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Application of Lagrange inversion to wall-crossing for Quot
schemes on surfaces

Arkadij Bojko

Abstract. Motivated by my work on enumerative invariants for Quot schemes, I related two
power series obtained by two different means. One of them was computed using geometric
arguments via virtual localization methods and the other one came from working with repres-
entation theoretic objects called vertex algebras. In this note, I give proof of the equality of the
two power series by relying only on techniques related to Lagrange inversion. This makes my
work on Quot schemes independent of the previous results in the literature and proves a new
combinatorial identity.

1. Introduction

Grothendieck in his lecture [10] introduced Quot schemes as a solution to a moduli
problem which captures quotients of a fixed sheaf on a projective variety X . More
explicitly: fixing an algebraic K-theory class ˇ and a sheaf E on X , the scheme
QuotX .E; ˇ/ parametrizes the quotients

E � F;

where ch.F /Dˇ. WhenX is a surface,E is a vector bundle, and ˇ has 1-dimensional
support, QuotX .E; ˇ/ admits a perfect obstruction theory as in [2] which was ob-
served by Marian–Oprea–Pandharipande [15]. As such, one can integrate cohomology
classes on QuotX .E;ˇ/ with respect to its virtual fundamental class ŒQuotX .E; ˇ/�vir.
The resulting invariants can be combined into generating series by summing over the
Euler characteristics �.ˇ/ and were studied in [1,12,19] and [3]. In the last reference,
I focused on the case when ˇ D np for p the class of a sky-scraper sheaf on X and
n � 0 is an integer.
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The series of tautological invariants studied in [3] take the form

ZE .f; g; ˛I q/ D
X
n�0

qn
Z
ŒQuotX .E;n/�vir

f .˛Œn�/g.T vir/;

which depends on the additional choice of a K-theory class ˛ 2K0.X/ and multiplic-
ative genera determined by their invertible power series f; g 2 KJtK. To stay brief, I
refer to [3, §1.3] for a more thorough definition of ˛Œn�, f; g, and ZE .f; g; ˛I q/ as
an integral over the virtual fundamental class. One of the main results in [3] is the
explicit expression for this generating series of invariants (see [3, (4.23)]),

ZE .f; g; ˛I q/ D
Y
k1¤k2

g.Hk1 �Hk2/
c1.X/

2
eY
kD1

�
g.Hk/g.�Hk/

��ec1.X/2
�

eY
kD1

�
f .Hk/

f .0/

�c1.˛/�c1.X/ eY
kD1

�
f .Hk/

f .0/

�a
e c1.E/c1.X/

�Ge.g
ef a/c1.X/

2

; (1.1)

where c1.�/ denotes the first Chern class, e D rk.E/, a D rk.˛/, and Ge.R/ is the
power series (1.2) depending on R.t/ 2 KJtK, and Hk are the e different Newton–
Puiseux solutions to

H e
D qge.H/f a.H/:

When E is a trivial vector bundle, a similar result was computed in [1, Theorem 17].
Comparing the terms under the exponent .�/c1.X/

2
led to a prediction for a more

elegant form of (1.2) noted down in (1.3) which is based on [1, (17)]. When f; g are
known, the latter form ofGe.gef a/ is far more manageable in concrete computations.
This made it possible for me to study the structural behaviour of (1.1) leading for
example to the proof of a new case of the Segre–Verlinde correspondence1 in [3,
Theorem 1.6], a new type of symmetry based on [1, §1.9], and the proof of rationality
in [3, Theorem 1.4] of the series (1.1) for special choices of f; g including the �y-
genus paired with an exterior power of ˛Œn�.

While the previous authors used methods relying on a virtual localization formula
of [8] combined with a torus-action on E D Ce , I have instead utilized the wall-
crossing framework of Joyce [14] and the methods of its application developed in
[3, 4]. A further reason for proving Theorem 1 was to make my work self-contained
and to make it reliant solely on wall-crossing. This highlights how powerful our
approach is, as I circumvent the need to apply localization along E thus removing
the restriction on what E needs to be. Simultaneously, I am still able to give a closed
formula for all integrals ZE .f; g; ˛I q/.

1See [11, 16, 17] for the origin of the Segre–Verlinde correspondence.
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Theorem 1. Let R.t/ 2 KJtK be a power series over a field K not involving q and
R.0/ ¤ 0. Suppose that Hk.q/ are the e > 0 different Newton–Puiseux solutions to
H e
k
.q/ D qR.Hk.q//. Set

Ge.R/ D exp
�
�

X
n;m>0
j>0

j
1

m
ŒzmeCj �

®
Rm.z/

¯1
n
Œzne�j �

®
Rn.z/

¯
qnCm

�
(1.2)

then the following holds:

Ge.R/ D

eY
kD1

�
R.Hk/

R.0/

� eY
kD1

H e
k �

Y
k1¤k2

�
1

Hk2 �Hk1

� eY
kD1

�
e

Hk
�
R0.Hk/

R.Hk/

�
:

(1.3)

Remark 2. The result stated in (1.1) was computed using the vertex algebra construc-
ted by Joyce [13] on the homology of the moduli stack MX of all perfect complexes
on X . This induced a Lie bracket on a quotient of the homology where the classes
ŒQuotX .E; ˇ/�vir can be naturally transported. By the work of [9], there is an explicit
description of this vertex algebra and the resulting Lie algebra. This was used in [3] to
write down a closed expression for ŒQuotX .E; ˇ/�vir in terms of a basis of the homo-
logy of MX as a consequence of an iterated application of the Lie bracket. Using the
more general result, ZE .f; g; ˛I q/ could be computed directly by simple manipula-
tion of exponential series and second-order derivation. After applying a generalization
for Newton–Puiseux series of the Lagrange inversion based on [7], I obtained the
expression (1.1).

The techniques used by [1] are orthogonal to ours. After applying the virtual
localization of [8] for the Ge

m action on E D Ce , they reduce the computation of
ZE .f; g; ˛Iq/ to integrals over multiple copies of Hilbn.X/. A big part is also played
by the (virtual) normal contributions coming from the direction along which each
Gm acts. This feeds into the formula (1.3) after an application of the multivariable
Lagrange inversion formula from [6]. As mentioned previously, the localization meth-
od is limited to situations when there is a Ge

m action on E, while our approach works
for anyE. In fact, I stated the results in [3] for any torsion-free sheafE on a surfaceX .

The idea of the proof of Theorem 1 was motivated by the case when e D 1 which
restricts to a unique formal power series H.q/ and thus makes the expression consid-
erably simpler. I am grateful to the MathOverflow authors Alex Gavrilov and esg who
proved this special case in [18].
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Corollary 3 ([18]). Let R.t/ 2 KJtK be the power series from Theorem 1 and H.q/
the unique power series solution to H.q/ D qR.H.q//. Set

G.R/ D exp
�
�

X
n;m>0
j>0

j
1

m
ŒzmCj �

®
Rm.z/

¯1
n
Œzn�j �

®
Rn.z/

¯
qnCm

�
(1.4)

then the following holds:

G.R/ D

�
R.H/

R.0/

�
�

�
1 �

R0.H/

R.H/
H

�
: (1.5)

This simpler version is related to the Lagrange inversion, various versions of
which are neatly summarized in [7, Theorem 2.1.1]. Yet the result of Corollary 3
cannot be deduced as a direct consequence of the known variations of it. Instead, one
needs to use a trick by involving an additional variable p and then taking a limit as
p ! q. Alternatively, one could compare (1.4) and (1.5) by working with contour
integrals and taking residue.

Moving on to the multivariable Lagrange inversion, one might hope to use one
of the results appearing in [6]. Unfortunately, there is no natural way of doing so.
Additionally, as the increased complexity of the multivariable expression suggests in
(2.4), there is no immediate way of generalizing Corollary 3 to the full statement.
Instead, I was forced to adapt the proofs by including Newton–Puiseux series and
computing with roots of unity.

2. Lagrange inversion for Newton–Puiseux generating series

The primary tool I will rely on is the following slightly less standard Lagrange inver-
sion formula collecting multiple results of Gessel [7].

Lemma 4 (Gessel [7, Theorem 2.1.1, eq. (2.2.8), (2.2.9)]). Let R.t/ D
P1
nD0 rnt

n

be a power series not involving q and satisfying r0 D 1, then for the unique solution
H.q/ satisfying H.q/ D qR.H.q// and a formal Laurent series � D �.t/, I have

�
�
H.q/

�
D Œt0�

®
�.t/

¯
C Œt�1�

®
�0.t/ log

�
R.t/

�¯
C

X
n¤0

1

n
Œtn�1�

®
�0.t/Rn.t/

¯
qn; (2.1)

log
�
R.H.q//

�
D log.H=q/ D

X
m>0

1

m
Œtm�

®
Rm.t/

¯
qm: (2.2)

Note that I can easily remove the assumption r0 D 1 by working with R.t/=r0
instead. This will be done at the end to recover Theorem 1 in which case I always
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implicitly assume that
r0 D R.0/ ¤ 0:

By looking at Theorem 1, it is clear that I need a modification of this result to
include multiple Newton–Puiseux solutions. For the definition of Newton–Puiseux
solutions for implicit equations see, for example, [5] where they are defined as power
series in KJx 1e K. A similar adaptation appeared already in [4, Lemma 4.12]. Note that
below, e will sometimes be used to denote the Euler number but it is always clear
when this is the case, so I do not introduce a new notation.

Corollary 5. Working with the power series R.t/ from Lemma 4, let Hk.q/ for k D
1; : : : ; e be the different Newton–Puiseux series which are solutions to

H e
k .q/ D qR

�
Hk.q/

�
; (2.3)

then for any Laurent series �.t/ D
P
n2Z �nt

n, I have

eX
kD1

�
�
Hk.q/

�
D e�0 C Œt

�1�
®
�0.t/ log

�
R.t/

�¯
C

X
n¤0

1

n
Œtne�1�

®
�0.t/Rn.t/

¯
qn;

eX
kD1

log
�
R
�
Hk.q/

��
D log

�� eY
kD1

Hk.q/

�
=q

�
D

X
n>0

1

n
Œtne�

®
Rn.t/

¯
qn: (2.4)

Proof. Let zH.q
1
e / be the unique Newton–Puiseux series satisfying

zH.q
1
e / D q

1
eR

1
e

�
zH.q

1
e /
�

for a fixed eth root of R. Then the e different solutions of (2.3) can be expressed as
Hk.q/ D zH.e

2�ik
e q

1
e / for k D 1; : : : ; e because they solve the e different roots of it:

Hk.q/ D e
2�ik
e q

1
eR

1
e

�
Hk.q/

�
:

I obtain
eX
kD1

�
�
Hk.q/

�
D

eX
kD1

�
Œt0�

®
�.t/

¯
C Œt�1�

°�0.t/
e

log
�
R.t/

�±
C

X
n¤0

1

n
Œtn�1�

®
�0.t/R

n
e .t/

¯
q
n
e e

2�ikn
e

�
;

which gives the required result (2.4). The second equation follows by a similar argu-
ment.
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The first version of the proof will only use the above results and some tricks for
generating series.

Formal power series proof of Theorem 1 inspired by esg [18]. By using Corollary 5,
while working with power series over the field K..p//, I can writeX
j>0

X
n;m>0

j ŒtenCj �
®
Rn.t/

¯
Œtem�j �

®
Rm.t/

¯pn
n

qm

m

D �

X
j>0

1

j

� eX
k1D1

H
�j

k1
.p/

�� eX
k2D1

H
j

k2
.q/

�
�

X
j>0

X
�j�ne<0

ŒtenCj �
®
Rn.t/

¯pn
n

� eX
kD1

H
j

k
.q/

�
�

X
j>0

eX
kD1

Œt�1�
®
t�j�1 log

�
R.t/

�¯
H
j

k
.q/

D

X
k1;k2

log
�
1 �

Hk1.q/

Hk2.p/

�
C

X
n>0

X
j�ne

Œtj�en�
®
R�n.t/

¯� eX
kD1

H
j

k
.q/

�
p�n

n

�

eX
kD1

log
�
R.Hk.q//

�
D

X
k1;k2

log
�
1 �

Hk1.q/

Hk2.p/

�
�

X
n>0

eX
kD1

1

n

H en
k
.q/

Rn.Hk.q//pn
�

eX
kD1

log
�
R.Hk.q//

�
D

X
k1;k2

log
�
1 �

Hk1.q/

Hk2.p/

�
� e log

�
1 �

q

p

�
�

eX
kD1

log
�
R.Hk.q//

�
;

where in the last step, I used (2.3) applied to the variable q with coefficients in the
field of Laurent series in p. Therefore, I obtain after taking exponential and taking the
limit p ! q

lim
p!q

Y
k1¤k2

�
Hk1.p/ �Hk2.q/

� eY
kD1

Hk.p/ �Hk.q/

p � q

1

R.Hk.q//

eY
kD1

� p

Hk.p/

�e
D

Y
k1¤k2

�
Hk1.q/ �Hk2.q/

�
qe

eY
kD1

� dq

dHk.q/

��1 eY
kD1

1

H e
k
.q/R.Hk.q//

D

Y
k1¤k2

�
Hk1.q/ �Hk2.q/

� eY
kD1

1

H e
k
.q/R.Hk.q//

� e

Hk
�
R0.Hk.q//

R.Hk.q//

��1
:
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After taking the reciprocal of the final expression, I obtain the right-hand side of (1.3)
if R.0/ D 1. I thus only need to replace R.t/ by R.t/=R.0/ to conclude the more
general result.

An alternative way of showing this result is by starting with

�

X
n;m>0
j>0

j
1

m
ŒzmCj �

®
Rm.z/

¯1
n
Œzn�j �

®
Rn.z/

¯
qnCm

D

X
j>0

1

j

�X
n>0

Œqn�

² eX
k1D1

H
�j

k1
.q/

³�� eX
k2D1

H
j

k2
.q/

�
(2.5)

which used Corollary 5. I then use contour integration combined with residue compu-
tation to write the last expression as the logarithm of (1.3).

Analytic proof inspired by Alex Gavrilov [18]. Set the notation

H j .q/ WD

eX
kD1

H
j

k
.q/;

and assume without loss of generality that H j .q/ are all analytic. When �.q/ DP
n2Z �nq

n is a Laurent series, I will write

Œq>0�
®
�.q/

¯
WD

X
n>0

�nq
n:

Then the following identity holds:

Œq>0�
®
H�j .q/

¯
WD

X
n>0

Œzn�
®
H�j .z/

¯
qn D

1

2�i

I
jzjD�

X
n>0

�q
z

�n 1
z
H�j .z/dz

D
1

2�i

I
jzjD�

� 1

z � q
�
1

z

�
H�j .z/dz;

which uses that
1

2�i

I
jzjD�

zjdz D

´
1 if j D �1;

0 otherwise:

Plugging this into (2.5) leads toX
j>0

1

j
H j .q/Œq>0�

®
H�j .q/

¯
D

1

2�i

I
jzjD�

� 1

z � q
�
1

z

� X
k1;k2

log
� Hk1.z/

Hk1.z/ �Hk2.q/

�
dz;



A. Bojko 104

where I view the factor consisting of the logarithm as formal until I sum over k1; k2
when it becomes a function in q instead of its roots. Additionally, I always expand the
logarithm as if jHk1.z/j > jHk2.q/j for any z; q such that jqj < jzj D �. This is the
case when � is sufficiently small, because Hk.0/ D 0 and the leading coefficient of
Hk.q/ is q

1
e . The resulting integral is well defined but it cannot be computed using

residues because the integrand is not a meromorphic function in B�.0/ – the disc of
radius �. Note however that

1

2�i

I
jzjD�

� 1

z � q
�
1

z

�
log

� z

z � q

�
dz

D �

Z 1

0

� r
�
e2�i.���/

1 � r
�
e2�i.���/

�
log

�
1 �

r

�
e2�i.���/

�
d� D 0;

where I used the substitution zD�e2�i� , qDre2�i� and the integral vanishes because
it is proportional to the integral of a total derivative of a 2� periodic function.

Therefore, I may work with

1

2�i

Z
jzjD�

D.z; q/dz

D
1

2�i

I
jzjD�

� 1

z � q
�
1

z

� X
k1;k2

log
� Hk1.z/.z � q/

1
e

z
1
e .Hk1.z/ �Hk2.q//

�
dz (2.6)

instead. Here, the powers .�/
1
e disappear after taking the sum and are only meant for

notational purposes. The integrandD.z; q/ is a meromorphic function in z with poles
of order 1 at z D 0 and z D q. The absence of further singularities is a consequence
of choosing � sufficiently small such that

Q
i Hi .z/ is univalent in B�.0/, and so isQ

i;j .Hi .z/ �Hj .q// for any q 2 B�.0/. The precise reason for choosing the extra
factor is the expressionY

k1;k2

Hk1.z/

Hk1.z/ �Hk2.q/
D

� z

z � q

�e Y
k1;k2

1CO.z
1
e /

1CO.q
1
e /

which can be also used to conclude that the sum in (2.6) has no singularities for
small enough q; z. After reorganizing the logarithms slightly, the integral (2.6) can be
expressed as the sum of the following two residues:

ReszD0
�
D.z; q/

�
D lim
z!0

²� z

z � q
� 1

�� eX
kD1

log
� Hk.z/.z � q/

1
e

z
1
e .Hk.z/ �Hk.q//

�
C

X
k1¤k2

log
� Hk1.z/.z � q/

1
e

z
1
e .Hk1.z/ �Hk2.q//

��³
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D

eX
kD1

log
�H e

k
.q/

q

�
;

ReszDq
�
D.z; q/

�
D lim
z!q

²�
1 �

z � q

z

�� eX
kD1

log
� Hk.z/.z � q/

z.Hk.z/ �Hk.q//

�
C

X
k1¤k2

log
� Hk1.z/

Hk1.z/ �Hk2.q/

��³
D

eX
kD1

log
hHk.q/

q

dq

dHk.q/

i
C

X
k1¤k2

log
h Hk1.q/

.Hk1.q/ �Hk2.q//

i
:

After exponentiating, this implies (1.3). Finally, note that as the equation is poly-
nomial in coefficients in each degree, the statement holds even after removing the
analyticity condition on H j .q/.

In conclusion, I was able to prove in two different ways the equality of two formal
power series: the series in (1.2) which appeared naturally during a computation in my
work [3], and (1.3) obtained by Arbesfeld–Johnson–Lim–Oprea–Pandharipande [1].
Both of them are used to express the generating series of enumerative invariants (1.1)
related to Quot schemes. This establishes the method used in [3] as an autonomous
approach to study the structure of (1.1) and address open questions related to it.
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