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Null controllability and Stackelberg–Nash strategy for a 2 � 2

system of parabolic equations

Islanita C. A. Albuquerque and Maurício C. Santos

Abstract. This paper is dedicated to solving a multi-objective control problem for a 2 � 2 sys-
tem of parabolic equations. Here, we have many objectives, possibly conflictive, and we adopt
a concept of hierarchy for the controls. We have the leader control, responsible for objectives
of controllability type, and the follower controls which intend to be a Nash-equilibrium with
respect to some given cost functionals. The novelty here is that we formulate this problem for
systems of parabolic equations, meaning that we have many variables and naturally much more
objectives to accomplish.

1. Introduction

In a standard mono-objective control problem for PDEs, the task is to see whether
it is possible or not to find an external force so that its solutions achieve a single
target. In this case, the objectives are usually of the controllability type, where one
wants to drive the state to the target exactly (or approximately) in a finite time, or
also, it may appear in the form of an optimal control problem, where minimizing a
cost for the state is desirable. In real life, many control problems are more complex,
especially when considering many objectives which are in conflict. For instance, one
may want to control the temperature of a region (or object) in a finite time while
we maintain it at desired levels in sub-regions. Another application is that one may
want to control the concentration of a chemical product in a lake, keeping desirable
levels in specific regions of the lake. By these examples, we see that achieving the
best scenario for each objective might be impossible in the sense that approaching the
state to one target may turn it very distant to the other one. To overcome that, concepts
of equilibrium are usually adopted.

There are several concepts of equilibria for multi-objective control problems.
They have their origin in game theory and are mainly motivated by problems in eco-
nomic sciences. We mention the non-cooperative optimization strategy proposed by
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J. Nash in [16], the Pareto cooperative strategy in [17], and the Stackelberg hierarchic-
cooperative strategy in [18]. Concerning multi-objective control problems for systems
of PDEs, a relevant question is whether one can exactly (or approximately) control it
to a given state in a given time and also make the state accomplish other goals, such
as minimizing a cost functional.

Being more precise, let A W D.A/ � H ! H be a differential operator where its
domain D.A/ is a subspace of a Hilbert space H . Consider the differential equation´

Yt � AY D F.t/C BU.t/; t 2 .0; T /;

Y.0/ D Y0 2 H;
(1)

where Y W Œ0; T � ! H is the state, F W Œ0; T � ! H is an external force, U is the
control and B is an operator which represents the way the control acts. We assume
that system (1) is well posed with solutions in C.Œ0; T �; H/. A standard control-
lability problem is the following: for each Y0; Y1 2 H , is there a control U such
that the solution of (1) satisfies Y.T / D Y1? In general, this question is not easy to
answer and depends on the nature of the operator A. For instance, there are posi-
tive results for hyperbolic equations (see [6]), while for some parabolic equations it
might be impossible due to a regularizing effect (see [10]). Controlling an equation
becomes even more complicated when more objectives are in sight. Indeed, in addi-
tion to controllability, assume we want the state to be close to some other targets.
We can represent these secondary objectives by minimizing a functional J.Y;U / that
measures the distance between the state and the other target. Then, the control U
has at least two objectives to be fulfilled simultaneously. As mentioned previously,
this might be impossible to do with one single control, and what we can do to over-
come that is to adopt the Stackelberg’s optimization strategy (see [15]), which consists
in splitting the control U into two (or more) parts U D U 0 C U 1. In this case, the
objective of U 0 is of controllability, while U 1 wants to minimize J . When we aim for
more than one secondary objective, we might have n0 functionals ¹J 1; : : : ; J n0º to
minimize, and the strategy follows similarly by splitting the control U into the form
U D U 0 C U 1 C � � � C U n0 , assigning a role to each of them. It is important to men-
tion that minimizing one functional Jk for some k may turn the values of Jl (k ¤ l)
as worst as possible, that is why we have to define concepts of solution in equilibrium.
In this paper, we adopt the concept of the Nash-equilibrium (see [7]) and more details
about it will be given in the text.

There are several classical references concerning multi-objective control problems
for PDEs. We refer to the works of J. L. Lions in [14,15], where some Pareto and Nash
strategies are applied for control problems in PDEs, and we also cite the book of
J. I. Diaz and J. L. Lions in [7] as a complementary reading. It is important to remark
that in [14,15], the controllability type objective is to control the state approximately.
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A more difficult question is how one can solve the problem in an exact controllability
level. In this framework, we can cite the works of Araruna et al., in [4, 5], where
for the heat equation some positive null controllability results are proved. The main
motivation of the present work is to extend the results of [4, 5] to 2 � 2 systems of
parabolic equations.

Let us give more details about the particular problem in sight. Let � � RN be a
bounded, connected open set, whose boundary @� is regular enough. Let T > 0,QD
� � .0; T / and † D @� � .0; T /. We consider a system of coupled heat equations of
the form 8̂̂̂̂

ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

y1t ��y
1
D

2X
pD1

A1py
p
C F 1 in Q;

y2t ��y
2
D

2X
pD1

A2py
p
C F 2 in Q;

y1 D y2 D 0 in †;

y1.0/ D y10 ; y2.0/ D y20 in �;

(2)

where .y1; y2/ represents the state, .F 1; F 2/ are controls and ¹Aij ºi;jD1;2 2
ŒL1.Q/�4 is what we call the coupling matrix. Each control F i wants the state
.y1; y2/ to accomplish three objectives, one of controllability type and the other two
of optimal control type.

In general, the problem of finding one control solving more than one objective is
ill-posed, and that is why we adopt Stackelberg’s strategy. As mentioned before, the
strategy consists in dividing each control F i into three others, each one responsible
for its objective. So we write,

F i D f i1O C v
i11Oi1

C vi 21Oi2
; i D 1; 2; (3)

where for each i D 1; 2 the sets O, Oi1 and Oi2 are open sets, pairwise disjoint.
We call the controls ¹f iº2iD1 the leaders, having objectives of controllability type, in
a sense that they want to drive the state to an exact value, and we call ¹vij º2i;jD1 the
followers, with optimal control type objectives, having to be optimal concerning some
specific functionals ¹J ij º2i;jD1 that will be defined in the next section.

The problem we consider here is the following:

• The leaders want the state to reach a given target in time T . Due to the fact in (2)
we are dealing with a parabolic system, the relevant target in this null trajectory.
In other words, we must find .f 1; f 2/ so that .y1; y2/.T / D .0; 0/.

• Taking into account the leaders policy, the followers have to work to make the
costs ¹J ij º2i;jD1 as small as possible. As mentioned before, minimizing one func-
tional may turn bad the values of the others. Due to that, we will select them
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according to equilibrium criteria. In this work, we will adopt the non-cooperative
Nash equilibrium.

We will see in the following section that the accomplishment of the secondary
objectives (minimize J ij ) turns out to be equivalent to the existence of solutions of
a corresponding 10 � 10 optimality system, two forward and eight backward in time,
with the leader acting in two of these equations. We also consider the case where the
controls are present in only one equation. In this case, on the one hand, the optimality
system becomes 6 � 6, which is better to deal with from the control point of view.
But, on the other hand, the leader acts in only one equation, being the additional diffi-
culty of this case. In this way, in both situations, dealing with this forward-backward
structure and the role of the coupling coefficients to control are the main difficulties
faced here.

To the best of our knowledge, few results concerning multi-objective control prob-
lems for systems of differential equations are known. In the spirit of [5], Hernández-
Santamaría et al. (see [11]) considered a 2� 2 system of parabolic equations assuming
some particular conditions over their functionals ¹J ij º. Essentially, we can interpret
these conditions by saying that all the secondary objectives have to be achieved in
the same sub-region of the domain �. However, in real applications, more general
targets may be of interest. That is what motivates the present paper. The strategy is to
follow some of the ideas in [4] where, for the case of one single heat equation, these
conditions over the secondary objective are relaxed compared to [5]. The idea is to
use duality arguments, with Carleman estimates as the primary tool. By performing
very careful computations and using the coupling coefficients to see how information
passes from one equation to another, we prove an observability estimate to an adjoint
system.

2. Statement of the problem

As mentioned in the previous section, here we consider a control problem with many
simultaneous objectives, the primary ones of controllability type, where the leader is
responsible for it, and the secondary one, of optimal control type, managed by sec-
ondary actuators called the followers. In this section, we will see more precisely the
secondary objectives, and the strategy we will follow to accomplish them, giving a
characterization of the controls. This will allow us to see more clearly which control-
lability problem we are dealing with. Also, we state in this section the main results of
the paper.

For k; l D 1; 2, let ykl
d

be regular functions defined on a region Okl
d
� .0; T /,

¹�klº
2
k;lD1

some positive real numbers, and define further the functional J kl W
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L2.Okl � .0; T //! R by

J kl.¹vij º2i;jD1/ D
1

2

“
Okl

d
�.0;T /

jyl � ykld j
2 dxdt

C
�kl

2

“
Okl�.0;T /

jvkl j2 dxdt; k; l D 1; 2; (4)

where .y1; y2/ is the solution of (2) and (3). For each f WD ¹f iº2iD1 fixed, the fol-
lowers intend to be a Nash equilibrium for the functionals ¹J klº2

k;lD1
, meaning that

¹vij º2i;jD1 satisfies

J 11.¹vij º/ D min
Ov112L2.O11�.0;T //

J 11. Ov11; v12; v21; v22/;

J 12.¹vij º/ D min
Ov122L2.O12�.0;T //

J 12.v11; Ov12; v21; v22/;

J 21.¹vij º/ D min
Ov212L2.O21�.0;T //

J 21.v11; v12; Ov21; v22/;

J 22.¹vij º/ D min
Ov222L2.O22�.0;T //

J 22.v11; v12; v21; Ov22/;

(5)

which corresponds to a non-cooperative optimization strategy. For each k; l D 1; 2,
the follower vkl wants to minimize the objective J kl even if this represents the worst
scenario for the other objectives.

Since the problem is linear and the parameters ¹�klº are positive real numbers,
the functionals in (4) are differentiable and convex in each direction. Then, it becomes
clear that the four conditions in (5) are completely equivalent to find ¹vij º2i;jD1 such
that

@J kl

@ Ovkl

�
¹vij º

�
D 0 for every k; l D 1; 2: (6)

Using (6), we can prove that (see [5, Section 2.1.2]) the Nash equilibrium can be
characterized by

vkl D �
1

�kl
'l;kl1Okl

; k; l D 1; 2; (7)

where the function 'j;kl satisfies the following system:8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

�'
l;kl
t ��'l;kl D

2X
pD1

Apl'
p;kl
C .yl � ykld /1Okl

d
; in Q;

�'
j;kl
t ��'j;kl D

2X
pD1

Apj'
p;kl ; j ¤ l; in Q;

'j;kl D 0; over †;

'j;kl.�; T / D 0; in �;

(8)

for j; k; l D 1; 2.
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Once the Nash equilibrium is characterized by formula (7), we search for leader
controls which drives the state .y1; y2/ to zero. In this way, we are led to prove the
null controllability for the following system:8̂̂̂̂

<̂̂
ˆ̂̂̂:
y
j
t ��y

j
D

2X
pD1

Ajpy
p
C f j1O �

2X
pD1

1

�jp
'p;jp1Ojp

; in Q;

yj D 0; in †;

yj .0/ D y
j
0 ; in �;

(9)

for j D 1; 2.
To deal with the control problems proposed in here, some geometric assumptions

over the sets Okl
d

appearing in (4) are needed, for k; l D 1; 2. Here, we deal with two
possible situations,

O1l
d D O2l

d ; (10)

or
O1l
d \O ¤ O2l

d \O: (11)

Also, we have to ask that these sets touch the control domain and that some of the
coupling coefficients are bounded from bellow in there, that is, there exists C0 > 0

such that
int
®
x 2 Okl

d \OI Alp.x/ � C0
¯
¤ ;; (12)

for every k; l; p 2 ¹1; 2º, with p ¤ l .
In the case we have (11) for some value of l 2 ¹1; 2º, we find that

ŒO
Qkl
d nOkl

d � \O ¤ ;; (13)

for some .k; Qk/ 2 ¹.1; 2/; .2; 1/º. If that is the case, then we also assume the existence
of a constant C0 > 0 such that

int
®
x 2 ŒO

Qkl
d nOkl

d � \OI Alp.x/ � C0
¯
¤ ;; (14)

for p ¤ l .
It is relevant to mention that similar conditions to (10) and (11) also appear when

one single heat equation is considered (see [4,5]), so these conditions are also expect-
able here. Also, it is important to say that conditions (12) and (14) are associated with
the fact that we are considering a 2 � 2 system of equations. Very similar conditions
also appear in many results about the controllability of systems of PDEs, see [1],
for instance. Finally, we remark that for different values of l 2 ¹1; 2º, we may have
combinations of properties (10) and (11), this represents an additional difficulty to be
dealing with systems of equations.

The first problem we want to solve is the following.
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Theorem 2.1. Let .y10 ; y
2
0/ 2 ŒL

2.Q/�2, ¹Aij º 2 ŒL1.Q/�4, and C0 a positive con-
stant. Assume that the sets Okl

d
satisfy (10) or (11) and we also assume (12) for every

k; l;p 2 ¹1; 2º, p ¤ l . Moreover, we assume (14) for the values of l; k; Qk 2 ¹1; 2º such
that (13) holds. For � D min¹�klº sufficiently large, let .v1; v2/ 2

Q2
iD1 L

2.Oi �

.0; T // be the Nash equilibrium for the functionals (4). Under these assumptions,
there exists a leader control .f 1; f 2/ 2 ŒL2.O � .0; T //�2 such that the solution
of (2), with ¹F iº2iD1 given by (3), satisfies .y1.T /; y2.T // D .0; 0/.

The main difficulty in proving Theorem 2.1 is that, once we characterize the Nash
equilibrium, we reduce the multi-objective control problem to a partial null control-
lability problem for a system of several equations (ten precisely) acting only over
two equations. We remark that for the case of one single equation (see [4, 5]), the
corresponding optimality system is composed of three equations only.

Another interesting problem arises when one tries to control the system with fewer
controls. Indeed, let us consider in (2) the control F 2 D 0, and let us follow a similar
strategy. Now, for kD 1;2, we consider yk

d
sufficiently regular functions, defined over

a region Ok
d
� .0; T /, and ¹�kº2kD1 sufficiently large real numbers. In this case, we

define the functionals

J k.¹vj º2jD1/ D
1

2

“
Ok

d
�.0;T /

jyk � ykd j
2 dxdt C

�k

2

“
Ok�.0;T /

jvkj2 dxdt; (15)

k D 1; 2, and we search for followers satisfying

J 1.¹vj º/ D min
Ov12L2.O1�.0;T //

J 1. Ov1; v2/;

J 2.¹vj º/ D min
Ov22L2.O2�.0;T //

J 1.v1; Ov2/:

Here, we also have the following characterization for the Nash equilibrium (see
[5, Section 2.1.2]):

vj D �
1

�j
'j;j1Oj

; j D 1; 2; (16)

where, for i; j D 1; 28̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

�'
j;j
t ��'

j;j
D

2X
pD1

Apj'
p;j
C .yj � y

j

d
/1

O
j

d

in Q;

�'
i;j
t ��'

i;j
D

2X
pD1

Api'
p;j ; i ¤ j in Q;

'i;j D 0; over †;

'i;j .�; T / D 0; in �:

(17)
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In this case, we also assume some geometric conditions over the sets Oi
d

. Pre-
cisely, we ask them to touch the control domain and also, we suppose the existence of
a constant C0 > 0 such that

int
®
x 2 .Oi

d \O/ n suppAj i I Aij .x/ � C0
¯
¤ ;; (18)

and
int
®
x 2 ŒO

j

d
nOi

d � \OI Aj i .x/ � C0
¯
¤ ;; (19)

for some .i; j / 2 ¹.1; 2/; .2; 1/º.
In this context, the second problem under view is the following.

Theorem 2.2. Let .y10 ; y
2
0/ 2 ŒL

2.Q/�2, ¹Aij º 2 ŒL1.Q/�4, and C0 a positive con-
stant. Assume that the sets Ok

d
and the coupling coefficients satisfy properties (18)

and (19) for some .i; j / 2 ¹.1; 2/; .2; 1/º. For z� D min¹�kº sufficiently large, let
¹vj º2jD1 be the Nash equilibrium for the functionals (15). Under these assumptions,
there exists a leader control f i 2 L2.O � .0; T // such that the solution of (2) with
F i given by (3), and F j D 0 for j ¤ i , satisfies .y1.T /; y2.T // D .0; 0/.

We have the following remarks.

Remark 2.3. In assumptions (12), (14), (18) and (19), we can replace the conditions
Aij .x/ � C0 by �Aij .x/ � C0 such that all results presented in this paper still hold.

Remark 2.4. It is not clear that the existence of a Nash equilibrium, as well as the
existence and uniqueness of solutions to the optimality system (8)–(9) holds for any
choice of the parameters ¹�klº. A sufficient condition to overcome that is to assume
that � D min¹�klº is positive, and sufficiently large, greater than a constant C D
C.T; �; ¹Oklº; ¹O

kl
d
º; ¹Aij º/. The proof of that is standard and will be omitted, we

can cite [5] for a proof in the case where one single heat equation is controlled under
similar strategies to the ones presented here. The same remark holds for the parameter
¹�kº appearing in the functionals (15), that is, they are also considered in such a way
that z� D min¹�kº is sufficiently large. This is essentially why these assumptions
appear in Theorems 2.1 and 2.2.

Note that the proof of Theorem 2.1 cannot be interpreted as a natural step to follow
to prove Theorem 2.2. Indeed, in Theorem 2.1 we have to deal with an optimality
system composed of ten equations and two leaders, while in Theorem 2.2, we have to
deal with an optimality system with six equations and only one leader. In this way, in
terms of difficulty to solve, the problems generated in Theorems 2.2 and 2.1 are not
comparable.
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By the Hilbert uniqueness method, controllability properties for linear systems
of PDEs are equivalent to some suitable observability inequalities to the solutions
of an adjoint state. That is the approach we are going to follow, and to prove such
inequalities, we are going to make use of some appropriated Carleman estimates.

3. Carleman estimates

We dedicate this section to proving some Carleman type estimates to the solutions
of an adjoint equation. Before we start, we introduce some sets and notation very
important for what follows.

Under assumption (12), there exist C0 > 0 and open subsets

!kl �� y!kl �� z!kl �� Okl
d \O; for every k; l 2 ¹1; 2º; (20)

such that
Alp � C0 in z!kl ; (21)

for every k; l; p 2 ¹1; 2º, p ¤ l .
It is not difficult to see that if (13) holds, then we can assume that

z!
Qkl
\Okl

d D ;: (22)

These conditions will be crucial in forthcoming computations.
If conditions (18) and (19) hold for some .i; j /, then there exist C0 and open

subsets

!k �� y!k �� z!k �� !k� �� Ok
d \O; for every k D 1; 2; (23)

such that
Aij .x/ � C0 and Aj i .x/ D 0; for every x 2 !i�; (24)

and that
z!j \Oi

d D ; and Aj i .x/ � C0; for every x 2 !j� : (25)

The resolution of Theorems 2.1 or 2.2 is entirely equivalent to the following
observability estimates to the solutions of an adjoint system. In what follows, we
prove such inequalities, which correspond to the main result of the present paper.
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Theorem 3.1. (i) For j; k; l 2 ¹1; 2º, let . j ; j;kl/ the solution of the following
adjoint system:8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

� 
j
t �� 

j
D

2X
pD1

Apj 
p
C

2X
pD1

j;pj1
O

pj

d

in Q;


j;kl
t ��j;kl D

2X
pD1

Ajp
p;kl ; j ¤ l; in Q;


l;kl
t �� l;kl D

2X
pD1

Alp
p;kl
�

1

�kl
 k1Okl

in Q;

 j D j;kl D 0; in †;

 j .T / D  Tj ; j;kl.0/ D 0; in �;

(26)

where  Tj 2 L
2.�/. Under the same assumptions as in Theorem 2.1, there

exist C > 0 and a weight function �.t/ with limt!T �.t/ D 0, such that the
following observability inequality holds:

2X
kD1

Z
�

j k.0/j2 dx C

2X
k;lD1

“
Okl

d
�.0;T /

�2.t/j l;kl j2 dxdt

� C

2X
kD1

“
O�.0;T /

j kj2 dxdt: (27)

(ii) For i; j D 1; 2, let . j ; j i / the solution of8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

� it �� 
i
D

2X
pD1

Api 
p
C  i i1Oi

d
in Q;

 i it ��
i i
D

2X
pD1

Aip
pi
�
1

�i
 i1Oi

in Q;


j i
t ��

j i
D

2X
pD1

Ajp
pi ; j ¤ i; in Q;

 i D  i i D j i D 0 in †;

 i .T / D  Ti ;  i i .0/ D j i .0/ D 0 in �:

(28)

Under the same assumptions as in Theorem 2.2, there existC >0 and a weight
function O�.t/ where limt!T O�.t/ D 0, such that the following observability
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inequality holds:

2X
kD1

Z
�

j k.0/j2 dx C

“
Ok

d
�.0;T /

�2.t/jkkj2 dxdt

� C

“
O�.0;T /

j i j2 dxdt: (29)

As we already mentioned, if we prove the observability inequality (27), then we
are solving Theorem 2.1, while if we prove (29), then we are solving Theorem 2.2.

It is important to mention that it is also not clear that systems (26) and (28) possess
solutions for any value of ¹�klº or ¹�kº. By similar reasons as for the optimality
system (8)–(9) (see Remark 2.4), we can prove the well-posedness for these systems
by taking � D min¹�k;lº and z� D min¹�kº sufficiently large independently of the
data  T . In this way, we can take � and z� large enough so that either the optimality
systems or the respective adjoint systems are well-posed.

We remark that the search for controllability/observability results for systems of
parabolic equations is an extensive research area in control theory, and many posi-
tive/negative conclusions are known. We can refer to [1] for a survey and [2] where,
for some specific coupling properties, the authors have proved the existence of a min-
imal time of controllability. More recently, Duprez, M. and Lissy, P. in [8] and [9]
have found some sufficient conditions for the controllability of systems with fewer
controls, by applying algebraic methods.

Now, we have the following Lemma, which is already used in [4] for the case of
one single equation. Here, we have to adapt it to a more general situation.

Lemma 3.2. Let ƒ be a finite set and ¹qmºm2ƒ a family of disjoint open subsets of
O such that there exists zO �� O where qm � zO for every m 2 ƒ. Then, there exists
a family of functions ¹�mºm2ƒ in C 2.x�/, such that´

�m > 0 in �; �m D 0 on @�;

kr�mk > C in � n qm; �n D �m in � n zO for n ¤ m:
(30)

Proof. This result is already proved in [4] for the case ƒ D ¹1; 2º. To generalize it
to more sets, we assume that ƒ D ¹1; : : : ; N0º for some N0. The general case can be
obtained by a simple identification argument.

It is well known that (see [10]) there exists a function �1 satisfying´
�1 > 0 in �; �1 D 0 on @�;

kr�1k > C in � n q1:
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Using [4, Lemma 5], we get that, for each m ¤ 1, we can take zOm � zO, such that
q1 [ qm � zOm, and a weight function nm such that´

�m > 0 in �; �m D 0 on @�;

kr�mk > C in � n qm; �m D �1 in � n zOm:

It is clear that the family ¹�mº
N0

mD1 satisfies (30) and the lemma is proved.

Now, for any finite setƒ, let ¹�mºm2ƒ be a family given by Lemma 3.2. We define
the following weight functions, very common when dealing with Carleman estimates:

�m.x; t/ WD
e4�k�mk1 � e�.2k�mk1C�m.x//

t .T � t /
;

�m.x; t/ WD
e�.2k�mjj1C�m.x//

t .T � t /
; m 2 ƒ:

(31)

For n 2 N, we introduce the notations

Imn . / WD s
n�4�n�3

“
Q

e�2s�m.�m/
n�4.j t j

2
C j� j2/ dxdt C Lmn . /;

where

Lmn . / WD s
n�2�n�1

“
Q

e�2s�m.�m/
n�2
jr j2 dxdt

C sn�nC1
“
Q

e�2s�m.�m/
n
j j2 dxdt:

For uT 2 L2.�/ and f;f1; : : : ; fr 2 L2.Q/, let u be the solution of the following
equation: 8̂̂̂̂

<̂̂
ˆ̂̂̂:
�ut ��u D f C

rX
kD1

@kfk on
X

;

u D 0 on
X

;

u.�; T / D uT in �:

(32)

Then, the following Carleman estimate holds.

Proposition 3.3. Letƒ be a finite set, n 2N, ¹qmºm2ƒ a family of open subsets of�,
and let ¹�mºm2ƒ be the functions given by Lemma 3.2. For each m 2 ƒ, there exists
a constant C.�; qm/ > 0 so that, for every s � sm D C.�; qm/.T C T 2/ and every
� � C , the following estimates hold for every solution u of (32) with uT 2 L2.�/, in
each of the following cases:
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(i.) if f 2 L2.�/ and fk D 0 for every k 2 ¹1; : : : ; nº, then

Imn .u/ � C

�
sn�nC1

“
qm�.0;T /

e�2s�m.�m/
n
juj2 dxdt

C sn�3�n�3
“
Q

e�2s�m.�m/
n�3
jf j2 dxdt

�
I

(ii.) if f 2 L2.�/ and fk 2 L2.�/ for every k 2 ¹1; : : : ; rº, then

Lmn .u/ � C

�
sn�nC1

“
qm�.0;T /

e�2s�m.�m/
n
juj2 dxdt

C sn�3�n�3
“
Q

e�2s�m.�m/
n�3
jf j2 dxdt

C sn�1�n�1
rX
kD1

“
Q

e�2s�m.�m/
n�1
jfkj

2 dxdt

�
:

The estimates given in Propositions 3.3 are classical in control theory and are well
known nowadays, see references [10] and [13] for a proof.

In the next section, we prove new Carleman estimates to the solutions of (26)
and (28). These estimates are the principal tools we are going to use to prove observ-
ability inequalities (27) and (29), respectively.

4. New Carleman estimates

We have the following result.

Proposition 4.1. (i.) Assume that, for each l D 1; 2, the sets Okl
d

satisfy one of
the conditions (10) or (11) and also assume (12) for every k; l; p 2 ¹1; 2º,
with p ¤ l . Moreover, in the case we have (13) for some l; k; Qk 2 ¹1; 2º, we
suppose that condition (14) holds. Then, there exists C > 0 such that, for
� � C and s � maxk;l;p;j ¹C.T C T 2/; CT 2kApj k

2
3 º sufficiently large, the

following estimate holds:

2X
j;k;lD1

I kln .
j;kl/C snC3�nC4

2X
jD1

“
Q

e�2s�jj .�jj /
nC3
j j j2 dxdt

� CsnC8�nC9
2X

p;jD1

“
O�.0;T /

e�2s�pj �nC8pj j 
p
j
2 dxdt; (33)

for every solution ¹ j ; j;lkºj;k;l of (26).
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(ii.) Assume that conditions (18) and (19) hold for some .i; j / 2 ¹.1; 2/; .2; 1/º.
Then, there exists C > 0 such that, for � � C and s � maxi;j ¹C.T C T 2/;
CT 2kAij k

2
1º sufficiently large, it holds

sn�nC1
“
Q

e�2s�i .�i /
n
j i j2 dxdt C I

j
n�3. 

j /

C

2X
kD1

�
I in�3.

ki /C I
j
n�6.

kj /
�

� CsnC9�nC10
“

O�.0;T /

.e�2s�i .�i /
nC9
C e�2s�j .�j /

nC3/j i j2 dxdt;

(34)

for every ¹ j ; j iºj;i solution of (28).

Proof. For the proof of (i.), we can deal with three possible cases:

(A) Condition (10) holds for every l in ¹1; 2º.

(B) Condition (10) holds for only one value of l in ¹1; 2º.

(C) Condition (11) holds for every l D 1; 2.

Condition (C) is the most difficult to handle and we are going to concentrate on
it, in Remark 4.2 we make some comments concerning the other possibilities. We
remind that, if (11) is true for some l 2 ¹1; 2º, then condition (13) holds for some
.k; Qk/ 2 ¹.1; 2/; .2; 1/º, this will be important in forthcoming computations. In this
way, the proof of case (C) is divided into two others, case (C1) where for any l 2 ¹1;2º,
condition (13) holds for any k ¤ Qk, and case (C2) where for only one l 2 ¹1; 2º con-
dition (13) holds for any k ¤ Qk.

Proof of item (i.), case (C1): Consider a family of open sets satisfying (20) and (21).
In this proof we can assume (22) for any l 2 ¹1; 2º and any k ¤ Qk.

From now on, we are going to make use of the weight functions (30) and (31) for
ƒ D ¹1; 2º � ¹1; 2º, m D .k; l/ and ¹qmº D ¹!klº.

For .k; l/ 2ƒ fixed, we apply item (i.) of Proposition 3.3 for uD j;kl (see (26)),
qm D !

kl , and we sum the resulting estimates to obtain that

2X
jD1

I kln .
j;kl/ � C

2X
jD1

�
sn�nC1

“
!kl�.0;T /

e�2s�kl .�kl/
n
jj;kl j2 dxdt

C sn�3�n�3
“
Q

e�2s�kl .�kl/
n�3

2X
pD1

kAjpk
2
1j

p;kl
j
2 dxdt

�
C Csn�3�n�3

“
Okl�.0;T /

e�2s�kl .�kl/
n�3
j kj2 dxdt; (35)
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for every �� C and s � skl D C.�;!kl/.T C T 2/. Given a small " > 0, we use the
fact that T 6�kl � C , and we get that

sn�3�n�3
“
Q

e�2s�kl .�kl/
n�3

2X
pD1

kAjpk
2
1j

p;kl
j
2 dxdt

� CT 6kAjpk
2
1s

n�3�n�3
“
Q

e�2s�kl .�kl/
n

2X
pD1

jp;kl j2 dxdt

� "I kln .
j;kl/; k; l D 1; 2; (36)

for � � C and s � max¹skl ; CT 2kAjpk
2
3 º. Combining (35) and (36), we obtain that

2X
jD1

I kln .
j;kl/ � Csn�nC1

2X
pD1

“
!kl�.0;T /

e�2s�kl .�kl/
n
jp;kl j2 dxdt

C sn�3�n�3
“

Okl�.0;T /

e�2s�kl .�kl/
n�3
j kj2 dxdt; (37)

for all k; l D 1; 2.
Since (21) holds for p ¤ l , we can take positive functions y�kl 2 C 20 .y!

kl/ such
that y�kl D 1 in !kl , and we can show that

sn�nC1
“
!kl�.0;T /

e�2s�kl .�kl/
n
jp;kl j2 dxdt

� Csn�nC1
“
y!kl�.0;T /

y�kle�2s�kl .�kl/
nAlpj

p;kl
j
2 dxdt

D sn�nC1
“
y!kl�.0;T /

y�kle�2s�kl .�kl/
n

�

�

l;kl
t �� l;kl � Al l

l;kl
C

1

�kl
 k1Okl

�
p;kl dxdt

� "I kln .
p;kl/C CsnC4�nC5

“
y!kl�.0;T /

e�2s�kl �nC4
kl
j l;kl j2 dxdt

C Csn�nC1
“
.Okl\y!

kl /�.0;T /

e�2s�kl �nkl j 
k
j
2 dxdt; (38)

for all p; k; l D 1; 2 with p ¤ l and " sufficiently small.
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Then, we combine (37) and (38), and we use the fact that Okl \ y!
kl D ;, to get

that

2X
jD1

I kln .
j;kl/ � CsnC2�nC3

“
y!kl�.0;T /

e�2s�kl .�kl/
n
j l;kl j2 dxdt

C Csn�3�n�3
“

Okl�.0;T /

e�2s�kl .�kl/
n�3
j kj2 dxdt; (39)

for k; l D 1; 2, for � � C and s � max¹skl ; CT 2kAjpk
2
3 º.

Let zO be given as in Lemma 3.2 and let � 2 C 2.x�/ be such that´
�.x/ D 0 for x 2 zO;

�.x/ D 1 for x 2 � nO:
(40)

For i D 1; 2, we have that the functions � j satisfy the equation8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�.� j /t ��.� 
j / D �

� 2X
pD1

Apj 
p
C

2X
pD1

j;pj1
O

pj

d

�
� 2r � .r� �  j /C 2�� j in Q;

� j D 0 on †;

.� j /.�; T / D � 
j
T in Q:

We apply item (ii.) of Proposition 4.1, replacing n by nC 3, taking m D .j; j /, u D
� j and ¹qmº D ¹!jj º, and we have, for every j D 1; 2, that

L
jj
nC3.� 

j / � C

�
snC3�nC4

“
!jj�.0;T /

e�2s�jj .�jj /
nC3
j� j j2 dxdt

C sn�n
2X

pD1

“
Q

e�2s�jj .�jj /
n
j� j2jj;pj1

O
pj

d

j
2 dxdt

C sn�n
2X

pD1

kApj k
2
1

“
Q

e�2s�jj .�jj /
nC2
j� j2j pj2 dxdt

C snC2�nC2
Z T

0

Z
O

e�2s�jj .�jj /
nC2
j j j2 dxdt

�
:

Using the definition of � (see (40)), taking � � C and s � maxp;j ¹sjj ; CT 2;
CT 2kApj k

2
3 º, we obtain

snC3�nC4
2X

jD1

“
Q

e�2s�jj .�jj /
nC3
j j j2 dxdt
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� C

2X
jD1

�
snC3�nC4

“
O�.0;T /

e�2s�jj .�jj /
nC3
j j j2 dxdt

C sn�n
2X

pD1

“
Q

e�2s�jj .�jj /
n
j� j2jj;pj1

O
pj

d

j
2 dxdt

�
:

By summing this last estimate with (39) and using the fact that all the weights coincide
in the support of � (see (30)), we absorb the terms of j;pj obtaining

2X
j;k;lD1

I kln .
j;kl/C snC3�nC4

2X
jD1

“
Q

e�2s�jj .�jj /
nC3
j j j2 dxdt

� C

2X
jD1

�
snC3�nC4

“
O�.0;T /

e�2s�jj .�jj /
nC3
j j j2 dxdt

C

2X
pD1

snC2�nC3
“
y!pj�.0;T /

e�2s�pj .�pj /
nC2
jj;pj j2 dxdt

�
; (41)

for � � C and s � maxk;l;p;j ¹skl ; CT 2; CT 2kApj k
2
3 º sufficiently large.

The next computations are dedicated to estimating the local terms of j;pj in the
right-hand side of (41). Using the fact that, for each l 2 ¹1; 2º, the sets z!kl can be
taken satisfying (22) for every k ¤ Qk, we can see that

� 
j
t �� 

j
D

2X
pD1

Apj 
p
C j;kj1

O
kj

d

in z!kj � .0; T /;

for any k 2 ¹1; 2º.
Let Q�kj 2 C 20 .z!

kj / such that Q�kj D 1 in y!kj . Then, for any k 2 ¹1;2º and " small,
we have that

snC2�nC3
“
y!kj�.0;T /

e�2s�kj .�kj /
nC2
jj;kj j2 dxdt

D snC2�nC3
“
z!kj�.0;T /

Q�kj .�kj /
nC2e�2s�kj j;kj

�

�
� 

j
t �� 

j
�

2X
pD1

Apj 
p

�
dxdt

� "I kjn .
j;kj /C CsnC8�nC9

2X
pD1

“
z!pj�.0;T /

e�2s�pj �nC8pj j 
p
j
2 dxdt: (42)

Finally, we combine (41) and (42) to obtain (33).
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In what follows, we prove item (i.) for the case (C2), that is, for only one l 2 ¹1; 2º
that condition (13) will hold for any choice of .k; Qk/ in ¹.1; 2/; .2; 1/º.

Proof of (i.), case (C2): For simplicity, we will assume that for l D 1 condition (13)
holds only when .k; Qk/ D .1; 2/, and for l D 2, we assume that (13) holds for any
k ¤ Qk. Then, the open sets ¹ z!klº can be taken in such a way that

z!11 � O21
d \O and z!kl \O

Qkl
d D ;; (43)

for l; k; Qk 2 ¹1; 2º with k ¤ Qk and .k; l/ ¤ .1; 1/.
Defining hj D j;11 C j;21 for j D 1; 2, the adjoint system (26) becomes8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

� 1t �� 
1
D

2X
pD1

Ap1 
p
C h11O11

d
� 1;21.1O11

d
� 1O21

d
/; in Q;

� 2t �� 
2
D

2X
pD1

Ap2 
p
C

2X
pD1

2;p21
O

p2

d

; in Q;

h1t ��h
1
D

2X
pD1

A1ph
p
�

2X
pD1

1

�p1
 p1Op1

; in Q;

h2t ��h
2
D

2X
kD1

A2ph
p; in Q;


l;kl
t �� l;kl D

2X
pD1

Alp
p;kl
�

1

�kl
 k1Okl

; .k; l/ ¤ .1; 1/ in Q;


j;kl
t ��j;kl D

2X
pD1

Ajp
p;kl ; .k; l/ ¤ .1; 1/ in Q;

 j D hj D j;kl D 0; for j; k; l D 1; 2 in †;

 j .T / D  T ; hj .0/ D 0; j;kl.0/ D 0; for j; k; l D 1; 2 in �:
(44)

Applying item (i.) of Proposition 3.3 to ¹.1;k2; 2;k2/º2
kD1

, .1;21; 2;21/ and
.h1; h2/, we obtain

2X
jD1

 
2X

k;lD1
.k;l/¤.1;1/

I kln .
j;kl/C I 11n .h

j /

!

� C

2X
jD1

 
sn�nC1

2X
k;lD1

.k;l/¤.1;1/

“
!kl�.0;T /

e�2s�kl .�kl/
n
jj;kl j2 dxdt
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C sn�nC1
2X

jD1

“
!11�.0;T /

e�2s�11.�11/
n
jhj j2 dxdt

!

C Csn�3�n�3
2X

p;kD1

“
Opk�.0;T /

e�2s�pk .�pk/
n�3
j pj2 dxdt; (45)

for � � C and s � max¹skl ; CT 2kAjpk
2
3 ºk;l;j;p .

Using the equation of h1 in (44), that is

A12h
2
D h1t ��h

1
� A11h

1
C

2X
pD1

1

�p1
 p1Op1

;

and from assumption (21), and taking " > 0 sufficiently small, we prove that

sn�nC1
“
!11�.0;T /

e�2s�11.�11/
n
jh2j2 dxdt

� "I 11n .h
2/C CsnC4�nC5

“
y!11�.0;T /

e�2s�11�nC411 jh
1
j
2 dxdt

C Csn�nC1
2X

pD1

“
.Op1\y!11/�.0;T /

e�2s�11�n11j 
p
j
2 dxdt: (46)

In a very similar way, we use (21) again, obtaining

sn�nC1
“
!kl�.0;T /

e�2s�kl .�kl/
n
jj;kl j2 dxdt

� "I kln .
j;kl/C CsnC4�nC5

“
y!kl�.0;T /

e�2s�kl �nC4
kl
j l;kl j2 dxdt

C Csn�nC1
“
.Okl\y!

kl /�.0;T /

e�2s�kl �nkl j 
k
j
2 dxdt; (47)

for � � C and s � CT 2kAjj k
2
3 , for j; k; l D 1; 2 where j ¤ l and .k; l/ ¤ .1; 1/.

Now, applying (ii.) of Proposition 3.3 for � j , where � is given in (40), summing
to (45) and using (46)–(47), we get

2X
jD1

 
2X

k;lD1
.k;l/¤.1;1/

I kln .
j;kl/C I 11n .h

j /

!

C snC3�nC4
2X

jD1

“
Q

e�2s�jj .�jj /
nC3
j j j2 dxdt
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� C

 
snC3�nC4

2X
jD1

“
zO�.0;T /

e�2s�jj .�jj /
nC3
j j j2 dxdt

C snC4�nC5
“
y!11�.0;T /

e�2s�11�nC411 jh
1
j
2 dxdt

C snC2�nC3
2X

k;lD1
.k;l/¤.1;1/

“
y!kl�.0;T /

e�2s�kl .�kl/
nC2
j l;kl j2 dxdt

!
; (48)

for ��C and s � max¹skl ; CT 2kAjpk
2
3 ºk;l;j;p sufficiently large. To absorb the local

terms of  l;kl and h1, we use (43) and the first equation (44), to have

� 1t �� 
1
D

2X
pD1

Ap1 
p
C h1 in y!11 � .0; T /: (49)

Also, using again (43) and the first two equations of (44), we get

� lt �� 
l
D

2X
pD1

Apl 
p
C  l;kl in y!kl � .0; T /; (50)

for every k; l D 1; 2, .k; l/¤ .1; 1/. Finally, from (48), (49) and (50), we can proceed
in a similar way as in (42), and we obtain that

2X
jD1

 
2X

k;lD1
.k;l/¤.1;1/

I kln .
j;kl/C I 11n .h

j /

!

C snC3�nC4
2X

jD1

“
Q

e�2s�jj .�jj /
nC3
j j j2 dxdt

� CsnC3�nC4
2X

jD1

“
zO�.0;T /

e�2s�jj .�jj /
nC3
j j j2 dxdt: (51)

Since we have hj and j;2j in the left-hand side of (48), we can write j;1j D hj �
j;2j to add the global terms of j;1j in the left-hand side of (52), and hence estimate
(33) follows.

Remark 4.2. We have proved item (i.) of Proposition 4.1 by assuming that condition
(C) holds, which corresponds to the case where (11) is valid for every l D 1; 2, and for
two specific cases. The case where, for each l 2 ¹1; 2º, property (13) can be verified
for only one choice of .k; Qk/ 2 ¹.1; 2/; .2; 1/º is not considered, and it can be treated
by adapting the proof of case (C2). Indeed, if we assume, for instance, that for l D 1
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condition (13) holds only for .k; Qk/ D .1; 2/ and for l D 2 it holds only for .k; Qk/ D
.2; 1/, then the open sets ¹ z!klº can be taken in such a way that

z!i i � O
j i

d
\O and z!j i \Oi i

d D ; for every j ¤ i:

In this case, we can see that equation (50) does not hold for .k; l/ D .2; 2/, and then
we cannot absorb the local term of 2;22 in the right-hand side of (48). To overcome
that, we define the function pj D j;12 C j;22, we use the equation satisfied by  2

in z!22, which is similar to (49), and we bound the local terms of pj in a very similar
way as we did for hj .

Now, if (10) is valid for some l 2 ¹1;2º, the analysis is much more simpler. Indeed,
to fix the ideas, let us assume that

O11
d D O21

d :

In this case, we can define the same functions hj D j;11 C j;22 and we see that the
equation satisfied by ¹ j ; hj ; j;klº2

j;k;lD1
is similar to (44), with the only difference

that the equation of  1 turns into

� 1t �� 
1
D

2X
pD1

Ap1 
p
C h11O11

d
; in Q:

This equation allows us to estimate a local term of h1 in z!11 in terms of  1.

Now, we proceed to the proof of (ii.).

Proof of (ii.): In this case, we are going to take open sets satisfying (23), and also
(24) and (25) for some .i; j /. We are going to use item (i.) of Proposition 3.3 with
¹qmº D ¹!

1; !2º and the functions ¹�mº given in Lemma 3.2.
Let ¹. i ;  i i ; j i /º2i;jD1 a solution of (28). To fix the ideas, we are assuming that

(24) and (25) are valid for .i; j / D .1; 2/.
Using item (i.) of Proposition 3.3 for .11; 21/ and replacing n by n � 3, we get

that

I 1n�3.
11/C I 1n�3.

21/

� C

�
sn�3�n�2

“
!1�.0;T /

e�2s�1.�1/
n�3

�
j11j2 C j21j2

�
dxdt

C sn�6�n�6
“

O1�.0;T /

e�2s�1.�1/
n�6
j 1j2 dxdt

�
; (52)

for � � C and s � C.T C T 2.1Cmax¹kAipk
2
3 º//. Let y�1 2 C 20 .y!

1/ be a positive
function such that y�1 D 1 in !1. Using that A12 � C0 > 0 in !1 � .0; T / (see (24)),
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we obtain that

sn�3�n�2
“
!1�.0;T /

e�2s�1.�1/
n�3
j21j2 dxdt

� Csn�3�n�2
“
y!1�.0;T /

y�1e�2s�1.�1/
n�321

�

�
�11t ��

11
� A11

11
C

1

�1
 11O1

�
dxdt

� "I 1n�3.
21/C CsnC1�nC2

“
y!1�.0;T /

e�2s�1.�1/
nC1
j11j2 dxdt

C sn�3�n�2
“
.y!1\O1/�.0;T /

e�2s�1.�1/
n�3
j 1j2 dxdt; (53)

for " > 0 sufficiently small. Combining (52), (53), and using that O \O1 D ;, we get
that

I 1n�3.
11/C I 1n�3.

21/

� C

�
snC1�nC2

“
y!1�.0;T /

e�2s�1.�1/
nC1
j11j2 dxdt

C sn�6�n�6
“

O1�.0;T /

e�2s�1.�1/
n�6
j 1j2 dxdt

�
; (54)

for � � C and s � C.T C T 2.1Cmax¹kAipk
2
3 º//.

In a completely analogous way, using thatA21 � C0 > 0 in !2 � .0;T / (see (25)),
we can prove that

I 2n�6.
22/C I 2n�6.

12/

� C

�
sn�2�n�1

“
y!2�.0;T /

e�2s�2.�2/
n�2
j22j2 dxdt

C sn�9�n�9
“

O2�.0;T /

e�2s�2.�2/
n�9
j 2j2 dxdt

�
; (55)

for � � C and s � C.T C T 2.1Cmax¹kAipk
2
3 º//. Summing (54) and (55) we

obtain

2X
i;jD1

I in�3i .
j i / � C

�
snC1�nC2

“
y!1�.0;T /

e�2s�1.�1/
nC1
j11j2 dxdt

C sn�2�n�1
“
y!2�.0;T /

e�2s�2.�2/
n�2
j22j2 dxdt
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C sn�6�n�6
“

O1�.0;T /

e�2s�1.�1/
n�6
j 1j2 dxdt

C sn�9�n�9
“

O2�.0;T /

e�2s�2.�2/
n�9
j 2j2 dxdt

�
: (56)

Let zO be an open set given in Lemma 3.2, and � 2 C 2.x�/ be a function given by
(40). From the first equation of system (28), we find that8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

�.� 1/t ��.� 
1/ D �

� 2X
pD1

Ap1 
p
C 111O1

d

�
C  1�� � 2r. 1r�/ in Q;

� 1 D 0 on †;

.� 1/.�; T / D � 1T in Q:

By applying item (ii.) of Proposition 3.3, we obtain that

sn�nC1
“
Q

e�2s�1.�1/
n
j 1j2 dxdt

� C

�
sn�nC1

“
O�.0;T /

e�2s�1.�1/
n
j 1j2 dxdt

C sn�3�n�3
2X

pD1

“
Q

e�2s�1.�1/
n�3
j� j2jAp1 

p
j
2 dxdt

C sn�3�n�3
“

O1
d
�.0;T /

e�2s�1.�1/
n�3
j� j2j11j2 dxdt

�
(57)

for � � C and s � s1. Now, using item (i.) of Proposition 3.3 for  2, we get

I 2n�3. 
2/ � C

�
sn�3�n�2

“
!2�.0;T /

.�2/
n�3e�2s�2 j 2j2 dxdt

C sn�6�n�6
2X

pD1

“
Q

e�2s�2.�2/
n�6
jAp2 

p
j
2 dxdt

C sn�6�n�6
“

O2
d
�.0;T /

e�2s�2.�2/
n�6
j22j2 dxdt

�
; (58)

for � � C and s � s2.
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Summing (57) and (58), we can absorb the global terms of  1 and  2 by taking
s large enough, obtaining

sn�nC1
“
Q

e�2s�1.�1/
n
j 1j2 dxdt C I 2n�3. 

2/

� C

�
sn�nC1

“
O�.0;T /

e�2s�1.�1/
n
j 1j2 dxdt

C sn�3�n�2
“
!2�.0;T /

e�2s�2.�2/
n�3
j 2j2 dxdt

C sn�3�n�3
“

O1
d
�.0;T /

e�2s�1.�1/
n�3
j11j2 dxdt

C sn�6�n�6
“

O2
d
�.0;T /

e�2s�2.�2/
n�6
j22j2 dxdt

�
(59)

for � � C and s � maxi;j ¹sj ; CT 2kAij k21º.
Summing (56) and (59), and absorbing the global terms of  i and  i i , we obtain

sn�nC1
“
Q

e�2s�1.�1/
n
j 1j2 dxdt C I 2n�3. 

2/C

2X
i;jD1

I in�3i .
j i /

� C

�
sn�nC1

“
O�.0;T /

e�2s�1.�1/
n
j 1j2 dxdt

C sn�3�n�2
“
!2�.0;T /

e�2s�2.�2/
n�3
j 2j2 dxdt

C snC1�nC2
“
y!1�.0;T /

e�2s�1.�1/
nC1
j11j2 dxdt

C sn�2�n�1
“
y!2�.0;T /

e�2s�2.�2/
n�2
j22j2 dxdt

�
; (60)

� � C and s � maxi;j ¹sj ; CT 2.1C kAij k21/º large enough.
In order to absorb the local terms of  i i in the right-hand side of (60), we are going

to use the equation of  i in (28), and the fact that the sets y!i satisfy (24). Indeed, let
Q� i 2 C 20 .z!

i / be positive functions such that Q� i D 1 in y!i . Then, we have that

snC1�nC2
“
y!1�.0;T /

e�2s�1.�1/
nC1 Q�1j11j2 dxdt

D snC1�nC2
2X

pD1

“
z!1�.0;T /

e�2s�1.�1/
nC1 Q�111.� 1t �� 

1
� A11 

1/ dxdt
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� "I 1n�3.
11/C snC9�nC10

“
z!1�.0;T /

e�2s�1.�1/
nC9
j 1j2 dxdt; (61)

and

sn�6�n�5
“
y!2�.0;T /

e�2s�2.�2/
nC1 Q�2j22j2 dxdt

� sn�6�n�5
2X

pD1

“
y!2�.0;T /

e�2s�2.�2/
n�6 Q�222

� .� 2t �� 
2
� A12 1 � A22 

2/ dxdt

� "I 2n�6.
22/C sn�6�n�5

“
z!2�.0;T /

e�2s�2.�2/
n�6
j 1j2 dxdt

C sn�2�n�1
“
z!2�.0;T /

e�2s�2.�2/
n�2
j 2j2 dxdt; (62)

for " > 0 sufficiently small. Combining (60), (61) and (62), we get that

sn�nC1
“
Q

e�2s�1.�1/
n
j 1j2 dxdt C I 2n�3. 

2/C

2X
i;jD1

I in�3i .
j i /

� C

�
snC9�nC10

“
O�.0;T /

�
e�2s�1.�1/

nC9
C e�2s�2.�2/

n�6
�
j 1j2 dxdt

C sn�2�n�1
“
z!2�.0;T /

e�2s�2.�2/
n�2
j 2j2 dxdt

�
: (63)

Since we are assuming (25), we can take a positive function �2� 2 C
2
0 .!

2
�/ such that

�2� D 1 in z!2, and then

sn�2�n�1
“
z!2�.0;T /

e�2s�2.�2/
n�2��j 

2
j
2 dxdt

D sn�2�n�1
“
!2
��.0;T /

e�2s�2.�2/
n�2�2� 

2.� 1t �� 
1
� A11 

1/ dxdt

� "I 2n�3. 
2/C snC3�nC4

“
!2
��.0;T /

e�2s�2.�2/
nC3
j 1j2 dxdt: (64)

Combining (63) and (64) we obtain (34) for �� C and s � maxi;j ¹sj ; CT 2kAij k21º
large enough. We remind that for the proof of (ii.), we have considered the case
.i; j / D .1; 2/. The case where .i; j / D .2; 1/ is completely analogous.

Next section is dedicated to the proof of Theorem 3.1.



I. C. A. Albuquerque and M. C. Santos 188

5. Observability inequalities

In this section, we are going to use Proposition 4.1 to prove Theorem 3.1. To do
that, we are going to combine the Carleman estimates given in Proposition 4.1 with
suitable energy estimates to the solutions of (26). Here, we will concentrate on the
proof of (27), since the proof of (29) follows in a completely analogous way.

Let ¹ j ; j;klº be a solution of (26). By energy estimates, we have that

2X
pD1

kp;kl.�; t /k22 �
C

�kl

Z t

0

k k.�; s/k22 ds; k; l D 1; 2; t 2 Œ0; T �; (65)

and

2X
pD1

k p.�; t /k22 � C

2X
pD1

k p.�; t 0/k22

C .1Cmax
i;j
¹kAij k

2
1º/

Z t 0

t

2X
pD1

k p.�; s/k2 ds

C C

Z t 0

t

2X
j;pD1

kj;pj .�; s/k2 ds: (66)

Combining (65) and (66), we have that

2X
pD1

k p.�; t /k22 � C

2X
pD1

k p.�; t 0/k22

C .1Cmax
i;j
¹kAij k

2
1º/

Z t 0

t

2X
pD1

k p.�; s/k2 ds

C C

2X
p;jD1

T

�pj

Z t 0

0

k j .�; s/k22 ds; k; l D 1; 2;

for every 0 � t < t 0 � T . Now, we apply Gronwall’s lemma and we get that

2X
pD1

k p.�; t /k22 � Ce
.1Cmaxij ¹kAij k

2
1º/.t

0�t/

2X
pD1

�
k p.�; t 0/k22

C

2X
jD1

T

�pj

Z t 0

0

k j .�; s/k22 ds

�
:
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Integrating over Œ0; t 0� and taking, if necessary, �pj even larger, we obtain that

2X
pD1

Z t 0

0

k p.�; s/k22 ds � Ce
.1Cmaxij ¹kAij k

2
1º/.t

0�t/

2X
pD1

k p.�; t 0/k22: (67)

Combining (65) and (67), we get that

2X
pD1

�
k p.�; t /k22 C

2X
k;lD1

kp;kl.�; t /k22

�

� Ce.1Cmaxij ¹kAij k
2
1º/.t

0�t/

2X
pD1

k p.�; t 0/k22; 0 � t < t 0 � T: (68)

We remark that energy estimates such as (68) are necessary for the well-posedness
of system (26). In this way, when we have assumed at the beginning of this paper that
� (and z�) is large (see Remark 2.4), we are assuming implicitly that (68) is valid. So,
in this sense, we do not have to assume here that � or z� are larger than before.

Now, let � W Œ0; T �! R be such that � D 1 in Œ0; T=4� and � D 0 in Œ3T=4; T �. If
we apply a similar argument to proving (68) to the functions ¹�j ; �j;klºj;k;l , and
taking t 0 D T , we find that

2X
pD1

�
k�.t/ p.�; t /k22 C

2X
k;lD1

k�.t/p;kl.�; t /k22

�

� Ce.1Cmaxij ¹kAij k
2
1º/.T�t/

Z T

0

2X
pD1

�
k�t .t/ 

p.�; s/k22

C

2X
k;lD1

k�t .s/
p;kl.�; s/k22

�
ds;

for t 2 Œ0; T �. In particular, we have that

2X
pD1

�
k pk2

L1.0;T=2IL2.�//
C

2X
k;lD1

kp;klk2
L1.0;T=2IL2.�//

�

� Ce.1Cmaxij ¹kAij k
2
1º/.T�t/

2X
pD1

�
k pk2

L2.T=2;3T=4IL2.�//

C

2X
k;lD1

kp;klk2
L2.T=2;3T=4IL2.�//

�
: (69)



I. C. A. Albuquerque and M. C. Santos 190

Now, we define the new weight functions

l.t/ D

´
T 2=4 in Œ0; T=2�;

t.T � t / in ŒT=2; T �;

and for a family of sets ¹�mºm2ƒ given by Lemma 3.2, we define

Q�m.x; t/ WD
e4�k�mk1 � e�.2k�mk1C�m.x//

l.t/
;

Q�m.x; t/ WD
e�.2k�mjj1C�m.x//

l.t/
; m 2 ƒ:

Then, we have that

min¹e�2s�kl �
q

kl
; e�2s Q�kl Q�

q

kl
º � e�Cmaxs=T

2 1

T 2q
in � �

�T
4
;
3T

4

�
; k; l D 1; 2;

and

max¹e�2s�kl �
q

kl
; e�2s Q�kl Q�

q

kl
º � e�Cmins=T

2 1

T 2q
in Q; k; l D 1; 2;

where

Cmax D e
4�k�mk1 � e2�k�mk1 and Cmin D e

4�k�mk1 � e3�k�mk1 :

In this way, using (69), we have that

2X
pD1

�Z
�

j p.0/j2 dx C

2X
k;lD1

Z
�

Z T=2

0

e�2s Q�kl Q�nkl j
p;kl
j
2 dxdt

�

�
C

T 2n
e�Cmins=T

2

e.1Cmaxij ¹kAij k
2
1º/T

2X
pD1

�
k pk2

L2.T=2;3T=4IL2.�//

C

2X
k;lD1

kp;klk2
L2.T=2;3T=4IL2.�//

�

� Ce.Cmax�Cmin/s=T
2

e.1Cmaxij ¹kAij k
2
1º/T

� 2X
j;k;lD1

I kln .
j;kl/

C

2X
jD1

“
Q

e�2s�jj .�jj /
nC3
j j j2 dxdt

�
: (70)
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Combining (70) and (33) we get that

2X
pD1

�Z
�

j p.0/j2 dx C

2X
k;lD1

Z
�

Z T=2

0

e�2s Q�kl Q�nkl j
p;kl
j
2 dxdt

�

� CeC.1C
1
T CTCmax kAij k

2
3CT maxij kAij k1/

2X
pD1

“
O�.0;T /

j pj2 dxdt:

To complete the proof, we just use the fact that the weights coincide in .T=2; T /, and
we obtain

2X
k;lD1

Z
�

Z T

T=2

e�2s Q�kl �nkl j
p;kl
j
2 dxdt

� I kln .
j;kl/ � C

2X
pD1

“
O�.0;T /

j pj2 dxdt:

Hence, we have proved (27) with C� D CeC.1C
1
T CTCmax kAij k

2
3CT maxij kAij k1/ and

�.t/ D minx2� e�2s Q�kl �n
kl

.
The proof of (29) is entirely analogous.

6. Comments and open questions

6.1. On the conditions on Okl
d

and Ok
d

In this paper, we have assumed some similar conditions to the ones in [4, 5], these
conditions are given essentially in (10)–(14) and (18)–(19). It is an interesting open
question how to prove Theorem 2.1 when, for some l 2 ¹1; 2º, the sets ¹Ok;l

d
º2
kD1

coincide only inside O. We remark that, even for the case of one single equation, a
similar open problem arises (see [4]). Another open question is the one of proving
Theorem 2.2 with weaker conditions than (18) and (19). Again, we do not know how
to deal with the case where ¹Ok

d
º2
kD1

coincide only inside O and, additionally, how to
proceed if Oi

d
\O � suppAij for every i ¤ j .

6.2. On the functionals (4) and (15)

In the results of [11], the authors have solved a similar result to Theorem 2.2 for the
specific case where

J i .¹vj º/ D ˛i

“
Oi

d
�.0;T /

jy � y1d j
2
C jy � y2d j

2 dxdt C �i

“
Oi�.0;T /

jvi j dxdt;

(71)
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and assuming
O1
d D O2

d :

The reason why we have defined functionals (15) instead of (71) is that, by doing
so, we simplify some computations appearing in the proofs. In any case, by applying
similar arguments to the ones contained in here, and assuming similar condition as
(18) and (19), one can solve the problem of [11] even when O1

d
¤ O2

d
.

6.3. On the quantity of equations considered

A natural open question which arises is the one of proving similar results when we
have m equations for m > 2. The difficulty in this case is the proof of estimates (38),
(61), and (62). For each .k; l/ fixed, the variables ¹j;klºmjD1 are solutions of a system
of m equations, and for each j ¤ l we have to estimate the local terms of j;kl by
local terms of  l;kl . This problem can be compared to the one of controlling a general
system of m equations with one single control, which is a completely open problem.
Even if the coupling coefficients are in cascade, we do not know how we can do it.

6.4. On the boundary control problem

It is an interesting problem to consider the case where some of the controls are posi-
tioned into the boundary of the domain @�. Three cases are of particular interest:

(i) Distributed leader and boundary followers. In this case, the followers are posi-
tioned in sub-regions �ij of the boundary @� and the control system is the following:8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

y1t ��y
1
D

2X
pD1

A1py
p
C f 11O in Q;

y2t ��y
2
D

2X
pD1

A2py
p
C f 21O in Q;

y1 D v11�11 C v
12�12 in †;

y2 D v21�21 C v
22�22 in †;

y1.0/ D y10 ; y2.0/ D y20 in �;

where �ij are C 2.@�/ such that

0 < �i;j � 1 on �ij and �i;j D 0 on @� n �ij ; for i; j D 1; 2:
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In this case, the functionals are defined by

J kl.¹vij º2i;jD1/ D
1

2

“
Okl

d
�.0;T /

jyl � ykld j
2 dxdt

C
�kl

2

“
�kl�.0;T /

jvkl j2 dxdt; k; l D 1; 2: (72)

If we search for a Nash equilibrium to the costs (72), then similar conditions to (6)
must hold. In this case, for j D 1; 2, the optimality system becomes8̂̂̂̂

ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

y
j
t ��y

j
D

2X
pD1

Ajpy
p
C f j1O; in Q;

yj D

2X
pD1

1

�jp

@

@�
'p;jp�jp; in †;

yj .0/ D y
j
0 ; in �;

where ¹'j;klº satisfies the same equation (8). Note that in this case, the controllability
problem becomes controlling a system of 10 � 10 equations with two control forces
.f 1; f 2/ where some of the couplings are localized into the boundary. In this case,
the strategy can be the proof of an observability inequality with the same aspect as
in (27), but now the adjoint system is8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

� 
j
t �� 

j
D

2X
pD1

Apj 
p
C

2X
pD1

j;pj1
O

pj

d

in Q;


j;kl
t ��j;kl D

2X
pD1

Ajp
p;kl ; j ¤ l; in Q;


l;kl
t �� l;kl D

2X
pD1

Alp
p;kl in Q;

 j D j;kl D 0; j ¤ l; in †;

 l;kl D
1

�kl

@

@�
 k�kl ; in †;

 j .T / D  Tj ; j;kl.0/ D 0; in �:

We can deal with this situation in a very similar way. The main difference is that
in place of using the usual Carleman estimate of [10], as in (35) for ¹j;klº, we apply
a refined version of it, proved in [12], for the cases where we have non-homogeneous
boundary conditions. The residual terms appearing from that can be absorbed by stan-
dard energy estimates. We can cite [3] where the authors deal with this situation in
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the context of one single heat equation. The adaptation to the case considered in this
paper is straightforward.

(ii) Boundary leader and distributed followers. In this case, there is a sub-region �

where the leader .f1; f2/ actuate. The followers are localized in sub-regions in the
interior of �. Then, the control system is8̂̂̂̂

ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

y1t ��y
1
D

2X
pD1

A1py
p
C v111O11

C v121O12
in Q;

y2t ��y
2
D

2X
pD1

A2py
p
C v211O21

C v221O22
in Q;

y1 D f11� ; y2 D f21� in †;

y1.0/ D y10 ; y2.0/ D y20 in �:

Again, the strategy consists in combining the ideas of this article with the ones
in [3]. The functions to be minimized are defined by the same formula (4). The opti-
mality system is8̂̂̂̂

<̂̂
ˆ̂̂̂:
y
j
t ��y

j
D

2X
pD1

Ajpy
p
�

2X
pD1

1

�jp
'p;jp1Ojp

; in Q;

yj D f j1� ; in †;

yj .0/ D y
j
0 ; in �;

for j D 1; 2, where ¹'j;klº satisfies system (8). Therefore, we can see that the corre-
sponding adjoint system coincides with system (26). The main difference in this case
is that, in place of the distributed observability estimate (27), we will need a boundary
version of it of the form

2X
kD1

Z
�

j k.0/j2 dx C

2X
k;lD1

“
Okl

d
�.0;T /

�2.t/j l;kl j2 dxdt

� C

2X
kD1

“
��.0;T /

j kj2 dxdt: (73)

The strategy to prove (73) follows similarly to the proof for one heat equation
(see [3]). Here we will present only the steps to follow, the detailed proof can be
made by following the computation of [3, Appendix B]:

(1º) Use boundary Carleman estimates for ¹ kº and ¹j;klº in the region � .
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(2º) For k; l 2 ¹1;2º, we use a weighted energy estimate for the system ¹j;klº2jD1
obtaining an estimate for

k��rj;klk2
L1.0;T IL2.�//

C k���j;klk2
L1.0;T IL2.�//

in terms of 1

�2
kl

k O� k2
L2.O�.0;T //

, where �� and O� goes exponentially to zero
as t ! T .

(3º) The conclusions follow by combining a trace theorem for ¹j;klº, the energy
estimate obtained in the (2º) step, and taking �kl sufficiently large.

(iii) Boundary leader and boundary followers. In this case, the leader and followers
are assumed in the boundary,8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

y1t ��y
1
D

2X
pD1

A1py
p in Q;

y2t ��y
2
D

2X
pD1

A2py
p in Q;

y1 D f1�1� C v
11��11

C v12��12
in †;

y2 D f21� C v
21��21

C v22��22
in †;

y1.0/ D y10 ; y2.0/ D y20 in �:

In this case, the optimality system becomes8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

y
j
t ��y

j
D

2X
pD1

Ajpy
p in Q;

yj D f j1� C

2X
pD1

1

�jp

@

@�
'p;jp�jp in †;

yj .0/ D y
j
0 in �;

where ¹'j;klº satisfies system (8). This case is more complicated than the others since
we have a boundary controllability problem with boundary couplings. Up to now, we
have no ideas on how we can deal with this case, but it will be considered in future
works.

6.5. Semilinear systems

Another interesting question is the possible extension of the main results of this paper
to semilinear parabolic systems. Consider a system of coupled heat equations of the
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form8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

y1t ��y
1
D

2X
pD1

A1py
p
C F1.y

1; y2/C f 11O C v
111O11

C v121Oi2
in Q;

y2t ��y
2
D

2X
pD1

A2py
p
C F2.y

1; y2/C f 21O C v
211O21

C v221O22
in Q;

y1 D y2 D 0 on †;

y1.0/ D y10 ; y2.0/ D y20 in �;
(74)

where .f 1; f 2/ is the leader, ¹vij º2i;jD1 the followers and, for i D 1; 2, the functions
Fi WR2!R are locally Lipschitz-continuous. The main issue when considering non-
linear systems is that functions ¹vij º2i;jD1 satisfying (6) are not necessarily minimum
of the corresponding functionals ¹J klº2

k;lD1
. In this way, in order to ensure that the

critical points are indeed a Nash equilibrium, we can analyze the positiveness of the
second derivatives of ¹J klº2

k;lD1
. Let us give a sketch on how the results of this paper

can be extended to a semilinear framework.
Following the ideas of [5], we see that functions ¹vij º satisfy (6) if and only if,

for each k; l D 1; 2,
vkl D �

1

�kl
'l;kl (75)

where ¹'i;klº2iD1 are solutions of the system8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

�'
l;kl
t ��'l;kl D

2X
pD1

Apl'
p;kl
C

2X
iD1

@Fi

@xl
.y1; y2/'i;kl

C .yl � ykld /1Okl
d
; in Q;

�'
j;kl
t ��'j;kl D

2X
pD1

Apj'
p;kl
C

2X
iD1

@Fi

@xj
.y1; y2/'i;kl ; j ¤ l; in Q;

'j;kl D 0; on †;

'j;kl.�; T / D 0; in �;
(76)

for j; k; l D 1; 2.
At this point, there are two main problems:
(I.) prove the null controllability of (74)–(76) by the action of the leaders .f1;f2/;
(II.) prove that the followers given by (75) are a Nash equilibrium, which is not

immediate since we are in a nonlinear framework.

The proof of (I.) can be obtained by following very similar ideas as the ones contained
in [5, Section 3.2]. After alinearization around a given trajectory, we prove a linear
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controllability result very similar to the one stated in Theorem 2.1 of the present paper.
After that, we can combine the Aubin Lions Compactness Theorem and Schauder’s
Fixed Point Theorem to get the null controllability of (74). In this step it is convenient
to assume that Fi 2 W

1;1.R2/, for i D 1; 2.
The proof of (II.) requires some additional assumptions and to see that clearly we

will give a sketch of it. To simplify the writing, we will fix the functional J 11 and will
show that the followers characterized by (75) satisfy

J 11.¹vij º2i;jD1/ D min
Ov112L2.O11�.0;T //

J 11. Ov11; v12; v21; v22/: (77)

The computations for the other functional follows similarly.
Proceeding in a very similar way as in [5, Section 3.3], if .v11; v12; v21; v22/ are

functions satisfying (6), one can obtain that

hD2
1J

11.v11; v12; v21; v22/; . Ov11/2i

D

“
O11

d
�.0;T /

�1 Ov11 dxdt C �11

“
O11�.0;T /

j Ov11j2 dxdt;

where8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

��1t ���
1
D

2X
pD1

Ap1�
p
C

2X
iD1

�
r
@Fi

@x1
.y1; y2/ � .w1; w2/�i

C
@Fi

@x1
.y1; y2/� i

�
C w11O11

d
in Q;

��2t ���
2
D

2X
pD1

Ap2�
p
C

2X
iD1

�
r
@Fi

@x2
.y1; y2/ � .w1; w2/�i

C
@Fi

@x2
.y1; y2/� i

�
in Q;

��1t ���
1
D

2X
pD1

Ap1�
p
C

2X
iD1

@Fi

@x1
.y1; y2/�i C .y1 � y11d /1O11

d
in Q;

��2t ���
2
D

2X
pD1

Ap2�
p
C

2X
iD1

@Fi

@x2
.y1; y2/�i in Q;

w1t ��w
1
D

2X
pD1

A1pw
p
CrF1.y

1; y2/ � .w1; w2/C Ov111O11
in Q;

w2t ��w
2
D

2X
pD1

A2pw
p
CrF2.y

1; y2/ � .w1; w2/ in Q;

(78)
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supplemented with null Dirichlet boundary conditions and initial data. In this way, to
prove that ¹vij º satisfies (77), it is sufficient to show that D2

1J
11.v11; v12; v21; v22/

is a positive definite bilinear form.
Using the fifth equation of (78) and by integration by parts we can obtain that“

O11
d
�.0;T /

�1 Ov11 dxdt D

2X
iD1

“
Q

Œw1w2�ŒHFi .y
1; y2/�Œw1w2�T �i dxdt

C

“
O11

d
�.0;T /

jw1j2 dxdt;

where ŒHFi .y
1; y2/� is the Hessian matrix. Therefore

hD2
1J

11.v11; v12; v21; v22/; . Ov11/2i

D �11

“
O11�.0;T /

j Ov11j2 dxdt C

“
O11

d
�.0;T /

jw1j2 dxdt

C

2X
iD1

“
Q

Œw1w2�ŒHFi .y
1; y2/�Œw1w2�T �i dxdt: (79)

Then, for proving that the second derivative of J 11 is positive definite, we just
have to bound the trilinear form“

Q

jwiwj�i j dxdt � Ck Ov11k2
L2.Okl�.0;T //

; i; j D 1; 2:

To prove that we can follow very similar ideas as the ones of [5, Section 3.3], we
obtain the following result.

Theorem 6.1. For i D 1; 2 and k; l D 1; : : : ; 4, assume that Fi 2 W
2;1.R2/ and

ykl
d
2 L1.Okl

d
� .0; T //. If yi0 2 H

1
0 .�/ (resp. yi0 2 L

2.�/) and N � 14 (resp.
N � 12), we can take �kl sufficiently large so that .v11; v12; v21; v22/ satisfying (6),
also satisfies (5).

6.6. Stackelberg–Nash controllability for Stokes and Navier–Stokes systems

Another interesting question is the study of a multi-objective control problem for
equations coming from fluid mechanics. Indeed, consider the Stokes system8̂̂̂̂
<̂
ˆ̂̂:
yt ��y C .w � r/y Crp D f 1O C v

11O1
C v21O2

C v31O3
in Q;

r � y D 0 in Q;

y D 0 on†;

y.x; 0/ D y0.x/ in �;

(80)
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where �, T , O and the Oi are as above. For N D 2 or N D 3 the data y0 belongs to
the Hilbert space

H WD ¹z 2 L2.�/N I r � z D 0 in �; z � n D 0 on �º;

the field w belongs to L1.0; T IH/ and the controls f D ¹f kºkD12 and vk

D ¹vklº3
i;kD1

satisfy

f 2 L2.O � .0; T //N ; vi 2 L2.Oi � .0; T //
N :

In this way, we can consider a very similar problem to the one considered here with
functionals J kl (resp. J k ) defined similarly to (4) (resp. (15)).

The situation is obviously much more difficult to analyze and, up to now, we are
not aware on how we can adapt the ideas contained in here to this case. Positive results
could lead to a local Stackelberg–Nash associated to a null controllability result to the
Navier–Stokes equation (w D y). The existence of Nash equilibria or quasi-equilibria
for each f and, of course, the existence of a leader control responsible for a null
controllability property to (80) are questions being investigated in an ongoing work.
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