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Curves in the disc, the type B braid group, and a type B

zigzag algebra

Edmund Heng and Kie Seng Nge

Abstract. We construct a finite-dimensional quiver algebra from the non-simply laced type B
Dynkin diagram, which we call type B zigzag algebra. This leads to a faithful categorical action
of the type B Artin (braid) group A.B/, acting on the homotopy category of its projective mod-
ules. This categorical action is also closely related to the topological action of A.B/, viewed
as mapping class group of the punctured disc – hence, our exposition can be seen as a type B
analogue of Khovanov–Seidel’s work.

1. Introduction

In the seminal work [15], Khovanov–Seidel introduce a categorical action of the type
Am Artin group A.Am/, where the group acts faithfully by exact autoequivalences on
the bounded homotopy category Komb.Am-prgrmod/ of projective (graded) modules
over the typeAm zigzag algebra Am. Moreover, they show that this Artin group action
on Komb.Am-prgrmod/ is deeply related to the mapping class group action on curves
on the punctured disc. More precisely, they construct a map LA that associates com-
plexes of projective Am-modules to isotopy classes of curves in the disc and show that
LA intertwines the categorical action of A.Am/ on complexes with the mapping class
action of A.Am/ on curves. Furthermore, the geometric intersection number between
two curves c1 and c2 can be computed from the dimension of their corresponding total
Hom space HOM�.LA.c1/; LA.c2// in Komb.Am-prgrmod/. This may be seen as a
bridge connecting two appearances of the same group: the former as the Artin group
associated to the type A Coxeter group and the latter as the mapping class group of
the punctured disc.

Another family of Artin groups which also appear as mapping class groups are the
typeBn Artin groups A.Bn/. To this end, Gadbled–Thiel–Wagner develop a “typeB”
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Figure 1.1. Two different affine configurations of the .nC 1/-punctured disc corresponding to
the action of A.Bn/ and yA. yAn�1/, where the puncture labelled “0” is fixed.

analogue of the Khovanov–Seidel story in [9], where they bypass the non-simply
laced structure through viewing the type Bn Artin group A.Bn/ as the extended Artin
group bA. yAn�1/ of affine type A. Although they are both mapping class groups of
an .nC 1/-punctured disc (fixing one of the punctures), their corresponding natural
affine configurations of the disc are different (see Figure 1.1).

The goal of the present paper is to develop a proper (non-simply laced) type B
analogue of the stories given by Khovanov–Seidel and Gadbled–Thiel–Wagner. We
introduce a (finite-dimensional) quotient of a quiver algebra Bn over R, which we call
type Bn zigzag algebra. Since the type B root system is no longer simply laced, the
definition of Bn will be somewhat subtle – the indecomposable projective Bn-module
whose class in the Grothendieck group is a long simple root will only have the struc-
ture of a R-vector space, while all the other indecomposable projective Bn-modules
whose classes are short simple roots will actually be C-vector spaces. Note that this
is somewhat reminiscent of the following non-simply laced extension in quiver the-
ory: by studying representations ofK-species [8] instead of quivers (the base field are
allowed to be different at each vertex), the finite type K-species are characterised by
all (including non-simply laced) Dynkin diagrams [6, Theorem B].

The relevance of Bn to Coxeter theory is provided by the following theorem.

Theorem 1.1 (Theorems 3.13 and 4.6). The homotopy category Komb.Bn-prgrmod/
of projective (bigraded) modules carries a faithful (weak) action of the type Bn Artin
group A.Bn/.

Similar to the works of Khovanov–Seidel [15] and Gadbled–Thiel–Wagner [9], we
establish the following result that relates the categorical notions to low-dimensional
topology.
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A.Bn/

A.Bn/

A.A2n�1/ - A.Bn/

A.A2n�1/ - A.Bn/

Isotopy classes of trigraded
admissible curves {Cadm in DB

nC1

Isotopy classes of bigraded

admissible multicurves RzCeadm
in DA

2n

Komb.Bn-prgrmod/ Komb.A2n�1-prgrmod/

LB

m

LA
A2n�1 ˝Bn

�

Figure 1.2. The commutative diagram of Theorem 1.3. The map m is obtained by lifting curves
in DB

nC1
to multicurves in DA

2n
through the double-branched cover DA

2n
� DB

nC1
. The map

LB (resp., LA) is as in Theorem 1.2 (resp., [15, Theorem 4.3]).

Theorem 1.2 (Theorem 5.7 and Proposition 7.3). There exists a map LB that asso-
ciates complexes in Komb.Bn-prgrmod/ to curves in the .n C 1/-punctured disc.
This map LB is A.Bn/-equivariant, intertwining the A.Bn/-action on curves and the
A.Bn/-action on complexes in Komb.Bn-prgrmod/. Moreover, the (trigraded) inter-
section number between two curves c1 and c2 is given by the Poincaré polynomial of
the total Hom space between LB.c1/ and LB.c2/.

One main feature of our work contrasting that of Gadbled–Thiel–Wagner is an
explicit realisation of a well-known connection between typeB and typeA. To explain
this, recall that the type Bn Artin group is known to be a (proper) subgroup of the type
An�1 Artin group: algebraically the embedding is induced from a folding of Coxeter
diagrams [5]; topologically the embedding is obtained by lifting through the double-
branched cover of a .nC 1/-punctured disc DB

nC1 by a 2n-punctured disc DA
2n [3]. The

topological interpretation induces an A.Bn/-equivariant map m that takes curves in
the .nC 1/-punctured disc to multicurves in the 2n-punctured disc, defined by taking
the preimage of the covering map. Our work includes a categorical interpretation of
this map m, given by a scalar extension functor.

Theorem 1.3 (Proposition 4.1 and Theorem 5.1). The type B zigzag algebra Bn

algebra (over R) is isomorphic to Khovanov–Seidel type A zigzag algebra A2n�1

after extending scalars to C, namely,

C ˝R Bn Š A2n�1 as C-algebras:

This induces a scalar extension functor A2n�1 ˝Bn
�, which renders the diagram in

Figure 1.2 commutative, with all four maps on the square A.Bn/-equivariant.
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We would like to mention here that the construction of type B zigzag algebra in
this paper can be easily modified to allow for other Lie-type Dynkin diagrams, partic-
ularly for types C , F4, and G2; for the Dynkin diagrams involving edge label 6, one
uses a field extension of degree 3 instead1. Together with the simply-laced construc-
tions [12, 16], this covers all of the (Lie-type) Dynkin diagrams. To the best of our
knowledge, there is no easy generalisation of this construction via finite-dimensional
algebras that encapsulates all Coxeter diagrams, not even for the finite types H and
I2.k/. A different construction via algebra objects in fusion categories that allows for
arbitrary Coxeter diagrams can be found in the first author’s thesis [11].

Finally, recall that the type An zigzag algebra has a geometric origin: it is quasi-
isomorphic as a differential graded algebra (dga) with zero differential to the dga asso-
ciated to an An-chain of spherical objects [21]. In particular, it is quasi-isomorphic to
the Fukaya A1-algebra of a distinguished collection of objects in the Fukaya–Seidel
category corresponding to the Milnor fibre of type A singularities [20]. Type B singu-
larities have also been studied, from the symplectic point of view by Arnold [1, 2] as
boundary singularities and from the algebraic geometry point of view by Slodowy [23,
24] as simple singularities associated with a Z=2Z-group action. We expect our type
B zigzag algebra to have a similar geometric origin as in type A case. This is an
ongoing work of the second author with Shuaige Qiao.

Outline of the paper

Section 2 contains the topological story of this paper – the top row of the commutat-
ive diagram in Figure 1.2. We describe the double-branched cover of DB

nC1 by DA
2n,

which induces an injection of groups ‰ W A.Bn/ ,! A.A2n�1/. We state the pre-
cise definition of curves and admissible curves in this section and also introduce the
notion of trigraded curves – a typeB analogue of bigraded curves for typeA. The con-
struction of the A.Bn/-equivariant map m, which lifts trigraded curves to bigraded
multicurves, can be found in Section 2.8.

Sections 3 and 4 tell the algebraic story instead – the bottom row of the commut-
ative diagram in Figure 1.2. The definition of type B zigzag algebra Bn and the proof
of the corresponding (weak) categorical action of A.Bn/ on Komb.Bn-prgrmod/ can
be found in Section 3. We then relate our type B zigzag algebra Bn to the type A zig-
zag algebra A2n�1 in Section 4, which allows us to obtain the scalar extension functor
A2n�1 ˝Bn

� and also derive the faithfulness of the A.Bn/ categorical action.

1In the early writing of this paper, we have made the (arbitrary) choice of using the field
extension R � C for edge label 4. To be able to deal with both edge labels 4 and 6, it may be
more natural to use Q as the base field to allow for both field extensions of degree 2 and 3.
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Section 5 is where we complete the full picture in Figure 1.2 – connecting the top
and bottom rows. We recall the A.A2n�1/-equivariant map LA defined in [15] and
construct the analogous map LB for type B . This section also contains the proofs that
LB is A.Bn/-equivariant and that the diagram in Theorem 1.3 commutes, where the
latter is the most technical proof of this paper.

Section 6 contains a “decategorified” version of the main theorem (see Theorem
6.3 for the corresponding diagram). Just as the A.Am/ action on Komb.Am-prgrmod/
categorifies the Burau representation (which can be described as a representation on
the first homology of an explicit covering space of DA

2n), we show that the categorical
action of A.Bn/ on Komb.Bn-prgrmod/ categorifies a representation on (a submod-
ule of) the first homology of an explicit covering space of DB

nC1.
In Section 7, we relate the trigraded intersection numbers of (admissible) curves

to the Poincaré polynomial of the total Hom spaces of their corresponding complexes.

2. Artin groups of type Bn and type A2n�1 as mapping class groups

In this section, we will first describe type A and type B Artin groups using generators
and relations. After that, we associate these two Artin groups to mapping class groups
of surfaces. We then introduce trigraded curves and trigraded intersection numbers
as trigraded analogues of bigraded curves and bigraded intersection numbers in [15,
Section 3 (b)]. Finally, we construct an A.Bn/-equivariant lift of the isotopy classes
of trigraded curves to the isotopy classes of bigraded multicurves.

2.1. Artin groups by generators and relations

An Artin group associated to a Coxeter graph � is a group defined by generators and
relations according to the data of the graph � . In this paper, we will only concern
ourselves with the Artin groups associated to the type A and type B Coxeter graphs.
As such, we will explicitly define them below, and refer the reader to [4, 13] for a
more extensive theory on Artin groups.

For m � 2, the type Am Artin group A.Am/ associated to the type Am Coxeter
graph

1 2 3 4 m-2 m-1 m

is the group generated by

�A1 ; �
A
2 ; : : : ; �

A
m
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subject to the relations

�Aj �
A
k D �

A
k �

A
j ; for jj � kj > 1;

�Aj �
A
jC1�

A
j D �

A
jC1�

A
j �

A
jC1; for j D 1; 2; : : : ; m � 1:

Note that A.Am/ is the usual .mC 1/-strand braid group BrmC1.
For n� 2, the typeBn Artin group A.Bn/ associated to the typeBn Coxeter graph

1 2 3 4 n � 2 n � 1 n

4

is the group generated by
�B1 ; �

B
2 ; : : : ; �

B
n

subject to the relations

�B1 �
B
2 �

B
1 �

B
2 D �

B
2 �

B
1 �

B
2 �

B
1 ;

�Bj �
B
k D �

B
k �

B
j ; for jj � kj > 1;

�Bj �
B
jC1�

B
j D �

B
jC1�

B
j �

B
jC1; for j D 2; 3; : : : ; n � 1:

2.2. Mapping class groups of discs with marked points

Suppose that � is a compact, connected, oriented surface, possibly with boundary @� ,
and� � � n @� a finite set of marked points. We denote such a surface as .� ;�/, and
we will just write � if the associated� is clear from the context. Let�id �� be a sub-
set. Denote by Diff.� ; @� I�id/ the group of orientation-preserving diffeomorphisms
f W � ! � with f j@�[�id D id and f .�/ D �. If �id D ;, then we write

Diff.� ; @�/ WD Diff.� ; @� I ;/

for simplicity. We then define the mapping class group MCG.� ;�id/ of the surface �

with a set � of marked points fixing elements in �id pointwise by

MCG.� ; �id/ WD �0
�
Diff.� ; @� I�id/

�
:

In a similar fashion, if �id D ;, we denote the mapping class group of � by

MCG.�/ WD MCG.� ;;/:

We will just write MCG.�/ if those conditions are clear from the context. The ele-
ments of MCG.�/ are called mapping classes. We will see that both Artin groups
from Section 2.1 appear as mapping class groups, where we refer the reader to [7] for
a more detailed exposition on this.
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� � �� � �
1�1�n n

(a) The disc DA
2n

with marked points �.

� � �
0 1 2 n � 1 n

(b) The orbit space DB
nC1
WD

.DA
2n
/=.Z=2Z/ with marked points ƒ.

Figure 2.1. The affine configurations of the two discs.

2.2.1. Branched covering of DB
nC1

by DA
2n

. Consider the following closed disc
DA
2n WD ¹z 2 C W kzk � nC 1º embedded in C, equipped with the set

� WD ¹�n; : : : ;�1; 1; : : : ; nº

of 2n marked points, as drawn in Figure 2.1a.
Let r W DA

2n! DA
2n be the half-rotation of the disc DA

2n defined by r.x/ D �x for
x 2 DA

2n. Consider the group R Š Z=2Z generated by r and its action on DA
2n. It is

clear that each x 2 DA
2n n ¹0º has a neighbourhood Ux such that r.Ux/ \ Ux D ;. In

this way, the quotient map qbr W DA
2n ! DA

2n=.Z=2Z/ to its orbit space is a normal
branched covering with branched point ¹0º [18]. From now on, we will denote DB

nC1

as the orbit space .DA
2n/=.Z=2Z/, and ƒ D ¹Œ0�; Œ1�; Œ2�; : : : ; Œn�º as the set of nC 1

marked points in DB
nC1. To simplify notation and to help us picture the orbit space

DB
nC1, to each equivalence class in DB

nC1 we always pick the element with positive
real part as the representative whenever possible (i.e., as long as the equivalence class
does not contain points on the imaginary line). This way, we will abuse notation and
denote the set of marked points ƒ as ¹0; 1; 2; : : : ; nº. Figure 2.1b illustrates how we
will be picturing DB

nC1, where the two oriented green lines are identified.

2.2.2. Artin groups as mapping class groups. By construction, the marked points
on DA

2n and DB
nC1 are subsets of Z. Therefore, we enumerate the marked points on

the disc by increasing sequences of points. Let %j (resp., bj ) be the horizontal curve
connecting the j -th marked point and .j C 1/-th marked point in DA

2n (resp., DB
nC1)

for 1 � j � 2n (resp., 1 � j � nC 1).
The group A.A2n�1/ is isomorphic to the mapping class group MCG.DA

2n/ of
a closed disc DA

2n with 2n marked points. The generator �Aj corresponds to the half-
twist ŒtA%j

� along the arc %j . Here, tA%j
is a diffeomorphism in DA

2n rotating a small open
disc enclosing the j -th and .j C 1/-th marked points anticlockwise by an angle of � ,
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j j C 1

j C 1

j

(a) A half-twist tA%j
(similarly tB

bj
).

b1

0 1

b1

0 1

(b) A full twist .tB
b1
/2.

Figure 2.2. The twists in DA
2n

and DB
nC1

.

permuting the two enclosed marked points, whilst leaving all other marked points
fixed; see Figure 2.2a.

On the other hand, the group A.Bn/ is isomorphic to the mapping class group
MCG.DB

nC1; ¹0º/ of a closed disc DB
nC1 with nC 1 marked points, fixing the point

¹0º pointwise. The generator �B1 corresponds to the full twist Œ.tB
b1
/2� along the arc b1,

and for 2 � j � n, each generator �Bj corresponds to the half-twist ŒtB
bj
� along the

arc bj . Here, tB
bj

is a diffeomorphism in DB
nC1 rotating a small open disc enclosing

the j -th and .j C 1/-th marked points by an angle of � anticlockwise, as illustrated
in Figure 2.2a. As a result, it interchanges the j -th and .j C 1/-th marked points
and leaves the other points fixed pointwise. Consequently, .tB

b1
/2 is a diffeomorphism

rotating a small open disc enclosing the marked points 0 and 1 anticlockwise by an
angle of 2� leaving all the marked points fixed, as shown in Figure 2.2b.

2.2.3. Injection of MCG.DB
nC1

; ¹0º/ into MCG.DA
2n

/. A diffeomorphism f B in
Diff.DB

nC1; ¹0º/ can be lifted to a unique fibre-preserving diffeomorphism f A in
Diff.DA

2n/ via the branched covering map qbr . Similarly, an isotopy in DB
nC1 can

be lifted to an isotopy in DA
2n n ¹0º. As such, we have a well-defined map ‰ on the

mapping class groups from

MCG.DB
nC1; ¹0º/! MCG.DA

2n/

defined by lifting the mapping class of f B to the mapping class of f A. More con-
cretely, using the standard presentation of the groups, ‰ is given by �B1 mapping to
�An and �Bj mapping to �AnCj�1�

A
n�.j�1/

for j � 2. In fact, the image of the map ‰
is generated by fibre-preserving mapping classes in MCGp.DA

2n/. By [3, Theorem 1],
we know that any fibre-preserving diffeomorphism f A which is isotopic to the iden-
tity possesses a fibre-preserving isotopy to the identity, which can then be projected
to DB

nC1 to get the isotopy
f B ' id :

Therefore, we have the following well-known result.
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(a) (b) (c) (d)

Figure 2.3. The dotted curves and solid curves belong to different multicurves. The multicurves
in (a) and (b) do not have minimal intersection, whereas the multicurves in (c) and (d) do.

Proposition 2.1. The homomorphism ‰ W MCG.DB
nC1; ¹0º/! MCG.DA

2n/ defined
by

‰.ŒtBbi
�/ D

8<: ŒtA%n
�; for i D 1;

ŒtA%nCi�1
tA%n�.i�1/

�; for i � 2

is injective.

2.3. Curves and geometric intersection numbers

Here, we collect the definitions of curves and geometric intersection numbers as
defined in [15, Section 3a]. Let .� ; �/ be a surface with marked points as in Sec-
tion 2.2. A curve c in .� ; �/ is a subset of � that is either a simple closed curve in
the interior �o WD � n .@� [�/ of � and essential (non-nullhomotopic in �o), or the
image of an embedding 
 W Œ0; 1�! � which is transverse to the boundary @� of �

with its endpoint lying in @� [ �, that is, 
�1.@� [ �/ D ¹0; 1º. In this way, our
defined curves are smooth and unoriented. A multicurve in .� ; �/ is the union of a
finite collection of disjoint curves in .� ;�/. We say two curves c0 and c1 are isotopic
if there exists an isotopy in Diff.� ; @� I�/ deforming one into the other, denoted by
c0 ' c1. Note that the points on @� [� cannot move during an isotopy. Therefore,
we can partition all curves in .� ; �/ into isotopy classes of curves. Two multicurves
c0; c1 are isotopic if they have the same number of disjoint curves, and each curve
in c0 is isotopic to one and only one curve in c1. Two curves c0, c1 are said to have
minimal intersection if, given two intersection points z� ¤ zC in c0 \ c1, the two
arcs ˛0 � c0, ˛1 � c1 with endpoints z� ¤ zC such that ˛0 \ ˛1 D ¹z�; zCº do not
form an empty bigon (the bigon contains no marked points) unless z�; zC are marked
points. Two multicurves c0; c1 are said to have minimal intersection if any two curves
c0 � c0 and c1 � c1 have minimal intersection (see Figure 2.3).

Let c0, c1 be curves in .� ; �/ with c0 \ c1 \ @� D ;. Note that we can always
find a curve c01 ' c1 such that c0 and c01 have minimal intersection. We define the
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geometric intersection number I.c0; c1/ 2 1
2
Z as follows:

I.c0; c1/ D

8̂̂<̂
:̂
2; if c0; c1 are simple closed

curves and isotopic;

j.c0 \ c
0
1/ n�j C

1

2
j.c0 \ c

0
1/ \�j; if c0 \ c01 \ @� D ;.

By [15, Lemma 3.2] and [15, Lemma 3.3], the definition is indeed independent of
the choice of c01. Moreover, note that the definition above does not depend on the
orientation of � and is symmetric. We extend the definition of geometric intersection
numbers for multicurves (which do not intersect at @�) by just adding up the geomet-
ric intersection numbers of each pair of curves c0 � c0 and c1 � c1.

2.4. Trigraded curves in DB
nC1

In this subsection, we will extend the notion of bigraded curves and bigraded intersec-
tion numbers defined in [15, Section 3d] to trigraded curves and trigraded intersection
numbers (see also Section 2.7).

Let us remind the reader that we equipped the disc DA
2n with the set of marked

points
� D ¹�n; : : : ;�1; 1; : : : ; nº

and the disc DB
nC1 with the set of marked points ƒ D ¹0; 1; : : : ; nº. Consider another

set of marked points �0 D � [ ¹0º in the disc DA
2n. Fix the notation as follows:

DB
ƒ WD PT .D

B
nC1 nƒ/ and DA

�0
WD PT .DA

2n n�0/;

where PT .�/ denotes the real projectivisation of the tangent bundle of the respective
discs. By taking an oriented trivialisation of its tangent bundle, we can then identify
DA
�0
Š RP1 � .DA

2n n �0/. In DA
2n n �0, pick a small loop �j winding positively

around each puncture j 2 �0. In this way, the classes Œpoint � �j � and ŒRP1 � point�
form a basis ofH1.DA

�0
IZ/. Using the universal coefficient theorem for cohomology

[10, Theorem 3.2], we consider the covering space zDA
�0

of DA
�0

classified by the
cohomology class C0 2 H 1.DA

�0
IZ � Z/ defined as follows:

C0.Œpoint � �0�/ D .0; 0/; (2.1)

C0.Œpoint � �j �/ D .�2; 1/; for j D �n; : : : ;�1; 1; : : : ; n; (2.2)

C0.ŒRP1 � point�/ D .1; 0/: (2.3)

In fact, zDA
�0

is a covering for DB
ƒ with a group of deck transformations Z � Z �

Z=2Z, as explained in the following lemma.
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Lemma 2.2. .1/ Under the action of the rotation group R generated by the half-
rotation r , the quotient map q W DA

2n n�0 ! DB
nC1 n ƒ is a normal covering space

with deck transformation group

R Š Z=2Z:

.2/ The composite zDA
�0

p
�! DA

�0

q
�! DB

ƒ is a normal covering, where q is the
normal covering map induced by the quotient map q on the disc component and the
identity map on the RP1 component.

.3/ The group of deck transformations for the covering space zDA
�0

qıp
��!DB

ƒ is

Z � Z � Z=2Z:

Proof. The proofs of .1/ and .2/ are straightforward, and we leave them to the reader.
We will now prove .3/. Since the covering q ı p is normal, its deck transformation

group G is given by

G Š
�1.D

B
ƒ/

.q� ı p�/.�1. zD
A
�0
//
:

Recall C0 W H1.DA
�0
/! Z � Z as defined by (2.1)–(2.3). Let

C0 W �1.D
A
�0
/! Z � Z

be the map defined by precomposing C0 with the natural quotient map

�1.D
A
�0
/ � H1.D

A
�0
/:

Observe that we have the following commutative diagram of short exact sequences:

1 1 1

1 �1. zD
A
�0
/ �1.D

A
�0
/ Z � Z 1

1 �1. zD
A
�0
/ �1.D

B
ƒ/ G 1

1 0 Z=2Z Z=2Z 1

1 1 1

p� C0

q� fq�
q�ıp�

`0 7!1

;
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� � �� � �
2�2 10�1�n n

�

^^^^^^^
^ ^ ^^ � � �

0 1 2 n

Figure 2.4. The loops chosen for the fundamental groups of DA
2n
n �0 (left) and DB

nC1
n ƒ

(right).

where Z � Z is the deck transformation group of the covering p, Z=2Z is the deck
transformation group of the covering q, and fq� is the map induced by q�. We will
show that the rightmost column of short exact sequence is left-split; namely, we will
construct a map z' W G ! Z � Z such that z' ıfq� D id:

1 Z � Z G Z=2Z 1;
fq�
z'

which shows that G Š Z � Z � Z=2Z as required.
We will first define a map ' W �1.DB

ƒ/! �1.D
A
�0
/ and show that C0 ı ' factors

uniquely through the quotientG, which we will define to be our map z' W G! Z�Z.
We pick loops �i � DA

2n n�0 and `i � DB
nC1 nƒ as in Figure 2.4.

The induced map q� W �1.DA
2n n�0/! �1.DB

nC1 nƒ/ on the fundamental groups
satisfies

q�.Œ�j �/ D

8̂̂<̂
:̂
Œ`0 ı `0�; for j D 0;

Œ.`0`1 � � � j̀�1/`jj j.`
�1
j�1 � � � `

�1
1 `
�1
0 /�; for � n � j � �1;

Œ j̀ �; for 1 � j � n:

Now, define ' W �1.DB
ƒ/! �1.D

A
�0
/ by sending8̂̂<̂

:̂
Œpoint � `0� 7! Œpoint � �0�;

Œpoint � j̀ � 7! Œpoint � �j �; for all j 2 ¹1; : : : ; nº;

ŒRP1 � point� 7! ŒRP1 � point�:

We claim that C0 ı ' ı q� D C0. Firstly, note that

C0 ı ' ı q�.Œpoint � �0�/ D 0 D C0.Œpoint � �0�/;

and
' ı q�.ŒRP1 � point�/ D ŒRP1 � point�
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by construction. Moreover, for j 2 ¹�n; : : : ;�1; 1; : : : ; nº,

.' ı q�/Œpoint � �j � D´
Œpoint��0�1 � � ��j�1�Œpoint��jj j�Œpoint��0�1 � � ��j�1��1; for � n�j ��1;

Œpoint � �j �; for 1 � j � n:

Since C0 maps to Z � Z, which is abelian, we have that, from (2.2),

.C0 ı ' ı q�/Œpoint � �j � D C0Œpoint � �jj j� D C0Œpoint � �j �:

This shows that C0 ı ' ı q� and C0 agree on all generators of �1.DA
�0
/, and so, they

are equal. This implies that

.C0 ı ' ı q� ı p�/.�1. zD
A
�0
// D .C0 ı p�/.�1. zD

A
�0
// D 0:

As such, C0 ı ' factors uniquely through the quotient G, and we denote this map by

z' W G ! Z � Z:

By definition, fq� is uniquely determined by the images of Œpoint � �1�; ŒRP 1 �
point� 2 �1.DA

�0
/ under q�. It is now easy to see that z' ıfq� D id by the construction

of z'.

Remark 2.3. Following the proof of Lemma 2.2 (3), it is easy to see that the covering
space zDA

�0
of DB

ƒ is classified by the cohomology class CB 2 H 1.DB
ƒIZ � Z �

Z=2Z/ defined as follows:

CB.Œpoint � `0�/ D .0; 0; 1/;

CB.Œpoint � j̀ �/ D .�2; 1; 0/; for 1; : : : ; n;

CB.ŒRP1 � point�/ D .1; 0; 0/:

Note that every f 2 Diff.DB
nC1; ¹0º/ preserves the class CB and therefore can

be lifted to a unique equivariant diffeomorphism Lf of zDA
�0

that acts trivially on the

fibre of zDA
�0

over all points in TzDB
nC1 for z 2 @DB

nC1. We will call Lf the preferred lift
of f . Furthermore, every curve c in DB

nC1 admits a canonical section sc W c nƒ!DB
ƒ

defined by sc.z/ D Tzc. We define a trigrading of c to be a lift Lc of sc to zDA
�0

and a
trigraded curve to be a pair .c; Lc/ consisting of a curve and its trigrading; we will often
just write Lc instead of .c; Lc/ when the context is clear. We denote the Z �Z �Z=2Z-
action on zDA

�0
by �B . On top of that, we can easily extend the notion of isotopy to

the set of trigraded curves, where �B and MCG.DB
nC1; ¹0º/ have induced actions on

the set of isotopy classes of trigraded curves. In particular, for Œf � 2MCG.DB
nC1; ¹0º/

and a trigraded curve Lc, Œ Lf �. Lc/ WD Lf ı Lc ı f �1 W f .c/ nƒ! zDA
�0

.
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c

ˇ

tc.ˇ/

0 j

Figure 2.5. The action of full twist around curve joining ¹0º and another point in ƒ.

Lemma 2.4. .1/ A curve c admits a trigrading if and only if it is not a simple closed
curve.

.2/ The Z � Z � Z=2Z-action on the set of isotopy classes of trigraded curves
is free. Equivalently, a trigraded curve Lc is never isotopic to �B.r1; r2; r3/ Lc for any
.r1; r2; r3/ ¤ 0.

Proof. This is essentially the same proof as in [15, Lemmas 3.12 and 3.13].

Lemma 2.5. .1/ Let c be a curve in DB
nC1 which joins two points of ƒ n ¹0º, tc 2

MCG.DB
nC1; ¹0º/ the half-twist along it, and Ltc its preferred lift to zDA

�0
. Then,

Ltc. Lc/ D �
B.�1; 1; 0/ Lc

for any trigrading Lc of c.
.2/ Let c be a curve in DB

nC1 which joins two points of ƒ with one of them being
¹0º, tc 2MCG.DB

nC1; ¹0º/ the full twist along it, and Ltc its preferred lift to zDA
�0

. Then,
Ltc. Lc/ D �

B.�1; 1; 1/ Lc for any trigrading Lc of c.

Proof. The proof of .1/ is as in [15, Lemma 3.14]. We will now prove .2/. Let ˇ W
Œ0; 1�! DB

nC1 n ƒ be an embedded smooth path from a point ˇ.0/ 2 @DB
nC1 to the

fixed point ˇ.1/ 2 c of tc . Note that we have Ltc. Lc/ D �.r1; r2; r3/ Lc as tc.c/ D c.
Consider the closed path � W Œ0; 2�!DB

ƒ given by

�.t/ D

´
Dtc.Rˇ0.t//; if t � 1;

Rˇ0.2 � t /; if t � 1;

where Rˇ0.s/� Tˇ.s/D
B
nC1. The above situation is illustrated in Figure 2.5. Let CB 2

H 1.DB
ƒIZ � Z � Z=2Z/ be the cohomology class classifying the covering space

zDA
�0

of DB
ƒ as in Remark 2.3. Then, we compute

.r1; r2; r3/ D �C
B.Œ��/

D CB.ŒRP1 � points�/C CB.Œpoints � `0�/C CB.Œpoints � j̀ �/

D .�1; 1; 1/:
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Note that Œ�� only picks up one copy of ŒRP1 � points� due to the disc configuration,
or more precisely the oriented trivialisation of DB

nC1.

2.5. Local index and trigraded intersection numbers

Mimicking the definition of local index for bigraded curves in [15, p. 225], we will
define the local index of an intersection between two trigraded curves. Suppose that
.c0; {c0/ and .c1; {c1/ are two trigraded curves, and z 2 DB

nC1 n @D
B
nC1 is a point where

c0 and c1 intersect transversally. Take a small circle ` � DB
nC1 nƒ around z and an

embedded arc ˛ W Œ0; 1�! ` which moves clockwise around ` such that ˛.0/ 2 c0
and ˛.1/ 2 c1 and ˛.t/ … c0 [ c1 for all t 2 .0; 1/. If z 2 �, then ˛ is unique up to
a change of parametrisation; otherwise, there are two choices which can be told apart
by their endpoints. Then, take a smooth path � W Œ0; 1�! DB

ƒ with �.t/ 2 .DB
ƒ/˛.t/

for all t , going from �.0/ D T˛.0/c0 to �.1/ D T˛.1/c1, such that �.t/ ¤ T˛.t/` for
every t . One can take � as a family of tangent lines along ˛ which are all transverse
to `. After that, lift � to a path {� W Œ0; 1�! {DB

ƒ with {�.0/ D Lc0.˛.0//I subsequently,
there exists some .�1; �2; �3/ 2 Z � Z � Z=2Z such that

Lc1.˛.1// D �
B.�1; �2; �3/{�.1/;

as Lc1.˛.1// and {�.1/ are the lifts of the same point in DB
ƒ. To this end, we define the

local index of Lc0; Lc1 at z as

�trigr. Lc0; Lc1I z/ D .�1; �2; �3/ 2 Z � Z � Z=2Z:

It is easy to see that the definition is independent of all the choices made.
The local index has a nice symmetry property similar to [15, p. 227]; see the

following lemma.

Lemma 2.6. If .c0; Lc0/ and .c1; Lc1/ are two trigraded curves such that c0 and c1 have
minimal intersection, then

�trigr. Lc1; Lc0I z/ D

8̂<̂
:
.1; 0; 0/ � �trigr. Lc0; Lc1I z/; if z … �;

.0; 1; 0/ � �trigr. Lc0; Lc1I z/; if z 2 � n ¹0º;

.1; 0; 1/ � �trigr. Lc0; Lc1I z/; if z 2 ¹0º:

Proof. The first two formulae are essentially the same as in [15, p. 227] and can
be proven in a similar fashion, which we omit the details. The third formula can be
verified using Figure 2.6, as the blue path ` in Figure 2.6 contributes ŒRP1 � point�C
Œpoint � `0�.

Let {c0 and {c1 be two trigraded curves that do not intersect at @DB
nC1. Pick a curve

c01 ' c1 which intersects minimally with c0. Then, by Lemma 2.4, c01 has a unique
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c0

c1

�

`

0

Figure 2.6. Two curves c0, c1 intersecting at ¹0º.

trigrading Lc01 of c01 so that Lc01 ' Lc1. We define the trigraded intersection number
I trigr. Lc0; Lc1/ 2 ZŒq˙11 ; q2˙1; q3�=hq

2
3 � 1i of Lc0 and Lc1 as follows:

• if Lc1 ' �.r1; r2; r3/ Lc0 with .r1; r2; r3/ 2 Z � Z � Z=2Z and c0 \ c1 \ ¹0º non-
empty, then

I trigr. Lc0; Lc1/ D q
r1
1 q

r2
2 q

r3
3 .1C q2/I (2.4)

• otherwise,

I trigr. Lc0; Lc1/ D .1C q3/.1C q
�1
1 q2/

X
z2.c0\c

0
1
/n�

q
�1.z/
1 q

�2.z/
2 q

�3.z/
3

C .1C q3/
X

z2.c0\c
0
1
/\�n¹0º

q
�1.z/
1 q

�2.z/
2 q

�3.z/
3

C .1C q�11 q2q3/
X

z2.c0\c
0
1
/\¹0º

q
�1.z/
1 q

�2.z/
2 q

�3.z/
3 :

The fact that this definition is independent of the choice of c01 and is an invariant of
the isotopy classes of . Lc0; Lc1/ follows similarly as in the case of ordinary geometric
intersection numbers.

Remark 2.7. Note that the exceptional case (2.4) in the definition above is motivated
by the algebraic correspondence explored in Section 7 (graded HOM space between
corresponding irreducible projective modules). We hope to find a more geometric
explanation from symplectic geometry in the near future.

Lemma 2.8. The trigraded intersection number has the following properties:

(T1) For any f 2 Diff.DB
nC1; ¹0º/, I

trigr. Lf . Lc0/; Lf . Lc1// D I
trigr. Lc0; Lc1/.

(T2) For any .r1; r2; r3/ 2 Z � Z � Z=2Z,

I trigr. Lc0; �.r1; r2; r3/ Lc1/ D I
trigr.�.�r1;�r2; r3/ Lc0; Lc1/

D q
r1
1 q

r2
2 q

r3
3 I

trigr. Lc0; Lc1/:
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(T3) If c0, c1 are not isotopic curves with ¹0º as one of its endpoints, c0 \ c1 \
@DB

nC1 D ;, and I trigr. Lc0; Lc1/ D
P
r1;r2;r3

ar1;r2;r3q
r1
1 q

r2
2 q

r3
3 , then

I trigr. Lc1; Lc0/ D
X

r1;r2;r3

ar1;r2;r3q
�r1
1 q

1�r2
2 q

r3
3 :

If c0, c1 are isotopic curves with ¹0º as one of its endpoints and c0 \ c1 \
@DB

nC1 D ;, then I trigr. Lc1; Lc0/ D I
trigr. Lc0; Lc1/.

Proof. For (T1) and (T2), these can be proven using a simple topological argument
which we omit. For (T3), this is a consequence of Lemma 2.6. We point out that the
term .1C q�11 q2q3/ in the definition of trigraded intersection numbers for two curves
that intersect at the point ¹0º is essential for property (T3).

2.6. Admissible curves and normal form in DB
nC1

Following [15, Sections 3b and 3e], we introduce the notion of (trigraded) admissible
curves in DB

nC1 and their normal forms. Other than the extra consideration of trigrad-
ings, the main difference lies in the normal forms of (trigraded) admissible curves in
the region containing the marked point 0; see Figure 2.10.

We fix the set of basic curves b1; : : : ; bn and choose vertical curves d1; : : : ; dn
as in Figure 2.7, which divide DB

nC1 into regions D0; : : : ; DnC1. Note that, unlike
in [15], none of our basic curves touches the boundary of the disc DB

nC1.
A curve c is called admissible if it is equal to f .bj / for some 0 � j � n and some

diffeomorphisms f 2 Diff.DB
nC1; ¹0º/. Note that the endpoints of c must then lie in

¹0; : : : ; nº; conversely, all curves which start and end at ¹0; : : : ; nº are admissible.
Moreover, the two (distinct) orbits O.Œb1�/ and O.Œb2�/ under the action of A.Bn/ Š

MCG.DB
nC1; ¹0º/ partition the set of isotopy classes of admissible curves.

If an admissible curve c in its isotopy class has minimal intersection with all the
dj ’s among its other representatives, then we say that c is in normal form. A normal
form of c is always achievable by performing an isotopy.

Let c be an admissible curve in normal form. We use the same classification as
in [15, Section 3e] to group all connected components of c \Dj into finitely many
types. For 1� j � n, the classification is exactly the same as in [15, Section 3e]: there
are six types for the case 1 � j � n� 1 as depicted in Figure 2.8; whereas for j D n,
there are two types as shown in Figure 2.9. At j D 0, we have two possible types as
depicted in Figure 2.10, where they are drawn slightly differently due to the nature of
D0; compare type 20 in Figure 2.8 and type 200 in Figure 2.102. Note that an admissible

2Technically, the difference between type 20 and type 200 lies in the their trigradings when
we consider trigraded curves later on.
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d1 d2 d3 dn�1 dn

b1 b2 b3 bn�1 bn
� � �

0 1 2 n-1 n

D0

D0

D1

D1

D2

D2

Dn�1

Dn�1

Dn

Figure 2.7. The curves bi and di in the aligned configuration with regions Di .

curve c intersecting all the dj transversely with each connected component of c \Dj
belonging to Figures 2.8, 2.9, and 2.10 is already in normal form.

For the rest of this section, c will be an admissible curve in normal form. We call
the intersections of c with the curves di crossings and denote them by

cr.c/ D c \ .d0 [ d1 [ � � � [ dn�1/:

Those intersections c \ dj are called j -crossings of c. For 0 � j � n, the connected
components of c \Dj are called segments of c. If the endpoints of a segment are both
crossings, then it is essential.

Now, we will study the action of half-twist tB
bk

on normal forms. In general, tB
bk
.c/

would not be in normal form even though c is a normal form. Nonetheless, tB
bk
.c/ has

minimal intersection with all dj for j ¤ k. In order to get tB
bk
.c/ into a normal form,

one just needs to isotope it so that its intersection with dk is minimal. The same
argument used in [15, Proposition 3.17] gives us the following analogous result.

Proposition 2.9. .1/ The normal form of tB
bk
.c/ coincides with c outside ofDk�1[Dk .

The curve tB
bk
.c/ can be brought into normal form by an isotopy inside Dk�1 [Dk .

.2/ Suppose that tB
bk
.c/ is in normal form. There is a natural bijection between

j -crossings of c and the j -crossings of tB
bk
.c/ for j ¤ k. There is a natural bijection

between connected components of intersections of c and tB
bk
.c/ inside Dk�1 [Dk .

A connected component of c \ .Dj�1 [Dj / is called j -string of c. Denote by
st.c; j / the set of j -string of c. In addition, we define a j -string as a curve inDj�1 [
Dj which is a j -string of c for some admissible curve c in normal form.

Two j -strings are isotopic (equivalently belong to the same isotopy class) if there
exists a deformation of one into the other via diffeomorphisms f ofD0 DDj�1 [Dj
which fix dj�1 and djC1 as well as preserve the marked points in D0 pointwise;
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Type 3

Type 2

Type 1

Type 30

Type 20

Type 10

.r1; r2; r3/

.r1C1; r2�1; r3/ .r1; r2; r3/

.r1; r2; r3/

.r1C1; r2�1; r3/

.r1; r2; r3/

.r1; r2; r3/

.r1C1; r2�1; r3/

.r1; r2; r3/ .r1C1; r2; r3/

Figure 2.8. The six possible types of connected components c \Dj , for c in normal form and
1 � j < n.

that is,

f .dj�1/ D dj�1; f .djC1/ D djC1; and f j�\D0 D id :

For 1 < j < n, isotopy classes of j -strings can be divided into types as follows:
there are five infinite families Iw , IIw , II0w , IIIw , III0w.w 2 Z/ and five exceptional
types IV, IV0, V, V0, and VI (see Figure 2.11). When j D n, there is a similar list,
with two infinite families and two exceptional types (see Figure 2.12). The rule for
obtaining the .w C 1/-th from the w-th is by applying tB

bj
. For 1-string, there are

instead four infinite-family types: II0w , II0
wC 1

2

, III0w , III0
wC 1

2

.w 2 Z/ and two excep-

tional types V00 and VI (see Figure 2.13). As for segments of curves, these are drawn
slightly different due to the nature of the disc; compare type V0 in Figure 2.11 and
type V00 in Figure 2.13. Note that for 1-strings, the rule for obtaining the .w C 1/-th
from the w-th is instead by applying .tB

b1
/2.
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Type 2 Type 3

.r1C1; r2�1; r3/

.r1; r2; r3/

.r1; r2; r3/

Figure 2.9. The two possible types of connected components c \Dn.

Type 200 Type 30

.r1; r2; r3/

.r1; r2; r3C1/

.r1; r2; r3/

Figure 2.10. The two possible types of connected components c \D0.

Based on our definition, j -strings are assumed to be in normal form. As before, we
can define crossings and essential segments of j -string as in the case for admissible
curves in normal form and denote the set of crossings of a j -string g by cr.g/.

Now, let us adapt the discussion to trigraded curves. Choose trigradings Lbj , Ldj of
bj , dj for 1 � j � n such that

I trigr. Ldj ; Lbj / D .1C q3/.1C q
�1
1 q2/; I trigr. Lbj ; LbjC1/ D 1C q3:

These conditions determine the trigradings uniquely up to an overall shift given by
�B.r1; r2; r3/.

Suppose that Lc is a trigrading of an admissible curve c in normal form. If a � c
is a connected component of c \Dj for some j and La is Lcjanƒ, then La is evidently
determined by a together with the local index �trigr. Ldj�1; LaI z/ or �trigr. Ldj ; LaI z/ at
any point z 2 .dj�1 [ dj / \ a. Moreover, if there is more than one such point, the
local indices determine each other.

In Figures 2.8, 2.9, and 2.10, we classify the types of pair .a; La/ with the local
indices. For instance, consider the type 1.r1; r2; r3/with .k � 1/-crossing z0 2 dk�1 \
a and k-crossing z1 2 dk \ a. We have that the local indices at z0 and at z1 are

�trigr. Ldk�1; LaI z0/ D .r1; r2; r3/ and �trigr. Ldk; LaI z1/ D .r1 C 1; r2; r3/;

respectively.
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Type V Type V0

Type IV Type IV0

Type III0 Type III0
0

Type II0 Type II0
0

Type I0

Type VI

.r1; r2; r3/ .r1; r2C1; r3/

.r1; r2; r3/

.r1C1; r2�1; r3/

.r1C1; r2�1; r3/

.r1; r2; r3/

.r1; r2; r3/ .r1; r2; r3/

.r1; r2; r3/ .r1C2; r2; r3/

.r1; r2; r3/.r1C2; r2�2; r3/

.r1; r2; r3/

.r1C3; r2�2; r3/ .r1; r2; r3/

.r1C3; r2�2; r3/

Figure 2.11. The isotopy classes of j -strings for 1 < j < n.



E. Heng and K. S. Nge 358

Type V

.r1; r2; r3/

.r1C3; r2�2; r3/

Type III0

.r1; r2; r3/

Type II0

.r1; r2; r3/

.r1C1; r2�1; r3/

Type VI

Figure 2.12. The isotopy classes of n-strings.

We recall from Section 2.4 that there is a preferred lift Lf 2 Diff. zDA
�0
/ of f 2

Diff.DB
nC1; ¹0º/ which acts as the identity on the boundary. Denote by Ltbj

the pre-
ferred lift of the twist tbj

along the curve bj in DB
nC1 (see Figure 2.7).

Proposition 2.10. The diffeomorphisms Ltbj
induce a type Bn braid group action on

the set of isotopy classes of admissible trigraded curves. Namely, if Lc is an admissible
trigraded curve, we have the following isotopy relations:

Ltb1
Ltb2
Ltb1
Ltb2
. Lc/ ' Ltb2

Ltb1
Ltb2
Ltb1
. Lc/;

Ltbj
Ltbk
. Lc/ ' Ltbk

Ltbj
. Lc/; for jj � kj > 1;

Ltbj
LtbjC1

Ltbj
. Lc/ ' LtbjC1

Ltbj
LtbjC1

. Lc/; for j D 2; 3; : : : ; n:

A crossing of c will be also a crossing of Lc, and we denote the set of crossings of
Lc by cr. Lc/. Note that as set, cr. Lc/ D cr.c/. However, a crossing of Lc comes with a
local index in Z � Z � Z=2Z.

Moreover, to each crossing y of Lc we assign a 4-tuple .y0; y1; y2; y3/, where y0
denotes the index of the vertical curve which contains the crossing y 2 dy0

\ c, and
.y1; y2; y3/ is the local index .�1; �2; �3/ of the crossing y.

We define the essential segments of Lc as the essential segments of c together with
the trigradings which can be obtained from local indices assigned to the ends of the
segments.

We also define a j -string of Lc as a connected component of Lc \ .Dj�1 [ Dj /
together with the trigrading induced from Lc. Denote the set of j -string of Lc by st. Lc; j /.

On top of that, we define a trigraded j -string as a trigraded curve in Dj�1 [Dj
that is a connected component of Lc \ .Dj�1 [Dj / for some trigraded curve Lc.
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.r1C2;r2�1;r3C1/

.r1; r2; r3/

Type V00 Type VI

.r1; r2; r3/

Type III0
0

.r1; r2; r3/

Type III01
2

.r1C1; r2�1; r3/

.r1; r2; r3/

Type II0
0

.r1; r2; r3C1/

.r1; r2; r3/

Type II01
2

Figure 2.13. The isotopy classes of 1-strings.

In Figures 2.11, 2.12, and 2.13, we depict the isotopy classes of trigraded j -
strings. Since j -strings of type VI do not intersect with dj�1 [ djC1, we say that a
trigraded j -string Lg with the underlying j -string g of type VI has type VI.r1; r2; r3/
if Lg D �B.r1; r2; r3/ Lbj .

The next crucial lemma is the type B analogue of [15, Lemma 3.20], allowing the
computation of trigraded intersection numbers between Lbj and any given trigraded
curve.

Lemma 2.11. Let .c; Lc/ be a trigraded curve. Then, I trigr. Lbj ; Lc/ can be computed by
adding up contributions from each trigraded j -string of Lc. For j > 1, the contribu-
tions are listed in the following table:

I0.0; 0; 0/ II0.0; 0; 0/ II00.0; 0; 0/ III0.0; 0; 0/

q1 C q2 C q2q3 C q1q3 q1 C q2 C q2q3 C q1q3 1C q1q
�1
2 C q3 C q1q

�1
2 q1q3 q2 C q2q3

III00.0; 0; 0/ IV IV0 V V0 VI.0; 0; 0/
1C q3 0 0 0 0 1C q2 C q3 C q2q3
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and the remaining ones can be computed as follows: to determine the contribution of
a component of type, say, Iu.r1; r2; r3/, one takes the contribution of I0.0; 0; 0/ and
multiplies it by qr11 q

r2
2 q

r3
3 .q

�1
1 q2/

u. For j D 1, the relevant contributions are

II00.0; 0; 0/ II01
2

.0; 0; 0/ III00.0; 0; 0/ III01
2

.0; 0; 0/ V00 VI.0; 0; 0/

1C q3 C q1q
�1
2 C q1q

�1
2 q3 1C q3 C q

�1
1 q2 C q

�1
1 q2q3 1C q3 q�1

1 q2 C q3 0 1C q2

and the remaining ones can be computed as follows: to determine the contribution of
a component of type, say, II0u.r1; r2; r3/, one takes the contribution of II00.0; 0; 0/ and
multiplies it by qr11 q

r2
2 q

r2
2 .q

�1
1 q2q3/

u.

Proof. Apply Lemma 2.5 as well as .T 2/ and .T 3/ of Lemma 2.8.

2.7. Bigraded curves and bigraded multicurves in zDA
�0

We briefly remind the reader of the definition of a bigraded curve in zDA
�0

; refer to
[15, Section 3d] for a more detailed construction. Consider the projectivisation DA

� WD

PT .DA
2n n�/ of the tangent bundle of DA

2n n�. The covering zDA
� of DA

� is classified
by the cohomology class CA 2 H 1.DA

�IZ � Z/ defined as follows:

CA.Œpoint � �i �/ D .�2; 1/; for i D �n; : : : ;�1; 1; : : : ; n;

CA.ŒRP1 � point�/ D .1; 0/:

A bigrading of a curve c 2 DA
2n is a lift Rc of sAc to zDA

�, where sAc W c n�! DA
� is

the canonical section given by sAc .z/ D Tzc. A bigraded curve is a pair .c; Rc/, where
sometimes we abbreviate as Rc.

A bigraded multicurve Rc is a union of a finite collection of disjoint bigraded
curves. There is an obvious notion of isotopy for bigraded multicurves.

2.8. Lifting of trigraded curves to bigraded multicurves

Our goal is to define a map m W {C!
RzCe from the set {C of isotopy classes of trigraded

curves to the set RzCe of isotopy classes of bigraded multicurves. Let c be a curve in
DB
nC1 with trigrading Lc. First, consider the case when c \ ¹0º D ;. Recall the map

qbr W D
A
2n! DB

nC1 as defined in Section 2.2.1. Then, q�1
br
.c/ has two connected com-

ponents in DA
2n; denote them as Qc,

Q
c such that Qc n� agrees with the curve component

of p ı Lc.c nƒ/ and
Q
c n� agrees with the curve component of p ı �B.0; 0; 1/ Lc.c nƒ/.

Define RQc W Qc n�! zDA
� as RQc WD zF ı Lc ı qbr jQcn�; similarly, R

Q
c W
Q
c n�! zDA

� is defined
as

RQc WD zF ı �B.0; 0; 1/ Lc ı qbr jQcn�;
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where zF W zDA
�0
! zDA

� is the unique map induced by the inclusion F WDA
�0
!DA

�.
It is easy to check that these are indeed bigradings of the respective curves. On the
other hand, if c contains 0 as one of its endpoints, we define

Q
Q
c WDBc n ¹0º q ¹0º q c n ¹0º

B
;

which is just a single connected component. Furthermore, R
Q
Qc is defined to be the unique

continuous extension of
RBc n ¹0º q Rc n ¹0º

B
, which is again an easy verification that it

is a bigrading of
Q
Qc.

In total, we define the map m W {C!
RzCe as follows: for a trigraded curve .c; Lc/ in

zDA
�0

,

m..c; Lc// WD

´
.
Q
Qc; RQ
Q
c/; if c has ¹0º as one of its endpoints,

. Qc; RQc/q .
Q
c; R
Q
c/; otherwise.

Due to the isotopy lifting property of the space, m is well defined on the isotopy
classes of trigraded curves.

Recall the natural induced action of A.Bn/ŠMCG.DB
nC1; ¹0º/ on {C given in the

paragraph before Lemma 2.4. Since

A.A2n�1/ Š MCG.DA
2n/

acts on RzCe [15, Proposition 3.19], there exists an induced action of A.Bn/ on RzCe through
the injection ‰ as given in Proposition 2.1.

Proposition 2.12. The map m W {C!
RzCe from isotopy classes of trigraded curves in

zDA
�0

to isotopy classes of bigraded multicurves in zDA
� is A.Bn/-equivariant

A.Bn/ A.A2n�1/
‰
 - A.Bn/

Isotopy classes {C of
trigraded curves in DB

nC1

Isotopy classes RzCe of
bigraded multicurves in DA

2n.
m

Proof. This follows directly from the definition of m and the actions.

2.9. Bigraded intersection number and bigraded admissible multicurves in zDA
�

The local index for bigraded curves in zDA
� is defined in the same spirit as the local

index for trigraded curves in zDA
�0

. For a more detailed explanation, we refer the
reader to [15, Section 3d].
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We recall from [15, Section 3d] that the bigraded intersection number of two
bigraded curves Rc0; Rc1 that do not intersect at @DA

2n is defined by

I bigr. Rc0; Rc1/ D .1C q
�1
1 q2/

� X
z2.c0\c

0
1
/n�

q
�1.z/
1 q

�2.z/
2

�
C

� X
z2.c0\c

0
1
/\�

q
�1.z/
1 q

�2.z/
2

�
:

We extend the definition of bigraded intersection number of bigraded curves to bigrad-
ed multicurves by adding up the bigraded intersection numbers of each pair of bigrad-
ed curves.

To talk about bigraded admissible curves in DA
2n and their normal forms, we need

to fix a set of basic bigraded curves. To do so, first recall the set of trigraded basic
curves .bj ; Lbj / and the set of trigraded vertical curves .dj ; Ldj / as defined in Sec-
tion 2.6. Denote this set of basic trigraded curves as {B. Consider, for each .c; Lc/ 2 {B,
its lift to bigraded multicurves in DA

2n:

m.c; Lc/ D

´
.
Q
Qc; RQ
Q
c/; if .c; Lc/ D .b1; Lb1/,

. Qc; RQc/q .
Q
c; R
Q
c/; otherwise;

where Qc denotes the curve whose points have positive real parts, so points in
Q
c have

negative real parts. We will fix the set of bigraded basic curves .%; R%j / and bigraded
vertical curves .�j ; R�j / as follows:

• choose .�n; R�n/ WD . Qd1;
RQd1/;

• choose .�nCj�1; R�nCj�1/ WD . Qdj ;
RQdj / and

.�n�jC1; R�n�jC1/ WD .dje ; Rdje /; for 2 � j � nI

• choose .%nCj�1; R%nCj�1/ WD . Qbj ;
RQbj / and

.%n�jC1; R%n�jC1/ WD .bje ; Rbje/; for 2 � j � nI

• choose .%n; R%n/ WD . Qb1e ; RQb1e/.
Figure 2.14 illustrates the (underlying) basic curves %j and vertical curves �j chosen.

Remark 2.13. We notify the reader of two slight differences here in comparison to
[15]: our underlying set of basic curves ¹%j º chosen does not include the one curve
connected to the boundary of the disc; moreover, the bigradings of the basic curves
and vertical curves are slightly different. Compare our equations (2.6) and (2.7) to the
defining equations in [15, p. 232].
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� � � � � �
-n -2 -1 1 2 n

D0 D2n
Dn�1

Dn�1

Dn

Dn

DnC2

DnC2

Dn�2

Dn�2

�1
�n�2 �n�1 �n �nC1 �nC2 �2n�1

%1 %n�2 %n�1 %nC2%n %nC1 %2n�1

Figure 2.14. The basic curves �i and %i in the aligned configuration with regions Di for DA
2n

.

Lemma 2.14. The bigradings we choose for the set of basic curves and vertical
curves in DA

2n satisfy the following properties:

I bigr. R�j ; R%j / D 1C q
�1
1 q2; for 1 � j � 2n � 1; (2.5)

I bigr. R%j ; R%jC1/ D 1; for n � j � 2n � 2; (2.6)

I bigr. R%j ; R%j�1/ D 1; for 2 � j � n. (2.7)

Proof. This follows immediately from the construction.

Similar to the curves in DB
nC1, a curve c in DA

2n is called admissible if c D f .%j /
for some �n � j � n and some f 2 Diff.DA

2n; @D
A
2n/. Note that, unlike in [15],

admissible curves in DA
2n will not touch the boundary of the disc (none of our basic

curves %j does). An admissible curve c in its isotopy class that has minimal inter-
section with all the �j ’s among its other representatives is said to be in normal form.
We define crossings, essential segments, j -strings, and bigraded j -strings in a similar
fashion to the trigraded case (see Section 2.6). In particular, given a j -crossing x of
a bigraded curve Rc, we fix x0 WD j and .x1; x2/ is the local index .�1; �2/ of the
crossing x. All these notions can be extended to those for multicurves and bigraded
multicurves naturally.

Suppose that c0 and c1 are two admissible curves in DB
nC1 intersecting at z 2

DB
nC1. If z D 0, we require that c0 6' c1. Their preimages q�1

br
.c0/ and q�1

br
.c1/ in

DA
2n under the map qbr W DA

2n ! DB
nC1 would then intersect minimally. However, if

c0 \ c1 \ ¹0º ¤ ; and c0 ' c1, they will not intersect minimally, as illustrated in
Figure 2.15.

As such, we obtain the following proposition.

Proposition 2.15. Let Lc0 and Lc1 be two trigraded curves intersecting at z 2 DB
nC1,

with local index �trigr. Lc0; Lc1; z/ D .r1; r2; r3/. If c0 \ c1 \ ¹0º ¤ ;, we require that
c0 6' c1. If z ¤ 0, further suppose that

m.c0; Lc0/ D . zc0; LQc0/q .c0e; Lc0e/ and m.c1; Lc1/ D . zc1; {zc1/q .c1e; Lc1e/
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'

q�1
br
.c1/

q�1
br
.c0/

j�j

.q�1
br
.c1//

0

q�1
br
.c0/�j j

Figure 2.15. The preimages q�1
br
.c0/; q

�1
br
.c1/ in DA

2n
.

such that Qc0 \ Qc1 D Qz and c0e \ c1e D Qz. Then,´
�bigr. RQc0; RQc1; Qz/ D .r1; r2/ D �

bigr. Rc0e; Rc1e; Qz/; for z ¤ 0;

�bigr. Rzc0e; Rzc1e; 0/ D .r1; r2/; for z D 0:

Furthermore, this proposition allows us to relate trigraded intersection numbers
and bigraded intersection number in the following way.

Corollary 2.16. For any trigraded admissible curves .c0; Lc0/ and .c1; Lc1/,

I trigr. Lc0; Lc1/jq3D1 D I
bigr.m. Lc0/;m. Lc1//:

In particular,
1

2
I trigr. Lc0; Lc1/jq1Dq2Dq3D1 D I.m.c0/;m.c1//I

i.e., 1
2
I trigr. Lc0; Lc1/jq1Dq2Dq3D1 counts the geometric intersection number of the lifts

of c0 and c1 in DA
2n under the map m.

Proof. The case when c0 6' c1 in DB
nC1 or when at least one of c0 and c1 does not

have its endpoint at ¹0º follows directly from Proposition 2.15. The other case follows
from a direct computation. The last statement relating trigraded intersection number
and geometric intersection number follows from the property of bigraded intersection
number (see [15, p. 227, property (B1)]).

We will abuse notation and also allow m to lift crossings of a trigraded admissible
curve .c; Lc/ to crossings of the bigraded admissible multicurves

m..c; Lc// D . Qc; RQc/q .
Q
c; R
Q
c/:

Suppose that z is a j -crossing of c for j > 1. Then,

q�1br .z/ D ¹Qz;
Q
zº;
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1 2 3 � � � m

1j2

2j1

2j3

3j2

3j4

4j3

m�1jm

mjm�1

Figure 3.1. The quiver �m.

where Qz 2 Qc and
Q
z 2
Q
c. If z is a 1-crossing of c, then we also have q�1

br
.z/D ¹Qz;

Q
zº; in

this case, we will pick Q
Q
z to be the unique element in ¹Qz;

Q
zº \ �n. So, if z is a j -crossing

of c with
�trigr. Ldk; Lc; z/ D .r1; r2; r3/;

we define
m.z/ D ¹Qz;

Q
zº;

where both Qz and
Q
z are with local index .r1; r2/ for j > 1; otherwise, m.z/ D ¹Q

Q
zº for

j D 1, with local index .r1; r2/ by Proposition 2.15. Let Lh be a connected subset of Lc
within some connected region given by unions of Dj ’s, equipped with the trigrading
given by local indices of crossings of Lh induced from crossings of Lc. We define m. Lh/

to consist of q�1
br
. Lh/, with bigradings given by local indices of crossings of q�1

br
. Lh/

induced from crossings of m. Lc/.

3. Type A2n�1 and type Bn zigzag algebras

In this section, we recall the construction of the type Am zigzag algebra Am as given
in [15] (with slight change in gradings) and recall the A.Am/ action on the bounded
homotopy category Komb.Am-prgrmod/ of complexes of projective graded modules
over Am. We then construct a type Bn zigzag algebra Bn, following a similar con-
struction, and show that A.Bn/ acts on Komb.Bn-prgrmod/. We will assume that the
reader is familiar with projective modules over finite-dimensional (graded) algebras
and refer the unfamiliar readers to [22, Chapter 1]. Note that, throughout this whole
paper, all complexes are bounded.

3.1. Type Am zigzag algebra Am

Consider the quiver �m in Figure 3.1.
We can take its path algebra C�m over C; C�m is the C-vector space spanned

by the set of all paths in �m, with multiplication given by concatenation of paths (the
multiplication is zero if the endpoints do not agree). We denote the constant path at
each vertex j by ej .
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In this paper, we will only consider m odd, and the grading we put on C�m will
be slightly different to [15]; we set

• the degree of .j jj � 1/ is 1 for j > mC1
2

and 0 for j � mC1
2

,

• the degree of .j jj C 1/ is 1 for j < mC1
2

and 0 for j � mC1
2

,

• the degree of ej D 0 for all j ,

where the grading is extended to all paths via multiplication. In this way, this path
algebra is Z-graded with the grading shift denoted by ¹�º and unital with a family of
pairwise orthogonal primitive central idempotent ej summing up to the unit element.

Let Am be the quotient of the path algebra of the quiver �m by the relations

.j jj C 1jj / D .j jj � 1jj /;

.j � 1jj jj C 1/ D 0 D .j C 1jj jj � 1/

for all 2 � j � m � 1. It is easy to see that these relations are homogeneous with
respect to the above grading so that Am is a Z-graded algebra. As a C-vector space,
it has dimension 4m � 2 with the following basis:

¹e1; : : : ; em; .1j2/; : : : ; .m� 1jm/; .2j1/; : : : ; .mjm� 1/; .1j2j1/; : : : ; .mjm� 1jm/º:

The indecomposable projective, Z-graded Am-modules are denoted by PAj WD
Amej , and we denote the (additive) category of projective, graded Am-modules by
Am-prgrmod. We recall the following results from [15].

Theorem 3.1. For each j , consider the following complex of graded .Am;Am/-
bimodule

Rj WD 0! PAj ˝C jP
A ǰ

�! Am ! 0;

with Am in cohomological degree 0. Each complex Rj is invertible in the homotopy
category Komb..Am;Am/-bimod/ of graded .Am;Am/-bimodules and satisfies the
following relations:

Rj ˝Rk Š Rk ˝Rj ; for jj � kj > 1;

Rj ˝RjC1 ˝Rj Š RjC1 ˝Rj ˝RjC1:

Proof. See [15, Proposition 2.4 and Theorem 2.5].

Proposition 3.2. There is a (weak) A.Am/-action on Komb.Am-prgrmod/, where
each standard generator �Aj of A.Am/ acts on a complex M 2 Komb.Am-prgrmod/
via Rj :

�Aj .M/ WD Rj ˝Am
M:

Proof. See [15, Proposition 2.7].

We will abuse notation and use �Aj in place of Rj whenever the context is clear.
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1 2 3 � � � n

1j2

2j1

2j3

ie2

3j2

3j4

ie3

4j3

n�1jn

njn�1

ien

Figure 3.2. The quiver �n.

3.2. Type Bn zigzag algebra Bn

Consider the quiver �n in Figure 3.2.
Take its path algebra R�n over R and consider the two gradings on R�n given

as follows:

(i) the first grading is defined following the convention in [15], where we set

• the degree of .j C 1jj / to be 1 and .j jj C 1/ to be 0 for all 1 � j �
n � 1, and

• the degree of ej , iej (blue paths in Figure 3.2) to be 0 for all 1 � j � n,

extending to all paths.

(ii) The second grading is a Z=2Z-grading defined by setting

• the degree of iej as 1 for all 1 � j � n, and

• the degree of all other paths in Figure 3.2 and the constant paths as zero,

extending again to all paths.

We denote a shift in the Z-grading by ¹�º and a shift in the Z=2Z-grading by h�i.
We are now ready to define the zigzag algebra of type Bn.

Definition 3.3. The zigzag path algebra of Bn, denoted by Bn, is the quotient algebra
of the path algebra R�n modulo the usual zigzag relations given by

.j jj � 1/.j � 1jj / D .j jj C 1/.j C 1jj /; (3.1)

.j � 1jj /.j jj C 1/ D 0 D .j C 1jj /.j jj � 1/ (3.2)

for 2 � j � n � 1, in addition to the relations

.iej /.iej / D �ej ; for j � 2; (3.3)

.iej�1/.j � 1jj / D .j � 1jj /.iej /; for j � 3; (3.4)

.iej /.j jj � 1/ D .j jj � 1/.iej�1/; for j � 3; (3.5)

.1j2/.ie2/.2j1/ D 0I (3.6)

.ie2/.2j1j2/ D .2j1j2/.ie2/: (3.7)
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We will also denote the (non-trivial) loop on vertex j by

Xj WD .j jj ˙ 1/.j ˙ 1jj /:

The relations above are homogeneous with respect to both the Z and Z=2Z gradings,
so Bn is a bigraded algebra.

Proposition 3.4. As an R-vector space, Bn has dimension 8n � 6.

Proof. Using relations (3.1) to (3.5), the vector subspace (over R) spanned by paths
that do not pass through the vertex 1 is isomorphic to An�1 viewed as an R-vector
space, which has R-dimension

2.4.n � 1/ � 2/ D 8n � 12:

Combined with the remaining relations, one can check that the remaining paths that
pass through the vertex 1 (modulo relations) are exactly e1, .1j2/, .2j1/, .1j2/.ie2/,
.ie2/.2j1/, and X1. Hence,

dimR.Bn/ D 8n � 12C 6 D 8n � 6I

in particular, the set®
e1; : : : ; en; ie2; : : : ; ien; .1j2/; : : : ; .n � 1jn/; .2j1/; : : : ; .njn � 1/; .ie2/.2j1/;

.1j2/.ie2/; .ie2/.2j3/; : : : ; .ien�1/.n � 1jn/; .3j2/.ie2/; : : : ; .njn � 1/.ien�1/;

X1; : : : ; Xn; .ie2/X2; : : : ; .ien/Xn
¯

forms an R-basis of Bn.

The indecomposable (left) projective, bigraded Bn-modules are given by PBj WD
Bnej , and we denote the (additive) category of projective, bigraded Bn-modules by
Bn-prgrmod. For j D 1, PBj is naturally a .Bn;R/-bimodule; there is a natural left
Bn-action given by multiplication of the algebra and the right R-action induced by the
left (commutative) R-action. But for j � 2, we will endow PBj with a right C-action.

To this end, let us view C as a Z=2Z-graded algebra over R by endowing the
reals with degree 0 and the complex imaginary i with degree 1 over Z=2Z and
extend linearly. Note also that (3.3) in Definition 3.3 is analogous to the relation sat-
isfied by the complex imaginary number i . We define a right C-action on PBj by
p � .aC ib/D apC bp.iej / for p 2 PBj , aC ib 2 C. It follows from the definition
that this right action restricted to R agrees with the natural right (and left) R-action.
This makes PBj into a bigraded .Bn;C/-bimodule for j � 2. Dually, we will define
jP

B WD ejBn, where we similarly consider it as a bigraded .R;Bn/-bimodule for
j D 1 and as a bigraded .C;Bn/-bimodule for j � 2.



Curves in the disc, the type B braid group, and a type B zigzag algebra 369

Proposition 3.5. Denote jPBk WD jP
B ˝Bn

PB
k

. We have that

jP
B
k Š

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

CCC as bigraded .C;C/-bimodules

for j; k 2 ¹2; : : : ; nº and k � j D 1;

CCC¹1º as bigraded .C;C/-bimodules

for j; k 2 ¹2; : : : ; nº and j � k D 1;

CCC˚CCC¹1º as bigraded .C;C/-bimodules for jDkD2; 3; : : : ; n;

RCC as bigraded .R;C/-bimodules for j D 1 and k D 2;

CCR¹1º as bigraded .C;R/-bimodules for j D 2 and k D 1;

RRR ˚ RRR¹1º as bigraded .R;R/-bimodules for j D k D 1:

Proof. The case where j; k 2 ¹2; : : : ; nº follows as in type A. By identifying jPk as
the R-vector subspace of Bn spanned by paths starting at vertex j and ending at vertex
k, we see that 1P2 has basis ¹.1j2/; .1j2/.ie2/º, 2P1 has basis ¹.2j1/; .ie2/.2j1/º, and
1P1 has basis ¹e1; X1º. The fact that the bimodule and bigrading structures agree
follows from the definition and is left as a simple exercise to the reader.

Remark 3.6. Note that all the bigraded bimodules in Proposition 3.5 can be restric-
ted to bigraded .R;R/-bimodules by identifying RCR Š R ˚ Rh1i. For example,
1P

B
2 restricted to an .R;R/-bimodule is generated by .1j2/ and .1j2/ie2, and it is

isomorphic to R˚Rh1i Š RCR.

Lemma 3.7. Denote K1 WD R and Kj WD C when j � 2. The maps

ǰ W P
B
j ˝Kj jP

B
! Bn and 
j W Bn ! PBj ˝Kj jP

B
¹�1º

defined by

ǰ .x ˝ y/ WD xy;


j .1/ WD

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

Xj ˝ ej C ej ˝Xj C .j C 1jj /˝ .j jj C 1/

C.�iejC1/.j C 1jj /˝ .j jj C 1/.iejC1/; for j D 1;

Xj ˝ ej C ej ˝Xj C .j � 1jj /˝ .j jj � 1/

C.j C 1jj /˝ .j jj C 1/; for 1 < j < n;

Xj ˝ ej C ej ˝Xj C .j � 1jj /˝ .j jj � 1/; for j D n

are .Bn;Bn/-bimodule maps.

Proof. It is obvious from the definition that the ǰ are maps of .Bn;Bn/-bimodules
for all j . The fact that 
j is a .Bn;Bn/-bimodule map also follows from a tedious
check on each basis element, which we will omit and leave it to the reader.
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Definition 3.8. Define the following complexes of bigraded .Bn;Bn/-bimodules:

Rj WD .0! PBj ˝Kj jP
B ǰ

�! Bn ! 0/;

and
R0j WD .0! Bn


j

�! PBj ˝Kj jP
B
¹�1º ! 0/

for each 1 � j � n, with both Bn in cohomological degree 0, K1 D R and Kj D C

for j � 2.

Proposition 3.9. In the homotopy category Komb..Bn;Bn/-bimod/ of complexes of
projective graded .Bn;Bn/-bimodules, we have the following isomorphisms:

Rj ˝R
0

j Š Bn Š R
0

j ˝Rj ;

Rj ˝Rk Š Rk ˝Rj ; for jk � j j > 1;

Rj ˝RjC1 ˝Rj Š RjC1 ˝Rj ˝RjC1; for j � 2:

Proof. These relations can be verified similarly as in [15, Theorem 2.5].

3.3. Adjunctions and Dehn twist

To show the last type Bn relation (the 4-braiding relation), we will introduce a larger
family of invertible complexes that will aid us in our calculation. This construction
mirrors the notion of Dehn twists in topology and uses the theory on adjunctions (we
highly recommend [14] for an amazing exposition on expressing adjunctions using
planar diagrammatics). Throughout this section, we will denote K1 WDR and Kj WDC

for j � 2.

Definition 3.10. Let X 2 Komb..Bn;Kj /-bimod/ and

X`; X r 2 Komb..Kj ;Bn/-bimod/

such that X` ˝Bn
� and X r ˝Bn

� are left and right adjoints of X ˝Kj
�, respect-

ively. We define the twist of X as the complex of .Bn;Bn/-bimodule

�X WD cone.X ˝Kj
X r

"
�! Bn/;

with " the counit of the adjunction X a X r . Similarly, the dual twist of X is given by

� 0X WD cone.Bn
�
�! X ˝Kj

X`/

with � the unit of the adjunction X ` X`. The twist �X is said to be spherical if the
twist and dual twist are inverses of each other, namely,

�X ˝Bn
� 0X Š Bn Š �

0
X ˝Bn

�X :
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One can verify from the definition of the adjunctions that the twist (resp., dual
twist) is uniquely defined up to isomorphism; i.e., X Š Y implies �X Š �Y (resp.,
� 0X Š �

0
Y ). On the other hand, the shift functors Œ1�, ¹1º and h1i are autoequivalences,

so we also have that
�X D �XŒr�¹sºhti:

More generally, given a pair of adjunctions .X; X`; X r/ on X with Y Š † ˝Bn

X , where † an invertible object in Komb..Bn;Bn/-bimod/, we also have a pair of
adjunctions .Y; Y `; Y r/ on Y given by

Y ` WD X` ˝Bn
†�1; Y r WD X r ˝Bn

†�1:

Furthermore, the twists and dual twists are related by

�Y Š †˝Bn
�X ˝Bn

†�1; � 0Y Š †˝Bn
� 0X ˝Bn

†�1:

Lemma 3.11. The functor PBj ˝Kj
� is a left adjoint of jPB ˝Bn

� and a right
adjoint of jPB¹�1º ˝Bn

�.

Proof. To show that the PBj ˝Kj
� is a left adjoint to jPB ˝Bn

�, take the counit
to be the functor induced by

PBj ˝Kj jP
B ǰ

�! Bn;

and the unit is instead induced by Kj
'
�! jP

B ˝Bn
PBj , where ' is defined by '.1/D

ej ˝Bn
ej . To show that jPB¹�1º ˝Bn

� is a left adjoint to PBj ˝Kj
�, take the

counit to be the functor induced by jPB ˝Bn
PBj ¹�1º

'0

�! Kj , where '0 is defined
by

'0.ej ˝ ej / D 0; '0.Xj ˝ ej / D 1

(note that Xj ˝ ej D ej ˝ Xj ), and the unit is instead induced by Bn

j

�! PBj ˝Kj

jP
B¹�1º. We leave the verification of the conditions required to the reader.

Using this, we will now prove the last type Bn relation required.

Proposition 3.12. We have the following isomorphism of Komb..Bn;Bn/-bimod/:

R2 ˝Bn
R1 ˝Bn

R2 ˝Bn
R1 Š R1 ˝Bn

R2 ˝Bn
R1 ˝Bn

R2:

Proof. We will drop the tensor products for the sake of readability: R2R1R2R1 Š
R1R2R1R2: Using Proposition 3.9, note that this relation is equivalent to

.R2R1R2/R1.R
0
2R
0
1R
0
2/ Š R1:

By the adjunctions shown in Lemma 3.11, note that R1 and R01 are by definition the
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same as the twist �PB
1

and dual twist � 0
PB

1

of PB1 , respectively. As such, we get that

�R2R1R2.P
B
1
/ Š .R2R1R2/�PB

1
.R02R

0
1R
0
2/ Š �PB

1
:

It is now sufficient to show that the complexes R2R1R2.PB1 / and PB1 are isomorphic
in Komb..Bn;R/-bimod) up to cohomological or internal gradings shifts. This is
shown in the following series computation (note that we have omitted the cohomolo-
gical grading since it does not matter):

R2.P
B
1 / D 0! PB2 ˝C 2P

B
1 ! PB1 ! 0

Š 0! PB2 ¹1º
.2j1/
���! PB1 ! 0 .by Proposition 3.5/I

R1R2.P
B
1 / Š R1.0! PB2 ¹1º

.2j1/
���! PB1 ! 0/

D cone

8̂̂̂̂
<̂̂
ˆ̂̂̂:
PB1 ¹1º ˝R 1P

B
2 PB1 ˝R 1P

B
1

PB2 ¹1º PB1

id˝.2j1/

.2j1/

9>>>>>=>>>>>;

Š cone

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:
PB1 ¹1º ˚ P

B
1 ¹1ºh1i PB1 ˚ P

B
1 ¹1º

PB2 ¹1º PB1

h
0 0
id 0

i

Œ .1j2/ .1j2/i � Œ id X1 �

.2j1/

9>>>>>>=>>>>>>;
.by Proposition 3.5/

Š 0! PB1 ¹1ºh1i
.1j2/i
���! PB2 ¹1º ! 0I

R2R1R2.P
B
1 / Š cone

8̂̂̂̂
<̂̂
ˆ̂̂̂:
PB2 ˝C 2P

B
1 ¹1ºh1i PB2 ˝C 2P

B
2 ¹1º

PB1 ¹1ºh1i PB2 ¹1º
.1j2/i

9>>>>>=>>>>>;

Š cone

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:
PB2 ¹2ºh1i PB2 ¹1º ˚ P

B
2 ¹2ºh1i

PB1 ¹1ºh1i PB2 ¹1º:

h
0
id

i

.2j1/ Œ id X2i �

.1j2/i

9>>>>>>=>>>>>>;
.by Proposition 3.5/

Š PB1 ¹1ºh1i:
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Theorem 3.13. We have a (weak) A.Bn/-action on Komb.Bn-prgrmod), where each
standard generator �Bj for j � 2 of A.Bn/ acts on a complex M 2 Komb.Bn-
prgrmod) via Rj , and �B1 acts via R1h1i:

�Bj .M/ WD Rj ˝Bn
M and .�Bj /

�1.M/ WD R0j ˝Bn
M;

�B1 .M/ WD R1h1i ˝Bn
M and .�B1 /

�1.M/ WD R01h1i ˝Bn
M:

Proof. This follows directly from Propositions 3.9 and 3.12, where the required rela-
tions still hold with the extra third grading shift h1i on R1 and R01.

From now on, we will abuse notation and use �Bj and .�Bj /
�1 in place of Rj and

R0j (with an extra grading shift h1i for j D 1), respectively, whenever it is clear from
the context what we mean.

4. Relating categorical type Bn and type A2n�1 actions

In Section 2, we have defined m that lifts isotopy classes of trigraded curves in DB
nC1

to isotopy classes of bigraded multicurves in DA
2n. Furthermore, we showed that the

map m is equivariant under the A.Bn/-action. In this section, we will develop the
algebraic version of this story. We will first relate our type Bn zigzag algebra Bn to
the type A2n�1 zigzag algebra A2n�1 by showing that

C ˝R Bn Š A2n�1

as graded C-algebras (forgetting the Z=2Z grading in Bn). Through this, we have an
injection

Bn ,! C ˝R Bn Š A2n�1

as graded R-algebras. Thus, we can relate the two categories Komb.Bn-prgrmod/
and Komb.A2n�1-prgrmod/ through an extension of scalar A2n�1 ˝Bn

�. We end
this section by showing that the functor A2n�1 ˝Bn

� is A.Bn/-equivariant, which
also allows us to deduce that the A.Bn/-action on Komb.Bn-prgrmod/ is faithful.

Let Q be a left C-module. Throughout this section, we will denote xCQ to be the
left C-module with a deformed left action, given by multiplication its with complex
conjugate

a.c/ D Nac: (4.1)

Similarly, for Q a right C-module, we use QxC to denote the right C-module with the
deformed action.

Proposition 4.1. Consider the graded R-algebra RBn, where RBn is just Bn without the
Z=2Z-grading h�i. The Z-graded C-algebras C ˝R

RBn and A2n�1 are isomorphic.
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Proof. Note that, for a C-vector space, we have the following decomposition:

C ˝R
RBn Š

nM
jD2

C ˝R

�
jP

B
j ˚ jP

B
.j�1/ ˚ .j�1/P

B
j

�
˚
�
C ˝R 1P

B
1

�
Š

nM
jD2

�
C ˝R jP

B
j

�
˚

nM
jD2

�
C ˝R jP

B
.j�1/

�
˚

nM
jD2

�
C ˝R .j�1/P

B
j

�
˚ .C ˝R 1P

B
1 /:

Firstly, for each j � 2, note that jPBj is itself a C-algebra with unit ej ˝ 1.
Moreover, after tensoring with C over R, C ˝R jP

B
j has idempotent

�j WD
1

2
.1˝ ej C i ˝ iej /:

We will define a C-linear morphismˆ WC˝R
RBn!A2n�1 by specifying the images

of the basis elements of C ˝R
RBn. It will be easy to see that ˆ is grading preserving,

and we leave the routine check thatˆ is an algebra morphism to the reader. For j D 1,

C ˝R 1P
B
1 ! nP

A
n´

1˝ 1
2
X1 7! Xn;

1˝ e1 7! en:

For 2 � j � n,

(1) C ˝R jP
B
j ! n�jC1P

A
n�jC1 ˚ nCj�1P

A
nCj�18̂̂̂̂

<̂
ˆ̂̂:
.1˝Xj /�j 7! Xn�jC1;

.1˝Xj /.1˝ ej � �j / 7! XnCj�1;

�j 7! en�jC1;

.1˝ ej � �j / 7! enCj�1;

(2) C ˝R j�1P
B
j ! n�jC2P

A
n�jC1 ˚ nCj�2P

A
nCj�1´ �

1˝ .j � 1jj /
�
�j 7! ..n � j C 2/ j

�
n � j C 1/

�
;�

1˝ .j � 1jj /
�
.1˝ ej � �j / 7!

�
.nC j � 2/ j .nC j � 1/

�
;

(3) C ˝R jP
B
j�1 ! n�jC1P

A
n�jC2 ˚ nCj�1P

A
nCj�2´

vj .1˝ .j jj � 1// 7!
�
.n � j C 1/ j .n � j C 2/

�
;

.1˝ ej � vj /.1˝ .j jj � 1// 7!
�
.nC j � 1/ j .nC j � 2/

�
:

It is easy to see that this map is surjective and dimC.C ˝R
RBn/ D dimC.A2n�1/.
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Let i W RBn ,! C ˝R
RBn be the canonical injection of Z-graded R-algebras. Pro-

position 4.1 allows us to view RBn as a Z-graded subalgebra over R of A2n�1 through
ˆ ı i . Thus, every A2n�1-module can be restricted to a RBn-module. In particular,
A2n�1 as a Z-graded .A2n�1; A2n�1/-bimodule can be restricted to a Z-graded
.A2n�1; RBn/-bimodule. This gives us an extension of scalar functor A2n�1 ˝ RBn

�,
sending Z-graded RBn-modules to Z-graded A2n�1-modules.

Let F denote the functor which forgets the Z=2Z-grading of the bigraded Bn-
modules. We define

A2n�1 ˝Bn
� WD A2n�1 ˝ RBn

.F.�//:

The proposition below identifies the indecomposable projectives under the functor
A2n�1 ˝Bn

�.

Proposition 4.2. Recall the deformed action of C given in (4.1). We have the follow-
ing isomorphisms of Z-graded bimodules:

A2n�1 ˝Bn
PB1 Š .P

A
n /R as Z-graded .A2n�1;R/-bimodules;

and

A2n�1 ˝Bn
PBj Š .P

A
n�.j�1//xC ˚ P

A
nC.j�1/ as Z-graded .A2n�1;C/-bimodules:

Proof. Define ˆ1 W A2n�1 ˝Bn
PB1 ! .PAn /R and

ĵ W A2n�1 ˝Bn
PBj ! .PAn�.j�1//xC ˚ P

A
nC.j�1/

as the maps given on the basis elements by a˝ b 7! aˆ.1˝ b/ and extend linearly.
It is easy to check that ˆ1 is a graded .A2n�1;R/-bimodule morphism and ĵ is a
graded .A2n�1;C/-bimodule morphism; the only detail that one should be aware of
is that ĵ maps into .PA

n�.j�1/
/xC ˚ P

A
nC.j�1/

instead of PA
n�.j�1/

˚ PA
nC.j�1/

. The
fact that they are isomorphisms follows easily from looking at the dimensions.

It follows from the above proposition that A2n�1 ˝Bn
� sends projectives to pro-

jectives. Therefore, A2n�1 ˝Bn
� extends to a functor from Komb. RBn-prgrmod/ to

Komb.A2n�1-prgrmod/. We will denote the functor

A2n�1 ˝Bn
�

WD A2n�1 ˝ RBn
.F.�// W Komb.Bn-prgrmod/! Komb.A2n�1-prgrmod/:

Recall the injection ‰ W A.Bn/! A.A2n�1/ as defined in Proposition 2.1; the
image of standard generators is explicitly given by

‰.�Bj / D

´
�An ; for j D 1;

�A
n�.j�1/

�A
nC.j�1/

; otherwise:
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We have previously shown that A.Bn/ acts on Komb.Bn-prgrmod/, and similarly,
A.A2n�1/ acts on Komb.A2n�1-prgrmod/. Through ‰, we have an induced action
of A.Bn/ on Komb.A2n�1-prgrmod/. We will now prove the algebraic version of
Proposition 2.12.

Theorem 4.3. For all 1 � j � n, we have an isomorphism

A2n�1 ˝Bn
�Bj Š ‰.�

B
j /Bn

in Komb..A2n�1;Bn/-bimod/. In particular, the functor A2n�1 ˝Bn
� is A.Bn/-

equivariant

A.Bn/ A.A2n�1/
‰
 - A.Bn/

Komb.Bn-prgrmod/ Komb.A2n�1-prgrmod/,
A2n�1 ˝Bn

�

i.e., for any � 2 A.Bn/ and any complex C 2 Komb.Bn-prgrmod/,

A2n�1 ˝Bn
.� ˝Bn

C/ Š ‰.�/˝A2n�1
.A2n�1 ˝Bn

C/:

Before we start with the proof, we will need the following lemma.

Lemma 4.4. Recall the deformed C-action given in (4.1). We have that

C ˝R 1P
B
Š .nP

A/Bn
as Z-graded .C;Bn/-bimodules; (4.2)

jP
B
Š .nC.j�1/P

A/Bn
as Z-graded .C;Bn/-bimodules, (4.3)

jP
B
Š xC.n�.j�1/P

A/Bn
as Z-graded .C;Bn/-bimodules, (4.4)

CC ˝xC CC Š CCC as Z-graded .C;C/-bimodules. (4.5)

Proof. We will only define the maps; the proof that they are isomorphisms with
respect to the required structures follows from a simple verification.

For (4.2), take the morphism �1 W C ˝R 1P
B ! .nP

A/Bn
as the restriction of

ˆ constructed in the proof of Proposition 4.1. Note that �1 does indeed map into
.nP

A/Bn
since

ˆ.c˝ b/Dˆ.c˝ e1b/Dˆ..1˝ e1/.c˝ b//Dˆ.1˝ e1/ˆ.c˝ b/D enˆ.c˝ b/:

For (4.3) and (4.4), consider the morphisms

�Cj W jP
B
! .nC.j�1/P

A/Bn
and ��j W jP

B
! xC.n�.j�1/P

A/Bn

b 7! enC.j�1/ˆ.1˝ b/; b 7! en�.j�1/ˆ.1˝ b/:

Finally, for (4.5), consider the morphism c W CC ˝xC CC ! C uniquely defined
by 1˝ 1 7! 1.
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Proof of Theorem 4.3. We will show the required statement by showing it for each
generator, namely,

‰.�Bj /B Š A˝B �
B
j

as complexes of .A;B/-bimodules for each j .
Let j � 2. Using the relevant isomorphisms in Lemma 4.4, we have the following

chain of bimodule isomorphisms:

.PAn�.j�1/ ˝C .n�.j�1/P
A/B/˚ .P

A
nC.j�1/ ˝C .nC.j�1/P

A/B/

Š .PAn�.j�1/ ˝xC .n�.j�1/P
A/B/˚ .P

A
nC.j�1/ ˝C .nC.j�1/P

A/B/ .by (4.5)/

Š ..PAn�.j�1//xC ˝C jP
B/˚ .PAnC.j�1/ ˝C jP

B/ .by (4.3) and (4.4)/

Š ..PAn�.j�1//xC ˚ P
A
nC.j�1//˝C jP

B :

Using Proposition 4.2, we have that

..PAn�.j�1//xC ˚ P
A
nC.j�1//˝C jP

B
Š A˝B P

B
j ˝C jP

B :

Let us denote the composition of this chain of isomorphisms by

„ W .PAn�.j�1/ ˝C .n�.j�1/P
A/B/˚ .P

A
nC.j�1/ ˝C .nC.j�1/P

A/B/

Š
�! A˝B P

B
j ˝C jP

B :

Since we have that

‰.�Bj /B D .�
A
n�.j�1/�

A
nC.j�1//B

D .PAn�.j�1/ ˝C .n�.j�1/P
A/B/˚ .P

A
nC.j�1/ ˝C .nC.j�1/P

A/B/

ŒˇA
n�.j�1/

ˇA
nC.j�1/ �

���������������! AB

and

A˝B �
B
j D A˝B .P

B
j ˝C jP

B
ˇB

j

��! B/

D A˝B P
B
j ˝C jP

B
id˝Bˇ

B
j

������! A˝B B;

all that is left is to show that the following diagram commutes:

.PA
n�.j�1/

˝C.n�.j�1/P
A/B/˚.P

A
nC.j�1/

˝C.nC.j�1/P
A/B/ AB

A˝B P
B
j ˝C jP

B A˝B B;

ŒˇA
n�.j�1/

ˇA
nC.j�1/ �

„ Š

id˝Bˇ
B
j

which we leave for the reader to verify.
The proof of j D 1 is simpler and follows from a similar argument.
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Remark 4.5. Define Uj WD PBj ˝ jP
B and Uj WD PAj ˝ jP

A. Proposition 4.2
implies that

A2n�1 ˝Bn
Uj Š

´
.Un/Bn

; for j D 1;

.Un�.j�1/ ˚UnC.j�1//Bn
; otherwise.

When n D 2, this also relates our bimodules to the ones given in [17], where

U2 D ‚t and U1 ˚U3 D ‚s

in [17, Example 2.12] for the A3 graph (up to a difference in grading).

We may now use this relation to deduce that the categorical action of A.Bn/ is
faithful.

Theorem 4.6. The (weak) action of A.Bn/ on the category Komb.Bn-prgrmod/
given in Theorem 3.13 is faithful.

Proof. Assume that we are given � 2 A.Bn/ such that

�.C / Š C

for all C 2 Komb.Bn-prgrmod/. We will show that this implies that � is the identity.
In particular, take

C D

nM
jD1

PBj

so that we have

�

 
nM

jD1

PBj

!
Š

nM
jD1

PBj :

Applying the functor A2n�1 ˝Bn
�, we obtain

A2n�1 ˝Bn
�

 
nM

jD1

PBj

!
Š A2n�1 ˝Bn

 
nM

jD1

PBj

!
Š

2n�1M
jD1

PAj : (4.6)

Applying Theorem 4.3 to the LHS of (4.6), we get

A2n�1 ˝Bn
�

 
nM

jD1

PBj

!
Š ‰.�/

 
A2n�1 ˝Bn

 
nM

jD1

PBj

!!

Š ‰.�/

 
2n�1M
jD1

PAj

!
: (4.7)
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A.Bn/

A.Bn/

A.A2n�1/
‰
 - A.Bn/

A.A2n�1/
‰
 - A.Bn/

Isotopy classes of admissible
trigraded curves {Cadm in DA

nC1

Isotopy classes of admissible

bigraded multicurves RzCeadm
in DB

2n

Komb.Bn-prgrmod/ Komb.A2n�1-prgrmod/

LB

m

LA
A2n�1 ˝Bn

�

Figure 5.1. The commutative diagram of Theorem 5.1. The first row is from Proposition 2.12
and the second row is from Theorem 4.3.

Combining the two equations (4.6) and (4.7) above, we deduce that

‰.�/

 
2n�1M
jD1

PAj

!
Š

2n�1M
jD1

PAj :

Since it was shown in [15, Corollary 1.2] that the type A categorical action is faithful,
we conclude that

‰.�/ D id :

But ‰ is injective, so we must have that � D id as required.

5. Main theorem

Let us state the main theorem that we aim to prove.

Theorem 5.1. The diagram in Figure 5.1 is commutative, where the maps m, LB ,
LA, and A2n�1 ˝Bn

� are all A.Bn/-equivariant.

In Section 2, we introduced and showed that m is A.Bn/-equivariant. In Sec-
tion 4, we showed that the functor A2n�1 ˝Bn

� is also A.Bn/-equivariant. Thus,
the missing pieces are:

(1) the definitions of the maps LB and LA,

(2) the fact that the maps LB and LA are A.Bn/-equivariant,

(3) the commutativity of the diagram.

We will start by recalling the definition of LA from [15, Section 4a] and their res-
ult that LA is A.A2n�1/-equivariant. We then define LB in Section 5.2, where the
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(technical) proof that the diagram commutes and that LB is A.Bn/-equivariant are
given in Section 5.3.

5.1. Complexes associated to admissible multi-curves (type A)

Here, we state the constructions and results shown in [15, Section 4], which can be
easily extended to admissible multicurves. Note that we added a subscript LA instead
of L used in [15] to differentiate between type A and type B later on. Let Rc be
a bigraded admissible curve in normal form. We associate to Rc an object LA. Rc/ in
the category Komb.A2n�1-prgrmod/. Start by defining LA. Rc/ as a bigraded A2n�1-
module

LA. Rc/ D
M

x2cr. Rc/

P.x/;

where P.x/ D PAx0
Œ�x1�¹x2º, with Œ�� denoting the cohomological degree shift; see

the paragraph after Remark 2.13 for the definition of .x0; x1; x2/. For every x; y 2
cr. Rc/, define @yx W P.x/! P.y/ by the following rules:

• If x and y are the endpoints of an essential segment and y1 D x1 C 1, then

(1) If x0 D y0 (then it must be that x2 D y2 C 1), then

@yx W P.x/! P.y/ Š P.x/Œ�1�¹1º

is the multiplication on the right by Xx0
2 A2n�1.

(2) If x0 D y0˙ 1, then @yx is the right multiplication by .x0jy0/ 2 A2n�1.

• Otherwise, @yx D 0.

We define the differential @ as @ WD
P
x;y @yx : See [15, Lemma 4.1] for a proof that

this defines a complex. Moreover, it follows easily that

LA.�A.r1; r2/ Rc/ Š LA. Rc/Œ�r1�¹r2º: (5.1)

For Rg a bigraded j -string of Rc, we can also assign a complex LA. Rg/ to Rg, whereas a
bigraded abelian group, LA. Rg/D

L
x2cr.g/P

A.x/, and the differentials are obtained
from essential segments of Rg the same way as for admissible curves. We can easily
extend this to define LA. Rh/ for h � c a connected subset of c such that h D

S
g˛;j

with each g˛;j some bigraded j -string of c. The following theorem is proven in [15,
Theorem 4.3].

Theorem 5.2. For a braid � 2 A.Am/ and a bigraded admissible curve Rc in DA
mC1,

we have
�LA. Rc/ Š LA.�. Rc//

in the category Komb.Am-prgrmod/; i.e., LA is A.Am/-equivariant.
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We extend LA to admissible multicurves as follows: given bigraded multicurves

j̀ Rcj ,

LA

�a
j

Rcj

�
WD

M
j

LA. Rcj /:

It follows easily that this defines a complex, and both (5.1) and Theorem 5.2 still hold
for admissible multicurves.

5.2. Complexes associated to admissible curves (type B)

Consider a trigraded admissible curve Lc. We associate to Lc an object LB. Lc/ in the
category Komb.Bn-prgrmod/. Start by defining LB. Lc/ as a trigraded Bn-module

LB. Lc/ D
M

y2cr. Lc/

P.y/;

where P.y/D PBy0
Œ�y1�¹y2ºhy3i (see the second paragraph after Proposition 2.10 in

Section 2.6 for the definition of y0, y1, y2, and y3).
We now define maps @zy WP.y/!P.z/ for each y;z 2 cr. Lc/ using the following

rules (note that these are not the differentials yet):

• If y and z are the endpoints of an essential segment in Dj for j � 1 and z1 D
y1 C 1, then

(1) If y0 D z0 (then also y2 D z2 C 1 and y3 D z3), then

@zy W P.y/! P.z/ Š P.y/Œ�1�¹1º

is the right multiplication by the element Xy0
2 Bn.

(2) If y0 D z0 ˙ 1, then @zy is the right multiplication by .y0jz0/ 2 Bn.

• Otherwise, @yz D 0.

We will modify some of these maps before using them as differentials. Define the
following equivalence relation on the set of 1-crossings:

y � y0 ” y and y0 are connected by an essential segment in D0:

Consider the partitioning of the set of 1-crossings using the equivalence relation
above. Referring to the possible normal forms in D0 given by Figure 2.10, every
equivalence classes under this relation consists of either one element (type 30) or two
elements (type 200). For each equivalence class Œy� of 1-crossings, we modify some of
the maps given previously by the following rule:

• If Œy� D ¹yº, we modify nothing;
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• otherwise, Œy� D ¹y; y0º has two distinct 1-crossings. Note that at least one of the
1-crossings must be an endpoint of some essential segment in D1 (otherwise, c is
clearly not be admissible). Up to relabelling, we may assume that y is always a
1-crossing that is an endpoint of an essential segment 
 inD1. Note that 
 cannot
have both y and y0 as endpoints (this will imply that c is a simple closed curve,
which is not admissible). As such, let us label the other endpoint of 
 connecting
y as z ¤ y0. Consider the two possible cases for z

(1) z is a 2-crossing:

(a) if y1 D z1 C 1, then we have that @yz W P.z/! P.y/ is given by
the right multiplication by .2j1/. We modify

@y0z W P.z/! P.y0/ Š P.y/h1i

(which was necessarily 0 previously) so that it is now the right
multiplication by �i.2j1/;

(b) otherwise, we have instead z1 D y1 C 1. In this case,

@zy W P.y/! P.z/

is given by the right multiplication by .1j2/. We modify

@zy0 W P.y
0/ Š P.y/h1i ! P.z/

(which was necessarily 0 previously) so that it is now the right
multiplication by .1j2/i .

(2) z is a 1-crossing:

(a) if y1 D z1 C 1, we modify nothing;

(b) otherwise, we have instead z1 D y1 C 1. In this case,

@zy W P.y/! P.z/

is given by the right multiplication by X1. Once again, consider
the two possible cases of the equivalence class Œz�:

(i) if Œz� D ¹zº, we modify nothing;

(ii) otherwise, Œz�D ¹z;z0ºwith z¤z0. We then modify @z0y0 W
P.y/h1i Š P.y0/! P.z0/Š P.z/h1i (which was neces-
sarily 0 previously) so that it is now the right multiplica-
tion by X1.

Similarly, if the other 1-crossing y0 in Œy� is also an endpoint of an essential seg-
ment in D1 (distinct from 
 ), we will repeat the same process above for y0.
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Finally, we define the differential as @ D
P
x;y2cr. Lc/ @xy ; where @xy are the modified

version above.

Lemma 5.3. .LB. Lc/;@/ is a complex of projective graded Bn-modules with a grading-
preserving differential.

Proof. For x; y; z 2 cr. Lc/ with x0; y0; z0 � 2, the same argument as in the type A
shows that the product of @zy@yx W Px ! Pz is always 0. The only occurrence of
@zy@yx ¤ 0 is when @zy D @ac ; @ad and @yx D @db; @cb with a, b, c, d the crossings
of the following type of 1-string labelled below:

a

bc

d

:

Note that the two non-zero composition @ad@db and @ac@cb always occur as a pair.
Moreover, we see that their sum is equal to 0: @ad@db C @ac@cb D X2i � X2i D 0,
thus, showing that @2 D 0 as required.

Lemma 5.4. For any triple .r1; r2; r3/ of integers and any trigraded admissible curve
Lc, we have that

LB.�.r1; r2; r3/ Lc/ Š LB. Lc/Œ�r1�¹r2ºhr3i:

Proof. This follows directly from the definition.

5.3. Some rather technical results

This subsection is where we complete the proof of Theorem 5.1 by proving that
the diagram commutes (Proposition 5.5) and that LB is A.Bn/-equivariant (The-
orem 5.7). The proof of these two statements, first of which is technical, will occupy
the rest of this section.

Proposition 5.5. The diagram in Figure 5.1 commutes; i.e., for each trigraded ad-
missible curve Lc in DB

nC1, we have that

A2n�1 ˝Bn
LB. Lc/ Š LA.m. Lc//

in Komb.A2n�1-prgrmod/.

Remark 5.6. The theorem is stated in the context of homotopy category since the
group actions of A.A2n�1/ and A.Bn/ live there. In fact, we will show that

A2n�1 ˝Bn
LB. Lc/ Š LA.m. Lc//
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in the category Comb.Bn-prgrmod/ of bounded complexes (no homotopy will be
required).

Proof of Proposition 5.5. Let x be any j -crossing of Lc. If j � 2, we have that m.x/

consists of an .n C .j � 1//-crossing Qx and an .n � .j � 1//-crossing
Q
x of m. Lc/;

if j D 1, m.x/ consists of a single n-crossing
Q
Qx of m. Lc/. In either cases, we have

isomorphisms ĵ WA2n�1˝Bn
PB.x/! PA. Qx/˚PA.

Q
x/D PA

nC.j�1/
˚PA

n�.j�1/

or ˆ1 W A2n�1 ˝Bn
PB.x/! PA.

Q
Qx/ D PAn given in the proof of Proposition 4.2.

Putting together these isomorphisms for each crossing x of Lc, we obtain a cohomo-
logical and internal grading-preserving isomorphism of A2n�1-modules between the
underlying modules of A2n�1 ˝Bn

LB. Lc/ and LA.m. Lc//; denote this isomorphism
by �. Denoting the complexes A2n�1 ˝Bn

LB. Lc/ as .Q; ı/ and LA.m. Lc// as .Q0; ı0/
(so � is an isomorphism from Q to Q0), it follows that � induces an isomorphism of
complexes:

.Q; ı/ Š .Q0; ı0/;

with ı0 D �ı��1. We now aim to show that .Q0; ı0/ Š .Q0; ı0/ in Komb.A2n�1-
prgrmod/. In fact, we will show that they are isomorphic in the ordinary category
Comb.A2n�1-prgrmod/ of complexes in A2n�1-prgrmod. Before we proceed with
the proof, we will need to introduce some (substantial amount of) notation.

Slicing c. Recall that c, being admissible, must have both of its endpoints at two
distinct marked points, so at least one of its endpoints is not 0, and let m be such
an endpoint. Orient the curve c so that it starts from m and ends at its other end-
point. Following this orientation, we can slice c into distinct connected components
cj � c \ .

S
j�2Dj / and gj 0 � c \ .D0 [D1/ (note that gj 0 are the 1-strings of c)

enumerated as follows: following the orientation of c, gj denotes the .j � 1/-th 1-
string component of c; whereas ci is the component of c that has a total of i 1-strings
components before ci . In other words, if m ¤ 1, we start from c0 to g0 to c1, and so
on; otherwise,mD 1 and we start from g0 to c0 to g1, and so on. Note that if c has no
1-string component, c D c0. Following the same orientation, we will also enumerate
the 2-crossings rt of c (if any), starting the enumeration with t D 0 if m D 1; other-
wise, we start with t D 1. Figure 5.2 illustrates two examples with different starting
point m.

Now, consider the following subsets of (graded) crossings of m. Lc/:8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

Cj WD m. Lcj / \ .
S
i
R�i /;

xCj WD m. Lcj / \ .
S
i¤n�1;nC1

R�i /;

Gj 0 WD m. Lgj 0/ \ . R�n�1 [ R�n [ R�nC1/;

xGj 0 WD m. Lgj 0/ \ R�n;

Rj WD m. Lrj /:

(5.2)
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c1

g0

g1

0
c0

r1

r2

r0

^

^

^

^

^

^

(a) A slicing with starting point m D 2 ¤ 1.

c1

g0

g1

g2

0

c2

r2
r1
r4

r3

^

^

^
^

^

^

^

(b) A slicing with starting point m D 1.

Figure 5.2. Examples of slicings of curves.

Note that, by definition, the subsets of crossings xCi , Rj , and xGk are pairwise disjoint,
and . j̀

xCj /q . j̀ Rj /q . j̀
xGj / is the set of all crossings of m. Lc/. On the other

hand, Cj and Gj 0 contain all the crossings of m.cj / and m.gj 0/, respectively, which
may contain common crossings Ri .

For K a subset of crossings of m. Lc/, we define

Q0K WD
M
x2K

PA.x/ � Q0:

IfK is empty,Q0K will be the 0module by convention. Using this, we can decompose
Q0 as follows: when m 2 ƒ n ¹0; 1º, we have

Q0 D „ ƒ‚ …
Q0

C0

Q0xC0
˚

Q0
G0‚ …„ ƒ

Q0R0
˚Q0xG0

˚ „ ƒ‚ …
Q0

C1

Q0R1
˚Q0xC1

˚Q0R2
˚ � � � ; (5.3)

whereas when m D 1, we have instead

Q0 D „ ƒ‚ …
Q0

G0

Q0xG0
˚

Q0
C1‚ …„ ƒ

Q0R1
˚Q0xC1

˚ „ ƒ‚ …
Q0

G2

Q0R2
˚Q0xG2

˚Q0R3
˚ � � � : (5.4)

In general, given a decomposition of modules

M D
M
i2Y

MKi

and a complex .M; @/, we can then write @ as a block matrix. We will use the nota-
tion @KiKj

to denote the block of @ that maps from MKj
to MKi

, where we use the
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shorthand notation @Ki
for the block of @ that maps from MKi

to itself. We will also
use the notation @L

i2X�Y Ki
for the block of @ that maps from

L
i2X MKi

to itself.
To illustrate, consider the decomposition ofQ0 as in (5.3) and let .Q0; @/ be a cochain
complex with differential @. We will then write the differential @ as the matrix

@ xC0
@R0

xC0
@ xG0

xC0
@R1

xC0
@ xC1
xC0
� � �

@ xC0R0
@R0

@ xG0R0
@R1R0

@ xC1R0
� � �

@ xC0
xG0

@R0
xG0

@ xG0
@R1

xG0
@ xC1

xG0
� � �

@ xC0R1
@R0R1

@ xG0R1
@R1

@ xC1R1
� � �

@ xC0
xC1

@R0
xC1

@ xG0
xC1

@R1
xC1

@ xC1
� � �

:::
:::

:::
:::

:::
: : :

2666666666664

3777777777775
;

where the blocks @Cj
corresponding to the summands Q0Cj

are the blocks in red and
similarly blocks @Gj

corresponding to the summands Q0Gj
are the blocks in blue.

After our lengthy notational digression, let us return to the proof and analyse the
difference between the matrices of the two differentials ı0 and ı0 corresponding to
the two possible decomposition of Q0 as in (5.3) and (5.4). By looking at how the
components ci and gj are connected, it follows that the non-zero entries of the matrix
of ı0 are all contained in the block matrices .ı0/Ck

and .ı0/Gk
for all k; similarly,

the connection between the components m.ci / and m.gj / dictates that the non-zero
entries of the matrix of ı0 are all contained in the block matrices ı0Ck

and ı0Gk
for all k.

One can show from a direct computation that

.ı0/Ck
D ı0Ck

; for all k: (5.5)

So, between the differentials ı0 and ı0, only the block matrices .ı0/Gk
and ı0Gk

may
differ. As such, if we were in the case where c has no 1-string, i.e., c D c0, then we
are done. In the rest of the proof, we will assume otherwise and treat the rest of the
cases.

As we will only need to focus on the module summand Q0Gj
later on, for each j ,

let us simplify both the decompositions of Q0 in (5.3) and (5.4) into

Q0 D Q0Vj
˚ „ ƒ‚ …

Q0
Gj

Q0Rj
˚Q0xGj

˚Q0RjC1
˚Q0Wj

; (5.6)

where Q0Vj
(resp., Q0Wj

) consists of all the module summands before Q0Rj
(resp.,

after Q0RjC1
) for both decompositions (5.3) and (5.4). From here on, we will use this

simplified decomposition for the matrix of any differential on Q0.
Let g0;g1; : : : ;gs�1 be the 1-strings in c. To show that .Q0; ı0/Š .Q0; ı0/, by (5.5)

and (5.6), it is sufficient to construct a cohomological and internal grading-preserving
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isomorphism of modules �j W Q0 ! Q0 for each 0 � j � s � 1 so that we have an
induced chain of isomorphisms in Comb.A2n�1-prgrmod/

.Q0; ı0/ Š .Q
0; ı1/ Š � � � Š .Q

0; ıs�1/ Š .Q
0; ıs/ D .Q

0; ı0/

with ıjC1 WD �j ıj��1j , where each ıj for 1 � j � s satisfies the following property:8̂̂<̂
:̂
.ıj /Gj�1

D ı0Gj�1
;

.ıj /XY D .ıj�1/XY ; for all X; Y 2 ¹Vj�1; Gj�1; Wj�1º

such that .X; Y / ¤ .Gj�1; Gj�1/:

(*)

In other words, each �j will be constructed in a way that the conjugation of ıj by
��1j only alters the differential component .ıj /Gj

so that

.ıjC1/Gj
D �j .ıj /Gj

��1j D ı
0
Gj

without affecting the rest of the differential components. In particular, if ı` satisfies (*)
for all 1 � ` � j � 1, then we have that .ıj /Gj

D .ı0/Gj
. Moreover, property (*) will

guarantee that ıs D ı0.
What remains is to define the required �j WQ0!Q0. We will define �j according

to the type of 1-string Lgj . Within each possible type of 1-string Lgj , we will show the
following:

(1) For j D 0, we show that we can always construct �0 to get .Q00; ı0/ Š
.Q01; ı1/ such that ı1 D �0ı0��10 satisfies (*).

(2) For j � 1, we show that, given .Q0; ı0/ Š � � � Š .Q0j ; ıj / with ı1; : : : ; ıj
satisfying (*) for j � 1, we can construct �j W Q0 ! Q0 such that ıjC1 D
�j ıj�

�1
j satisfies (*).

By an induction on the total number of 1-strings components (over j ), we can always
construct a chain of isomorphisms �j with property (*) and hence complete the proof
of this theorem.

The rest of the proof is an extensive case-by-case analysis. The list below shows
that, given each type of Lgj , we can construct �j W Q0 ! Q0 satisfying (*). We will
start with the simple cases: types IV, III0

k
, and II0

k
, followed by types V00, III0

kC 1
2

, and

II0
kC 1

2

that require some further analysis; refer to Figure 2.13 for the list of possible

types of 1-strings. Within the list, we will omit the gradings when writing out the
modules in Q0 as it will be obvious from construction that �j preserves both the
cohomological and internal gradings. We will also use solid arrows for differentials
and dashed arrows for the isomorphism �j W Q

0 ! Q0.
(1) Lgj is of type VI: this case is only possible when j D 0 and gj D c. But in

this case, .Q0; ı0/ is given by 0! PAn ! 0, which is already the complex .Q0; ı0/ as
required .ı0 D 0 D ı0/.
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(2) Lgj is of type III0
k

for k 2 Z: the case when k D 0 is straightforward, where we
just pick �j to be the identity.

Now, consider the case when k > 0. If j D 0, we get that .ıj /Gj
D .ı0/Gj

. For
j � 1, ıj satisfies (*) by our inductive assumption, so we have that .ıj /Gj

D .ı0/Gj
.

Thus, for all j , we can draw the part of .Q0; ıj / that contains

.Q0Gi
; .ıj /Gj

/ D .Q0Gj
; .ı0/Gj

/

as follows:

PAn PAn � � � PAn PAn PAn�1 r

˚ ˚ ˚ ˚ ˚ D .Q0; ıj /;

PAn PAn � � � PAn PAn PAnC1

2Xn 2Xn F

2Xn 2Xn

where

F D

"
.njn � 1/ �.njn � 1/i

.njnC 1/ .njnC 1/i

#
D

"
.njn � 1/ 0

0 .njnC 1/

#"
1 �i

1 i

#
and where r denotes the rest of the complex .Q0; ıj / containing the modules com-
plement to Q0Gj

. In particular, for j D 0, r is the part of .Q0; ı0/ that contains the
module Q0W0

; if j � 1, then this case is only possible when j D s � 1 and r is the
part of .Q0; ı0/ that contains the module Q0Vs�1

. Nevertheless, the construction of �j
below depends only on the form above, so the construction will work for all j . Denote

M WD

"
1 �i

1 i

#
(5.7)

and I as the 2� 2 identity matrix. We define �j jQ0
Gj

to be the following dashed map,

with �j acting as the identity map on the rest of the modules in r:

PAn PAn � � � PAn PAn PAn�1 r

˚ ˚ ˚ ˚ ˚ D .Q0; ıj /

PAn PAn � � � PAn PAn PAnC1

PAn PAn � � � PAn PAn PAn�1 r

˚ ˚ ˚ ˚ ˚ DW .Q0; ıjC1/:

PAn PAn � � � PAn PAn PAnC1

2Xn 2Xn F

2Xn 2Xn

Xn Xn .njn � 1/

Xn Xn .njnC 1/

2k�1M 2k�2M 2M M I
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The arrows in the last two rows show the differential component .ıjC1/Gj
in ıjC1,

induced by the conjugation of ��1j . Hence, the required condition (*) follows directly.
Now, consider when k < 0. As before, we have that .ıj /Gj

D .ı0/Gj
for all j ,

so the analysis of the part of .Q0; ıj / that contains .Q0Gj
; .ıj /Gj

/ will be the same.
Similarly, the construction of �i below will work for both cases. We draw the part of
.Q0; ıj / that contains

.Q0Gj
; .ıj /Gj

/ D .Q0Gj
; .ı0/Gj

/

as follows:

PAnC1 PAn PAn � � � PAn PAn

˚ ˚ ˚ ˚ ˚ D .Q0; ıj /

r PAn�1 PAn PAn � � � PAn PAn

E 2Xn 2Xn

2Xn 2Xn

with

E D

"
�.nC 1jn/i .n � 1jn/i

.nC 1jn/ .n � 1jn/

#
and where r denotes the rest of the complex .Q0; ıj / containing the modules com-
plement to Q0Gj

. Denote

N WD

"
i 1

�i 1

#
(5.8)

and I as the 2 � 2 identity matrix. Note that

N

"
�.nC 1jn/i .n � 1jn/i

.nC 1jn/ .n � 1jn/

#
D 2

"
.nC 1jn/ 0

0 .n � 1jn/

#
:

We define �j jQ0
Gj

to be the following dashed map, with �j the identity map on all

modules in r:

PAnC1 PAn PAn � � � PAn PAn

˚ ˚ ˚ ˚ ˚ D .Q0; ıj /

r PAn�1 PAn PAn � � � PAn PAn

PAnC1 PAn PAn � � � PAn PAn

˚ ˚ ˚ ˚ ˚ DW .Q0; ıjC1/:

r PAn�1 PAn PAn � � � PAn PAn

E 2Xn 2Xn

2Xn 2Xn

.nC 1jn/ Xn Xn

.n � 1jn/ Xn Xn

I 2�1N 2�2N 2kC1N 2kN
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The arrows in the last two rows show the differential component .ıjC1/Gj
in ıjC1,

induced by the conjugation of ��1j . It follows directly that the required condition (*)
is satisfied.

(3) Lgj is of type II0
k

for k 2 Z: as before, by our inductive assumption, we have
that

.ıj /Gj
D .ı0/Gj

for all j , so the part of .Q0; ıj / that contains .Q0Gj
; .ıj /Gj

/ will be of the same form.
As such, the construction of �j below will work for all j .

We will start with k D 0. We draw the part of .Q0; ıj / that contains

.Q0Gj
; .ıj /Gj

/ D .Q0Gj
; .ı0/Gj

/

as follows:

r PAnC1 PAnC1 r 0

˚ ˚ D .Q0; ıj /;

PAn�1 PAn�1

XnC1

Xn�1

where either r or r 0 is the part of .Q0; ıj / that contains the moduleQ0Vj
, whereas the

other contains Q0Wj
. However, in this case, we already have that

.ıj /Gj
D ı0Gj

I

thus, we just choose �j to be the identity map.
For k > 0, the part of .Q0; ıj / containing

.Q0Gj
; .ıj /Gj

/ D .Q0Gj
; .ı0/Gj

/

is as follows:

PAn PAn PAn � � � PAn PAn PAn�1 r

˚ ˚ ˚ ˚ ˚ ˚

PAn PAn PAn � � � PAn PAn PAnC1

˚ ˚ ˚ ˚ D .Q0; ıj /;

PAn PAn � � � PAn PAn�1 r 0

˚ ˚ ˚ ˚

PAn PAn � � � PAn PAnC1

2Xn

2Xn

2Xn 2Xn F

1
2X_n2Xn 2Xn

2Xn

2Xn

2Xn F

2Xn

where either r or r 0 is the part of .Q0; ıj / that contains the moduleQ0Vj
and the other



Curves in the disc, the type B braid group, and a type B zigzag algebra 391

contains Q0Wj
. We define �j jQ0

Gj

to be the following dashed map:

PAn PAn PAn � � � PAn PAn PAn�1 r

˚ ˚ ˚ ˚ ˚ ˚

PAn PAn PAn � � � PAn PAn PAnC1

˚ ˚ ˚ ˚ D .Q0; ıj /

PAn PAn � � � PAn PAn�1 r 0

˚ ˚ ˚ ˚

PAn PAn � � � PAn PAnC1

PAn PAn PAn � � � PAn PAn PAn�1 r

˚ ˚ ˚ ˚ ˚ ˚

PAn PAn PAn � � � PAn PAn PAnC1

˚ ˚ ˚ ˚ DW .Q0; ıjC1/;

PAn PAn � � � PAn PAn�1 r 0

˚ ˚ ˚ ˚

PAn PAn � � � PAn PAnC1

2Xn

2Xn

2Xn 2Xn F

1
2X_n2Xn 2Xn

2Xn

2Xn

2Xn F

2Xn

Xn

Xn

Xn Xn .njn � 1/

1
X_nXn Xn

Xn

Xn .njnC 1/

Xn .njn � 1/

Xn .njnC 1/

2M

"
M 0

0 M

#
2�1

"
M 0

0 M

#
2�.k�2/

"
M 0

0 M

# "
2�.k�1/M 0

0 2�.k�2/I

#
2�.k�1/I

where M is as in (5.7). For the rest of the modules in Q0, �j sends v to 2�.k�1/v
(resp., v to 2�.k�2/v) for any v belonging to the modules in r (resp., r 0). The
black arrows in the last four rows show the differential component .ıjC1/Gj

in ıjC1,
induced by the conjugation of ��1j . It is easy to see that the required condition (*) is
satisfied.

The construction for k < 0 is similar, using the mapN (from (5.8)) in place ofM .
(4) Lgj is of type V00: recall the definitions of gj , cj , and rj from the paragraph

Slicing c and recall the subsets of crossings of m. Lc/ as defined in (5.2). Let hj be
the connected component of .c n gj / [ .gj \ d2/ that contains the point m so that
gj intersects hj at the point rj . To illustrate, h0 D c0 and h1 D c0 [ g0 [ c1 in Fig-
ure 5.2a, whereas h0 D ;, h1 D g0 [ c1, and h2 D g0 [ c1 [ g1 [ c2 in Figure 5.2b.
Let m. Lhj / D Qhj q

Q
hj and m.rj / D Qrj q

Q
rj so that the curves of m. Lgj / and zhj inter-

sect at the point Qrj 2 �nC1 and the curves of m. Lgj / and hje intersect at the point
rje 2 �n�1.

Now, recall the decomposition of Q0 given in (5.6). By definition, ¹Qrj ;
Q
rj º is the

subset of crossings Rj � Gj . We get that

PA. zrj /˚ P
A.rje/ D Q0Rj

:

First, consider the case when j D 0. Then, gj D g0 is of this type only when m 2
ƒ n ¹0; 1º since g0 \ ¹1º D ;, so we have

Q0V0˚R0
D Q0C0

:
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Furthermore, (5.5) implies that .ı0/C0
D ı0C0

, giving us

.Q0V0
˚Q0R0

; .ı0/V0˚R0
/ D .Q0C0

; .ı0/C0
/ D .Q0C0

; ı0C0
/ D LA.m. Lc0//

with the last equality following from the definition of .Q0; ı0/D LA.m. Lc//. By defin-
ition of hj , it follows that c0 D h0, so we can conclude that

.Q0V0
˚Q0R0

; .ıj /V0˚R0
/ D LA.m. Lh0// D LA. zh0/˚ LA.h0e /;

where the last equality follows from the fact that m. Lh0/ D zh0 q h0e .
Now, consider when j � 1. In this case, ıj satisfies property (*) by our induction

hypothesis, allowing us to conclude that

.ıj /Vj
D ı0Vj

; .ıj /VjRj
D ı0VjRj

; and .ıj /RjVj
D ı0RjVj

:

Thus, we have that .ıj /Vj˚Rj
D ı0Vj˚Rj

, giving us

.Q0Vj
˚Q0Rj

; .ıj /Vj˚Rj
/ D .Q0Vj

˚Q0Rj
; ı0Vj˚Rj

/ D LA.m. Lhj //

D LA. zhj /˚ LA.hje /;
where the second equality follows from the definition of .Q0; ı0/D LA.m. Lc// and the
third equality follows from the fact that m. Lhj / D zhj q hje .

Thus, for all j , we obtain

.Q0Vj
˚Q0Rj

; .ıj /Vj˚Rj
/ D LA. zhj /˚ LA.hje /: (5.9)

Furthermore, note that zhj and hje contain the points Qrj and rje, respectively, so LA. Qhj /

contains PA. zrj / as a submodule and LA.hje / contains PA.rje/ as a submodule. Let us
now understand the relation between .Q0Gj

; .ıj /Gj
/, .Q0Vj

˚Q0Rj
; .ıj /Vj˚Rj

/, and
.Q0; ıj /. As before, our inductive hypothesis gives us .ıj /Gj

D .ı0/Gj
for all j . So,

the part of .Q0; ıj / that contains .Q0Gj
; .ıj /Gj

/ will be the same for all j , and it has
either of the following two forms:

PA. zrj / PAn PAn�1 r 0

˚ ˚ ˚ D .Q0; ıj /

r PA.rje/ PAn PAnC1

E F

.Q0Vj
˚Q0Rj

; .ıj /Vj˚Rj
/

.Q0Gj
; .ıj /Gj

/

or

PAnC1 PAn PA.rje/ r

˚ ˚ ˚ D .Q0; ıj /;

r 0 PAn�1 PAn PA. zrj /

E F .Q0Vj
˚Q0Rj

; .ıj /Vj˚Rj
/.Q0Gj

; .ıj /Gj
/
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where r denotes the rest of the complex .Q0; ıj / that contains the module Q0Vj
and

r 0 denotes the rest of the complex .Q0; ıj / that contains the module Q0Wj
.

Using (5.9), the part of .Q0; ıj / that contains .Q0Gj
; .ıj /Gj

/, LA. zhj / and LA.hje /has either of the following two forms:

zr PA. zrj / PAn PAn�1 r 0

˚ ˚ ˚ D .Q0; ıj /

re PA.rje/ PAn PAnC1

E F
LA. zhj /

LA.hje / .Q0Gj
; .ıj /Gj

/

or

PAnC1 PAn PA.rje/ re
˚ ˚ ˚ D .Q0; ıj /:

r 0 PAn�1 PAn PA. zrj / zr

E F
LA.hje /
LA. zhj /

.Q0Gj
; .ıj /Gj

/

Thus, for all j , we conclude that .Q0; ıj /must be one of the above two possible forms.
It is now sufficient to give a construction of �j for each of the two possible forms.

We begin with the construction of�j for the first possible form of .Q0; ıj /. Firstly,
recall M from (5.7), and note that

ME D 2i

"
.nC 1jn/ 0

0 .n � 1jn/

#"
�1 0

0 1

#
:

We define �j jQ0
Gj

to be the following dashed map:

zr PA. zrj / PAn PAn�1 r 0

˚ ˚ ˚ D .Q0; ıj /

re PA.rje/ PAn PAnC1

zr PA. zrj / PAn PAn�1 r 0

˚ ˚ ˚ DW .Q0; ıjC1/:

re PA.rje/ PAn PAnC1

E F

.nC 1jn/ .njn � 1/

.n � 1jn/ .njnC 1/

2i

"
�1 0

0 1

#
M I

For the rest of the modules in Q0, we define �j as the identity for modules contained
in r 0, and �j sends v to �2iv (resp., v to 2iv) for any v belonging to the modules in
zr (resp., re). The black arrows in the last two rows show the differential component
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.ıjC1/Gj
in ıjC1, induced by the conjugation of ��1j . It is easy to see that ıjC1 does

indeed satisfy the required property (*).
The construction of �j for the second form is similar, changing �j jPA

n ˚P
A
n

to N
from (5.8) instead of M .

(5) Lgj is of type III0
kC 1

2

for k 2 Z: note that the case for k D 0 is straightforward:

�j is just the identity. We will provide the analysis and construction of �j for k > 0
and k < 0.

As in other types, the equation .ıj /Gj
D .ı0/Gj

holds for all j by the induction
hypothesis. Using the same argument in type V00, one can show that (5.9) holds for
all j in this type as well. So, the part of .Q0; ıj / that contains .Q0Gj

; .ıj /Gj
/, LA. zhj /

and LA.hje / will be of the same form for all j . It follows that the construction of �j
below will work for all j .

Let us start with k > 0. Using the same notation as in the analysis of type V00, we
can draw the part of .Q0; ıj / that contains .Q0Gj

; .ıj /Gj
/ D .Q0Gj

; .ı0/Gj
/, LA. Qhj /

and LA.hje / as either of the two forms

PAn � � � PAn PAn PA.rje/ re
˚ ˚ ˚ ˚ D .Q0; ıj /

PAn PAn � � � PAn PAn PA. zrj / zr

2Xn F

2Xn 2Xn

LA.hje /
LA. zhj /

.Q0Gj
; .ıj /Gj

/

or

PAn PAn � � � PAn PAn PA.rje/ re
˚ ˚ ˚ ˚ D .Q0; ıj /:

PAn � � � PAn PAn PA. zrj / zr

2Xn 2Xn F

2Xn

LA.hje /
LA. zhj /

.Q0Gj
; .ıj /Gj

/

We will construct �j for the first form; the second form is a mirrored construction.
Define �j jQ0

Gj

to be the following dashed map:

PAn � � � PAn PAn PA.rje/ re
˚ ˚ ˚ ˚ D .Q0; ıj /

PAn PAn � � � PAn PAn PA. zrj / zr

PAn � � � PAn PAn PA.rje/ re
˚ ˚ ˚ ˚ DW .Q0; ıjC1/

PAn PAn � � � PAn PAn PA. zrj / zr

2Xn F

2Xn 2Xn

Xn Xn

Xn

Xn

Xn Xn

2k�1i

2k�2JM 2JM JM J

with J D
�
�1 0
0 1

�
. For the rest of the modules in Q0, �j sends v to �v (resp., v to v)

for any v belonging to the modules in re (resp., zr). The black arrows in the last two
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rows show the differential component .ıjC1/Gj
in ıjC1, induced by the conjugation

of ��1j . It is easy to see that �j does indeed satisfy the required property (*).
Similarly, for k < 0, we draw the part of .Q0; ıj / that contains .Q0Gj

; .ıj /Gj
/ D

.Q0Gj
; .ı0/Gj

/, LA. Qhj / and LA.hje / as either of the two forms

zr PA. zrj / PAn PAn � � � PAn

˚ ˚ ˚ ˚ D .Q0; ıj /

re PA.rje/ PAn PAn � � � PAn PAn

E 2Xn

2Xn 2Xn

LA. zhj /

LA.hje /
.Q0Gj

; .ıj /Gj
/

or

zr PA. zrj / PAn PAn � � � PAn PAn

˚ ˚ ˚ ˚ D .Q0; ıj /:

re PA.rje/ PAn PAn � � � PAn

E 2Xn 2Xn

2Xn

LA. zhj /

LA.hje / .Q0Gj
; .ıj /Gj

/

Once again, we construct �j for the first form; the second form is a mirrored
construction. Note that

NE D 2

"
.nC 1jn/ 0

0 .n � 1jn/

#
:

We define �j jQ0
Gj

to be the following dashed map, with �j acting as the identity on

the rest of the modules in both zr and re:

zr PA. zrj / PAn PAn � � � PAn

˚ ˚ ˚ ˚ D .Q0; ıj /

re PA.rje/ PAn PAn � � � PAn PAn

zr PA. zrj / PAn PAn � � � PAn

˚ ˚ ˚ ˚ DW .Q0; ıjC1/:

re PA.rje/ PAn PAn � � � PAn PAn :

E 2Xn

2Xn 2Xn

.nC 1jn/ Xn

Xn

.n � 1jn/ Xn Xn

I 2�1N 2�2N 2kC1N

2kC1

The black arrows in the last two rows show the differential component .ıjC1/Gj
in

ıjC1, induced by the conjugation of ��1j . The required condition (*) follows directly.
(6) Lgj is of type II0

kC 1
2

for k 2 Z: as in other types, the equation .ıj /Gj
D .ı0/Gj

holds for all j by the induction hypothesis. Using the same argument in type V00, one
can show that (5.9) holds for all j in this type as well. So, the part of .Q0; ıj / that
contains .Q0Gj

; .ıj /Gj
/, LA. zhj /, and LA.hje / will be of the same form for all j . It

follows that the construction of �j below will work for all j .
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Let us start with k D 0. With the same notation as in the analysis of type V00, we
can draw the part of .Q0; ıj / that contains .Q0Gj

; .ıj /Gj
/ D .Q0Gj

; .ı0/Gj
/, LA. Qhj /,

and LA.hje / as follows:

PAn�1 r 0

˚

PAn PAnC1

˚ ˚ D .Q0; ıj /;

PAn PA. zrj / zr

˚

PA.rje/ re
LA. zhj /

LA.hje /
.Q0Gj

; .ıj /Gj
/

where the first map is given by
�
F
F 0

�
, with F 0 defined by"

�i 0

0 i

#
F 0 D

"
.njnC 1/ 0

0 .njn � 1/

#
M:

We define �j jQ0
Gj

to be the following dashed map:

PAn�1 r 0

˚

PAn PAnC1

˚ ˚ D .Q0; ıj /

PAn PA. zrj / zr

˚

PA.rje/ re
PAn�1 r 0

˚

PAn PAnC1

˚ ˚ DW .Q0; ıjC1/;

PAn PA. zrj / zr

˚

PA.rje/ re

M

"
I 0

0 iJ

#
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where J D
�
�1 0
0 1

�
, �j is the identity on all modules contained in r 0, and �j sends v

to�iv (resp., iv) for any v belonging to the modules in zr (resp.,re). The black arrows
in the last four rows show the differential component .ıjC1/Gj

in ıjC1, induced by
the conjugation of ��1j . Thus, the required condition (*) is easily satisfied.

For k > 0, we can draw the part of .Q0; ıj / that contains

.Q0Gj
; .ıj /Gj

/ D .Q0Gj
; .ı0/Gj

/;

LA. Qhj /, and LA.hje / as follows:

PAn PAn PAn � � � PAn PAn PAn�1 r 0

˚ ˚ ˚ ˚ ˚ ˚

PAn PAn PAn � � � PAn PAn PAnC1

˚ ˚ ˚ ˚ ˚ D .Q0; ıj /:

PAn PAn � � � PAn PAn PA. zrj / zr

˚ ˚ ˚ ˚ ˚

PAn PAn � � � PAn PAn PA.rje/ re

2Xn

2Xn

2Xn 2Xn F

1
2X_n2Xn 2Xn

2Xn

2Xn

2Xn 2Xn F 0

2Xn 2Xn

LA. zhj /

LA.hje /

.Q0Gj
; .ıj /Gj

/

Similarly, we define �j jQ0
Gj

to be the following dashed map:

PAn PAn PAn � � � PAn PAn PAn�1 r 0

˚ ˚ ˚ ˚ ˚ ˚

PAn PAn PAn � � � PAn PAn PAnC1

˚ ˚ ˚ ˚ ˚ D .Q0; ıj /

PAn PAn � � � PAn PAn PA. zrj / zr

˚ ˚ ˚ ˚ ˚

PAn PAn � � � PAn PAn PA.rje/ re
PAn PAn PAn � � � PAn PAn PAn�1 r 0

˚ ˚ ˚ ˚ ˚ ˚

PAn PAn PAn � � � PAn PAn PAnC1

˚ ˚ ˚ ˚ ˚ DW .Q0; ıjC1/;

PAn PAn � � � PAn PAn PA. zrj / zr

˚ ˚ ˚ ˚ ˚

PAn PAn � � � PAn PAn PA.rje/ re

2Xn

2Xn

2Xn 2Xn F

1
2X_n2Xn 2Xn

2Xn

2Xn

2Xn 2Xn F 0

2Xn 2Xn

Xn

Xn

Xn Xn .njn � 1/

1
X_nXn Xn

Xn

Xn .njnC 1/

Xn Xn .njnC 1/

Xn Xn .njn � 1/

2kM

2k�1

"
M 0

0 M

#
2k�2

"
M 0

0 M

#
2

"
M 0

0 M

# "
M 0

0 M

# "
I 0

0 iJ

#
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where �j is the identity on all modules contained in r 0 and �j sends v to �iv (resp.,
iv) for any v belonging to the modules in zr (resp., re). The black arrows in the last
four rows show the differential component .ıjC1/Gj

in ıjC1, induced by the conjug-
ation of ��1j . Thus, the required condition (*) is easily satisfied. The construction for
k < 0 is similar, using the map N in place of M .

This completes the list of �j for all possible types of 1-string Lgj for all j , thus
completing the proof.

Using this result, we can now deduce a type Bn version of Theorem 5.2.

Theorem 5.7. For �B 2 A.Bn/ and an admissible trigraded curve Lc in DB
nC1, we

have that
�B.LB. Lc// Š LB.�

B. Lc//;

in the category of Komb.Bn-prgrmod/; i.e., the map LB is A.Bn/-equivariant.

Proof. Let Lc be a trigraded curve in DB
nC1 and �B be an element of A.Bn/. By Pro-

position 5.5, the diagram in Figure 5.1 commutes. Together with the three other maps
being equivariant, we can conclude that

A2n�1 ˝Bn
.LB.�

B. Lc/// Š A2n�1 ˝Bn
.�B.LB. Lc///: (5.10)

Recall that the functor A2n�1 ˝Bn
� was defined as A2n�1 ˝ RBn

F.�/ (see the para-
graph after Proposition 4.1 for the definitions). Since A2n�1 Š C ˝R

RBn as graded
C-algebras, (5.10) together with the fact that both categories Komb. RBn-prgrmod/
and Komb.A2n�1-prgrmod/ are Krull–Schmidt implies that

LB.�
B. Lc// Š �B.LB. Lc//hsi;

with s D 0 or 1.
We aim to show that s D 0 for all cases. First, consider the case when c \ ¹0º D ;.

As Lc ' �.r1; r2; r3/ˇ. Lb2/ and PB2 Š PB2 h1i, it follows easily that .LB. Lc//h0i Š
.LB. Lc//h1i, and so, we are done. Now, consider when c has one of its endpoints at
0. Note that it is sufficient to prove the statement for �B D �Bj for each j . We assign
to each complex C in Komb.Bn-prgrmod/ an element of Z=2Z denoted by sgn.C /,
by taking the sum of the third grading h�i over all modules P1 in C . One can easily
show that sgn is invariant under isomorphisms in Komb.Bn-prgrmod/, where using
Lemma 5.8 below, we get that s must be 0 as required.

Lemma 5.8. For any trigraded curve Lc with one of its endpoints at ¹0º and any
generating braid �Bj , we have

sgn.�Bj .LB. Lc/// D sgn.LB.�Bj . Lc///:
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Proof. For j � 2, it is clear that

sgn.�Bj .LB. Lc/// D sgn.LB. Lc// D sgn.LB.�Bj . Lc///:

Now, fix j D 1. First, consider the case when Lc is of type VI, i.e.,

Lc D �B.r1; r2; r3/ Lb1:

Then, �B1 . Lc/ D �
B.r1 � 1; r2 C 1; r3 C 1/ Lb1 by Lemma 2.5 (2). So,

LB.�
B
1 . Lc// D P

B
1 Œ�r1 C 1�¹r2 C 1ºhr3 C 1i:

On the other hand,

�B1 .LB.. Lc/// Š .P
B
1 Œ1�¹1º ˚ P

B
1 Œ1�

ŒX1 id�
����! PB1 /Œ�r1�¹r2ºhr3 C 1i

Š PB1 Œ�r1 C 1�¹r2 C 1ºhr3 C 1i:

Thus, sgn.�Bj .LB. Lc/// D r3 C 1 D sgn.LB.�Bj . Lc///.
Otherwise, we analyse sgn based on the number of 2-crossing in Lc. Note that, for

1-strings Lg,

sgn.LB.�B1 . Lg///

D

8<: sgn.LB. Lg//; when Lg is of type II0w , II0
wC 1

2

, III0
wC 1

2

, and V00,

sgn.LB. Lg//C 1; when Lg is of type III0w .

Note that �B1 would not change the number of 2-crossings of Lc, and as Lc \ ¹0ºD ¹0º, Lc
contains 1-string of type III0w if and only if Lc has an even number of 2-crossings. Since
sgn.LB.�B1 . Lc/// can be computed by summing over all 1-strings of Lc, we conclude
that

sgn.LB.�B1 . Lc/// D

´
sgn.LB. Lc//; if Lc has an odd number of 2-crossings,

sgn.LB. Lc//C 1; if Lc has an even number of 2-crossings.

On the other hand, note that Lc and �B1 . Lc/ both have an odd number of 1-crossings.
Moreover, sgn.C h1i/D sgn.C /C 1 if and only if C has an odd number of underlying
PB1 ’s. As such, we have that

sgn.�B1 .LB. Lc///D

´
sgn.LB. Lc//; if LB. Lc/ has an odd number of modules PB2 ,

sgn.LB. Lc//C1; if LB. Lc/ has an even number of modules PB2 ,

since �B1 D R1h1i, 1PB ˝Bn
PB1 Š R ˚ R¹1º, 1PB ˝Bn

PB2 Š R ˚ Rh1i, and
1P

B ˝Bn
PBj D 0 for all j � 3 (see Proposition 3.5 and Remark 3.6). Thus, we get

that sgn.�B1 .LB. Lc/// D sgn.LB.�B1 . Lc///.
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6. Categorification of Homological representations

In this section, we will relate the categorical representations of type A2n�1 and type
Bn Artin groups to their representations on the first homology of surfaces.

Throughout this section, we will use KA WD Komb.A2n�1-prgrmod/ and KB WD

Komb.Bn-prgrmod/ as shorthand notations. We will also use ZA, ZB;s , and ZB;r to
denote the rings ZŒq˙1�, ZŒq˙1; s�=hs2 � 1i, and ZŒq˙1; r�=hr2 � 1i, respectively. We
denote the Grothendieck group of KA and KB asK0.KA/ andK0.KB/, respectively;
recall that they are the abelian groups freely generated by the isomorphism classes of
objects, quotient by the relationh

cone
�
A

f
�! B

�i
D ŒB� � ŒA�:

6.1. Representations on Grothendieck groups

First, consider the Grothendieck groupK0.KA/. The functor ¹1ºmakesK0.KA/ into
a ZA-module defined by ŒX¹1º� D qŒX�. Note that K0.KA/ is isomorphic to the split
Grothendieck group K˚0 .A2n�1-prgrmod) (see [19, Theorem 1.1]), so K0.KA/ is a
free module over ZA of rank 2n � 1, generated by ¹ŒPAj � j 1 � j � 2n � 1º. The
action of A.A2n�1/ on KA preserves cones; namely, for all � 2 A.A2n�1/,

�
�

cone
�
A

f
�! B

��
Š cone

�
�.A/

�.f /
���! �.B/

�
:

Moreover, the action commutes with the grading shift functor, so we have an induced
ZA-linear representation of A.A2n�1/ on K0.KA/, which we denote by

�KA W A.A2n�1/! AutZA
.K0.KA//:

Now, consider the Grothendieck group K0.KB/. The functors ¹1º and h1i make
K0.KB/ into a module over ZB;s . As PBj h1i Š P

B
j for all j � 2, we have that

sŒPj � D ŒPj �

for all j � 2. It is easy to see now that

K0.KB/ Š ZB;s ˚ .ZB;s=hs � 1i/
˚n�1

as ZB -modules, generated by ¹ŒPBj � j 1 � j � nº. As before, the action of A.Bn/ on
KB preserves cones, and it commutes with the grading shift functors, so we have an
induced ZB;s-linear representation of A.Bn/ on K0.KB/, which we denote by

�KB W A.Bn/! AutZB;s
.K0.KB//:
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>>>
>>>

>>>
>>>

>>>
>>>

>>>
>>>

:::
:::

:::
:::

q�1�n �n q�n q2�n

q2��nq�1��n ��n q��n

q�1p p qp q2p q3p

Figure 6.1. The infinite graph of �Z homotopy equivalent to D2n.

6.2. Homological representations

It is well known that the reduced Burau representation of A.A2n�1/ can be realised
as a homological representation (see, for example, [13, Theorems 3.7 and 3.9]). Non-
etheless, we will spell out the construction here as it will shed some light on the
construction of the homological representation for type Bn and also clarify the rela-
tionship between them.

Consider the covering space D2n classified by the cohomology class

CD 2 H
1.DA

2n n�;Z/

defined by Œ�k� 7! 1for all k 2�D ¹�n; : : : ;�1; 1; : : : ; nº, where each �k is a closed
loop around the puncture k. It is easy to see that the space D2n is homotopy equivalent
to the infinite graph �Z given in Figure 6.1. The action of A.A2n�1/ on DA

2n n �

lifts to an action on D2n that commutes with the deck transformation group Z, so it
induces a ZŒZ�-linear action of A.A2n�1/ on H1.D2n;Z/, which we denote by

�RHA W A.A2n�1/! AutZŒZ�.H1.D2n;Z//:

Now, let
�0 WD � [ ¹0º;

and consider the covering space D2nC1 of DA
2n n �0 classified by the cohomology

class CD 2 H
1.DA

2n n�0;Z/ defined by

Œ�j � 7!

´
1; for j ¤ 0;

0; for j D 0;

where each �j is a closed loop around the puncture j . Note that the composition of
coverings

D2nC1 ! DA
2n n�0 ! DB

nC1 nƒ

is a normal covering space of DB
nC1 nƒ, with its group of deck transformations iso-

morphic to Z � Z=2Z (cf. Lemma 2.2).
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^ _ ^ _ ^ _ ^ _ ^ _q�1l0 rq�1l0 l0 rl0 ql0 rql0 q2l0 rq2l0 q3l0 rq3l0

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>
:::

:::
:::

:::

:::
:::

:::
:::

rq�1l1 rl1 rql1 rq2l1

rq2lnrq�1ln rln rqln

q�1l1 l1 ql1 q2l1

q2lnq�1ln ln qln
q�1p p qp q2p q3p

rq�1p rp rqp rq2p rq3p

Figure 6.2. The infinite graph �Z�Z=2Z that is homotopy equivalent to D2nC1.

Let lj be a closed loop around each puncture j 2 ƒ of DB
nC1. Note that the fol-

lowing equations hold in H1.DA
2n n�0;Z/:8̂̂<̂

:̂
Œ�0� D Œl0�C rŒl0�;

Œ��j � D rŒlj �; for j > 0;

Œ�j � D Œlj �; for j > 0:

(6.1)

As such, the space D2nC1 is homotopy equivalent to the graph given in Figure 6.2.
The action of A.Bn/ on DB

nC1 nƒ lifts to an action on D2nC1 that commutes with
deck transformation group

ZŒZ � Z=2Z� Š ZB;r ;

so it induces a ZB;r -linear action on H1.D2nC1;Z/, which we denote by

A�RHB W A.Bn/! AutZB;r
.H1.D2nC1;Z//:

6.3. Relating the representations on Grothedieck groups and homology groups

It has been shown in [15, Section 2e.1] that the induced action of A.A2n�1/ on the
Grothendieck group K0.KA/ is isomorphic to the reduced Burau representation, but
we will spell it out here before dealing with the type B case. Recall that Hn and
K0.KB/ are modules over ZB;r and ZB;s , respectively, whereas H1.D2n;Z/ and
K0.KA/ are modules over ZA.

Proposition 6.1. The two ZA-linear representations

�KA W A.A2n�1/! AutZA
.K0.KA//

and
�RHA W A.A2n�1/! AutZŒZ�.H1.D2n;Z//
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are isomorphic. In particular, the categorical action of A.A2n�1/ on KA categorifies
the reduced Burau representation.

Proof. One can check that H1.D2n;Z/ is a free module over ZŒZ� Š ZA of rank
2n � 1, with basis ¹Œ
1�; : : : ; Œ
2n�1�º defined by

Œ
j � WD

8̂̂<̂
:̂
Œ��1� � Œ�1�; for j D n;

.�1/n�j .Œ��nCj�1� � Œ��nCj �/; for j � n � 1;

.�q/n�j .Œ��nCj � � Œ��nCjC1�/; for j � nC 1:

(6.2)

Similarly, ¹PA1 ; P
A
2 ; : : : ; P

A
2n�1º is a ZA-basis for K0.KA/.

Under both of these bases, both �KA and �RHA are given by the same matrices
for each generator of A.A2n�1/ as follows:

�A1 7!

264�q �q 0

0 1 0

0 0 In�2

375 ; �A2n�1 7!

264In�2 0 0

0 1 0

0 �q �q

375 ;

�Aj 7!

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

266666664
Ij�2 0 0 0 0

0 1 0 0 0

0 �1 �q �q 0

0 0 0 1 0

0 0 0 0 In�j�1

377777775 ; for 2 � j � n � 1I

266666664
Ij�2 0 0 0 0

0 1 0 0 0

0 �1 �q �1 0

0 0 0 1 0

0 0 0 0 In�j�1

377777775 ; for j D nI

266666664
Ij�2 0 0 0 0

0 1 0 0 0

0 �q �q �1 0

0 0 0 1 0

0 0 0 0 In�j�1

377777775 ; for nC 1 � j � 2n � 2:

It follows that �KA and �RHA are isomorphic representations.

Proposition 6.2. Under the identification ZB;s Š ZB;r given by s 7! �r and q 7! q,
the ZB;s-linear representation �KB W A.Bn/! AutZB;s

.K0.KB// is isomorphic to
a ZB;s-linear subrepresentation of A�RHB W A.Bn/! AutZB;s

.H1.D2nC1;Z//.
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Proof. Consider the sub ZB;r -module

Hn � H1.D2nC1;Z/

generated by ¹Œ�1�; : : : ; Œ�n�º, where

Œ�j � D

´
.1 � q/Œl0� � .1 � r/Œl1�; for j D 1;

.�q/1�j .1 � r/.Œlj�1� � Œlj �/; for j � 2:

Note that Œ�j � D �rŒ�j � for all j � 2 so that

Hn Š ZB;r ˚ .ZB;r=hr C 1i/
˚n�1

as ZB;r -modules.
It is easy to verify on the generators that Hn � H1.D2nC1;Z/ is closed under

the action of A.Bn/, so we obtain a ZB;r -linear subrepresentation on Hn, which we
denote by �RHB W A.Bn/! AutZB;r

.Hn/.
Using the set of generators ¹PB1 ; P

B
2 ; : : : ; P

B
n º for KB , �KB is given by the

following matrices for each generators of A.Bn/:

�KB.�
B
1 / D

264�sq �.1C s/ 0

0 1 0

0 0 In�2

375 ; �KB.�
B
n / D

264In�2 0 0

0 1 0

0 �q �q

375 ;

�KB.�
B
j / D

2666664
Ij�2 0 0 0 0

0 1 0 0 0

0 �q �q �1 0

0 0 0 1 0

0 0 0 0 In�j�1

3777775 ; for j ¤ 1; n:

One can check that, using the set of generators ¹Œ�1�; : : : ; Œ�n�º for Hn, �RHB is defined
by associating the above matrices to the generators of A.Bn/ with s D �r . Thus,
under the identification ZB;s Š ZB;r given by s 7! �r and q 7! q, the two represent-
ations are isomorphic.

Denote ev˙1 W ZB;s ! ZA as the ZŒq˙1�-linear evaluation maps defined by s 7!
˙1. Throughout the rest of this section, we will view H1.D2n;Z/ as a ZB;s-module
through ev�1 and K0.KA/ as a ZB;s-module through ev1.

The functor A2n�1˝Bn
� as in Proposition 4.2 preserves cones; hence, it induces

a map on the Grothendieck groups K0.A2n�1 ˝Bn
�/ W K0.KB/! K0.KA/, given

by

K0.A2n�1 ˝Bn
�/.ŒPBj �/ D

´
ŒPAn �; for j D 1;

ŒPA
n�.j�1/

�C ŒPA
nC.j�1/

�; otherwise:
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On the other hand, the natural inclusion map � W DA
2n n�0 ! DA

2n n� induces a map
on the homology

� W H1.D
A
2n n�0;Z/! H1.D

A
2n n�;Z/

that sends

Œ�j � 7!

´
0; for j D 0;

Œ�j �; otherwise:

Thus, � lifts uniquely to z� W D2nC1 ! D2n, which induces a map on the homology
z� W H1.D2nC1;Z/! H1.D2n;Z/. We will now show a “decategorified” analogue of
Theorem 5.1.

Theorem 6.3. Consider the action of A.Bn/ on Hn and K0.KB/ given by �RHB D
A�RHB jHn

and �KB , respectively, as in Proposition 6.2; similarly, consider the action

of A.Bn/
‰
,! A.A2n�1/ on H1.D2n; Z/ and K0.KA/ given by �RHA and �KA,

respectively, as in Proposition 6.1. Then, there exist ZB;s-linear isomorphisms ‚A
and ‚B such that the following diagram is commutative with all four maps ZB;s-
linear and A.Bn/-equivariant:

A.Bn/

A.Bn/

A.A2n�1/
‰
 - A.Bn/

A.A2n�1/
‰
 - A.Bn/

Hn H1.D2n;Z/

K0.KB/ K0.KA/

Š ‚B

z�

Š ‚A
K0.A2n�1 ˝Bn

�/

:

Proof. We use isomorphisms ‚A and ‚B which identify the respective generators
chosen in the proof of Proposition 6.1 and Proposition 6.2, respectively.

The functor A2n�1˝Bn
� commutes with the grading functor, soK0.A2n�1˝Bn

�/ is ZB;s linear. The fact that it is A.Bn/-equivariant follows from Theorem 4.3. On
the other hand, it follows immediately from the construction of the covering spaces
D2nC1 and D2n that z� is a ZB;s-linear map and is A.Bn/-equivariant.

Using (6.1) and (6.2), the restriction of z� to Hn is given by

z�.Œ�j �/ D

´
Œ
n�; for j D 1;

Œ
n�.j�1/�C Œ
nC.j�1/�; for j � 2:

It now follows immediately that ‚A ız� D K0.A2n�1 ˝Bn
�/ ı‚B .
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7. Trigraded intersection numbers and graded dimensions of
homomorphism spaces

In this section, we will relate the trigraded intersection number and the Hom spaces
between the corresponding complexes. Throughout this section, we will fix the fol-
lowing shorthand notations:

KB WD Komb.Bn-prgrmod/; KA WD Komb.A2n�1-prgrmod/;

Bm WD Bn-mod; Am WD A2n�1-mod:

For V D
L
.r;s/2Z�Z=2Z V.r;s/¹rºhsi a .Z � Z=2Z/-graded R-vector space, we

denote its bigraded dimension as

bigrdim.V / WD
X

.r;s/2Z�Z=2Z

dim.V.r;s//qr2q
s
3:

Recall that, for each pair of objects .C �; @C /; .D�; @D/ in KB , one can consider
the internal (bigraded) Hom complex HOM�KB

.C; D/ defined as follows: for each
cohomological degree s1 2 Z,

HOMs1
KB
.C;D/ WD

M
.s2;s3/2Z�Z=2Z;

mCnDs1

HomBm.C
m;Dn

¹s2ºhs3i/¹�s2ºhs3i

is a Z � Z=2Z-graded R-vector space and the differentials are given by

d.f / D @D ı f � .�1/
s1f ı @C

for each f 2 HOMs1
KB
.C; D/. It follows that each Hn.HOM�KB

.C; D// is a (Z �
Z=2Z)-graded R-vector space. We define the Poincaré polynomial

P.C;D/ 2 ZŒq1; q
�1
1 ; q2; q

�1
2 ; q3�=hq

2
3 � 1i

of HOM�KB
.C;D/ as

P.C;D/ WD
X
s12Z

q
s1
1 bigrdimR.H

s1.HOM�KB
.C;D///:

Lemma 7.1. For any trigraded admissible curve Lc, the following internal Hom com-
plexes are quasi-isomorphic:

.HOM�KB
.PBj ; LB. Lc//; d

�
C / Š

M
Lg2st. Lc;j /

.HOM�KB
.PBj ; LB. Lg//; d

�
G/;

for all 1 � j � n and .s1; s2; s3/ 2 Z � Z � Z=2Z.
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Proof. To simplify notation, denote

.C �; @�C / WD LB. Lc/ and .G�; @�G/ WD
M
Lg2st. Lc;j /

LB. Lg/:

Note that G� can be obtained from C � by discarding the modules PB
k

in LB. Lc/ for
jk � j j > 1. In particular, for all m 2 Z, Cm D Gm ˚ Um, where Um consists of all
indecomposable PB

k
in Cm with jk � j j > 1. Using the decomposition above, let us

write @mC W C
m D Gm ˚ Um ! GmC1 ˚ UmC1 D CmC1 as

@mC D

"
�m �

� �

#
so that �m W Gm ! GmC1. Also note that the differential

@mG W G
m
! GmC1

can be obtained from �m by modifying the differentials PB.x/
@yx

��! PB.y/ to 0
whenever x and y are crossings of two different j -strings of Lc. SinceM

.s1;s2;s3/2Z�Z�Z=2Z

HomBm.P
B
j ; P

B
k Œs1�¹s2ºhs3i/ D 0

for all k such that jj � kj > 1, it follows thatM
.s1;s2;s3/2Z�Z�Z=2Z

HomBm.P
B
j ; U

s1¹s2ºhs3i/ D 0; (7.1)

and thus,
HOMm

KB
.PBj ; C

�/ D HOMm
KB
.PBj ; G

�/

for each m 2 Z as underlying graded vector space. Moreover, we know that dmG D
.@mG ı �/ and dmC D .@

m
C ı �/ by the definition of the HOM complex. But (7.1) allows

us to conclude that
dmC D .�

m
ı �/:

Therefore, to prove the proposition, it is sufficient to show that dmC D .�
m ı �/ and

dmG D .@
m
G ı �/ have isomorphic kernels and isomorphic images for each m 2 Z. For

the rest of the proof, let m 2 Z be arbitrary.
Let us first consider the simple case when j ¤ 2. We claim that

dmC D d
m
G :

Note that when j ¤ 2, @yx in �m that are modifed to 0 in @mG are always right multi-
plication by loopsXj�1 orXjC1. But for such maps, the corresponding induced maps
on the HOM complex .@yx ı �/ are always 0, so .�m ı �/ D .@mG ı �/ as required.
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Now, let us consider the case when j D 2. The types of maps

@yx W P.x/! P.y/

in �m that are modifed to 0 in @mG are of the following types:

(i) @yx D X1 or X3;

(ii) @yx D .1j2/i or @yx D �i.2j1/.

Moreover, @yx of type (ii) does not exist in @mG by the definition of LB . By the same
argument in the case j ¤ 2, the induced differential in the HOM complex by @yx of
type (i) is 0. So, we can relate dmC and dmG as follows:

dmC D .�
m
ı �/ D .@mG ı �/C .ı ı �/ D d

m
G C .ı ı �/; (7.2)

where ı WD
P
@yx , summing over all @yx’s in �m that are of type (ii).

Before we analyse the kernel and image of both dmC and dmG , we will consider a
decomposition of Gm and GmC1 using �m. Denote Gm and GmC1 as the subsets of
all crossings of Lc such that

Gm D
M
z2Gm

P.z/ and GmC1 D
M

z2GmC1

P.z/:

We will reorganise the direct summands of Gm and GmC1 in the following way:

(1) Set

• ˛ D 1,

• � WD ı,

• X WD Gm,

• Hm WD Gm,

• Y D GmC1,

• HmC1 D GmC1.

(2) If � D 0, then skip to step (3); otherwise, let @yx be one of the summands in
ı. Consider the smallest subset X 0 � X and Y 0 � Y such that

• x 2 X 0,

• y 2 Y 0,

• @zw D 0, X1, or X3 whenever w 2 .X 0/c , z 2 Y 0 or w 2 X 0, z 2 .Y 0/c .

We organise the direct summands of Hm in the following way:

Hm
D Qm

˛ ˚

 M
x2.X 0/c

P.x/

!
and HmC1

D QmC1
˛ ˚

 M
y2.Y 0/c

P.y/

!
;
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where Qm
˛ WD

L
x2X 0 P.x/ and QmC1

˛ WD
L
y2Y 0 P.y/. Let e D

P
@yx ,

summing over all @yx D .1j2/i;�i.2j1/ with x 2 X 0 and y 2 Y 0.
Redefine

• ˛ WD ˛ C 1,

• � WD � � 
 ,

• Hm WD
L
x2.X 0/c P.x/,

• HmC1 WD
L
y2.Y 0/c P.y/.

Repeat step (2).

(3) IfHm¤ 0, then setQm
˛ WDH

m; else, ifHmC1¤ 0, then setQmC1
˛ WDHmC1.

(4) OutputGmD
L
s2SQ

m
s andGmC1D

L
s02S 0Q

m
s0 with the appropriate index

sets S D ¹1; : : : ;M º and S 0 D ¹1; : : : ;M 0º.

Now, consider �m and @mG as block matrices corresponding to the decomposition
obtained above

�m D Œ.�m/s0;s�.s0;s/2S 0�S ; @mG D Œ.@
m
G/s0;s�.s0;s/2S 0�S :

Note that, by the construction of the decomposition, we have that the block .�m/s0;s
only has entries X1, X3, or 0 for all s ¤ s0. On the HOM complexes, the decomposi-
tions also give us

HOMm
KB
.PBj ; C

�/ D HOMm
KB
.PBj ; G

�/ D
M
s2S

HomBm.P
B
j ;Q

m
s /;

and

HOMmC1
KB

.PBj ; C
�/ D HOMmC1

KB
.PBj ; G

�/ D
M
s02S 0

HomBm.P
B
j ;Q

mC1
s0 /:

Similarly, consider the two differentials dmC and dmG written as block matrices corres-
ponding to the decompositions

dmC D Œ.d
m
C /s0;s�.s0;s/2S 0�S ; dmG D Œ.d

m
G /s0;s�.s0;s/2S 0�S :

The construction of the decomposition guarantees the property that

.dmC /s0;s D .d
m
G /s0;s D 0

whenever s ¤ s0 (recall that the induced maps .X1 ı �/ and .X3 ı �/ are 0). So, to
show that dmC D .�

m ı�/ and dmG D .@
m
G ı�/ have isomorphic images and isomorphic

kernels, it is now sufficient to show them for each block .dmC /s0;s D ..�
m/s0;s ı �/ and

.dmG /s0;s D ..@
m
G/s0;s ı �/, where s D s0.
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yx0

x

Figure 7.1. The crossings x, x0, and y of the partial curve of Lc.

To simplify notation, for the rest of this proof, we will drop the subscript s and
denote

Qm
WD Qm

s ; QmC1
WD QmC1

s ; dC WD .d
m
C /s;s;

dG WD .d
m
G /s;s; � WD �ms;s; and @G WD .@

m
G/s;s:

We will now look at the possible types of maps � W Qm ! QmC1 which give us all
possible dC D .� ı �/, where dG D .@G ı �/ can be obtained by

dG D .� ı �/ � .ı ı �/

(following from (7.2)).
If dC D dG , i.e., � has no entry of type (ii) so that ıD 0, then there is nothing left to

show. Otherwise, � contains at least one entry @yx of type (ii). The two possibilities of
@yx of type (ii) are .1j2/i and �i.2j1/. We will only explicitly show the classification

method used to obtain all possible types of Qm �
�! QmC1 when @yx D .1j2/i , where

the same method can be applied to the case when @yx D �i.2j1/.
So, let us consider the case when � has an entry with @yx D .1j2/i . Recall that, by

the definition ofLB , for any @yx of type (ii), there must be a corresponding 1-crossing
x0 of Lc such that

• x0 and x are connected by an essential segment in D0,

• x0 and y are endpoints of an essential segment of Lc in D1.

So, in the case @yx D .1j2/i , x0 and y are connected through an essential segment in
D1 of type 1 (refer to Figure 2.8) and the map

@yx0 W P.x
0/! P.y/

is the right multiplication by .1j2/. By the construction of Qm and QmC1, Qm must
then at least contain the direct summands P.x/ and P.x0/ and QmC1 must at least
contain the direct summand P.y/, so the differential Qm �

�! QmC1 must contain at
least two entries @yx D .1j2/i and @yx0 D .1j2/. Thus, the crossings x, x0, and y must
be contained in the corresponding partial curve of Lc in Figure 7.1.

As seen from Figure 7.1 above, x and y are the only crossings that can be in
another distinct essential segment of Lc.
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yx0

x

w y

x0

x w

Figure 7.2. The two possible essential segments from y.

Let us now first consider the subcase when x is not in another distinct essential
segment. If y is also not in another distinct essential segment, then we have thatQm �

�!

QmC1 is of the form

P.x0/ P.y/

P.x/

.1j2/

.1j2/i
˚ :

If instead y is part of another essential segment of Lc with its other endpoint some
crossingw, then the essential segment must be inD2. SinceP.y/ is a direct summand
of QmC1, w must have the property

w1 D y1 � 1

so that P.w/ is an entry of Qm and @yw is an entry of � . The only two such possibil-
ities are shown in Figure 7.2.

Now, note that ifw is a 2-crossing (left picture in Figure 7.2), then one sees thatw
cannot be connected to any other crossing z through another distinct essential segment
in Lc with P.z/ a direct summand of QmC1; if instead w is a 3-crossing (right picture
in Figure 7.2), then the only possibility for P.z/ to be a direct summand of QmC1

is when w is also a 3-crossing, with w and z endpoints of an essential segment of
Lc in D3 of type 2, giving us @wz D X3. Recall the chosen decomposition of Gm

and GmC1, where QmC1 � GmC1 corresponds to the smallest subset of crossings in
GmC1 which contains y, with the property that maps between the direct summands
of the decompositions of Gm and GmC1 are either 0 or X1 or X3. Thus, P.z/ must
be excluded from QmC1. We can therefore conclude that, for the subcase when x is
not connected to any other distinct essential segments, we have 3 possible forms for
Qm �
�! QmC1:

P.x0/ P.y/

P.x/

.1j2/

.1j2/i
˚ or

P.w/

P.x0/ P.y/

P.x/

X2 or .3j2/
˚

.1j2/

.1j2/i
˚

:
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To analyse the maps dC and dG , let us identify the morphism spaces as

HOMm
KB
.PB2 ; G

�/

D

M
.s;t/2Z�Z=Z

HomBm.P
B
2 ; .P.x

0/˚P.x/˚P.w//¹sºhti/¹sºhti

Š .R¹.2j1/ºhx3i ˚R¹i.2j1/ºhx3 C 1i/¹x2 C 1º

˚ .R¹.2j1/ºhx03i ˚R¹i.2j1/ºhx03 C 1i/¹x
0
2º

˚Z;

where Z D 0 for the first type of Qm �
�! QmC1, and

HOMmC1
KB

.PB2 ; G
�/ D

M
.s;t/2Z�Z=Z

HomBm.P
B
2 ; P.y/¹sºhti/¹sºhti

Š .R¹X2ºhy3i ˚R¹X2iºhy3 C 1i/¹y2 C 1º

˚ .R¹idºhy3i ˚R¹iºhy3 C 1i/¹y2º:

Using this identification, we can write dC and dG as the corresponding matrices

dC D

26664
1 0 0 �1 e

0 1 1 0 f

0 0 0 0 0

0 0 0 0 0

37775 and dG D

26664
1 0 0 0 e

0 1 0 0 f

0 0 0 0 0

0 0 0 0 0

37775 ;
where dG is obtained from dC by removing maps that were induced by .1j2/i . It
follows that dC and dG have the same image and have isomorphic kernels.

Now, consider the other subcase where x is in another essential segment of Lc with
its other endpoint some crossing y0. Note that since x is already part of an essential
segment in D0, the essential segment connecting x and y0 can only be in D1. As
before, we must have

y01 D x1 � 1

so thatP.y0/ is a direct summand ofQmC1 and that @y0x is an entry of � . Furthermore,
if x and y0 are connected by the essential segment of type 2 in Figure 2.8, then @y0x D
X1. Therefore, such P.y0/ is excluded from QmC1. Collecting the results, the only
possible essential segment connecting x and y0 with y01 D x1 � 1 and @y0x ¤ X1 is
the essential segment of type 1. Thus, the crossings x, x0, y, and y0 must be contained
in the corresponding partial curve of Lc as in Figure 7.3.

The same analysis in the previous subcase on the possible essential segments con-
nected to y can be applied similarly to the crossings y and y0 here. Thus, we conclude
that, for this subcase,

Qm
@m

C
��! QmC1
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y

x0

x

y0

Figure 7.3. The crossings x, x0, y, and y0 when x is in another essential segment.

is equal to one of the following 6 types (there are 3 possible combinations of X2 and
.3j2/ maps in the rightmost diagram):

P.x0/ P.y/

P.x/ P.y0/

.1j2/

.1j2/i

.1j2/

˚ ˚ ;

P.z/

P.x0/ P.y/

P.x/ P.y0/

X2 or .3j2/
˚

.1j2/

.1j2/i

.1j2/

˚ ˚

or

P.z/

P.x0/ P.y/

P.x/ P.y0/

P.z0/

X2 or .3j2/
˚

.1j2/

.1j2/i

.1j2/

˚ ˚

X2 or .3j2/
˚

swapping x with x0 (and correspondingly y with y0) if necessary. Let us again identify
the morphism spaces as

HOMm
KB
.PB2 ; G

�/ D
M

.s;t/2Z�Z=Z

HomBm.P
B
2 ; .P.x

0/˚P.x/˚P.z//¹sºhti/¹sºhti

Š .R¹.2j1/ºhx3i ˚R¹i.2j1/ºhx3 C 1i/¹x2 C 1º

˚ .R¹.2j1/ºhx03i ˚R¹i.2j1/ºhx03 C 1i/¹x
0
2º

˚Z;

where Z D 0 for the first type of Qm �
�! QmC1, and

HOMmC1
KB

.PB2 ; G
�/ D

M
.s;t/2Z�Z=Z

HomBm.P
B
2 ; P.y/¹sºhti/¹sºhti

Š .R¹X2ºhy3i ˚R¹X2iºhy3 C 1i/¹y2 C 1º

˚ .R¹X2ºhy
0
3i ˚R¹X2iºhy

0
3 C 1i/¹y

0
2 C 1º

˚ .R¹idºhy3i ˚R¹iºhy3 C 1i/¹y2º

˚ .R¹idºhy03i ˚R¹iºhy03 C 1i/¹y
0
2º

D .R¹X2ºhy3i ˚R¹X2iºhy3 C 1i/¹y2 C 1º

˚ .R¹X2ºhy
0
3i ˚R¹X2iºhy

0
3 C 1i/¹y

0
2 C 1º ˚ V:
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Writing dC and dG as the corresponding matrix, we get

dC D

2666664
1 0 0 �1 e0

0 1 1 0 f 0

0 �1 1 0 g0

1 0 0 1 h0

0 0 0 0 0

3777775 and dG D

2666664
1 0 0 0 e0

0 1 0 0 f 0

0 0 1 0 g0

0 0 0 1 h0

0 0 0 0 0

3777775 ;
which also have the same image and same kernel. Thus, for @yx D .1j2/i , all possible
cases of dC and dG have isomorphic images and isomorphic kernels as required.

Applying the same classification method to the case when @yx D �i.2j1/, the

possible types of Qm �
�! QmC1 are given by

P.y/

P.x/ P.y0/

�i.2j1/

.2j1/

˚ or

P.y/

P.x/ P.y0/

P.z/

�i.2j1/

.2j1/

X2 or .2j3/

˚

˚

when y is not part of another distinct essential segment of Lc, and

P.x0/ P.y/

P.x/ P.y0/

.2j1/

�i.2j1/

.2j1/

˚ ˚ ;

P.x0/ P.y/

P.x/ P.y0/

P.z/

.2j1/

�i.2j1/

.2j1/

X2 or .2j3/

˚ ˚

˚

or

P.z0/

P.x0/ P.y/

P.x/ P.y0/

P.z/

˚

.2j1/

X2 or .2j3/

�i.2j1/

.2j1/

X2 or .2j3/

˚ ˚

˚

when y is part of another distinct essential segment of Lc, where as before we swap y
with y0 (correspondingly x with x0) if necessary. By identifying the morphism spaces
and comparing the corresponding matrices of dC and dG as before, it follows that dC
and dG have isomorphic images and isomorphic kernels. This covers all cases of ıC
and ıG , thus completing the proof.

Lemma 7.2. The Poincaré polynomial P.PBj ; LB. Lg// of HOM�KB
.PBj ; LB. Lg// is

equal to the trigraded intersection number I trigr. Lbj ; Lg/ for any trigraded j -string Lg.

Proof. This follows exactly as in [15, Lemma 4.11].
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Proposition 7.3. For any � and � in A.Bn/ and any 1 � j; k � n, the Poincaré
polynomial of

HOM�KB
.�.PBj /; �.P

B
k //

is equal to the trigraded intersection number I trigr.{�. Lbj /; {�. Lbk//.

Proof. By Lemma 2.11, we get that

I trigr. Lbj ; Lc/ D
X
Lg2st. Lc;j /

I trigr. Lbj ; Lg/:

Using Lemma 7.1, we instead get that

P.PBj ; LB. Lc// D
X
Lg2st. Lc;j /

P.PBj ; LB. Lg//:

By Lemma 7.2, each P.PBj ; LB. Lg// D I
tri . Lbj ; Lg/; thus, we can conclude that

I trigr. Lbj ; Lc/ D P.PBj ; LB. Lc//:

The proposition now follows from the fact that the categorical action of A.Bn/ re-
spects morphism spaces, and similarly, the topological action of A.Bn/ respects tri-
graded intersection number.

Remark 7.4. Note that we can also use Proposition 7.3 to prove the faithfulness of
the A.Bn/ categorical action. The proof is similar to [15, the paragraph before Section
5] modulo the centre of A.Bn/, which is an easy check that elements of the centre act
by shifting degrees and therefore are not isomorphic to the identity functor.

Acknowledgements. We would like to thank our supervisor, Anthony Licata, for
suggesting this problem and guidance throughout. We would like to acknowledge
Peter McNamara for suggesting the construction of type B zigzag algebra Bn during
the Kiola Conference 2019. We would also like to thank Hoel Queffelec and Daniel
Tubbenhauer for their helpful comments on the early draft(s) of this paper. Finally, we
would like to thank the referees for their patience in reading this lengthy paper and
also for their wonderful suggestions.

References

[1] V. I. Arnold, V. V. Goryunov, O. V. Lyashko, and V. A. Vasil’ev, Singularity theory. I.
Springer, Berlin, 1998; Translated from the 1988 Russian original by A. Iacob, Reprint
of the original English edition from the series Encyclopaedia of Mathematical Sciences [ıt
Dynamical systems. VI, Encyclopaedia Math. Sci., 6, Springer, Berlin, 1993; MR1230637
(94b:58018)] Zbl 0901.58001 MR 1660090

https://doi.org/10.1007/978-3-642-58009-3
https://zbmath.org/?q=an:0901.58001
https://mathscinet.ams.org/mathscinet-getitem?mr=1660090


E. Heng and K. S. Nge 416

[2] V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of differentiable
maps. Volume 2. Mod. Birkhäuser Class., Birkhäuser/Springer, New York, 2012; Mono-
dromy and asymptotics of integrals, Translated from the Russian by Hugh Porteous and
revised by the authors and James Montaldi, Reprint of the 1988 translation
Zbl 1297.32001 MR 2919697

[3] J. S. Birman and H. M. Hilden, On isotopies of homeomorphisms of Riemann surfaces.
Ann. of Math. (2) 97 (1973), 424–439 Zbl 0237.57001 MR 325959

[4] A. Björner and F. Brenti, Combinatorics of Coxeter groups. Grad. Texts in Math. 231,
Springer, New York, 2005 Zbl 1110.05001 MR 2133266

[5] E. Brieskorn, Sur les groupes de tresses [d’après V. I. Arnol’d]. In Séminaire Bourbaki,
24ème année (1971/1972), pp. Exp. No. 401, pp. 21–44, Lecture Notes in Math. 317,
Springer, Berlin, 1973 Zbl 0277.55003 MR 422674

[6] V. Dlab and C. M. Ringel, On algebras of finite representation type. J. Algebra 33 (1975),
306–394 Zbl 0332.16014 MR 357506

[7] B. Farb and D. Margalit, A primer on mapping class groups. Princeton Math. Ser. 49,
Princeton University Press, Princeton, NJ, 2012 Zbl 1245.57002 MR 2850125

[8] P. Gabriel, Indecomposable representations. II. In Symposia Mathematica, Vol. XI (Con-
vegno di Algebra Commutativa, INDAM, Rome, 1971 & Convegno di Geometria, INDAM,
Rome, 1972), pp. 81–104, Academic Press, London, 1973 Zbl 0276.16001 MR 340377

[9] A. Gadbled, A.-L. Thiel, and E. Wagner, Categorical action of the extended braid group
of affine type A. Commun. Contemp. Math. 19 (2017), no. 3, article no. 1650024, 39 pp.
Zbl 1423.20030 MR 3631925

[10] A. Hatcher, Algebraic topology. Cambridge University Press, Cambridge, 2002
Zbl 1044.55001 MR 1867354

[11] E. Heng, Categorification and dynamics in generalised braid groups. Ph.D. thesis, Aus-
tralian National University, 2022, http://hdl.handle.net/1885/258534, visited on 31 Octo-
ber 2023

[12] R. S. Huerfano and M. Khovanov, A category for the adjoint representation. J. Algebra
246 (2001), no. 2, 514–542 Zbl 1026.17015 MR 1872113

[13] C. Kassel and V. Turaev, Braid groups. With the graphical assistance of olivier dodane.
Grad. Texts in Math. 247, Springer, New York, 2008 Zbl 1208.20041 MR 2435235

[14] M. Khovanov, Categorifications from planar diagrammatics. Jpn. J. Math. 5 (2010), no. 2,
153–181 Zbl 1226.81094 MR 2747932

[15] M. Khovanov and P. Seidel, Quivers, Floer cohomology, and braid group actions. J. Amer.
Math. Soc. 15 (2002), no. 1, 203–271 Zbl 1035.53122 MR 1862802

[16] A. M. Licata and H. Queffelec, Braid groups of type ADE, Garside monoids, and the
categorified root lattice. Ann. Sci. Éc. Norm. Supér. (4) 54 (2021), no. 2, 503–548
Zbl 07360852 MR 4258168

[17] M. Mackaaij and D. Tubbenhauer, Two-color Soergel calculus and simple transitive 2-
representations. Canad. J. Math. 71 (2019), no. 6, 1523–1566 Zbl 1512.20016
MR 4028468

[18] A. Piekosz, Basic definitions and properties of topological branched coverings. Topol.
Methods Nonlinear Anal. 8 (1996), no. 2, 359–370 (1997) Zbl 0891.57004
MR 1483634

https://doi.org/10.1007/978-0-8176-8343-6
https://doi.org/10.1007/978-0-8176-8343-6
https://zbmath.org/?q=an:1297.32001
https://mathscinet.ams.org/mathscinet-getitem?mr=2919697
https://doi.org/10.2307/1970830
https://zbmath.org/?q=an:0237.57001
https://mathscinet.ams.org/mathscinet-getitem?mr=325959
https://zbmath.org/?q=an:1110.05001
https://mathscinet.ams.org/mathscinet-getitem?mr=2133266
https://doi.org/10.1007/BFb0069274
https://zbmath.org/?q=an:0277.55003
https://mathscinet.ams.org/mathscinet-getitem?mr=422674
https://doi.org/10.1016/0021-8693(75)90125-8
https://zbmath.org/?q=an:0332.16014
https://mathscinet.ams.org/mathscinet-getitem?mr=357506
https://zbmath.org/?q=an:1245.57002
https://mathscinet.ams.org/mathscinet-getitem?mr=2850125
https://zbmath.org/?q=an:0276.16001
https://mathscinet.ams.org/mathscinet-getitem?mr=340377
https://doi.org/10.1142/S0219199716500243
https://doi.org/10.1142/S0219199716500243
https://zbmath.org/?q=an:1423.20030
https://mathscinet.ams.org/mathscinet-getitem?mr=3631925
https://zbmath.org/?q=an:1044.55001
https://mathscinet.ams.org/mathscinet-getitem?mr=1867354
http://hdl.handle.net/1885/258534
https://doi.org/10.1006/jabr.2001.8962
https://zbmath.org/?q=an:1026.17015
https://mathscinet.ams.org/mathscinet-getitem?mr=1872113
https://doi.org/10.1007/978-0-387-68548-9
https://zbmath.org/?q=an:1208.20041
https://mathscinet.ams.org/mathscinet-getitem?mr=2435235
https://doi.org/10.1007/s11537-010-0925-x
https://zbmath.org/?q=an:1226.81094
https://mathscinet.ams.org/mathscinet-getitem?mr=2747932
https://doi.org/10.1090/S0894-0347-01-00374-5
https://zbmath.org/?q=an:1035.53122
https://mathscinet.ams.org/mathscinet-getitem?mr=1862802
https://doi.org/10.24033/asens.2464
https://doi.org/10.24033/asens.2464
https://zbmath.org/?q=an:07360852
https://mathscinet.ams.org/mathscinet-getitem?mr=4258168
https://doi.org/10.4153/cjm-2017-061-2
https://doi.org/10.4153/cjm-2017-061-2
https://zbmath.org/?q=an:1512.20016
https://mathscinet.ams.org/mathscinet-getitem?mr=4028468
https://doi.org/10.12775/TMNA.1996.039
https://zbmath.org/?q=an:0891.57004
https://mathscinet.ams.org/mathscinet-getitem?mr=1483634


Curves in the disc, the type B braid group, and a type B zigzag algebra 417

[19] D. E. V. Rose, A note on the Grothendieck group of an additive category. Vestn. Chelyab.
Gos. Univ. Mat. Mekh. Inform. (2015), no. 3(17), 135–139 MR 3586623

[20] P. Seidel, Fukaya categories and Picard–Lefschetz theory. Zur. Lect. Adv. Math., Euro-
pean Mathematical Society (EMS), Zürich, 2008 Zbl 1159.53001

[21] P. Seidel and R. Thomas, Braid group actions on derived categories of coherent sheaves.
Duke Math. J. 108 (2001), no. 1, 37–108 Zbl 1092.14025 MR 1831820
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