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Partial groupoid representations and a relation with the
Birget—Rhodes expansion

Wesley G. Lautenschlaeger and Thaisa Tamusiunas

Abstract. We introduce partial groupoid representations of a finite groupoid § on an algebra 4.
We also show that the partial groupoid representations of § are in one-to-one correspondence
with the representations of the algebra generated by the Birget—-Rhodes expansion §BR of §.

1. Introduction

Many studies concerning actions and partial actions of groupoids have been inves-
tigated in the last few years. For instance, the relation between partial and global
actions, Galois theory, generalizations of classic theorems of group theory, Morita
theory, crossed products and duality theorems were research topics addressed in [3-7,
9,14,15]. The idea of classification of something partial in terms of something global
gives us conditions to understand the behavior of the partial theory.

The Birget-Rhodes expansion §BR of an ordered groupoid § was constructed by
Gilbert in [10] and it was proven that ¥BR has an ordered groupoid structure [10,
Proposition 3.1]. Also, there is a one-to-one correspondence between partial actions
of g and actions of ¥BR, which can be viewed as a partial-to-global result achieved
by enlarging the acting groupoid.

The construction of §2R can be used to generalize the work developed by Exel,
Dokuchaev and Piccione in [8], regarding partial group representations of a group G.
In that work, the authors presented the partial group algebra of a group G, called
K, (G), which is the algebra whose representations correspond to the partial group
representations of G. The algebra K, (G) was shown to be a groupoid algebra
KT'(G), where I'(G) is a determined finite groupoid associated to G [8, Corol-
lary 2.7]. However, the groupoid I'(G) has a very rich structure. It is, in fact, the
groupoid associated via the ESN Theorem [12, Theorem 4.1.8] with the inverse semi-
group which is the Birget—-Rhodes expansion of the group G [11, Theorem 2.4].
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Based on this, our major purpose in this paper is to complement and to extend
the work of Exel, Dokuchaev and Piccione, establishing a relation between the partial
groupoid representations of a groupoid § and representations of the algebra K§BR
generated by its Birget-Rhodes expansion §BR. Indeed, we shall prove that there is
a one-to-one correspondence between the partial groupoid representations of § and
the representations of K¢BR. This agrees with the idea of enlarging the groupoid §
to characterize partial groupoid representations in terms of “global” representations.

The paper is organized as follows. We start by fixing some terminology concern-
ing groupoids and we introduce the concept of partial groupoid representation of a
finite groupoid ¢ on an algebra. Next we present the algebra K,:(¥), whose repre-
sentations are in one-to-one correspondence with the partial groupoid representations
of §. The last section aims to prove that the algebra K,;(§) is the algebra generated
by the Birget—Rhodes expansion of §.

Throughout this paper, rings and algebras are associative and unital. All algebra
homomorphisms are unital.

2. Partial groupoid representations and the algebra K, (§)

2.1. Partial groupoid representations

We recall that a groupoid § is a small category in which every morphism is an iso-
morphism. We denote by & the set of objects of §. Observe thatid : §y — &, given
by id(x) = idy, is an injective map and whence we identify §y C §. Given g € G,
the domain and the range of g will be denoted by d(g) and r(g), respectively. Hence,
d(g) =g 'gandr(g) = gg~'. Forall g,h € G, we write 3gh whenever the product
gh is defined. We fix the notation &, := {(g,h) € § x § : dgh}.

For the rest of the paper, let § be a finite groupoid, K be a field and 4 be a
K-algebra. We start this section by defining a partial groupoid representation on .

Definition 2.1. A partial groupoid representation of § on A isamap 7 : § — A
such that

(i) w@rr(h™) = n(gh)n(h™"), ¥(g.h) € %;

(i) (g (g (h) = n(g~Hn(gh), V(g h) € 9

(i) 7(g)m(g™n(g) = n(g). Vg€ G

(V) Y eeg, 7(e) = lgand m(e)n(f) = Ofore, f € Go such thate # f.
Remark 2.2. Observe that

n(g) = n(g)n(g Hn(g) = n(g)n(g™ " g) = n(g)w(d(g)).
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for all g € 9. Analogously, 7(g) = n(r(g))n(g), for all g € §. So, if (g, h) ¢ G,
then 7(g)7(h) = n(g)n(d(g))m(r(h))m(h) = m(g)0m(h) = 0.
Lemma 2.3. Let g € §. Define ¢(g) = n(g)m(g™1). It follows that

(@) e(g) is an idempotent of A;

(b) ifr(g) = r(h), then e(g)e(h) = e(h)e(g).

Proof. (a) It is straightforward.
(b)If r(g) = r(h),

n(h™Me(g) = n(h Hr(g)n(g™) = n(h ' gn(g™")
=ah ' r(e (' gn(g™) =ah ' g)m(g  hm(h gg ™)
=e(h™'gn(h™"'r(g)) = e(h 'g)m(h™"r(h))
=e(h™ ' g)m(h™), (1)

from where it follows that

e(he(g) = n()m(h™Ne(g) = n(h)e(h™ g)m(h™")
= e(r(g)n(Mn(h™") = e(g)e(h). .

2.2, The algebra K, (§)

As in the case of partial group representations of a group G [8], which can be charac-
terized by algebra homomorphisms defined on the partial group algebra K, (G), in
the case of partial groupoid representations of a groupoid §, it is possible to construct
an algebra associated to ¥ which characterizes partial groupoid representations by
algebra homomorphisms.

Definition 2.4. We define the partial groupoid K-algebra K,.(¥) as the universal K-
algebra with unit 1g, (g) generated by the set of symbols {[g] : g € ¥} and relations

(i) [g7"Ngllh] = [g7"[gh], Y(g. h) € %;
(i) [gl[P][h~"] = [ghl[h™'], V(g. h) € %2;
(i) [r(g)llg] = [g] = [glld(g)]. Vg € &;
(iv) [g][h] =0,V (g, h) £ 9.

Notice that ), g, [e] = 1k, (g)- Indeed,

( )3 [e])[g] = Y lelle] = [ ()llg] = gl

eeﬁo eego

Similarly, [¢](3",cg, le]) = [g].
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Example 2.5. Let § = K U # (disjoint union), where X = {g, g~ ', 7(g).d(g)}
and H = {r(h),h} with h = h='. Then K, ($) has basis {[g]. [¢7']. [r ()], [d(g)],
(gllg™ 1. [g 7 1[g]. [h], [r (M)], [M][h]} as a K-vector space. It is easy to see that Ky (§)

par(K) @ Kpar(H). More generally, if § is a finite groupoid with connected com-
ponents §M ... 6™ then Kpu(§) ~ Kpar(§V) @ -+ @ Kpur(§™).

The next theorem shows that there exists a one-to-one correspondence between
partial groupoid representations of § and representations of Kp,(§).

Theorem 2.6. Let w : § — A be a partial groupoid representation of § on A.
Then there exists a uniqgue homomorphism of K -algebras ¢ : Ky (§) — A such that
o([g]) = m(g) forall g € §. Conversely, if ¢ : Kpar(§) — A is a homomorphism of
K-algebras, then w(g) = ¢([g]) is a partial groupoid representation of § on A.

Proof. Let w : § — A be a partial groupoid representation of § on #. Define

¢ : Kpar(:g) — A,

Zk 1_[ lgi,/] sz nﬂ(gi,j)’

i=1 j=1

where k; € K and g; j € § forall 1 <i <mand 1 < j <n.Then ¢([g]) = n(g),
for all g € §. Furthermore, if 3gh,

o ([gllh]) = ¢ ([r()]lgllh]) = ¢((gg ' 1lgllh]) = ¢((g]lg~ " 1lgllh])
= ¢([gllg " "1lgh]) = n(g)m (g Hm(gh) = m(g)w (g~ )m(g)m(h)
= n(g)m(h) = ¢([gDo([h]).

and ¢ ([g][h]) = 0 = n(g)x(h) otherwise.

Moreover, ¢ (1k,,.(g)) = ¢ (D_ceg,le]) = X_,eg, 7(e) = 1a. Clearly, ¢ is unique.

Conversely, let ¢ : Ky (§) — - be a homomorphism of K-algebras. Define 7 :
9 — Kpu(9) by m(g) = ¢([g]), for all g € §. We shall prove that m is a partial
groupoid representation of § on +4. In particular,

(i) if(g,h) € &, then
m (@) (Mm(h™") = p([ghd (KD ((h~"]) = ¢ ((gI[AI[A~"])
= ¢ ([gh][h™']) = ¢ ([ghD¢(h™']) = m(gh)m(h™);
(i) analogous to (i);

(iii)) we have that

n(g)n (g~ (g) = ¢(ghe (s~ De(lg) = d([gllg~"1lg])
= ¢([g]) = 7 (g);
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(iv) we have that

Y re) = 3 glle) = ¢( ) [e]) = p(lke) = a

ecyy ecYy e€Yy
andife, f € § withe # 1, then w(e)n(f) = ¢([eDd (/] = ¢(le]lf]) =
$(0) = 0. -

3. The relation with the Birget—Rhodes expansion

In this section, we shall describe K,(¥) in terms of the Birget-Rhodes expansion
of §.

Define X, ={h € § : r(h) =r(g)}, for all g € §. Observe that Xz = X, (4).
Define also Y, = {h € § : r(h) = d(g)} = X,—1. We set the finite groupoid, con-
structed from &,

9 ={(4,9):d(g).g7 € AC Yy, g€ G}
as the groupoid with partial multiplication given by

(B,gh), if(g.h) € 9> and A = hB,

undefined, otherwise.

The inverse of the pair (A4, g) is (g4, g7 !). Also d(A,g) = (A,d(g)) and r (A, g) =
(gA, r(g)). This groupoid is the Birget-Rhodes expansion of § (see [10, Proposi-
tion 3.1]).

An easy calculation shows that the elements of the form (4, e), e € §,, are idem-
potents in the groupoid algebra K§BR, that is, (4, e)?> = (4, e). Also, they are mutu-
ally orthogonal and their sum is 1ggsr, since for every groupoid 9, if g, h € § are
such that (g, h) ¢ 6, then gh = 0in K§.

To simplify the notation, for every g € §, consider the set £, = {4 C Y, :

g7, d(g) € 4}.
Lemma 3.1. Let (g, h) € §,. On the above notations,
(i) CedLyifandonlyif gC € L£y-1.
(i) C € L£gp and ghC € L1 ifand only if C € £y N Ly
Proof. (i) Let C € £,. That means that C C Y, is such that g~', d(g) € C. Hence

gC CgYy =Y -1,r(g) = gg legCandg = gd(g) € gC,sothat gC € Lot
The converse follows by symmetry.
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(i) Assume that C € £, and ghC € £,-1. By (i), the second inclusion is equiv-
alent to hC € &Lg. Since C is already in &£, we only need to prove that C € &£,.
For this verification, first notice that C C Y,; = Yj. Hence it only remains for us
to show that h=!, d(h) € C. Since d(g) = r(h) € hC, we have that hx = r(h), for
some x € C.But hx = r(h) = hh~! implies that x = A~ by the cancellation law.
Soh™! € C.Since C € £, and d(gh) = d(h), we have that d(h) € C.

For the converse, assume that C € &£;, N Lgp. By assumption C is in £gp. To
prove that ghC € £, it is enough to prove that hC € £, by (i). Since C C Yp,
then hC C hY), = Yj,—1. Now, h™1 h=1g™! € C, from where it follows that d(g) =
r(h)y =hh™' € hC and g7! = h(h~'g™!) € hC, ending the proof. n

Lemma 3.2. Define the map A : § — K§BR by A(g) = ZAezg (A, g). Then A is a
partial groupoid representation of § on KR,

Proof. (i) Given (g, h) € §,, we have

AgTHA@A = > (A,g7)(B.g(C.h)
B:;f,%_elih

= Y (ghC.g ™) (hC, g)(C.h)

Ce:ﬁh,
hCelg

Lemga 3.1 Z (C, d(g)h) = Z (C, r(h)h)

CetpnNLgn CetyN&gn

= >  (C.h).

CedpNLgy

On the other hand,

— — Lemma 3.1 —
Mg HAgh) = Y (A.gH)(C.gh) = > (ghC.g7")(C. gh)
AEJCg,l, CeLpNLgy
CE.fgh

= > (Ch).

CetpNLep

Consequently, A(g"HA(g)A(h) = A(g~1)A(gh), for all (g, h) € G,. The equality
AM@AMAh™Y) = A(gh)A(h™Y) is proved similarly.

(iii) Now that we have proved (i), the equality A(g)A(g~HA(g) = A(g) is equiv-
alent to A(g)A(d(g)) = A(g) by Remark 2.2. We shall show the second equality. For
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geyg,

@A) = ( ) (Ag))( ) (B,d(g»)

AeLy BeZ(g)
= Y (AgA.dg) =) (4.8 =Ary).
AeLy Aelg

(iv) We have ) ,cq A(e) = > ,cg, D ace,(A.€) = Igger, and if e, f € G,
e# f,

worh=( L o) T@n)= ¥ wasn=o

Aelt, BeX, Aelt,,
BeX,
Theorem 3.3. There is a one-to-one correspondence between the partial groupoid
representations of § and the representations of K§®R. More precisely, if 4 is any
unital K-algebra, then w : ' § — A is a partial groupoid representation of '§ if and
only if there is an algebra homomorphism 7 : K§®R — A such that 7 = 7 o A.
Moreover, such a homomorphism T is unique.

Proof. If T : K§BR — A is a homomorphism of K-algebras, then clearly w = 7 o A :
§ — A is a partial groupoid representation of § on A.

Conversely, assume that 7 : § — 4 is a partial groupoid representation of §.
For all g € , denote by e(g) = n(g)m(g™"!) € A. Recall from Remark 2.2 and
Lemma 2.3 that e(g)e(h) = 8,(g),r(ne(h)e(g). Also, from (1), if d(g) = r(h) then
w(g)e(h) = e(gh)n(g), and if d(g) # r(h), then w(g)e(h) = 0. Similarly, if r(g) =
r(h), then e(h)(g) = m(g)e(g~'h), and e(h)(g) = O otherwise.

For (4, g) € §5R, we define

F(4.g) = n(g)( I s(h))( T (rdce) - e(h))).

heA heYg\A

For (4, g), (B, h) € 9BR, we have

(A 9FB.h) =7 [[et)- [] (z(d(g)—ek))-m(h)

keA keYg\A

JTe@- [T (@) —e).

teB LeYy,\B

If d(g) # r(h), then n(d(g))m(h) = 0 and e(k)m(h) =0, for all k € Y, \ A4,
since e(k) = w(k)m (k') and d(k™') = r(k) = d(g) # r(h). So in this case,

#(A,g)7(B.h) = 0.
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Suppose now that d(g) = r(h). Then
F(A.FB. ) =n@nh) - [[e™ k). [] (xdh)—eh" k)

keA keYg\A
JTew- J] ) —e@)
leB LeYy\B
=n(@rh)- [] ey ] @@dh)—ek)
keh—14 keY,\h—14
JTew- JT Grdm) —e@)).
LeB LeYy\B

If =1 A# B, that is, if A#h B, then either there is k € h~' A such thatk € Y}, \ B
or there is k € B such that k € Y, \ A~ A. In either case, the factor e(k)(w(d(h)) —
e(k)) = 0 appears in the expression of 7 (A4, g)7 (B, h), from where it follows that
7(A,2)7(B,h) =0.

On the other hand, if 7~1 A4 = B, then

74 QRB.) =n@al)- [] ek [] @hy) - ek)

keh—14 keY,\h—14
=n(@rme™) - [] k) [] @) -ek)
keh—14, keY,\h—14
k#h~!
=n(gheh™)- [] ek)- ] xdm)—ek)
keh—14, keY,\h—14
k#h™!
=n(gh)- [] e®)- [ @@d®)—ek)
keh— 14 keY,\h—14

= 7(h™' A, gh) = 7(B,gh) = 7((A. g) - (B, h)).

Therefore, in all cases we have 7 (A4, g)7 (B, h) = 7((A, g) - (B, h)). This shows
that by extending 7 linearly from §BR to K¢BR we obtain a homomorphism of K§BR
on A.

Now let S C X, be a subset, for some e € §,. We set

Ps=[]et) ] (x(e)—ey). 2
heS heX\S
Using (1) it is easy to see that 7({) Ps = Pysw({), forall £ € § with d(f) = e
and § C X,.
Observe that if e ¢ S, then Ps = 0. Moreover, if £ € X, \ S, then Ps({) =0,
because e(£)w(£) = m(£), so

(7w (e) —e(O)n(t) =n(e)n(t) —e(O)n(t) =n(r())m(£) — 7 () = 7(£) — 7 (£) =0.
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Furthermore,

w(e) = Z Ps,

SCXe

since we have the combinatorial formula

w(e)= [] =(e) = [] (z(e) — e(h) + ()

heX, heXe
=y ((Hs(h))-( I1 (n(e)—e(h))))-
SCX. hesS heXg\S

Now recall that 1gger =} ,cq, D scg, (A, €). Then

F(1ggor) = ﬁ( >N (A,e)) =Y > F(de)

ecgy AelL, ecgy AelL,
=Y > a- []e@- [[ (xe)—ele)
ecfy AL, Aty geYN\A
=Y > [le@- [] ) —ee)
ecfyAct, Acty geY N\A
@ZZPA=ZZPAQ w(e) = 14.
ecgy AL, e€gy ACX, ecYy
Moreover,
% o A(g) =ﬁ( )3 (A,g)) - Y Ay
Aty Aetg
=m(g- > > eh)- [] (xd(g)—eh)
Aef g heA heYg\A
=m(@eg) Y. D> e ] (xd(g) —eh)
Aelg heA, heYg\A
h#g™!
=m(g- Y. Y &bl [] (xd(g)—eh)
Aetgs heAd heYg\A
h#g™!
=n(g)- Y nd@) Y eh)- [] (xd(g)—eh)
Aetg heA, heYq\A
h#g™!
=m(g)- Y (g +nd@)—eg™") Y eh)
Aelg heA,
h#g™!

- [T ed(g) —ehy)

heYg\A

159

3)
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=7n(g)- Z 1_[ e(h) - 1_[ ((d(g)) —&(h))

B heB heY \B
- n(g)ﬁ(Z(B, d(g))) — ()7 (d()) = 7(g)- ( ) ﬁ(e))
B ecYy

= m(g)lgger = m(g).

Now it only remains for us to show the uniqueness of the homomorphism 7. To
prove this claim, we shall show that A(§) generates K §BR.

Let (B.h) € 5% where B = {b{',b5",... b}, h™ '} is a subset of ¥}, contain-
ing d(h). The set of such pairs forms a vector space basis for K§BR. Let us denote by

91 the subalgebra of KgBR generated by A(§). Let {g1,...,gr} € ¢ be such that

g1=b1. g18&2="0b2, g18283=0bs,...,
8182 8k-1=Dbk—1, g1---g =h.

These elements are well defined. In fact, from g1 = by, d(b7!) =r(b1) = d(h) =
r(by) and g1g> = by we obtain g, = b7 'b,. Inductively, we obtain g; = b;!, b;, for
all2 <i <k —1landgg =b; ' h.

Consider the element

Mg Mg = Y (Ang) (g = Y (ALgig)
A€ty Arele,,
. gk Ax€Lgy_ s

Ake:ﬁgk

=) (4.h).

ADB

828k Ax €L g

Thus, forall (B,h) € §°%, Y 5 (A, h) € . Suppose that Y \ B = {x1,X2,....%,}.
We have that

YA - Y (A=) (Ah),
ADB ADBU{x} ADB,
AFxq
from which it follows inductively that
(B.hy= >  (Ah— Y (Ahe

ADB, ADB,
AFX1 s Xn—1 AFX1,eXn

ending the proof. ]
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Remark 3.4. Many partial-to-global results for the case of groupoids have appeared
in the literature. For example, in [2], Bagio and Paques proved that a global groupoid
action can be constructed from a partial action on a ring under some hypotheses. For
this goal, they expanded the ring in which the groupoid acts to then create a global
action of the same groupoid on a new ring. In [13], Marin and Pinedo presented a
similar globalization construction for groupoids acting partially on sets and topolog-
ical spaces. Usually the term “globalization” refers to an expansion of the structure
on which the groupoid acts, and the term “enlargement” refers to an expansion of the
groupoid itself. The latter is our case, since we expanded the groupoid § to the alge-
bra K'gBR while the algebra 4 was fixed. Other cases of enlargements can also be
found in [1] and [10], however in the case of ordered groupoids.

Corollary 3.5. The groupoid algebra K§BR is isomorphic to the partial groupoid
algebra Kp,(§).

Proof. Themaps []:§ — Kpu(9), g+ [g], and A : § — KGR are partial groupoid
representations of §. By Theorems 2.6 and 3.3, there exist K-algebra homomor-
phisms 7 : KPR — K, (§) and ¢ : Kpor(§) — KEPR such that 7(A(g)) = [g]
and ¢ ([g]) = A(g), for all g € §. It is easy to check that 7 and ¢ are inverses of each
other, since their compositions are the identity on the generators; hence 7 and ¢ are
isomorphisms. =

Remark 3.6. The structure of K, (&) regarding Bernoulli partial actions was studied
extensively in [16], and several examples were presented.
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