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Partial groupoid representations and a relation with the
Birget–Rhodes expansion

Wesley G. Lautenschlaeger and Thaísa Tamusiunas

Abstract. We introduce partial groupoid representations of a finite groupoid G on an algebra A.
We also show that the partial groupoid representations of G are in one-to-one correspondence
with the representations of the algebra generated by the Birget–Rhodes expansion G BR of G .

1. Introduction

Many studies concerning actions and partial actions of groupoids have been inves-
tigated in the last few years. For instance, the relation between partial and global
actions, Galois theory, generalizations of classic theorems of group theory, Morita
theory, crossed products and duality theorems were research topics addressed in [3–7,
9,14,15]. The idea of classification of something partial in terms of something global
gives us conditions to understand the behavior of the partial theory.

The Birget–Rhodes expansion G BR of an ordered groupoid G was constructed by
Gilbert in [10] and it was proven that G BR has an ordered groupoid structure [10,
Proposition 3.1]. Also, there is a one-to-one correspondence between partial actions
of G and actions of G BR, which can be viewed as a partial-to-global result achieved
by enlarging the acting groupoid.

The construction of G BR can be used to generalize the work developed by Exel,
Dokuchaev and Piccione in [8], regarding partial group representations of a group G.
In that work, the authors presented the partial group algebra of a group G, called
Kpar.G/, which is the algebra whose representations correspond to the partial group
representations of G. The algebra Kpar.G/ was shown to be a groupoid algebra
K�.G/, where �.G/ is a determined finite groupoid associated to G [8, Corol-
lary 2.7]. However, the groupoid �.G/ has a very rich structure. It is, in fact, the
groupoid associated via the ESN Theorem [12, Theorem 4.1.8] with the inverse semi-
group which is the Birget–Rhodes expansion of the group G [11, Theorem 2.4].
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Based on this, our major purpose in this paper is to complement and to extend
the work of Exel, Dokuchaev and Piccione, establishing a relation between the partial
groupoid representations of a groupoid G and representations of the algebra KG BR

generated by its Birget–Rhodes expansion G BR. Indeed, we shall prove that there is
a one-to-one correspondence between the partial groupoid representations of G and
the representations of KG BR. This agrees with the idea of enlarging the groupoid G

to characterize partial groupoid representations in terms of “global” representations.
The paper is organized as follows. We start by fixing some terminology concern-

ing groupoids and we introduce the concept of partial groupoid representation of a
finite groupoid G on an algebra. Next we present the algebra Kpar.G /, whose repre-
sentations are in one-to-one correspondence with the partial groupoid representations
of G . The last section aims to prove that the algebra Kpar.G / is the algebra generated
by the Birget–Rhodes expansion of G .

Throughout this paper, rings and algebras are associative and unital. All algebra
homomorphisms are unital.

2. Partial groupoid representations and the algebra Kpar.G /

2.1. Partial groupoid representations

We recall that a groupoid G is a small category in which every morphism is an iso-
morphism. We denote by G0 the set of objects of G . Observe that id W G0 ! G , given
by id.x/ D idx , is an injective map and whence we identify G0 � G . Given g 2 G ,
the domain and the range of g will be denoted by d.g/ and r.g/, respectively. Hence,
d.g/D g�1g and r.g/D gg�1. For all g;h 2G, we write 9gh whenever the product
gh is defined. We fix the notation G2 WD ¹.g; h/ 2 G � G W 9ghº.

For the rest of the paper, let G be a finite groupoid, K be a field and A be a
K-algebra. We start this section by defining a partial groupoid representation on A.

Definition 2.1. A partial groupoid representation of G on A is a map � W G ! A

such that

(i) �.g/�.h/�.h�1/ D �.gh/�.h�1/, 8.g; h/ 2 G2;

(ii) �.g�1/�.g/�.h/ D �.g�1/�.gh/, 8.g; h/ 2 G2;

(iii) �.g/�.g�1/�.g/ D �.g/, 8g 2 G ;

(iv)
P

e2G0
�.e/ D 1A and �.e/�.f / D 0 for e; f 2 G0 such that e ¤ f .

Remark 2.2. Observe that

�.g/ D �.g/�.g�1/�.g/ D �.g/�.g�1g/ D �.g/�.d.g//;
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for all g 2 G . Analogously, �.g/ D �.r.g//�.g/, for all g 2 G . So, if .g; h/ … G2,
then �.g/�.h/ D �.g/�.d.g//�.r.h//�.h/ D �.g/0�.h/ D 0.

Lemma 2.3. Let g 2 G . Define ".g/ D �.g/�.g�1/. It follows that

(a) ".g/ is an idempotent of A;

(b) if r.g/ D r.h/, then ".g/".h/ D ".h/".g/.

Proof. (a) It is straightforward.
(b) If r.g/ D r.h/,

�.h�1/".g/ D �.h�1/�.g/�.g�1/ D �.h�1g/�.g�1/

D �.h�1g/�.g�1h/�.h�1g/�.g�1/ D �.h�1g/�.g�1h/�.h�1gg�1/

D ".h�1g/�.h�1r.g// D ".h�1g/�.h�1r.h//

D ".h�1g/�.h�1/; (1)

from where it follows that

".h/".g/ D �.h/�.h�1/".g/ D �.h/".h�1g/�.h�1/

D ".r.h/g/�.h/�.h�1/ D ".g/".h/:

2.2. The algebra Kpar.G /

As in the case of partial group representations of a group G [8], which can be charac-
terized by algebra homomorphisms defined on the partial group algebra Kpar.G/, in
the case of partial groupoid representations of a groupoid G , it is possible to construct
an algebra associated to G which characterizes partial groupoid representations by
algebra homomorphisms.

Definition 2.4. We define the partial groupoidK-algebraKpar.G / as the universalK-
algebra with unit 1Kpar.G / generated by the set of symbols ¹Œg� W g 2 G º and relations

(i) Œg�1�Œg�Œh� D Œg�1�Œgh�, 8.g; h/ 2 G2;

(ii) Œg�Œh�Œh�1� D Œgh�Œh�1�, 8.g; h/ 2 G2;

(iii) Œr.g/�Œg� D Œg� D Œg�Œd.g/�, 8g 2 G ;

(iv) Œg�Œh� D 0, 8.g; h/ … G2.

Notice that
P

e2G0
Œe� D 1Kpar.G /. Indeed,� X

e2G0

Œe�

�
Œg� D

X
e2G0

Œe�Œg� D Œr.g/�Œg� D Œg�:

Similarly, Œg�.
P

e2G0
Œe�/ D Œg�.
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Example 2.5. Let G D K [H (disjoint union), where K D ¹g; g�1; r.g/; d.g/º

and H D ¹r.h/; hº with h D h�1. Then Kpar.G / has basis ¹Œg�; Œg�1�; Œr.g/�; Œd.g/�;

Œg�Œg�1�; Œg�1�Œg�; Œh�; Œr.h/�; Œh�Œh�º as aK-vector space. It is easy to see thatKpar.G /

'Kpar.K/˚Kpar.H /. More generally, if G is a finite groupoid with connected com-
ponents G .1/; : : : ;G .n/, then Kpar.G / ' Kpar.G

.1//˚ � � � ˚Kpar.G
.n//.

The next theorem shows that there exists a one-to-one correspondence between
partial groupoid representations of G and representations of Kpar.G /.

Theorem 2.6. Let � W G ! A be a partial groupoid representation of G on A.
Then there exists a unique homomorphism of K-algebras � W Kpar.G /! A such that
�.Œg�/ D �.g/ for all g 2 G . Conversely, if � W Kpar.G /! A is a homomorphism of
K-algebras, then �.g/ D �.Œg�/ is a partial groupoid representation of G on A.

Proof. Let � W G ! A be a partial groupoid representation of G on A. Define

� W Kpar.G /! A;

mX
iD1

ki

nY
jD1

Œgi;j � 7!

mX
iD1

ki

nY
jD1

�.gi;j /;

where ki 2 K and gi;j 2 G for all 1 � i � m and 1 � j � n. Then �.Œg�/ D �.g/,
for all g 2 G . Furthermore, if 9gh,

�.Œg�Œh�/ D �.Œr.g/�Œg�Œh�/ D �.Œgg�1�Œg�Œh�/ D �.Œg�Œg�1�Œg�Œh�/

D �.Œg�Œg�1�Œgh�/ D �.g/�.g�1/�.gh/ D �.g/�.g�1/�.g/�.h/

D �.g/�.h/ D �.Œg�/�.Œh�/;

and �.Œg�Œh�/ D 0 D �.g/�.h/ otherwise.
Moreover, �.1Kpar.G //D �.

P
e2G0

Œe�/D
P

e2G0
�.e/D 1A. Clearly, � is unique.

Conversely, let � W Kpar.G /! A be a homomorphism of K-algebras. Define � W
G ! Kpar.G / by �.g/ D �.Œg�/, for all g 2 G . We shall prove that � is a partial
groupoid representation of G on A. In particular,

(i) if .g; h/ 2 G2, then

�.g/�.h/�.h�1/ D �.Œg�/�.Œh�/�.Œh�1�/ D �.Œg�Œh�Œh�1�/

D �.Œgh�Œh�1�/ D �.Œgh�/�.Œh�1�/ D �.gh/�.h�1/I

(ii) analogous to (i);

(iii) we have that

�.g/�.g�1/�.g/ D �.Œg�/�.Œg�1�/�.Œg�/ D �.Œg�Œg�1�Œg�/

D �.Œg�/ D �.g/I



Partial groupoid representations and a relation with the Birget–Rhodes expansion 155

(iv) we have thatX
e2G0

�.e/ D
X
e2G0

�.Œe�/ D �

� X
e2G0

Œe�

�
D �.1Kpar.G // D 1A

and if e; f 2 G0 with e ¤ f , then �.e/�.f /D �.Œe�/�.Œf �/D �.Œe�Œf �/D
�.0/ D 0.

3. The relation with the Birget–Rhodes expansion

In this section, we shall describe Kpar.G / in terms of the Birget–Rhodes expansion
of G .

Define Xg D ¹h 2 G W r.h/ D r.g/º, for all g 2 G . Observe that Xg D Xr.g/.
Define also Yg D ¹h 2 G W r.h/ D d.g/º D Xg�1 . We set the finite groupoid, con-
structed from G ,

G BR
D
®
.A; g/ W d.g/; g�1

2 A � Yg ; g 2 G
¯

as the groupoid with partial multiplication given by

.A; g/ � .B; h/ D

´
.B; gh/; if .g; h/ 2 G2 and A D hB;

undefined; otherwise.

The inverse of the pair .A; g/ is .gA; g�1/. Also d.A; g/ D .A; d.g// and r.A; g/ D
.gA; r.g//. This groupoid is the Birget–Rhodes expansion of G (see [10, Proposi-
tion 3.1]).

An easy calculation shows that the elements of the form .A; e/, e 2 G0, are idem-
potents in the groupoid algebra KG BR, that is, .A; e/2 D .A; e/. Also, they are mutu-
ally orthogonal and their sum is 1KG BR , since for every groupoid G , if g; h 2 G are
such that .g; h/ … G2, then gh D 0 in KG .

To simplify the notation, for every g 2 G , consider the set Lg D ¹A � Yg W

g�1; d.g/ 2 Aº.

Lemma 3.1. Let .g; h/ 2 G2. On the above notations,

(i) C 2 Lg if and only if gC 2 Lg�1 .

(ii) C 2 Lgh and ghC 2 Lg�1 if and only if C 2 Lh \Lgh.

Proof. (i) Let C 2 Lg . That means that C � Yg is such that g�1; d.g/ 2 C . Hence
gC � gYg D Yg�1 , r.g/ D gg�1 2 gC and g D gd.g/ 2 gC , so that gC 2 Lg�1 .
The converse follows by symmetry.
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(ii) Assume that C 2Lgh and ghC 2Lg�1 . By (i), the second inclusion is equiv-
alent to hC 2 Lg . Since C is already in Lgh, we only need to prove that C 2 Lh.
For this verification, first notice that C � Ygh D Yh. Hence it only remains for us
to show that h�1; d.h/ 2 C . Since d.g/ D r.h/ 2 hC , we have that hx D r.h/, for
some x 2 C . But hx D r.h/ D hh�1 implies that x D h�1 by the cancellation law.
So h�1 2 C . Since C 2 Lgh and d.gh/ D d.h/, we have that d.h/ 2 C .

For the converse, assume that C 2 Lh \ Lgh. By assumption C is in Lgh. To
prove that ghC 2 Lg�1 it is enough to prove that hC 2 Lg , by (i). Since C � Yh,
then hC � hYh D Yh�1 . Now, h�1; h�1g�1 2 C , from where it follows that d.g/ D
r.h/ D hh�1 2 hC and g�1 D h.h�1g�1/ 2 hC , ending the proof.

Lemma 3.2. Define the map � W G ! KG BR by �.g/ D
P

A2Lg
.A; g/. Then � is a

partial groupoid representation of G on KG BR.

Proof. (i) Given .g; h/ 2 G2, we have

�.g�1/�.g/�.h/ D
X

A2L
g�1 ;

B2Lg;C2Lh

.A; g�1/.B; g/.C; h/

D

X
C2Lh;
hC2Lg

.ghC; g�1/.hC; g/.C; h/

Lemma 3.1
D

X
C2Lh\Lgh

.C; d.g/h/ D
X

C2Lh\Lgh

.C; r.h/h/

D

X
C2Lh\Lgh

.C; h/:

On the other hand,

�.g�1/�.gh/ D
X

A2L
g�1 ;

C2Lgh

.A; g�1/.C; gh/
Lemma 3.1
D

X
C2Lh\Lgh

.ghC; g�1/.C; gh/

D

X
C2Lh\Lgh

.C; h/:

Consequently, �.g�1/�.g/�.h/ D �.g�1/�.gh/, for all .g; h/ 2 G2. The equality
�.g/�.h/�.h�1/ D �.gh/�.h�1/ is proved similarly.

(iii) Now that we have proved (i), the equality �.g/�.g�1/�.g/ D �.g/ is equiv-
alent to �.g/�.d.g// D �.g/ by Remark 2.2. We shall show the second equality. For
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g 2 G ,

�.g/�.d.g// D

� X
A2Lg

.A; g/

�� X
B2Ld.g/

.B; d.g//

�
D

X
A2Lg

.A; g/.A; d.g// D
X

A2Lg

.A; g/ D �.g/:

(iv) We have
P

e2G0
�.e/ D

P
e2G0

P
A2Le

.A; e/ D 1KG BR , and if e; f 2 G0,
e ¤ f ,

�.e/�.f / D

� X
A2Le

.A; e/

�� X
B2Lf

.B; f /

�
D

X
A2Le ;
B2Lf

.A; e/.B; f / D 0:

Theorem 3.3. There is a one-to-one correspondence between the partial groupoid
representations of G and the representations of KG BR. More precisely, if A is any
unital K-algebra, then � W G ! A is a partial groupoid representation of G if and
only if there is an algebra homomorphism z� W KG BR ! A such that � D z� ı �.
Moreover, such a homomorphism z� is unique.

Proof. If z� WKG BR!A is a homomorphism ofK-algebras, then clearly � D z� ı � W
G ! A is a partial groupoid representation of G on A.

Conversely, assume that � W G ! A is a partial groupoid representation of G .
For all g 2 G , denote by ".g/ D �.g/�.g�1/ 2 A. Recall from Remark 2.2 and
Lemma 2.3 that ".g/".h/ D ır.g/;r.h/".h/".g/. Also, from (1), if d.g/ D r.h/ then
�.g/".h/D ".gh/�.g/, and if d.g/¤ r.h/, then �.g/".h/D 0. Similarly, if r.g/D
r.h/, then ".h/�.g/ D �.g/".g�1h/, and ".h/�.g/ D 0 otherwise.

For .A; g/ 2 G BR, we define

z�.A; g/ D �.g/

�Y
h2A

".h/

�� Y
h2YgnA

�
�.d.g// � ".h/

��
:

For .A; g/; .B; h/ 2 G BR, we have

z�.A; g/z�.B; h/ D �.g/ �
Y
k2A

".k/ �
Y

k2YgnA

�
�.d.g// � ".k/

�
� �.h/

�

Y
`2B

".`/ �
Y

`2YhnB

�
�.d.h// � ".`/

�
:

If d.g/ ¤ r.h/, then �.d.g//�.h/ D 0 and ".k/�.h/ D 0, for all k 2 Yg n A,
since ".k/ D �.k/�.k�1/ and d.k�1/ D r.k/ D d.g/ ¤ r.h/. So in this case,

z�.A; g/z�.B; h/ D 0:
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Suppose now that d.g/ D r.h/. Then

z�.A; g/z�.B; h/ D �.g/�.h/ �
Y
k2A

".h�1k/ �
Y

k2YgnA

.�.d.h// � ".h�1k//

�

Y
`2B

".`/ �
Y

`2YhnB

.�.d.h// � ".`//

D �.g/�.h/ �
Y

k2h�1A

".k/ �
Y

k2Yhnh
�1A

.�.d.h// � ".k//

�

Y
`2B

".`/ �
Y

`2YhnB

.�.d.h// � ".`//:

If h�1A¤B , that is, if A¤hB , then either there is k2h�1A such that k 2 Yh nB

or there is k 2 B such that k 2 Yh n h
�1A. In either case, the factor ".k/.�.d.h// �

".k// D 0 appears in the expression of z�.A; g/z�.B; h/, from where it follows that
z�.A; g/z�.B; h/ D 0.

On the other hand, if h�1A D B , then

z�.A; g/z�.B; h/ D �.g/�.h/ �
Y

k2h�1A

".k/ �
Y

k2Yhnh
�1A

.�.d.h// � ".k//

D �.g/�.h/".h�1/ �
Y

k2h�1A;

k¤h�1

".k/ �
Y

k2Yhnh
�1A

.�.d.h// � ".k//

D �.gh/".h�1/ �
Y

k2h�1A;

k¤h�1

".k/ �
Y

k2Yhnh
�1A

.�.d.h// � ".k//

D �.gh/ �
Y

k2h�1A

".k/ �
Y

k2Yhnh
�1A

.�.d.h// � ".k//

D z�.h�1A; gh/ D z�.B; gh/ D z�..A; g/ � .B; h//:

Therefore, in all cases we have z�.A; g/z�.B; h/ D z�..A; g/ � .B; h//. This shows
that by extending z� linearly from G BR toKG BR we obtain a homomorphism ofKG BR

on A.
Now let S � Xe be a subset, for some e 2 G0. We set

PS D

Y
h2S

".h/
Y

h2XenS

.�.e/ � ".h//: (2)

Using (1) it is easy to see that �.`/PS D P`S�.`/, for all ` 2 G with d.`/ D e
and S � Xe .

Observe that if e … S , then PS D 0. Moreover, if ` 2 Xe n S , then PS�.`/ D 0,
because ".`/�.`/ D �.`/, so

.�.e/� ".`//�.`/D�.e/�.`/� ".`/�.`/D�.r.`//�.`/��.`/D�.`/��.`/D 0:
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Furthermore,

�.e/ D
X

S�Xe

PS ; (3)

since we have the combinatorial formula

�.e/ D
Y

h2Xe

�.e/ D
Y

h2Xe

.�.e/ � ".h/C ".h//

D

X
S�Xe

��Y
h2S

".h/

�
�

� Y
h2XgnS

.�.e/ � ".h//

��
:

Now recall that 1KG BR D
P

e2G0

P
A2Le

.A; e/. Then

z�.1KG BR/ D z�

� X
e2G0

X
A2Le

.A; e/

�
D

X
e2G0

X
A2Le

z�.A; e/

D

X
e2G0

X
A2Le

�.e/ �
Y

A2Lg

".g/ �
Y

g2YenA

.�.e/ � ".g//

D

X
e2G0

X
A2Le

Y
A2Lg

".g/ �
Y

g2YenA

.�.e/ � ".g//

(2)
D

X
e2G0

X
A2Le

PA D

X
e2G0

X
A�Xe

PA
(3)
D

X
e2G0

�.e/ D 1A:

Moreover,

z� ı �.g/ D z�

� X
A2Lg

.A; g/

�
D

X
A2Lg

z�.A; g/

D �.g/ �
X

A2Lg

X
h2A

".h/ �
Y

h2YgnA

.�.d.g// � ".h//

D �.g/".g�1/ �
X

A2Lg

X
h2A;

h¤g�1

".h/ �
Y

h2YgnA

.�.d.g// � ".h//

D �.g/ �
X

A2Lg

X
h2A

h¤g�1

".h/ �
Y

h2YgnA

.�.d.g// � ".h//

D �.g/ �
X

A2Lg

�.d.g//
X
h2A;

h¤g�1

".h/ �
Y

h2YgnA

.�.d.g// � ".h//

D �.g/ �
X

A2Lg

.".g�1/C �.d.g// � ".g�1//
X
h2A;

h¤g�1

".h/

�

Y
h2YgnA

.�.d.g// � ".h//
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D �.g/ �
X
B

Y
h2B

".h/ �
Y

h2YgnB

.�.d.g// � ".h//

D �.g/z�

�X
B

.B; d.g//

�
D �.g/z�.d.g// D �.g/ �

� X
e2G0

z�.e/

�
D �.g/1KG BR D �.g/:

Now it only remains for us to show the uniqueness of the homomorphism z� . To
prove this claim, we shall show that �.G / generates KG BR.

Let .B;h/ 2 G BR, where B D ¹b�1
1 ; b�1

2 ; : : : ; b�1
k�1

; h�1º is a subset of Yh contain-
ing d.h/. The set of such pairs forms a vector space basis forKG BR. Let us denote by
A the subalgebra of KG BR generated by �.G /. Let ¹g1; : : : ; gkº � G be such that

g1 D b1; g1g2 D b2; g1g2g3 D b3; : : : ;

g1g2 � � �gk�1 D bk�1; g1 � � �gk D h:

These elements are well defined. In fact, from g1D b1, d.b�1
1 /D r.b1/D d.h/D

r.b2/ and g1g2 D b2 we obtain g2 D b
�1
1 b2. Inductively, we obtain gi D b

�1
i�1bi , for

all 2 � i � k � 1 and gk D b
�1
k�1

h.
Consider the element

�.g1/ � � ��.gk/ D
X

A12Lg1 ;

:::

Ak2Lgk

.A1; g1/ � � � .Ak; gk/ D
X

Ak2Lgk ;

gkAk2Lgk�1
;

:::

g2���gkAk2Lg1

.A1; g1 � � �gk/

D

X
A�B

.A; h/:

Thus, for all .B;h/2G BR,
P

A�B.A; h/ 2 A. Suppose that Yg nB D¹x1;x2; : : : ;xnº.
We have that X

A�B

.A; h/ �
X

A�B[¹x1º

.A; h/ D
X

A�B;
A 63x1

.A; h/;

from which it follows inductively that

.B; h/ D
X

A�B;
A 63x1;:::;xn�1

.A; h/ �
X

A�B;
A 63x1;:::;xn

.A; h/ 2 A;

ending the proof.
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Remark 3.4. Many partial-to-global results for the case of groupoids have appeared
in the literature. For example, in [2], Bagio and Paques proved that a global groupoid
action can be constructed from a partial action on a ring under some hypotheses. For
this goal, they expanded the ring in which the groupoid acts to then create a global
action of the same groupoid on a new ring. In [13], Marín and Pinedo presented a
similar globalization construction for groupoids acting partially on sets and topolog-
ical spaces. Usually the term “globalization” refers to an expansion of the structure
on which the groupoid acts, and the term “enlargement” refers to an expansion of the
groupoid itself. The latter is our case, since we expanded the groupoid G to the alge-
bra KG BR while the algebra A was fixed. Other cases of enlargements can also be
found in [1] and [10], however in the case of ordered groupoids.

Corollary 3.5. The groupoid algebra KG BR is isomorphic to the partial groupoid
algebra Kpar.G /.

Proof. The maps Œ � W G !Kpar.G /, g 7! Œg�, and � W G !KG BR are partial groupoid
representations of G . By Theorems 2.6 and 3.3, there exist K-algebra homomor-
phisms z� W KG BR ! Kpar.G / and � W Kpar.G / ! KG BR such that z�.�.g// D Œg�

and �.Œg�/ D �.g/, for all g 2 G . It is easy to check that z� and � are inverses of each
other, since their compositions are the identity on the generators; hence z� and � are
isomorphisms.

Remark 3.6. The structure ofKpar.G / regarding Bernoulli partial actions was studied
extensively in [16], and several examples were presented.
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