois-
son algebra defined this way not only shares some properties of a Poisson algebra,
such as the closedness under tensor products and the Koszul self-duality as an operad,
but also admits a rich class of identities [1, 3, 4, 14, 15, 17]. It is important to note
that a transposed Poisson algebra naturally arises from a Novikov–Poisson algebra by
taking the commutator Lie algebra of its Novikov part.

Thanks to [3], any unital transposed Poisson algebra is a particular case of a
“contact bracket” algebra and a quasi-Poisson algebra. In a recent paper by Ferreira,
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Kaygorodov, and Lopatkin a relation between 1
2

-derivations of Lie algebras and trans-
posed Poisson algebras has been established [5]. These ideas were used to describe
all transposed Poisson structures on Witt and Virasoro algebras in [5]; on twisted
Heisenberg–Virasoro, Schrödinger–Virasoro and extended Schrödinger–Virasoro al-
gebras in [20]; on oscillator Lie algebras in [3]; on Schrödinger algebra in .nC 1/-
dimensional space-time in [18]; on Witt type Lie algebras in [12]; on generalized Witt
algebras in [11] and Block Lie algebras in [10, 11]. Any complex finite-dimensional
solvable Lie algebra was proved to admit a non-trivial transposed Poisson struc-
ture [13]. The algebraic and geometric classification of 3-dimensional transposed
Poisson algebras was given in [2]. Also, see [8, Section 7.3], and the references therein
for similar studies. For the list of actual open questions on transposed Poisson alge-
bras, see [3].

In this paper, we describe transposed Poisson structures on the upper triangular
matrix Lie algebra Tn.F / over a field F of characteristic zero. To this end, we first
characterize 1

2
-derivations of Tn.F / in Proposition 10. Then the case n > 2 is solved

in Theorem 11, and the case n D 2 is treated separately in Theorem 12. Namely, we
prove in Theorem 11 that any transposed Poisson structure on Tn.F /, n > 2, is either
of Poisson type or the orthogonal sum of the fixed non-Poisson structure

e11 � e11 D �e11 � enn D enn � enn D e1n

with a structure of Poisson type. If n D 2, then there appears one more separate class
of transposed Poisson structures on Tn.F / consisting of the (non-orthogonal) sums of
a structure of the family

e11 � e11 D ce11; e11 � e12 D �e12 � e22 D ce12;

e11 � e22 D �e22 � e22 D ce22; c ¤ 0;

with a structure of Poisson type. As a complementary result, we prove in Theorem 14
that the full matrix Lie algebraMn.F / admits only one non-trivial transposed Poisson
structure ei i � ejj D ı, 1 � i; j � n, and it is of Poisson type. In fact, it is isomorphic
to the extension by zero of the product ı � ı D ı as observed in Remark 15.

1. Definitions and preliminaries

All the algebras below will be over a field F of characteristic zero and all the lin-
ear maps will be F -linear, unless otherwise stated. The notation hSi means the F -
subspace generated by S .

Definition 1. Let L be a vector space equipped with two non-zero bilinear opera-
tions � and Œ�; ��. The triple .L; �; Œ�; ��/ is called a transposed Poisson algebra if .L; �/
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is a commutative associative algebra and .L; Œ�; ��/ is a Lie algebra that satisfies the
following compatibility condition:

2z � Œx; y� D Œz � x; y�C Œx; z � y�: (1)

Transposed Poisson algebras were first introduced in a paper by Bai, Bai, Guo,
and Wu [1].

Definition 2. Let .L; Œ�; ��/ be a Lie algebra. A transposed Poisson algebra structure
on .L; Œ�; ��/ is a commutative associative multiplication � on L which makes .L; �; Œ�; ��/
a transposed Poisson algebra.

Definition 3. Let .L; Œ�; ��/ be an algebra and ' W L! L a linear map. Then ' is a
1
2

-derivation if it satisfies

'.Œx; y�/ D
1

2

�
Œ'.x/; y�C Œx; '.y/�

�
: (2)

Observe that 1
2

-derivations are a particular case of ı-derivations introduced by
Filippov in [6]. The space of all 1

2
-derivations of an algebra L will be denoted by

�.L/. It is easy to see from (2) that ŒL;L� and Ann.L/ are invariant under any 1
2

-
derivation of L.

Definitions 1 and 3 immediately imply the following key Lemma.

Lemma 4. Let .L; Œ�; ��/ be a Lie algebra and � a new binary (bilinear) operation
on L. Then .L; �; Œ�; ��/ is a transposed Poisson algebra if and only if � is commutative
and associative and for every z 2 L the multiplication by z in .L; �/ is a 1

2
-derivation

of .L; Œ�; ��/.

The basic example of a 1
2

-derivation is the multiplication by a field element. Such
1
2

-derivations will be called trivial.

Theorem 5. Let L be a Lie algebra without non-trivial 1
2

-derivations. Then all trans-
posed Poisson algebra structures on L are trivial.

Another well-known class of 1
2

-derivations of .L; Œ�; ��/ is formed by linear maps
L! Ann.L/ annihilating ŒL;L�. If .L; Œ�; ��/ is a Lie algebra, such 1

2
-derivations of L

correspond to the following transposed Poisson structures on L. Denote by Z.L/ the
center of L and fix a complement V of ŒL;L� in L. Then any commutative associative
product � W V � V ! Z.L/ defines a transposed Poisson algebra structure � on L by
means of

.a1 C a2/ � .b1 C b2/ D a1 � b1; (3)

where a1;b1 2V and a2;b2 2 ŒL;L�. Indeed, the right-hand side of (1) is zero, because
z � x; z � y 2 Z.L/, and the left-hand side of (1) is zero by (3), because Œx; y� 2 ŒL;L�.
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We say that � is the extension by zero of �. Observe that � is, at the same time, a usual
Poisson structure on .L; Œ�; ��/. Thus, such transposed Poisson structures are said to be
of Poisson type.

Given two transposed Poisson structures �1 and �2 on .L; Œ�; ��/, their sum �, defined
by

a � b D a �1 b C a �2 b;

is clearly commutative and satisfies (1). In general, �may be non-associative, but it is
associative, if

L �1 L � Ann.L; �2/ and L �2 L � Ann.L; �1/:

In this case we say that �1 and �2 are orthogonal, and � is the orthogonal sum of �1
and �2.

Let � be a transposed Poisson algebra structure on a Lie algebra .L; Œ�; ��/. Then
any automorphism � of .L; Œ�; ��/ induces the transposed Poisson algebra structure �
on .L; Œ�; ��/ given by

x � y D �
�
��1.x/ � ��1.y/

�
; x; y 2 L:

Clearly, � is an isomorphism of transposed Poisson algebras .L; �; Œ�; ��/ and .L;�; Œ�; ��/.

2. Transposed Poisson structures on the upper triangular matrix Lie
algebra

2.1. Upper triangular matrix algebra

Let n be a positive integer. Denote by Tn.F / the algebra of upper triangular n � n
matrices over F . The usual matrix product on Tn.F / will be denoted by the concate-
nation, and the commutator product by Œa; b� D ab � ba. Following the terminology
of incidence algebras, we denote the identity matrix by ı and, given a 2 Tn.F / and
1� i; j � n, we write a.i; j / for the .i; j /-entry of a. The algebra Tn.F / has the natu-
ral basis formed by the matrix units eij , 1� i � j � n, where eij .k; l/D ı.i;k/ı.j; l/.
It is well known that

Z.Tn.F // D hıi and ŒTn.F /; Tn.F /� D heij j 1 � i < j � ni for all n � 1:

Moreover,

Z.ŒTn.F /; Tn.F /�/ D he1ni for all n > 1: (4)
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Clearly, for all a 2 Tn.F / and 1 � i � j � n we have

eija D
X
j�k

a.j; k/eik; aeij D

X
l�i

a.l; i/elj ;

so

eijaekl D

´
a.j; k/eil ; j � k;

0; j > k:

These equalities will be used numerous times throughout the text without any refer-
ence.

2.2. On 1
2

-derivations of the upper triangular matrix Lie algebra

We denote by �.Tn.F // the space of 1
2

-derivations of the Lie algebra .Tn.F /; Œ�; ��/.

Lemma 6. Let ' 2 �.Tn.F //. Then for all 1 � i < j � n we have

(i) '.eij /ei i D 0I

(ii) eij'.ei i / D '.ei i /.j; j /eij I

(iii) '.ei i /.i; j / D �'.ejj /.i; j /I

(iv) '.ei i /eij D '.ei i /.i; i/eij .

Proof. (i) Since eij D Œeij ; ejj �, then

2'.eij / D Œ'.eij /; ejj �C Œeij ; '.ejj /�

D '.eij /ejj � ejj'.eij /C eij'.ejj / � '.ejj /eij : (5)

Multiplying (5) by ei i on the right (under �), we obtain the desired equality.
(ii) Apply ' to Œei i ; ejj � D 0:

0 D '.Œei i ; ejj �/ D '.ei i /ejj � ejj'.ei i /C ei i'.ejj / � '.ejj /ei i : (6)

If there exists k > j , then, multiplying (6) by ejj on the left and by ekk on the right,
we obtain

'.ei i /.j; k/ D 0 for j < k: (7)

It follows that

eij'.ei i / D
X
j�k

'.ei i /.j; k/eik D '.ei i /.j; j /eij ;

as needed.
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(iii) This follows by multiplying (6) by ei i on the left and by ejj on the right.
(iv) Applying ' to eij D Œei i ; eij �, we have

2'.eij / D Œ'.ei i /; eij �C Œei i ; '.eij /�

D '.ei i /eij � eij'.ei i /C ei i'.eij / � '.eij /ei i : (8)

If there exists l < i , then the multiplication of (8) by el l on the left and by ejj on the
right gives

2'.eij /.l; j / D '.ei i /.l; i/: (9)

On the other hand, Œel l ; eij � D 0, so

0 D '.el l/eij � eij'.el l/C el l'.eij / � '.eij /el l :

Multiplying this by el l on the left and by ejj on the right, we come to

'.eij /.l; j / D �'.el l/.l; i/: (10)

The latter is '.ei i /.l; i/ by item (iii). Thus, (9) and (10) result in

'.ei i /.l; i/ D 0 for l < i: (11)

Consequently,

'.ei i /eij D

X
l�i

'.ei i /.l; i/eik D '.ei i /.i; i/eij ;

as desired.

Lemma 7. Let ' 2 �.Tn.F //. Then for all 1 � i < j � n we have

'.eij / D
�
'.ei i /.i; i/ � '.ei i /.j; j /

�
eij D

�
'.ejj /.j; j / � '.ejj /.i; i/

�
eij : (12)

Proof. By (8) and (i), (ii) and (iv) of Lemma 6 we have

2'.eij / D
�
'.ei i /.i; i/ � '.ei i /.j; j /

�
eij C ei i'.eij /: (13)

Multiplying (13) by ei i on the left, we get

2ei i'.eij / D
�
'.ei i /.i; i/ � '.ei i /.j; j /

�
eij C ei i'.eij /;

whence

ei i'.eij / D
�
'.ei i /.i; i/ � '.ei i /.j; j /

�
eij :

Substituting this into (13) and dividing by 2 (recall that char.F / D 0), we prove the
first equality of (12). The second one is obtained from (5) using '.eij / 2 heij i (which
holds by the first equality of (12)).
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Lemma 8. Let ' 2 �.Tn.F //.

(i) For all 1 � i � n and 1 � j � k � n with i 62 ¹j; kº we have '.ei i /.j; j /D

'.ei i /.k; k/.

(ii) For all 1 � i < j � n we have '.eij /.i; j / D '.e1n/.1; n/.

(iii) For all 1 � i � n and 1 � j < k � n we have '.ei i /.j; k/ D 0, unless
i 2 ¹1; nº and .j; k/ D .1; n/.

Proof. (i) Applying ' to Œei i ; ejk� D 0, we get

0 D '.ei i /ejk � ejk'.ei i /C ei i'.ejk/ � '.ejk/ei i :

Then the desired equality is obtained by the left multiplication by ejj and right multi-
plication by ekk .

(ii) Since i < j , then i ¤ n, so i 62 ¹j; nº and n 62 ¹1; iº. We use item (i) and (12),

'.eij /.i; j / D '.ei i /.i; i/ � '.ei i /.j; j / D '.ei i /.i; i/ � '.ei i /.n; n/

D '.enn/.n; n/ � '.enn/.i; i/ D '.enn/.n; n/ � '.enn/.1; 1/

D '.e1n/.1; n/:

(iii) We have already seen in (7) that '.ei i /.j; k/ D 0 for j < k and i 62 ¹j; kº
(although it is required that i < j in the statement of Lemma 6, the proof of (7) uses
only j < k and i 62 ¹j; kº). Moreover, '.ei i /.l; i/ D 0 for all l < i by (11) under
the assumption that there exists j > i (i.e., i < n). Similarly, (5) and Lemma 7 imply
that '.ejj /.j; k/ D 2'.eij /.j; k/ D 0 for all i < j < k, so '.ei i /.i; k/ D 0 for all
1 < i < k. It remains to prove that

'.e11/.1; k/ D '.enn/.j; n/ D 0 for 1 < j; k < n:

But Lemma 6 (iii) shows that '.e11/.1; k/ D �'.ekk/.1; k/, which is proved to be 0
for 1 < k < n. Similarly, '.enn/.j; n/ D �'.ejj /.j; n/ D 0 for 1 < j < n.

Lemma 9. Let n > 1. Then the linear map ˛ W Tn.F /! Tn.F / given by

˛.eij / D

8̂̂<̂
:̂
e1n; .i; j / D .1; 1/;

�e1n; .i; j / D .n; n/;

0; .i; j / 62 ¹.1; 1/; .n; n/º;

is a 1
2

-derivation of Tn.F /.

Proof. We are going to prove that ' D ˛ satisfies (2) for x D eij and y D ekl . Since ˛
annihilates the commutators of Tn.F /, the left-hand side of (2) is always zero. In view
of the anti-commutativity of Œ�; ��, we have to deal only with the following 2 cases.
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Case 1. .i; j / D .1; 1/. Then

Œ˛.eij /; ekl �C Œeij ; ˛.ekl/� D Œe1n; ekl �C Œe11; ˛.ekl/�: (14)

Both summands on the right-hand side of (14) are zero, unless .k; l/ 2 ¹.1; 1/; .n; n/º.
If .k; l/D .1; 1/, then the right-hand side of (14) is zero due to the anti-commutativity
of Œ�; ��. And if .k; l/ D .n; n/, then Œe1n; ekl �C Œe11; ˛.ekl/� D e1n � e1n D 0.

Case 2. .i; j / D .n; n/. Then

Œ˛.eij /; ekl �C Œeij ; ˛.ekl/� D �Œe1n; ekl �C Œenn; ˛.ekl/�:

We again have only 2 non-trivial subcases .k; l/ D .1; 1/ and .k; l/ D .n; n/ that are
similar to the corresponding subcases of Case 1.

We also introduce the linear maps ˇi W Tn.F /! Tn.F /, 1 � i � n, by

ˇi .ejk/ D

´
ı; .j; k/ D .i; i/;

0; .j; k/ ¤ .i; i/:

Obviously, ˇi , 1 � i � n, constitute a basis of the space of linear maps Tn.F / !

Z.Tn.F // annihilating ŒTn.F /;Tn.F /�. In particular, ˇi 2�.Tn.F // for all 1� i � n.

Proposition 10. Let n > 1. Then �.Tn.F // D hid; ˛i ˚ hˇi j 1 � i � ni.

Proof. In view of Lemma 9 we only need to prove that each ' 2�.Tn.F // is a linear
combination of id, ˛ and ˇi , 1 � i � n. Setting a D '.e1n/.1; n/, we have

'.eij / D aeij for all 1 � i < j � n (15)

by Lemma 7 and Lemma 8 (ii). Then

'.ei i /.i; i/ � '.ei i /.j; j / D a D '.ei i /.i; i/ � '.ei i /.k; k/

for all k < i < j by (12). Hence, defining bi D '.ei i /.j; j / for some j ¤ i , we have

'.ei i /.j; j / D

´
aC bi ; j D i;

bi ; j ¤ i:
(16)

Finally, let c D '.e11/.1; n/. By Lemma 6 (iii) and Lemma 8 (iii) for all 1 � i � n
and 1 � j < k � n we have

'.ei i /.j; k/ D

8̂̂<̂
:̂
c; .i; j; k/ D .1; 1; n/;

�c; .i; j; k/ D .n; 1; n/;

0; .i; j; k/ 62 ¹.1; 1; n/; .n; 1; n/º:

(17)

It follows from (15)–(17) that ' D a � idC c˛ C
Pn

iD1 biˇi .



Transposed Poisson structures on the Lie algebra of upper triangular matrices 143

Theorem 11. Let char.F / D 0 and n > 2. Then any transposed Poisson algebra
structure on Tn.F / is of one of the following two non-isomorphic forms:

(i) transposed Poisson algebra structure of Poisson type;

(ii) the orthogonal sum of the transposed Poisson algebra structure

e11 � e11 D �e11 � enn D enn � enn D e1n (18)

with a transposed Poisson algebra structure of Poisson type.

Proof. Let � be a transposed Poisson algebra structure on Tn.F /. By Proposition 10
and Lemma 4 for all 1 � i � j � n there exist xij ; yij 2 F and ¹zk

ij º
n
kD1
� F , such

that

eij � ekl D xij ekl C yij˛.ekl/C

nX
sD1

zs
ijˇs.ekl/

D

8̂̂̂̂
<̂
ˆ̂̂:
xij ekl ; k < l;

xij ekk C z
k
ij ı; k D l 62 ¹1; nº;

xij e11 C yij e1n C z
1
ij ı; k D l D 1;

xij enn � yij e1n C z
n
ij ı; k D l D n:

Let 1 � i < j � n and 1 < k < n. Then ekk � eij D xkkeij , while eij � ekk D

xij ekk C z
k
ij ı, whence

xkk D 0 and xij D z
k
ij D 0 for � i < j � n and 1 < k < n: (19)

Now take 1� i < j � nwith .i; j /¤ .1;n/. Then e11 � eij D x11eij , while eij � e11 D

yij e1nC z
1
ij ı. Similarly, enn � eij D xnneij , while eij � enn D�yij e1nC z

n
ij ı. Hence,

x11 D xnn D 0 and yij D z
1
ij D z

n
ij D 0 (20)

for 1 � i < j � n with .i; j / ¤ .1; n/.
Considering the products e11 � e1n D 0, e1n � e11 D y1ne1n C z

1
1nı, enn � e1n D 0

and e1n � enn D �y1ne1n C z
n
1nı, we have

y1n D z
1
1n D z

n
1n D 0: (21)

Now, for any 1 < i < n it follows from e11 � ei i D z
i
11ı, ei i � e11 D yi ie1n C z

1
i iı,

enn � ei i D z
i
nnı and ei i � enn D �yi ie1n C z

n
iiı that

yi i D 0; z1
i i D z

i
11 and zn

ii D z
i
nn for 1 < i < n: (22)
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Similarly, for 1 < i; j < n, it follows from ei i � ejj D z
j
i iı and ejj � ei i D z

i
jj ı that

z
j
i i D z

i
jj for 1 < i; j < n: (23)

Finally, e11 � enn D �y11e1n C z
n
11ı and enn � e11 D ynne1n C z

1
nnı yield

ynn D �y11 and zn
11 D z

1
nn: (24)

Combining (19)–(24) and denoting aij WD z
j
i i , b D y11, we see that the only (possi-

bly) non-zero products eij � ekl are

ei i � ejj D aij ı; 1 < i; j < n; (25)

e11 � e11 D be1n C a11ı; enn � enn D be1n C annı;

e11 � enn D enn � e11 D �be1n C a1nı;
(26)

where aij D aj i for all 1 � i; j � n.
If b D 0, then � is of Poisson type, so we are in the case (i). Otherwise, choosing

� to be the conjugation by .b�1 � 1/e11 C ı, we have

�.eij / D

´
eij ; 1 < i � j � n or i D j D 1;

b�1eij ; 1 D i < j � n:

It follows that, applying �, we can replace b ¤ 0 by b D 1 in (26), and we come to
the form (ii).

To prove that the structures (i) and (ii) are not isomorphic, observe from [16] that
for any automorphism � of .Tn.F /; Œ�; ��/

either �.ei i / 2 ei i C .hıi ˚ heij j i < j i/ for all 1 � i � n; (27)

or �.ei i / 2 �en�iC1;n�iC1 C .hıi ˚ heij j i < j i/ for all 1 � i � n: (28)

Consider the case (27). Since ei i � ı 2 hıi D Z.Tn.F /; Œ�; ��/ and ei i � ejk D 0 for all
1 � i � n and 1 � j < k � n by (25) and (26), any such � leads to the product

ei i � ejj D �.�
�1.ei i / � �

�1.ejj // 2 �.ei i � ejj C hıi/ D �.ei i � ejj /C hıi;

where �.ei i � ejj / belongs either to hıi (whenever ei i � ejj 2 hıi) or to˙b�.e1n/Chıi

(whenever ei i � ejj 2 ˙be1n C hıi). But �.e1n/ is a non-zero multiple of e1n by (4),
so

ei i � ejj 2 hıi , ei i � ejj 2 hıi (29)

for all 1 � i; j � n. This shows that any structure of type (i) can be isomorphic only
to a structure of type (i). As to the case (28), we similarly have

ei i � ejj D �.�
�1.ei i / � �

�1.ejj // 2 �.en�iC1;n�iC1 � en�jC1;n�jC1 C hıi/:
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However,

en�iC1;n�iC1 � en�jC1;n�jC1 2 hıi , .i; j / 62 ¹.1; 1/; .1; n/; .n; 1/; .n; n/º

, ei i � ejj 2 hıi:

Thus, we again conclude that (29) holds for all 1 � i; j � n showing that the struc-
tures (i) and (ii) cannot be isomorphic.

Conversely, it is directly verified that (18) is a transposed Poisson algebra structure
on Tn.F /, and it is orthogonal to any transposed Poisson algebra structure of Poisson
type on Tn.F /.

The following Theorem 12 describes transposed Poisson structures on T2.F /, and
its proof is similar to that of Theorem 11 with the only difference that as a result we
will have 3 types of the structures, and inside each of the 3 types the structures can be
fully classified up to isomorphism. On the other hand, T2.F / is isomorphic to the 3-
dimensional Lie algebra g0

2 from [2] whose transposed Poisson structures were fully
described in [2, Proposition 14]. By this reason, we have chosen to omit the proof
of Theorem 12 and indicate on the left of each of the found structures its isomorphic
version from [2].

Theorem 12. Let char.F / D 0. Then any transposed Poisson algebra structure on
T2.F / is isomorphic to exactly one of the following structures:

(i) transposed Poisson algebra structure of Poisson type:

(a) T0;0
09 : the trivial one;

(b) T0
17: e11 � e11 D ı;

(c) T0
10: e11 � e11 D �e11 � e22 D e22 � e22 D ı;

(ii) the orthogonal sum of the transposed Poisson algebra structure

e11 � e11 D �e11 � e22 D e22 � e22 D e12

with a transposed Poisson algebra structure of Poisson type, which results in
the structures:

(a) T16: e11 � e11 D �e11 � e22 D e22 � e22 D e12;

(b) T18: e11 � e11 D e12 C ı, �e11 � e22 D e22 � e22 D e12;

(c) T0
11: e11 � e11 D �e11 � e22 D e22 � e22 D e12 C ı;

(iii) the (non-orthogonal) sum of a transposed Poisson algebra structure of the
family

e11 � e11 D ce11; e11 � e12 D �e12 � e22 D ce12;

e11 � e22 D �e22 � e22 D ce22; c ¤ 0;
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with a transposed Poisson algebra structure of Poisson type, which results in
the structures

(a) T�c
17 : e11 � e11 D ce11, e11 � e12 D �e12 � e22 D ce12, e11 � e22 D �e22 �

e22 D ce22;

(b) T0;�c
09 : e11 � e11 D ce11, e11 � e12 D �e12 � e22 D ce12, e11 � e22 D ce22,
e22 � e22 D �c.e22 C ı/;

(c) T�c
19 : e11 � e11 D ce11, e11 � e12 D �e12 � e22 D ce12, �e11 � e22 D e22 �

e22 D ce11.

3. Transposed Poisson structures on the full matrix Lie algebra

In this short section we describe transposed Poisson structures on the full matrix alge-
bra Mn.F /. As above, we denote by eij , 1 � i; j � n, the matrix units and by ı the
identity matrix. Recall that

Z.Mn.F // D hıi;

ŒMn.F /;Mn.F /� D sln.F / D ¹a 2Mn.F / j tr.a/ D 0º

D heij j 1 � i ¤ j � ni ˚ he11 � ei i j 1 < i � ni:

Denote by �.Mn.F // the space of 1
2

-derivations of the Lie algebra .Mn.F /; Œ�; ��/.
The linear map  WMn.F /!Mn.F / given by

.eij / D

´
ı; i D j;

0; i ¤ j;

belongs to �.Mn.F // as a linear map Mn.F /! Z.Mn.F // annihilating ŒMn.F /;

Mn.F /�.

Proposition 13. Let n > 1. Then �.Mn.F // D hid; i.

Proof. It is easy to see that, as a Lie algebra, Mn.F / is the direct sum

ŒMn.F /;Mn.F /�˚Z.Mn.F //:

Namely, every a 2Mn.F / decomposes uniquely as

a D
�
a �

tr.a/
n
ı
�
C

tr.a/
n
ı:

Since 1
2

-derivations of a Lie algebra L leave ŒL;L� and Z.L/ invariant, we have

�.Mn.F // D �.ŒMn.F /;Mn.F /�/˚�.Z.Mn.F ///:
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By [6, Corollary 3] any ' 2 �.ŒMn.F /;Mn.F /�/ is trivial. As dim.Z.Mn.F ///D 1,
any ' 2 �.Z.Mn.F /// is trivial as well. Hence, given ' 2 �.Mn.F //, there exist
k1; k2 2 F such that ' D k1 � idŒMn.F /;Mn.F /� C k2 � idZ.Mn.F //. Clearly,

'.eij / D k1eij ; if i ¤ j;

'.ei i / D k1

�
ei i �

1

n
ı
�
C
k2

n
ı D k1ei i C

k2 � k1

n
ı:

It follows that ' D k1 � idMn.F / C
k2�k1

n
�  . Thus, �.Mn.F // � hid; i. The con-

verse inclusion is trivial.

Theorem 14. Let char.F /D 0 and n > 1. Then, up to isomorphism, there is only one
non-trivial transposed Poisson algebra structure on Mn.F /. It is given by

ei i � ejj D ı; 1 � i; j � n; (30)

and it is of Poisson type.

Proof. Let � be a transposed Poisson algebra structure on Mn.F /. By Proposition 13
and Lemma 4 for all 1 � i; j � n there exist xij and yij 2 F , such that

eij � ekl D xij ekl C yij .ekl/ D

´
xij ekl ; k ¤ l;

xij ekk C yij ı; k D l:

Let i ¤ j and 1 � k � n. Then ekk � eij D xkkeij , while eij � ekk D xij ekk C yij ı,
whence

xkk D 0 and xij D yij D 0 for i ¤ j and 1 � k � n:

It follows from ei i � ejj D yi iı and ejj � ei i D yjj ı that

yi i D yjj for 1 � i; j � n:

Thus, denoting yi i by c, we have the only (possibly) non-zero products

ei i � ejj D cı; 1 � i; j � n:

If c D 0, then � is trivial. Otherwise, choosing the automorphism � of .Mn.F /; Œ�; ��/

given by

�.eij / D eij ; if i ¤ j;

�.ei i / D ei i �
1

n
ı C

c

n
ı D ei i C

c � 1

n
ı;

we obtain the isomorphic structure (30).
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It remains to see that (30) is of Poisson type. For all a; b 2Mn.F / we have

a � b D

nX
i;jD1

a.i; i/a.j; j /ei i � ejj D

nX
i;jD1

a.i; i/a.j; j /ı

D tr.a/tr.b/ı D
tr.a/
n
ı �

tr.b/
n
ı:

Hence, � is the extension by zero of a product on the complement Z.Mn.F // of
ŒMn.F /;Mn.F /� in Mn.F / with values in Z.Mn.F //.

Remark 15. The structure (30) is isomorphic to the extension by zero of the product
ı � ı D ı.
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