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Morse index of block Jacobi matrices via optimal control

Stefano Baranzini and Ivan Beschastnyi

Abstract. We describe the relation between block Jacobi matrices and minimization problems
for discrete-time optimal control problems. Using techniques developed for the continuous case,
we provide new algorithms to compute and estimate spectral invariants of block Jacobi matrices.

1. Introduction

The goal of this paper is to explore an interesting connection between block Jacobi
matrices and a class of discrete optimal control problems. This gives effective algo-
rithms for computing the negative inertia index and more generally the number of
eigenvalues smaller than some threshold �� 2 R of large block Jacobi matrices.

Recall that a block Jacobi matrix 	 is a matrix of the form

	 D

0BBBBBBBB@

S1 R1 0 : : : 0 0

R�1 S2 R2 : : : 0 0

0 R�2 S3 : : : 0 0
:::

:::
:::

: : :
:::

:::

0 0 0 : : : SN�1 RN�1

0 0 0 : : : R�N�1 SN

1CCCCCCCCA
; (1.1)

where N 2 N, Si are Hermitian matrices of order n, Ri is a complex matrix and R�i
denotes the conjugate transpose of Ri .

Jacobi matrices find applications in numerical analysis [6], statistical physics [7],
knot theory [5] and many other areas. Moreover, any Hermitian matrix can be put in
a tridiagonal form using Householder transformations [4]. Therefore, understanding
their spectral properties is an extremely important topic.

In this article, we establish a correspondence between Jacobi matrices and the
discrete linear quadratic regulator (LQR) problem. We combine optimal control the-
ory with matrix theory to establish ways of computing or estimating the Morse index
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of such matrices and of the second variation of discrete optimal control problems.
The techniques used in our proofs are deeply connected with symplectic geometry.
One can extend them to much more general settings [1–3]. More precisely, exploiting
this connection, we prove a formula linking the negative inertia index ind�.	 � �/
(i.e., the number of negative eigenvalues of 	 � �) and the fundamental solution of a
suitable discrete time differential equation.

As a first application, we prove a slight generalization of [12, Theorem 10.1]. See
also [10, 11] for a detailed analysis from an intersection theory perspective. Assume
that Ri 2 GL.n;C/ for all i 2 ¹1; : : : ;N � 1º. Let S0 D S�0 be any Hermitian matrix
and R0; RN 2 GL.n;C/. Define the following matrices:

Mk.�/ WD

 
�R�1

k
R�1
k
.1 � Sk C �CRkR

�
k
/

�R�1
k

R�1
k
.1 � Sk C �/

!
;

ˆk.�/ WD

k�1Y
jD0

Mj .�/ D

 
ˆ1
k
.�/ ˆ2

k
.�/

ˆ3
k
.�/ ˆ4

k
.�/

!
: (1.2)

We shall prove the following theorem.

Theorem 1. Let 	 be a Jacobi matrix as in (1.1) and let Ri 2 GL.n;C/ for all
i 2 ¹1; : : : ; N � 1º. The negative inertia index of 	 � � is given by the following
formula:

ind�.	 � �/ D
NX
kD1

ind�H�
k C dim kerˆ3k.�/; (1.3)

where
H�
k D �.ˆ

3
k.�//

�Rkˆ
3
kC1.�/:

Remark 1. It should be noted that H�
k

are indeed Hermitian and hence the negative
inertia index is well defined.

Remark 2. Notice that the matrices Mk.�/ appearing in the statement of Theorem 1
can be rewritten in a more standard form as transfer matrices. Indeed, set

Tk.�/ D

 
�.Sk � �/R

�1
k�1

�R�
k�1

R�1
k�1

0

!
; Gk D

 
0 Rk

.R�1
k
/� �.R�1

k
/�

!
:

A straightforward computation yieldsMk.�/ D G
�1
k
Tk.�/Gk�1. Moreover, the mat-

rix ‰kC1.�/ WD GkˆkC1.�/ coincides with the fundamental solution used in [12].
A straightforward computation shows that

H�
k D �.‰

3
kC1.�//

�RkC1‰kC2.�/ and kerˆ3k.�/ D ker‰3kC1.�/:
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Let us consider now the case in which the Ri are not necessarily invertible but
let us assume that Ri D R�i . This is not restrictive since a similarity transformation
reduces 	 to this case (see, for instance, [12, Section 9]). Since the Ri are Hermitian,
Cn splits as a direct sum of kerRi and its orthogonal, ImRi . Denote by �i the pro-
jection onto .kerRi /?. Let Li be an n � n matrix such that Ri C Li is invertible and
Hermitian and RiLi D 0. Finally, let again S0 D S�0 be any Hermitian matrix and
R0; RN 2 GL.n;C/. Let us define the following matrices:

Mk.�/ D

 
�L

�

k
�R

�

k
.L
�

k
CR

�

k
/.�k�1 � Sk C �/CRk

�R
�

k
R
�

k
.�k�1 � Sk C �/ � Lk

!
; (1.4)

and letˆk.�/ be defined as in equation (1.2). HereL�
k

andR�
k

are the Moore–Penrose
pseudo-inverses of the corresponding matrices.

Theorem 2. Let 	 be a Jacobi matrix as in (1.1) and let Ri be Hermitian (and pos-
sibly degenerate) matrices for all i 2 ¹1; : : : ; N � 1º. The following bound holds:

ind�.	 � �/ �
NX
kD1

ind�H�
k C dim

�
kerˆ3k.�/=.kerˆ3kC1.�/ \ kerˆ3k.�//

�
; (1.5)

where the quadratic form H�
k

is defined as follows:

H�
k .�0/ D �h.ˆ

3
k.�//

�Rk.ˆ
3
kC1.�/C .1 � �k�1/ˆ

1
k.�//�0; �0i;

where �0 2 ker.1 � �k/ˆ3k.�/.

Firstly, it should be noted that Theorem 2 reduces to Theorem 1 when all Rk are
invertible and the inequality actually becomes equality. Secondly, the lower bound in
(1.5) is not necessarily the best one obtainable applying Theorem 3 and depends on
the particular choice ofMk.�/ adopted in (1.4). The reason is that the right-hand side
of (1.5) corresponds to the index of 	 restricted to a specific subspace determined by
the choice of (1.4). There is some freedom in this choice: to solutions of (3.3) (up
to some equivalence) correspond distinct subspaces, as explained in Section 3 and
Remark 5.

The paper has the following structure. In Section 2, we first prove Theorem 1
using the technique of transfer matrices. This will give an idea for the proof of the
more general Theorem 3 from which both, Theorems 1 and 2, follow directly. In
Section 3, we discuss the discrete LQR problem and its connection to Jacobi matrices.
In Section 4, we compute the index of quadratic forms associated to LQR problems.
In Section 4.1, we derive the two theorems above from our formula.
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2. Proof of Theorem 1 via transfer matrices

In order to prove Theorem 1 and Theorem 2, we will exploit in Sections 3 and 4 the
connection between Jacobi matrices and optimal control. This will allow us to obtain
proofs of both theorems as a consequence of a more general index formula for LQR
problems in a single unified manner. However, Theorem 1 was already proven in [12]
using the technique of transfer matrices and a discrete version of the Sturm–Liouville
theory. The author of [12] uses mathematical physics as a guiding argument, while
we use optimal control theory. In the intersection of the two approaches lies a purely
algebraic argument that is instructive for understanding both proofs.

Assume that the blocks Rj of the Jacobi matrix 	 in (1.1) are invertible. To com-
pute the Morse index we rely on the following lemma.

Lemma 1 ([8, Corollary 2.7]). Suppose that a quadratic form Q is defined on a finite
dimensional vector space X and a subspace W � X is given. Denote by W ?Q the
Q-orthogonal subspace to W , i.e.,

W ?Q WD ¹u 2 X W Q.u; v/ D 0;8v 2 W º:

Denote by ind�Q the number of negative eigenvalues of Q, then

ind�Q D ind�QjW C ind�QjW?Q C dim
�
.W \W ?Q/=.W \W ?Q \ ker Q/

�
:

Remark 3. Here is an idea of the proof. If both Q and the restriction QjW are
non-degenerate, then there is no dimension term and the result is standard. One can
prove this using, for example, a Gram–Schmidt argument. Factoring out ker Q �

W \W ?Q , one can assume that Q is not degenerate while QjW is. One then notices
that W \W ?Q is isotropic for both QjW and QjW?Q . Moreover, Q induces a non-
degenerate pairing on

X=.W CW ?Q/˚ .W \W ?Q/

which has dimension 2 dim.W \ W ?Q/ yielding the result. More details can be
found, for instance, in [8] or in [2, Appendix B].

Let us define the following family of subspaces:

Wk D ¹x � RnN W xi D 0;8i � k C 1º;

which are just vectors in RnN having zero component starting from step Nk C 1.
We will iteratively apply Lemma 1 choosing X DWkC1, Q.x/ D hx;	xi for x 2 X
and Wk as W . Clearly Wk�1 � Wk and

SNC1
kD1 Wk D RnN . Thus the Wk provide a

filtration of RnN .
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Let us introduce some simplified notation. Let 	k be be the quadratic form induced
on Wk by the principal nk � nk minor of 	. Set

W?k WD W
?	kC1

k
; 	?k WD 	kjW?

k�1
:

Note that by definition W?
k
� WkC1. Moreover, we have that

	kC1jWk
D 	k :

Let us apply Lemma 1 with 	 D 	kC1 and W D Wk � WkC1 D X . We obtain

ind�	kC1 D ind�	k C ind�	?kC1 C dim
�
.Wk \W?k /=.Wk \W?k \ ker 	kC1/

�
:

Thus, by iteration, we obtain

ind�	 D ind�	1 C

NX
kD2

ind�	?k

C dim
�
.Wk�1 \W?k�1/=.Wk�1 \W?k�1 \ ker 	k/

�
:

Now we compute each 	?
k

. First we describe elements x which belong to W?
k

.
Testing against elements of Wk , we find that hx; 	yi D 0 when x 2 WkC1 for all
y 2 Wk if and only if8̂̂<̂

:̂
S1x1 CR1x2 D 0;

Sjxj CR
�
j�1xj�1 CRjxjC1 D 0; for 1 < j � k;

xj D 0; for j > k C 1:

We can extend the first equation to include also the vector x0 requiring

R0x0 C S1x1 CR1x2 D 0:

We require that x0 D 0 and set, without loss of generality, R0 WD 1. In this way, we
get the same formula for all indices, including the first one. From those equations we
obtain for 0 � j � k C 1 

RjxjC1

xj

!
D

 
�Sjxj �R

�
j�1xj�1

xj

!
DW Tj

 
Rj�1xj

xj�1

!
where

Tj D

 
�SjR

�1
j�1 �R

�
j�1

R�1j�1 0

!
are the transfer matrices. We can define a flow as

‰k WD

kY
jD1

Tj : (2.1)



S. Baranzini and I. Beschastnyi 112

Let ‰3
k

be the lower left n � n block. Now we are left with computing 	kC1.x/ for
x 2 W?

k
,

	?k .x/ D hx;	xi D hxkC1; SkC1xkC1 CR
�
kxki D �h‰

3
kC1x1; RkC1‰

3
kC2x1i:

Hence, the negative index of 	k coincides with the negative Morse index of the matrix
�.‰3

kC1
/�RkC1‰

3
kC2

.
It only remains to compute the dimensions of intersections. It is clear from the

definitions of Wk that

W?k \Wk D ker 	kI

W?k \Wk \ ker 	kC1 D ker 	k \ ker 	kC1:

It is straightforward to check that elements in W?
k
\Wk satisfy the additional require-

ment that xkC1 D 0. Thus ker 	k is isomorphic to ker‰3
kC1

. Moreover, a direct
computations shows that

ker‰3kC1 \ ker‰3kC2 D .0/:

Collecting all the pieces gives a formula analogous to (1.3) in Theorem 1. In order
to recover exactly the statement of Theorem 1 it is enough to apply Remark 2.

Remark 4. What is the difference between the flow‰ defined in (2.1) andˆ as given
in (1.2)? The map x 7! hx; Ixi can be viewed as a discrete version of an action func-
tional. In the continuous case, the corresponding Euler equations for critical points
are a system of second order ODEs. One can rewrite it as a system of first order
equations double in size. But this passage is not unique. The flows ˆ and ‰ can be
thought as fundamental solutions of the discretization of the extremal equations for
two different choices. Because of this, it is not surprising that in the end, we compute
the same object in two slightly different ways. There is, however, a particular choice
using the Legendre transform. It gives naturally the extremal equations a structure of
a Hamiltonian system. Our flowˆ corresponds exactly to this case. It should be noted
that having a Hamiltonian description, as given by Pontryagin’s maximum principle,
is particularly useful when dealing with constrained variational problems. This allows
us to treat also the more singular situation stated in Theorem 2.

3. LQR and Jacobi matrices

3.1. Linear quadratic problems

In this section, we introduce all the necessary notations and definitions concerning
optimal control problems (OCPs for short) and then, we establish the aforementioned
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correspondence with Jacobi matrices. More precisely, we formulate second order
optimality conditions in terms of a suitable Jacobi matrix determined by the OCP
under consideration.

In the following, we will consider LQR problems, see [9, Chapter 2] for further
references. They are discrete time OCP having a linear dynamic and a quadratic cost
functional. The reasons for such a choice are twofold. Firstly, LQR system are far
simpler to handle than general non-linear optimal control problems. Secondly, once
an extremal of a possibly non-linear optimal control problem is fixed, second order
optimality conditions can be formulated in terms of a (non-autonomous) LQR prob-
lem, i.e., the linearization of the system along the extremal.

Let us introduce the dynamic and the space of trajectories on which we are going
to minimize. For 0� k �N C 1, letAk be n� nmatrices, andBk be n�mk matrices
withmk � n. Moreover, let xk 2Rn and uk 2Rmk . Consider the following difference
equation:

xkC1 � xk D Akxk C Bkuk; k D 0; : : : ; N C 1; (3.1)

For technical reasons, throughout the rest of the paper, we will make the following
assumption.

Assumption 1. The matrices 1CAk in (3.1) are invertible for every k. The matrices
Bk are injective for 1 � k � N C 1 and B0 is invertible.

The variables xk are called state variables while uk controls. We denote by x D
.xk/ and u D .uk/ the vectors having xk and uk as k-th component. Note that we
will often consider them as elements of Rn.NC2/ and R

PNC1
kD0

mk respectively. To any
fixed initial condition x0 and any control u corresponds a unique solution x.u; x0/ of
equation (3.1). We will refer to it as an admissible trajectory.

Let us consider the following quadratic cost functional on the space of controls:

zJ.u/ D
1

2

NX
iD0

�
jui j

2
� hQixi .u; x0/; xi .u; x0/i

�
; (3.2)

where Qi are symmetric n � n matrices. Note that one can equivalently work on the
space of solutions x.u; x0/ with fixed initial condition x0. It is straightforward to
check that these spaces are isomorphic since the Bk are injective. Thus, it is possible
to rewrite (3.2) as a function on the space of solutions of (3.1). The problem of minim-
izing zJ over the latter space is the classical linear quadratic regulator problem, which
is one of the central problems in optimal control theory.

Let us describe here explicitly the correspondence between u and solutions x of
(3.1), i.e., between controls and admissible trajectories. Recall that by the properties
of the pseudo-inverse, BkB

�

k
is the orthogonal projection (with respect to the standard
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scalar product) on Im.Bk/ � Rn. It follows that x is a solution of equation (3.1) if
and only if

.1 � BkB
�

k
/.xkC1 � .1C Ak/xk/ D 0; 80 � k � N C 1;

which equivalently says that xkC1 � .1C Ak/xk is zero modulo ImBk .
Let us denote the space of admissible trajectories as W . Inverting relation (3.1)

and combining it with (3.2) we obtain a quadratic form J on W ,

J.x/D h	x;xi D
1

2

� NX
iD0

jB
�
i .xiC1 � .1CAi /xi /j

2
�

NX
iD0

hQixi ; xi i

�
; x 2W :

Throughout the rest of the paper we will impose homogeneous Dirichlet boundary
conditions, i.e., we will additionally assume that x0 D 0 D xNC1. Let us write down
the matrix 	 associated to the quadratic form above; it is given by a block Jacobi mat-
rix of the form (1.1). Define �i D BiB ti � 0 which is a symmetric and non-negative
n � n matrix. After some algebraic manipulation, we find the following relations:

Si D �
�
i�1 C .1C Ai /

t�
�
i .1C Ai / �Qi ;

Ri D �.1C Ai /
t�
�
i ; (3.3)

1 � i � N � 1.
It follows that to each LQR problem (3.1)–(3.2) we can associate a couple .	;W/

where 	 is a real Jacobi matrix and W a subspace of Rn.NC1/. The converse is also
true. However, there are several LQR problems which correspond to the same Jacobi
matrix.

Remark 5. Contrary to the scalar case, when the Ri are degenerate (but non-zero),
general formulas to compute index and determinant of block Jacobi matrices are not
known. In this case, in fact, it is not possible to define the usual transfer matrices
and 	 does not decompose as the sum of smaller matrices sharing the same block
structure. Our approach has the following consequence: since for the subspaces W

of admissible trajectories we are able to define a symplectic flow, similar to the one
defined when detRi ¤ 0, and since we always have that

ind�	 � ind�	jW ; (3.4)

we can prove inequalities of the form (1.5) expressing the right-hand side of (3.4) in
terms of the symplectic flow we build. Note that on the one hand, the estimates might
worsen as the kernel of theRi enlarges but on the other hand we have a lot of freedom
in choosing W .
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3.2. Jacobi matrices and Lagrange multiplier rule

In order to compute the index of a Jacobi matrix 	 in (1.1), we will use the flow of
a certain system of difference equations. First, though, we need some notions from
optimal control theory.

Let U WDRmN , the space of controls. The first object we introduce is the endpoint
map

EkC1 W U ! Rn; u 7! xkC1.u/; 0 � k � N:

This map takes a control u and gives the solution of the differential equation (3.1) with
x0D 0 at step k C 1. For brevity define the following matrices for 0� i � j �N C 1:

P
j
i WD

j�1Y
rDi

.1C Ar/; P
j
j D 1;

and for 0 � i < j � N C 1 we take

P ij D .P
j
i /
�1:

We can write the endpoint map explicitly iterating (3.1), namely

EkC1.u/ D xkC1.u0; : : : ; uN / D

kC1X
jD1

P kC1j Bj�1uj�1: (3.5)

In particular, from this formula, it is clear that the value of EkC1.u/ depends only
on the first k components of the control u. It makes sense, thus, to introduce the
following filtration (i.e., flag of subspaces) in the space of controls U . For 0 � k �N
let us define

Uk WD ¹.u0; u1; : : : ; uk; 0; : : : ; 0/ W uj 2 Rmº; UN D U: (3.6)

We will often identify Uk with a copy of Rm.kC1/ and suppress the extra zeros in
equation (3.6) to simplify notation. Denote by prl the orthogonal projection on Ul
with respect to the standard Euclidean scalar product. Namely a linear operator prl W
U ! U defined as:

prl.u/ D

´
u; u 2 Ul ;

0; u 2 U?
l
:

It is straightforward to check that

EkC1.u/ D EkC1.prlu/ 8l � k:
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Lemma 2. Under Assumption 1, the differential of the endpoint map is surjective.
For 1 � k � N � 1, consider the maps

Fk W Uk�1 ! Rm;

defined as

Fk.u/ WD �B
�

k

kX
jD1

P kC1j Bj�1uj�1:

Then .u0; : : : ; uk/ 2 kerEkC1 \ Uk if and only if

uk D Fk.u/ and .1 � BkB
�

k
/P kC1
k

Ek.u/ D 0: (3.7)

Proof. To show that the differential of the endpoint map is surjective, it is enough
to find a subspace that maps isomorphically to Rn. For controls of the form u D

.u0; 0; 0; : : : ; 0/, under Assumption 1, we have EkC1.u/D P kC11 B0u0 which clearly
is onto.

The proof of the second part of the statement follows by a simple algebraic manip-
ulation of equation (3.5). Whenever Bk is not invertible the extra condition in equa-
tion (3.7) appears. Notice that 1 � BkB

�

k
is the orthogonal projection on Im.Bk/?,

this component cannot be modified using just uk .

The following result is a discrete version of the Pontryagin maximum principle
(PMP) for LQR problems, which characterizes critical points of the constrained vari-
ational problem as solutions of a Hamiltonian system.

Lemma 3. The quadratic form zJ is degenerate on kerENC1 if and only if the bound-
ary value problem ´

xkC1 D P
kC1
k

xk C BkB
t
k�kC1;

�k D .P
kC1
k

/t�kC1 CQkxk;
(3.8)

with x0 D 0, xNC1 D 0 has a non-trivial solution. Moreover, the dimension of the
space of solutions of equation (3.8) and of ker zJjkerENC1 coincide.

Proof. We will employ the Lagrange multipliers rule to write down the equation for
critical points of zJ restricted to kerENC1. Recall that, given two smooth functions
f W Rd ! R and g W Rd ! Rs , finding critical points of f on the level set g�1.c/
(when c is a regular value) is equivalent to finding a solution .x; �/ 2 RdCs of the
equations ´

g.x/ D c;

dxf D �
t dxg:

We will construct a discrete Hamiltonian system using the filtration (3.6) and
applying iteratively the Lagrange multipliers rule. To this extent, we need to intro-
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duce a suitable family of functionals zJk , defined on Uk . They play the role of the
restriction of zJ to Uk , even if they differ from it slightly. For 1 � k � N and u 2 Uk
let us define

zJk.u/ WD
1

2

� kX
iD0

jui j
2
�

kX
iD1

hxi ;Qixi i

�
: (3.9)

Their differentials at a point u are then given by

du zJ
k.v/ D

kX
iD0

hui ; vi i �

kX
iD1

.Ei .u//tQiE
i .v/: (3.10)

Notice that zJN D zJ. As already discussed, if u is a critical point of zJ restricted
to kerENC1, there exists �NC1 2 Rn such that

du zJ
N
D �tNC1E

NC1: (3.11)

We now look for �k 2 Rn, 1 � k � N C 1, which satisfy

du zJ
k
D �tkC1E

kC1: (3.12)

We already have an equation for the trajectory .0; x1; : : : ; xN ; 0/ determined by
a critical point u, this is given by (3.1). We still need to find a relation linking the
controls uk with the covectors �t

k
and a difference equation for the covectors �t

k
. Let

us address the first task. Using the explicit formula (3.5) for the endpoint map, we find
the recurrence relation

EkC1.v/ D P kC1
k

Ek.prk�1v/C Bkvk (3.13)

for all v 2 Uk . Choose v such that vi D 0 for all i < k and vk ¤ 0. In this case,

Ei .v/ D Ei .pri�1v/ D 0; 8i � k:

Hence, if we substitute such a control v in (3.12), using (3.10) and (3.13), we obtain
the control law

uk D B
t
k�kC1; (3.14)

which we can plug in (3.1).
The next step is to obtain a discrete equation for �k . To do this we compare the

multipliers �k and �kC1 by subtracting (3.12) from the same formula with k shifted
by �1. Using v 2 Uk�1 � Uk as a test variation and formulas (3.10) and (3.13) we
find that

�tkC1E
kC1.v/ � �tkE

k.v/ D du zJ
k
s .v/ � du

zJk�1s .v/

”
�
�tkC1P

kC1
k
� �tk C x

t
kQk

�
Ek.v/ D 0:
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Since by Lemma 2 the endpoint map Ek is surjective for all k, the term in brackets
must vanish.

Collecting everything gives equation (3.8). Taking into account that ENC1.u/ D
0 D xNC1 and that we are assuming x0 D 0, determines the boundary conditions.

To prove the converse it is enough to read all the relations backwards. By con-
struction, any solution of equation (3.8) with the proper boundary conditions satisfies
equation (3.11). Thus, using (3.14) as a definition for u we recover a control which is
automatically a critical point for zJ.

Finally, we have to prove that this correspondence is bijective. From equation (3.1)
and Assumption 1 it is clear that different controls give distinct trajectories and thus
the correspondence is injective. Now let us prove the converse, clearly any solution of
(3.15) gives a trajectory of (3.1) whose control is determined by (3.14). Assume that
two solutions .x; �/ and .x; z�/ of equation (3.8) arise from the same control. Since
(3.8) is linear, we can subtract the two solutions and obtain a new one which, now, has
xk D 0 for all k. This new solution has Lagrange multipliers �k WD �k � z�k , which
satisfy

BkB
t
k�k D 0; �k D .P

kC1
k

/t�kC1:

By Assumption 1 the matrix B0B t0 is invertible and hence �0 D 0. Then again from
Assumption 1 and the second equation it follows that �k D 0 for all k.

Under Assumption 1, we can rewrite system (3.8) as a forward equation. To do
so, recall that �k D BkB tk , multiply the second equation by .P k

kC1
/t and plug in the

new expression for �kC1 into the first equation. This gives´
xkC1 D .P

kC1
k
� �k.P

k
kC1/

tQk/xk C �k.P
k
kC1/

t�k;

�kC1 D .P
k
kC1/

t�k � .P
k
kC1/

tQkxk :
(3.15)

We thus have  
�kC1
xkC1

!
DMk

 
�k
xk

!
;

where

Mk D

 
.P k
kC1

/t 0

�k.P
k
kC1

/t P kC1
k

! 
1 �Qk
0 1

!
: (3.16)

Both matrices in the product are symplectic, which makesMk symplectic as well. Let
us define the flow up to the point k as

ˆk D

 
ˆ1
k

ˆ2
k

ˆ3
k

ˆ4
k

!
WD

k�1Y
iD0

Mi : (3.17)
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Remark 6. We can reformulate Lemma 3 and the boundary value problem (3.8) in
terms of ˆk . We are looking for solutions of (3.8) with boundary values

x0 D xkC1 D 0:

Writing as above ˆkC1 as a block matrix, shows that the existence of a solution is
equivalent to the vanishing of the determinant of the block ˆ3

kC1
,

ker zJkjkerEkC1 ¤ 0 ” detˆ3kC1 D 0:

Remark 7. In the proofs of Theorem 1 and Theorem 2, we will need to deal with
complex matrices. The proof of Lemma 3 extends to this case in a straightforward
way since it only relies on the Lagrange multipliers rule, which still holds for maps
from Cd to Cs , and the non-degeneracy of the (Hermitian) scalar product. One needs
only to replace transpose matrices with conjugate transpose ones.

4. A recursive formula for the index in LQR problems

The goal of this section is to prove the following result and deduce from it Theo-
rems 1 and 2. Let ˆk and Mk be the symplectic matrices defined in (3.17) and (3.16)
respectively.

Theorem 3. Let zJ be as in (3.2). The negative inertia index of zJ restricted to
kerENC1 is given by the following formula:

ind� zJjkerENC1 D

NX
kD1

ind�Hk C dim
�
kerˆ3k=.kerˆ3k \ kerˆ3kC1/

�
;

where Hk is the quadratic form given by the matrix

zHk D

´ �
�
�
0 C .P

2
1 /
t�
�
1P

2
1 �Q1

�
; k D 1;

.ˆ3
k
/t
�
.P kC1
k

/t�
�

k
.P kC1
k

/ �Qk
�
ˆ3
k
C .ˆ3

k
/t�

�

k�1
�k�1ˆ

1
k
; k ¤ 1;

restricted to the subspace ker.1 � BkB
�

k
/P kC1
k

ˆ3
k

.

As explained in Section 3.1, we can equivalently work on the space of controls,
on kerENC1, with the functional zJ given in (3.2) or on the space of admissible tra-
jectories (i.e., solutions of (3.1)) having xNC1 D 0 with the Jacobi matrix 	 defined
by (3.3). We will choose the latter point of view.

The two main ingredients of Theorem 3 proof are the filtration corresponding to
the Uk defined in (3.6) (seen as a filtration of the space on admissible curves W ) and
Lemma 1.
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Let us define the following family of subspaces:

Wk D ¹x � RnN W x solves (3.1) and xi D 0; 8i � k C 1º:

We will apply iteratively Lemma 1 to the Wk . It is straightforward to check that
Wk�1 � Wk and

SNC1
kD1 Wk D W . Thus the Wk provide a filtration of the space of

admissible trajectories W . Moreover, WN corresponds to the space of admissible tra-
jectories having xNC1 D 0.

Let us introduce some simplified notations as before. Let 	k be the principal nk �
nk minor of 	 with coefficients given by (3.3). It corresponds to the functional zJk

defined in (3.9) after the coordinate change. Set

Qk WD 	kjWk
; W?k WD W

?QkC1

k
; Q?k WD QkjW?

k�1
:

Note that by definition W?
k
� WkC1. Moreover, we have that

QkC1jWk
D Qk :

Let us apply Lemma 1 with Q D QkC1 and W D Wk � WkC1 D X . We obtain via
iteration

ind�	 D ind�Q1 C

NX
kD2

ind�Q?k

C dim
�
.Wk�1 \W?k�1/=.Wk�1 \W?k�1 \ ker Qk/

�
:

What is left to do is to express every term using the discrete Hamiltonian system
given in (3.8). First of all, let us describe the subspaces W?

k
\Wk and W?

k
\Wk \

ker QkC1. Let … be the vertical subspace, i.e.,

… D ¹.�; 0/ 2 R2n W � 2 Rnº:

Lemma 4. We have the following identifications in terms of the Hamiltonian flow
(3.15):

W?k \Wk D ˆkC1.…/ \…I

W?k \Wk \ ker.QkC1/ D ˆkC1.…/ \M
�1
kC1.…/ \…:

In terms of the symplectic matrices in (3.17) this reads

W?k \Wk D ker.Qk/ D kerˆ3kC1I

W?k \Wk \ ker.QkC1/ D kerˆ3kC2 \ kerˆ3kC1:
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Proof. A direct consequence of the definitions of Wk and W?
k

is that W?
k
\Wk D

ker.Qk/. Lemma 3 identifies the elements of the kernel with solutions of the equa-
tion (3.8) with x0 D xkC1 D 0. In terms of the corresponding flow ˆkC1 we get

ker.Qk/ D ˆkC1.…/ \…:

It follows that W?
k
\Wk \ ker.QkC1/ D ker.Qk/ \ ker.QkC1/ and the two equalit-

ies follow.

The next step is to identify Q?
kC1

. The next Lemma provides a matrix representa-
tion involving the matrices ˆk defined in (3.17).

Lemma 5. Assume that k > 0. Let ˆ1
kC1

and ˆ3
kC1

be the upper and lower right
minors of ˆkC1 as defined in (3.17). The negative index of QkC1 restricted to W?

k

coincides with the negative index of the following quadratic form:˝
.ˆ3kC1/

t
�
..P kC2

kC1
/t�

�

kC1
P kC2
kC1
�QkC1/ˆ

3
kC1 C �

�

k
�kˆ

1
kC1

�
�0; �0

˛
; (4.1)

restricted to the kernel of .1 � ��
kC1

�kC1/P
kC2
kC1

ˆ3
kC1

.

Proof. The first step of the proof is to identify the elements of W?
k

. As one might
expect, they are closely related to the symplectic matrix ˆkC1. Recall that under
Assumption 1, the endpoint map is surjective for any k � 1. This allows us to write
down a three terms recurrence relation for x 2 W?

k
� WkC1. Indeed, testing against

elements of Wk , we find that hx;	yi D 0 for all y 2 Wk if and only if8̂̂̂̂
<̂
ˆ̂̂:

S1x1 CR1x2 D 0;

Sjxj CR
�
j�1xj�1 CRjxjC1 D 0; for 1 < j � k;

xj D 0; for j > k C 1;

.1 � �
�

kC1
�kC1/P

kC2
kC1

xkC1 D 0:

Notice that the last equation of the system comes from the fact that x itself must
be admissible. By Lemma 3 we can conclude that elements in W?

k
� WkC1 are in

one to one correspondence with trajectories of ˆkC1 having

x0 D 0 and .1 � �
�

kC1
�kC1/P

kC2
kC1

xkC1 D 0;

i.e., W?
k

can be identified with a subspace of ˆkC1.…/.
Let us compute now h	x; xi for x 2 W?

k
. It is straightforward to notice that the

only non-zero components of 	x are the k C 1-th and the k C 2-th. It follows that

h	x; xi D hSkC1xkC1 CR
t
kxk; xkC1i:
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By the discussion above, we can write xk as a function of xkC1 multiplying by M�1
k

and obtain  
�k
xk

!
D

 
.P kC1
k

/t�kC1 CQkP
k
kC1

.xkC1 � �k�kC1/

P k
kC1

.xkC1 � �k�kC1/

!
:

Finally, recalling the definition of Sk and Rk given in (3.3), we obtain that

h	x; xi D
˝�
.P kC2
kC1

/t�
�

kC1
P kC2
kC1
�QkC1

�
xkC1 C �

�

k
�k�kC1; xkC1

˛
: (4.2)

It remains to compute ind�Q1. Clearly, using (3.3), if x 2 W1

h	x; xi D
˝
x1;

�
�
�
0 C .P

2
1 /
t�
�
1P

2
1 �Q1

�
x1
˛

and .1 � B1B
�
1 /P

2
1 x1 D 0:

Now, each term in the formula for ind�	 is identified. Collecting all the pieces to-
gether, finishes the proof of Theorem 3.

Remark 8. If we require that the matrices Bk are invertible for any k, we can easily
rewrite the kernel in (4.1) in at least two intrinsic ways. In this case, ��

kC1
D ��1

kC1
and

�
�

k
�k D 1. The first way is related to classical discrete Sturm–Liouville theory and

the number of sign changes of the fundamental solution of (3.15). Using the relation
(3.17), we see that

ˆ3kC2 D P
kC2
kC1

ˆ3kC1 C �kC1.P
kC1
kC2

/t .ˆ1kC1 �QkC1ˆ
3
kC1/:

After collecting a common term .ˆ3
kC1

/t .P kC2
kC1

/t��1
k

from the left in (4.1) we see
that the kernel can be rewritten as

.ˆ3kC1/
t .P kC2

kC1
/t��1k ˆ3kC2:

The second interpretation comes from symplectic geometry. The form can be inter-
preted as a Maslov form. This quadratic form is a certain invariant of triples of La-
grangian subspaces and measures the relative position of the third inside the Lagrange
Grassmannian with respect to a reference frame given by the first two. Let ƒ1, ƒ2,
ƒ3 be Lagrangian subspaces. Let us define m.ƒ1; ƒ2; ƒ3/ as a quadratic form on
.ƒ1 Cƒ3/ \ƒ2 as follows. If p2 D p1 C p3 where pi 2 ƒi , we set

m.ƒ1; ƒ2; ƒ3/.p2/ D �.p1; p3/:
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It turns out that Q?
kC1

coincides with m.ˆkC1.…/;M�1kC1.…/;…/. Indeed, the space
M�1
kC1

.…/ \ .ˆkC1.…/C…/ is given by.

M�1kC1

 
�kC2
0

!
D

 
..P kC2

kC1
/t �QkC1P

kC1
kC2

�kC1/�kC2

�P kC1
kC2

�kC1�kC2

!

D

 
�kC1 C �

ykC1

!
2 …CˆkC1.…/:

Thus the value of m.�kC2/ D �..�kC1; ykC1/; .�; 0// D �h�; ykC1i is determined
by

m.�kC2/ D �
˝�
.P kC2
kC1

/t �QkC1P
kC1
kC2

�kC1
�
�kC2 � �kC1; ykC1

˛
D
˝�
.P kC2
kC1

/t��1kC1P
kC2
kC1
�QkC1

�
ykC1; ykC1

˛
C h�kC1; xkC1i;

where we substituted �kC2 using the relation �kC2D���1kC1P
kC2
kC1

ykC1 and obtained
exactly (4.2).

4.1. Jacobi matrices via optimal control

In this section, we prove Theorem 1 and Theorem 2. The strategy is to choose a con-
venient optimal control problem and simplify all the formulas of the previous section.

Proof of Theorem 1. We prove the result for � D 0. For � ¤ 0 it is enough to replace
each Si with Si � �.

Set Bi D 1 for all i . In this case, the are no restrictions on the domain of Hk .
By (3.3), we get the following relations:

�i D 1;

Ri D �.P
iC1
i /�;

Qi D 1CRiR
�
i � Si :

We plug those formulas into (3.16) and simplify a little bit the expressions. Notice
that, for k > 1, from equation (3.15) we get

�RkxkC1 D .P
kC1
k

/txkC1 D
�
.P kC1
k

/tP kC1
k
�Qk

�
xk C �k

D
�
..P kC1

k
/tP kC1

k
�Qk/ˆ

3
k Cˆ

1
k

�
�0:

On the other hand, one easily sees that �hxk; RkxkC1i coincides with h�0;Wk�0i.
Hence,

Hk D �.ˆ
3
k/
�Rkˆ

3
kC1:
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It only remains to prove that the formula above holds for k D 1. Since 	jV1
coin-

cides with S1, the contribution of the first point is just ind�S1. Extend our Jacobi
matrix to include blocks S0 and R0, which can be any as long as S�0 D S0 and
det.R0/ ¤ 0. Then, using the formulas for ˆ2 and ˆ1 from equation (1.2), we find
that

�.ˆ31/
�R1ˆ

3
2 D .R

�1
0 /�S1.R

�1
0 /

and its index is equal to the one of S1 as required by Theorem 3.

Proof of Theorem 2. Again we prove just the case �D 0. Recall that we are assuming
Rk to be Hermitian. Take rows of Bk to be an orthonormal basis of Im.Rk/ and
P kC1
k
D �Rk � Lk where LkRk D 0 and Lk C Rk is invertible and Hermitian.

These choices will have the following consequences:

• LkRk D RkLk D 0 and as a consequence L�
k
Rk D 0;

• �k is the orthogonal projection on ImRk . Thus to make this more evident we
define �k D �k and clearly ��

k
D �k;

• the two points imply that �kLk D 0;

• �kRk D Rk�k D Rk;

• .Lk CRk/
�1 D L

�

k
CR

�

k
.

Thanks to (3.3), we set

Rk C Lk D �P
kC1
k

;

Qk D �k�1 CR
2
k � Sk :

It is a straightforward check that the matrices Mk and ˆkC1 have the same form as
in equation (1.4). Let us assume that k > 1, plugging the relations above inside (4.1),
we find that

zHk D .ˆ
3
k/
�
�
.Sk � �k�1/ˆ

3
k C �k�1ˆ

1
k

�
;

which has to be restricted to the subspace ker.1 � �k/.Rk C Lk/ˆ3k , i.e., to the space
given by kerLkˆ3k . Plugging in the expression for Qk and P kC1

k
into (3.15) we find

the following equation for xkC1:

xkC1 D �R
�

k
.�k C .Sk � �k�1/xk/ � Lkxk :

It follows that, if Lkxk D 0 (and consequently �kxk D xk) and xk D ˆ3k�0,

�hxk; RkxkC1i D hxk; �k.�k C .Sk � �k�1/xk/i D hxk; �k C .Sk � �k�1/xki

D h�0; zHk�0i C hxk; .1 � �k�1/�ki:
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So, for k � 1 the quadratic form Hk coincides with

�hxk; RkxkC1 C .1 � �k�1/�ki D �h�0; .ˆ
3
k/
�.Rkˆ

3
kC1 C .1 � �k�1/ˆ

1
k/�0i;

restricted to ker.1 � �k/ˆ3k . It remains to check the case k D 1. The contribution we
are missing is the one of 	jW1

wich coincides again with the index of S1 restricted
to ¹x1 2 Rn W .1 � �1/x1 D 0º. Let us show that the formula for H1 still holds true,
provided that B0 is invertible (and thus 1� �0 D 0). Using (3.16), we have that x1 D
�0.P

0
1 /
��0 D �0�1 and using (3.3), we find Q1 D ��10 C R

2
1 � S

2
1 . So, if x 2 W1,

we can compute

�hx1; R1x2i D hx1; �1.�1 � .�
�1
0 � S1/x1/i D hx1; S1x1i D hx;	xi:
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