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Abstract. We prove a new convergence result for the slice spectral sequence, following work
by Levine and Voevodsky. This verifies a derived variant of Voevodsky’s conjecture on conver-
gence of the slice spectral sequence. This is, in turn, a necessary ingredient for our main theorem:
a Thomason-style étale descent result for the Bott-inverted motivic sphere spectrum, which general-
izes and extends previous étale descent results for special examples of motivic cohomology theories.
Combined with first author’s étale rigidity results, we obtain a complete structural description of the
étale motivic stable category.
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1. Introduction

The first goal of this paper is to push, as far as possible, the idea that inverting so-called
“Bott elements” on certain cohomology theories for schemes results in étale descent. The
cohomology theories that we are interested in are those which are representable in Morel–
Voevodsky’s stable motivic homotopy category, and thus a priori only satisfy Nisnevich
descent. Results of this form are extremely useful when one tries to approximate the val-
ues of these cohomology theories by studying their étale sheafifications which are usually
more tractable due to the presence of finer covers. For example, given appropriate finite-
ness hypotheses, there is a spectral sequence whose E2-page involves étale cohomology,
and converges to the étale sheafified version of these theories.

The story for these motivic cohomology theories parallels the one for algebraicK-the-
ory. Having proved the Nisnevich descent theorem for algebraic K-theory [69], Thoma-
son, in his ICM address [68], explained how this “(unleashed) a pack of new fundamental
results for K-theory”. One of them was the comparison result with étale K-theory [68,
§4], referring to his seminal paper [67]. More precisely, Thomason proved that Bott-
inverted algebraic K-theory satisfies étale (hyper)descent. Whence, combined with the
rigidity results of [27,64], there is a spectral sequence whose E2-terms are étale cohomo-
logy groups, abutting to Bott-inverted algebraicK-theory. A recent treatment of this result
using completely different methods was carried out in [18].

The second goal of this paper, and a necessary ingredient for the first, is to prove
a variant of an important conjecture within the subject of stable motivic homotopy theory.
In [70], Voevodsky listed a collection of open problems in the subject, many of which are
focused on understanding the slice filtration of a motivic spectrum.
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On the motivic spectrum representing algebraicK-theory, the slice filtration gives the
most definitive construction of the elusive motivic spectral sequence whose E2-page is
motivic cohomology and abutting to algebraicK-theory. Such a spectral sequence was the
subject of prior work of Bloch–Lichtenbaum, Levine and Friedlander–Suslin [13,26,34].
In contrast to previous constructions, this spectral sequence is constructed natively within
the framework of the motivic stable homotopy category, analogous to the topological the-
ory of Postnikov towers. It therefore extends to more general cohomology theories beyond
algebraicK-theory and does not a priori depend on difficult constructions involving mov-
ing algebraic cycles. We refer the reader to the survey article [37, Section 2] for an outline
of Voevodsky’s slice approach to the motivic spectral sequence.

As for any spectral sequence, an important issue is the problem of convergence.
Voevodsky stated, as Conjecture 13 in [70], that he expects convergence of his slice spec-
tral sequence on the sphere spectrum, over any perfect field. Moreover, he expects that
the slice spectral sequence induces a separated filtration on its homotopy sheaves; see
also [70, Conjecture 13]. This conjecture turns out to be false in general [36, p. 909,
Remarks] and has since been modified by Levine to cover only fields of finite virtual
cohomological dimension [36, Conjecture 5]. Roughly speaking, Levine conjectures that
for such a field k, it is the I.k/-completed slice tower which admits good convergence
properties. Here, I.k/ is the so-called fundamental ideal, defined to be the kernel of
the rank map of the Grothendieck–Witt group of symmetric bilinear forms over k. Its
action on any motivic spectrum is given by Morel’s fundamental identification of �0;0
of the motivic sphere spectrum with the Grothendieck–Witt group [47]. We will refer
to [36, Conjecture 5] as Levine–Voevodsky’s slice convergence conjecture.

1.1. Slice convergence

In this paper, we offer a resolution of a version of Levine–Voevodsky’s slice convergence
conjecture. To state our results, recall that we have a map in the stable motivic homotopy
category over a field k:

�W 1! Gm;

classifying the unit �1 2 k�.

Theorem 1.1 (Theorem 5.3). Let k be a field of exponential characteristic e and ` > 0
coprime to e such that vcd`.k/ <1. Suppose that E=` 2 �H .k/ is bounded below1 in
the homotopy t -structure, and suppose that there exists R� 0 for which

E
�R

��! E ^G^Rm

is zero; in other words, it has bounded �-torsion. Then, the filtration on �i;j .E/ induced
by Voevodsky’s slice tower f�E ! E is separated and exhaustive, i.e., the filtration is
convergent.

1Throughout this paper, we use homological notation for t -structures, as in [40, §1.2.1].
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We comment on how this is related to Levine–Voevodsky’s slice convergence conjec-
ture. There are two phenomena which led Levine to formulate [36, Conjecture 5] in place
of [70, Conjecture 13]:

(1) Levine showed in [35] that the induced filtration on the zero-th homotopy sheaf of the
sphere spectrum is the I -adic filtration. Therefore, there is no chance for the induced
filtration on homotopy sheaves to be separated if this is not the case for the I -adic
filtration.

(2) As observed by Kriz [36, Remark 1.1], this shows that Voevodsky’s original con-
jecture is false for the field R; the point here is that R has infinite cohomological
dimension at the prime 2 and thus is not I -adically complete.

Motivated by these two considerations, it is natural to consider the element � which inter-
polates between the layers of the I -adic filtration:

I 1.k/
�
�! I 2.k/

�
�! � � �

�
�! I j .k/

�
�! I jC1.k/

�
�! � � � ;

where we were led to guess that �-completion on the spectrum level is closely related to
I -adic completion on the homotopy sheaves level. As a “best hope” one could guess that
�-completion would lead to slice convergence. However, as already observed in [36], the
slice convergence property is not stable under various categorical operations. Therefore,
in place of a completed statement, we offer Theorem 1.1 where convergence does hold
if E is �-complete in a strong sense: that it has bounded �-torsion. We note that being
�-complete means that it is an inverse limit of �-torsion objects.

Theorem 5.3 turns out to be good enough for many applications in motivic homo-
topy theory, beyond this paper. Most notably, it renders the computations of [54] valid
without having to slice complete. It also gives a new, streamlined proof of Thomason’s
homotopy limit problem by the first author and Hopkins [8, Appendix A] based on the
slice spectral sequence. We may also view Theorem 1.1 as a derived version of Levine–
Voevodsky’s slice conjecture and we refer the interested reader to Remark 5.4 for more
details.

1.2. Étale descent

Back to the main subject of this paper, we now formulate our main étale descent results.
Any motivic spectrum E 2 �H .S/ comes equipped with a canonical map E ! LKetE,
the étale localization, witnessing LKetE as the initial motivic spectrum receiving a map
from E and satisfying étale hyperdescent; this map is just the unit map of the usual
adjunction between �H .S/ and its étale local version �HKet.S/. Based on a version of
the map � over S , we prove the following assertion.

Theorem 1.2 (see Theorem 7.4). Suppose S is a scheme locally of finite dimension, and
let 1 � m; n � 1. Assume the following conditions hold:

(1) 1=` 2 S .

(2) For every s 2 S , we have vcd`.s/ <1.
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(3) There exists a good � -self map (in the sense discussed in Section 3)

� W 1=.`n; �m/! 1=.`n; �m/.r/:

Then for every E 2 �H .S/^
`;�

, the map

E=.`n; �m/! E=.`n; �m/Œ� �1�^`;�

is an étale localization.

We note that ifm;n <1, then the .`; �/-completion is unnecessary; see Remark 3.2.
A summary of the good � -self maps that we managed to construct can be found in Sec-
tion 4.5, and we will discuss this point further below. We point out some specializations
of Theorem 1.2 at different primes powers.

(1) Suppose that ` is an odd prime. Then recall that (as discussed, e.g., in Section 2.1) for
any motivic spectrum E, we have a splitting

E=`n ' EC=`n _E�=`n:

In this situation, étale localization only involves the “C” part of E=`n, the map

EC=`n ! EC=`nŒ� �1�

is an étale localization.
(2) If ` D 2, then the situation is more complicated. In the presence of a square root

of �1 (e.g., over an algebraically closed field), �-completion is harmless, and we
get that

E=2n ! E=2nŒ� �1�

is an étale localization. Otherwise, we have to contend ourselves with �-completion.

Remark 1.3. Thomason’s theorem [67] in fact proves that Bott inverted algebraicK-the-
ory satisfies not only étale descent but also étale hyperdescent (this has been reproved
by [18]). In particular, there is no need to hypersheafify in order to obtain a condi-
tionally convergent spectral sequence abutting to étale sheafified K-theory from étale
cohomology. This is useful as étale sheafification is much less drastic process than hyper-
sheafification. Variations on this theme in motivic homotopy theory are being explored
in a forthcoming paper by Bachmann, Burklund and Xu, where it is proved that under
noetherian, finite-dimensional and finite virtual cohomological dimension assumptions
the 1-category obtained by formally imposing étale hyperdescent, �HKet.S/, coincides
with one obtained by formally imposing just étale descent. The input, just as in [18],
is a Quillen–Lichtenbaum style result for the motivic sphere spectrum, analogous to Rost–
Voevodsky’s results for K-theory.

Granting this result, the reader may feel free to interpret the “étale localization”
appearing in Theorem 1.2 as inverting all desuspensions of Čech nerves of étale covers
(as opposed to étale hypercovers).



T. Bachmann, E. Elmanto, P. A. Østvær 6

1.3. Strategy

Dealing with the prime 2 is one of the key technical challenges of this paper that we were
able to overcome in many cases. We will now explain this point and the overall strategy
of the proof of Theorem 1.2. We proceed by examining the slice spectral sequence for the
Bott inverted sphere spectrum over a field (Corollary 6.2), following the general strategy
in [25] for the case of algebraic cobordism. An examination of the form of the slices [60,
Theorem 2.16] reveals that they are just motivic cohomology and hence, modulo certain
cases which are dealt with using the Beilinson–Lichtenbaum conjectures, satisfy étale des-
cent after inverting these Bott elements due to Levine’s results [33]. However, as already
elaborated in [25, Section 4], examining the slice tower of the Bott inverted sphere spec-
trum requires a delicate analysis – the crux point is that the process of Bott inversion
is a colimit, while the slices (or, more accurately, the co-slices) try to approximate the
sphere spectrum as a limit. At the prime 2, and for fields with non-finite 2-cohomological
dimension (such as R), the situation is worse: even the slice filtration itself is not conver-
gent [36, p. 909, Remarks]. From this point of view, the situation seems hopeless.

On the other hand, previous attempts to cope with this infinitary phenomenon to
still obtain a Thomason-style descent theorem have found success under the assump-
tion of finite virtual cohomological dimension. To our knowledge, the first paper of this
sort was written by the third author in [55] and later generalized in joint work with
Rosenschon [61]. The case of hermitian K-theory was settled in [12].

It is at this spot that we employ a different analysis from [25], which also led to sub-
stantial improvements even for the case of algebraic cobordism, other oriented theories
and also recovers the descent results of the papers in the previous paragraph. In loc. cit.,
particularly in [25, Sections 4 and 6.5], the last two authors (with Levine and Spitzweck)
examined the resulting slice spectral sequences on Bott-inverted algebraic cobordism and
on étale algebraic cobordism. This relied on subtle convergence results on inverting ele-
ments in a spectral sequence and an analysis of the constituent spaces and bonding maps
of an étale-localized motivic spectrum in a range. In this paper, we work directly with the
slice filtration and prove a convergence result in the form of Lemma 6.1 which cleanly
isolates the role of the convergence of the slice filtration. At the prime 2 and with the
weaker assumption that the ambient field k has finite virtual cohomological dimension,
it turns out that convergence holds after completion with respect to the map

�W 1! Gm

induced by the unit �1 2 k�. This last statement heavily relies on our Theorem 1.1 on
slice convergence.

1.4. Bott elements and multiplicativity of the Moore spectrum

There are two further, related, issues which we address in the paper:

(1) construction of a suitable “spherical” Bott element;

(2) the lack of a multiplicative structure on the motivic Moore spectrum.
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What is at stake in point (1) is the fact that the sphere spectrum is not oriented. In previous
iterations of Thomason-style descent results like in [25, 32, 67], one produces Bott ele-
ments out of n-th roots of unity present in the ambient scheme/ring/field which is naturally
an n-torsion element in an appropriate group; see [25, Section 6.4] or [67, Appendix A].
For the sphere spectrum, due to the so-called “�-logarithmic relation” in Milnor–Witt
K-theory

Œab� D Œa�C Œb�C �Œa�Œb�;

a root of unity is n"-torsion (see Proposition 2.1), rather than n-torsion. At odd primes,
the right thing to do is to look at the part of the sphere spectrum where the Milnor–Witt
number n" D n, i.e., the so-called “C” part.

At the prime 2 the story gets more interesting, coupled with the usual complication
that the mod-2 Moore spectrum does not admit a multiplication. Producing a mod-2 Bott
element is the first time where �-completion enters the picture: see Section 4.4. To address
the multiplicativity issues around the mod-2 Moore spectra, various authors have con-
sidered Oka’s action of the mod-4 Moore spectrum on the mod-2 Moore spectrum. This
is actually insufficient for our reduction steps (see the argument in Theorem 7.4), primarily
because we do not know that this module structure satisfies the usual associativity axiom.
In the appendix, we use an idea originating in the work of Davis–Lawson and Hopkins,
that this action can be made asymptotically associative if we are willing to consider the
pro-system ¹1=2nº; see Appendix A.

In any case, Section 4.5 summarizes the Bott elements/self-maps that we were able
to construct in motivic homotopy theory. This adds to the ever-growing list of interesting
elements in stable motivic homotopy theory (such as � and �).

1.5. Some applications

We now summarize some applications of our main results. These results unveil certain
surprising properties of the1-category (rather, the premotivic functor) �HKet which were
not a priori visible without our main result.

Theorem 1.4. Assumptions as in Theorem 1.2, where m; n <1.

(1) If S is defined over a field containing a primitive `-th root of unity and satisfying
k�=` D ¹1º, then there exists a Bott element � in 1^

`
and

�HKet.S/
^
` ' �H .S/^` Œ�

�1�:

(2) In general, .`; �/-complete étale localization is equivalent to Bousfield localization
at the homology theory 1=.`n; �m/Œ� �1�.

(3) Étale localization is smashing on �H .S/^
`;�

.

(4) If f WT ! S is finite type, the base change functor f � on �H .S/^
`;�

preserves étale
local objects so that the étale local sphere (in the .�; `/-complete category) is stable
under base change.
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These corollaries are discussed right after Theorem 7.4. The first statement should be
considered the “model statement” – the limitation comes from the fact that the construc-
tion of higher Bott elements requires a more multiplicative structure on the �-complete
sphere than what we already know. In light of this, the second and third statements are
weaker but pleasant consequences of our results. In particular, they tell us that on the
.�; `/-complete categories the inclusion of étale-local objects preserves colimits. Lastly,
base change results in motivic homotopy theory are rewarding but often hard to come by –
our results prove this by way of knowing that the � -self maps are manifestly stable under
base change.

1.6. Overview of étale motivic cohomology theories

This paper completes, in many cases, our structural understanding of how étale motivic
theories behave; we now sketch this. Suppose that T is a premotivic functor in the sense
of [17] or a functor satisfying Ayoub’s axioms as in [2, Definition 1.4.1]. The most prom-
inent examples are T D �H ;DM2 or ModE , where E is a (highly structured) motivic
ring spectrum such as the algebraic cobordism spectrum MGL, which is defined over Z.
We can also consider the étale local version of T , which we denote by TKet and comes
equipped with a premotivic adjunction

LKetW T � TKet WiKet:

Consider the following categorified version of the arithmetic fracture square, which is
a cartesian square of stable1-categories defining the top left-hand corner:

T 0
Ket

Q
`.TKet/

^
`

TKet;Q .
Q
`.TKet/

^
`
/Q:

We have a natural induced functor TKet ! T 0
Ket which is fully faithful but not necessarily

essentially surjective. Nonetheless, this does mean that the values of invariants evaluated
on schemes can be computed in T 0

Ket, and thus an understanding of T 0
Ket gives us a lot of new

information on TKet as we now explain.
The rational part TKet;Q coincides with TQ in many cases. In fact, a result of Cisinski–

Déglise (summarized in, say, [25, Theorem 12.2]) furnishes equivalences

�HKet.S/Q ' �H .S/CQ ' DM.S/Q

for any noetherian, geometrically unibranch scheme S . Furthermore, as discussed in
Remark 7.5, the prime-at-` of TKet part is always zero. Hence, what remains are the `-
complete parts of TKet, where ` is coprime to the residual characteristics. In this situation,
we seek two types of theorems concerning the induced adjunction

LKetW T
^
` � .TKet/

^
` WiKet:

2For this section, we take this in the sense of [17, Chapter 11].
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� (Suslin-style rigidity) If ` is coprime to the residual characteristics, then .TKet/
^
`

is
described as a certain category of sheaves over the small étale site.

� (Thomason-style descent) If ` is coprime to the residual characteristics, then the endo-
functor iKetLKet is computed explicitly by an inversion of a “Bott-element” � .

In conjunction, these two results give us access to the values of the cohomology
theories represented in TKet. One way to make this concrete, at least in cases where we
have “Postnikov completeness” of the étale site of a scheme X (see [18, Section 2] for
a modern discussion when this happens), we obtain a conditionally convergent spectral
sequence:

H
p
et .X; �

Ket
q;w.E//) ŒX.w/Œq � p�; EŒ� �1�� D .EŒ� �1�/p�q;�w.X/:

The input of this spectral sequence is obtained as a consequence of Suslin-rigidity; we
note that it consists of usual étale cohomology groups with coefficients in a (torsion/`-
complete) sheaf of abelian groups on the small étale site of X . The target is obtained as
a consequence of Thomason-style descent. This philosophy was already known to Thoma-
son at the beginning in [67]. This should be contrasted with the slice spectral sequence,
available in the Nisnevich/Zariski setting, where the input consists of motivic cohomology
groups which are largely unknown.

We briefly recall Suslin-style rigidity. In [7,10], the first author has established (again,
in many cases) Suslin-style rigidity for T D �H . Earlier, analogous results were estab-
lished by Röndigs–Østvær [58] and for T DDM by Ayoub [3] and Cisinski–Déglise [16],
building on the case of fields where we have Suslin’s eponymous result (see [44, The-
orem 7.20] for an exposition).

In this light, what one needs to understand is the precise gap between T and TKet.
For T D �H (and up to certain �-completions), this is exactly the � -complete category,
which remains mysterious.

1.7. Terminology and notation

We freely use the language of1-categories, as set out in [39, 40].

1.7.1. Motivic homotopy theory.

� We denote by �HKet.S/ the localization of �H .S/ at the étale hypercovers and by
�H .SKet/ the stabilization of the small hypercomplete étale1-topos of S . We denote
by LKet the (various) étale hyperlocalization functors. We call a map E ! F an étale
localization if LKetE ' LKetF ' F .

� We denote byE^
`
D limnE=`

n (or sometimesE=`1) the `-completion of a spectrum
(see, e.g., [7, Example 2.3]); we write �H .S/^

`
for the category of `-complete motivic

spectra.

� We denote by �H .k/�0, �H .k/�0 the homotopy t -structure on �H .k/ defined in
[46, Section 5.2].
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� We put 1.1/ D GmŒ�1� and 1.n/ D 1.1/^n. For E 2 �H .S/, we put

E.n/ D E ^ 1.n/:

� As is standard, we write T D A1=A1 � 0 for the Tate object.

� We denote byHZ Spitzweck’s motivic cohomology spectrum [63] and write DM.S/

for the1-category of modules over HZ [57].

1.7.2. Field theory. We will adopt the following terminology concerning field theory.
Let k be a field, ksep a separable closure of k, and let

Gk WD Gal.ksep=k/

be the absolute Galois group. Moreover, we write

� cd`.k/ for the `-cohomological dimension of k in the sense of [62, Chapter II, §3.1].

� vcd2.k/ WD cd2.kŒ
p
�1�/ for the virtual 2-cohomological dimension.

� More generally, for an integer s we put

vcds.k/ WD max¹vcd`.k/ j `jsº; where vcd`.k/ WD cd`.k.
p
�1//:

Note that vcd`.k/ D cd`.k/ unless possibly if ` D 2 [62, Chapter II, §4, Proposi-
tion 100].

� The cohomological dimension cd.k/ of k is defined as cd.k/ D sup`¹cd`.k/º.

2. Preliminaries

2.1. Endomorphisms of the motivic sphere

We denote by
h�1iW 1! 1 2 �H .S/

the map corresponding to the switch map P1^P1! P1^P1. Clearly, we have h�1i2D1.
It follows that if E 2 �H .S/ is such that E

2
�! E is an equivalence, then there is a canon-

ical decomposition
E ' EC _E�

which is characterised by the fact that h�1i acts as the identity id on EC and as �id
on E� [17, §16.2.1]. We denote by

�H .S/Œ1=2�C; �H .S/Œ1=2�� � �H .S/Œ1=2�

the full subcategories of those objects with E ' E˙. For n 2 N, we define the n-th
Milnor–Witt number as

n" D

nX
iD1

h.�1/i�1i 2 Œ1;1��H.S/;

where h1i WD id. We will make use of the following result.
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Proposition 2.1. Suppose that S is a base scheme.

(1) If �1 is a square on S , then h�1i D 1.

(2) Denote by pnWGm ! Gm the map corresponding to x 7! xn (i.e., the n-th power
map), and by xpnW1! 1 the desuspended map. Then xpn D n".

Proof. (1) We claim the following more general statement: for a 2 O�.S/, denote by
haiW 1! 1 the endomorphism in �H .S/ induced by the endomorphism of S -schemes
P1 ! P1, Œx W y� 7! Œax W y�. Then we have

ha2i D 1:

To prove the claim, we first note that the map .x W y/ 7! .a2x W y/ is equal to .x W y/ 7!
.ax W a�1y/. We have a map GL2.S/ ! Map.P1; P1/. It is thus enough to connect
the matrix A D

�
a�1 0
0 a

�
to the identity matrix in GL2.S/ via A1-paths. By Whitehead’s

lemma, A is a product of elementary matrices,�
a�1 0

0 a

�
D

�
1 1=a

0 1

� �
1 0

1 � a 1

� �
1 �1

0 1

� �
1 0

1 � a�1 1

�
:

Since the space of elementary matrices is A1-path connected, the result follows.
(2) This is [21, Proposition 3.11].

Remark 2.2. Given u 2 O�.S/, we let Œu� denote the resulting map 1! Gm. One may
show that

h�1i D 1C �Œ�1�;

where �WGm ! 1 is the geometric Hopf map [46, §6.2].

2.2. �-completion

In this section, we discuss �-completed motivic spectra in view of certain convergence res-
ults that we will use later; we use [43, §2.2] as a reference for the formalism of complete
objects and completions; see also [58] for a previous reference in the motivic context.
We put

� WD Œ�1�W 1! Gm 2 �H .S/:

By abuse of notation, we also denote the map G^�1m ! 1 (obtained by smashing � with
idG^�1m

) by �. We write 1=� for the cofiber of �WG^�1m ! 1. Recall that a morphism
˛W E ! F 2 �H .S/ is a �-equivalence if ˛ ^ 1=�W E=� ! F=� is an equivalence.
We denote by

�H .S/^�

the localization of �H .S/ at the �-equivalences. Recall that E 2 �H .S/^� , i.e., it is
�-complete if and only if for all F such that F ˝ 1=� ' 0, the space Map.F; E/ is
contractible.
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From general principles, the localization �H .S/! �H .S/^� has a fully faithful right
adjoint, and the composite localization functor is given by [43, (2.22)]

E 7! E^� WD lim
n
E=�n:

Remark 2.3. Functors between premotivic categories that preserve cofibers and smash-
ing with Gm preserve �-equivalences. Since Gm is invertible, the latter condition is in
particular satisfied by symmetric monoidal functors and their adjoints. It follows that the
motivic base change functors f �, f#, and f� preserve �-equivalences.

Warning 2.4. On the other hand, the functors related to the slice filtration, like fn and sn,
do not interact well with �-equivalences. See, for example, Remark 5.14.

In order to streamline the exposition, in what follows we will extensively use the
category �H .S/^� . In many cases, however, this has very little effect.

Remark 2.5. (1) Suppose RS D ;,3 i.e., �1 is a sum of squares locally in OS [14, The-
orem 4.3.7]. Then � 2 �0.1/� is nilpotent, as follows, for example, from the main
result of [5]. It follows that

�H .S/^� D �H .S/:

(2) Similarly, over a general base, � is nilpotent on 1Œ1=2�C and a unit on 1Œ1=2��, see [5,
Lemma 39]. It follows that

�H .S/Œ1=2�^� D �H .S/Œ1=2�C:

Example 2.6. Let S be essentially smooth over a Dedekind domain. ThenHZ 2 �H .S/

is �-complete. Indeed, it suffices to show that for X 2 SmS , i; j 2 Z, we have

Œ†i;jXC;HZ ^G^�dm � D 0

for d sufficiently large. This follows from the vanishing of motivic cohomology in negat-
ive weights over such bases [63, Corollary 7.19].

2.3. Virtual étale cohomological dimension

We will need the following result about motivic cohomology in large degrees.

Lemma 2.7. For m > vcd`.k/ and a 2 Z, the map

Hm.k;Z=`.a//
Œ�1�
��! HmC1.k;Z=`.aC 1//

is an isomorphism.

3For a schemeX , we denote byRX the set of pairs .x;˛/with x 2X and ˛ an ordering of k.x/.
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Proof. If a < m, then both groups vanish by [65, Lemma 3.2 (2)], [44, Lemma 5.2], so
there is nothing to prove. Thus let a � m, so that

Hm.k;Z=`.a// ' Hm
Ket .k; �

˝a
`
/

by the Beilinson–Lichtenbaum conjecture [71, Theorem 6.17], [44, Theorem 10.2]. If ` is
odd, then cd`.k/ D vcd`.k/ and again both groups are zero. If ` D 2, then �˝a

`
D Z=2,

and the claim follows from the Gysin sequence (see, e.g., Lemma 7.2).

3. Bott-inverted spheres

3.1. � -self maps

Definition 3.1. Let ` be a prime with ` 2 O�.S/ and 1�m;n�1. Ifm;n <1, denote
by 1=.`n; �m/ the obvious cofiber; if nD1 andm<1, we set 1=.`1; �m/D .1=�m/^

`
,

and similarly if m D1. Suppose given a map

z� W 1=.`n; �m/! 1=.`n; �m/.r/:

(1) We write

1=.`n; �m/Œz� �1�D colim
�
1=.`n; �m/

z�
�! 1=.`n; �m/.r/

z�.r/
��! 1=.`n; �m/.2r/! � � �

�
:

More generally, for E 2 �H .S/ we set

E=.`n; �m/Œz� �1� D E ^ 1=.`n; �m/Œz� �1�:

(2) We call z� a � -self map if for every map x ! S , where x is the spectrum of a field,
the map

HZx=.`
n; �m/! HZx=.`

n; �m/Œz� �1�^`;� 2 �H .x/^`;�

is an étale localization.

(3) We call z� a good � -self map if it is a � -self map and, for every E;F 2 �H .S/, every
morphism ˛W E ! F=.`n; �m/Œz� �1�^

`;�
factors through E ! E=.`n

0

; �m
0

/Œz� 0�1�,
where z� 0 is another � -self map.

Remark 3.2. Unless m D1 or n D1, E=.`n; �m/Œz� �1� is already .�; `/-complete.

Lemma 3.3. Let � W 1=.`n; �m/! 1=.`n; �m/.r/ be a � -self map. Then LKet.�/
^
`;�

is an
equivalence.

Proof. Suppose n D1. The map LKet.�/
^
`;�

is an equivalence if and only if LKet.�=`/
^
`;�

is
(by `-completeness). Since �=` is also a � -self map, replacing � by �=` we may assume
that n <1. Similarly, we may assume that m <1.

By [10, Theorem 3.1], we have �HKet.S/
^
`
' �H .S^

Ket /
^
`

. This implies that pulling
back along maps of the form Spec.k/! S , where k is separably closed, is a conservat-
ive family for �HKet.S/

^
`

. We may thus replace S by the spectrum of a separably closed
field k.
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Since LKet1=.`
n; �m/ 2 �H��1, in order to show that LKet.�/

^
`;�

is an equivalence,
it suffices to show this in homology. In other words, we need to show that the map

HZ=.`n; �m/
�
�! HZ=.`n; �m/.r/

is an étale equivalence. This is true since by part (2) of Definition 3.1, we demand that
HZ=.`n; �m/! HZ=.`n; �m/Œ� �1�^

`;�
is an étale localization.

3.2. Cohomological Bott elements

We shall in the next subsection construct � -self maps as multiplication by suitable ele-
ments. In preparation, we study the analogous question for HZ.

Definition 3.4. Let S D Spec.k/, k a field. Let 1 � m; n � 1. By a cohomological
Bott element we mean an element � 2 �0;�rHZ=.`n; �m/ for some r > 0 such that for
every field l=k and every choice of multiplication on HZ=.`n; �m/ under the standard
multiplication on HZ^� =`

n (in the sense of Appendix A), the map

HZ=.`n; �m/jl ! HZ=.`n; �m/jl Œ�
�1�^`;�

is an étale localization.
Here, HZ=.`n; �m/Œ� �1� denotes the mapping telescope of the self map given by

multiplication by � .

Remark 3.5. In light of Example 2.6, HZ=`m is already �-complete, so we shall sup-
press the additional completion from now on.

Remark 3.6. If �1, �2 are cohomological Bott elements, then so is �1�2. Indeed, by cofi-
nality,EŒ.�1�2/�1� (whereE DHZ=.`n; �m/) can be computed as a colimit over N �N,
with horizontal maps given by multiplication by �1 and vertical maps by �2. Computing
the horizontal colimit first, it suffices to show that multiplication by �2 induces an equival-
ence on EŒ��11 �; this follows from the assumption that �1 and �2 are both cohomological
Bott elements.

Lemma 3.7. Let �1 2 �0;�rHZ=` and �2 2 �0;�r 0HZ=`n be elements such that �2
reduces to a power of �1 modulo ` (here n D1 is allowed).

(1) �1 is a cohomological Bott element if and only if �2 is a cohomological Bott element.

(2) If �2 is a cohomological Bott element, then its image �3 in �0;�r 0HZ=.`n; �m/ is
a cohomological Bott element.

Proof. (1) Suppose first that n <1. In D.Z=`n/, we have a cofiber sequence

Z=`n
`
�! Z=`n ! Z=`˚ Z=`n�1Œ1�I

hence in �H .k/, we have a cofiber sequenceHZ=`n
`
�!HZ=`n!HZ=`˚†HZ=`n�1

in �H .k/. Thus if HZ=`nŒ��12 � is étale local, then so is HZ=`Œ��12 � ' HZ=`Œ��11 �.
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Moreover, the converse holds if also HZ=`n�1Œ��12 � is étale local; this will hold by
induction on n. Finally, suppose n D 1. Then HZ=`Œ��11 � ' HZ^

`
Œ��12 �^

`
=`, so �1 is

a cohomological Bott element if �2 is. Conversely, if �1 is a cohomological Bott element,
then

HZ^` Œ�
�1
2 �^` ' lim

n
HZ^` Œ�

�1
2 �=`n ' lim

n
HZ=`nŒ��12 �

is a limit of étale local spectra, by what we already established, so it is étale local. In other
words, �2 is a cohomological Bott element.

(2) Write �3 for the image. Then for any choice of compatible multiplication, the map
HZ=.`n; �m/! HZ=.`n; �m/Œ��13 � is the cofiber of multiplication by �m on the map
HZ=`n ! HZ=`nŒ��12 �. The latter is an étale localization by (1), and hence so is the
former.

This concludes the proof.

Lemma 3.8. Let l=k be a finite separable extension of degree coprime to `, and let � 2
�0;�rHZ=`n. Then � is a cohomological Bott element if and only if � jl is a cohomological
Bott element.

Proof. It suffices to show thatHZ=`nŒ� �1� is a summand of .l=k/�HZ=`njl Œ� j
�1
l
�. This

is clear by the existence of transfers in DM.k/ (see, e.g., Corollary C.10).

Lemma 3.9. Let � 2 k be a primitive `n-th root of unity, and let � 2 �0;�1HZ=`n. Sup-
pose that ˇ.�/ D Œ��, where

ˇW H 0;1.k;Z=`n/! H 1;1.k;Z/

is the Bockstein integral and Œ�� 2 H 1;1.k;Z/ ' k� is the element corresponding to �.
Then � is a cohomological Bott element.

Proof. Under the equivalence Z.1/ ' Gm [65, Lemma 3.2 (1)] and [44, Theorem 4.1],
the Bockstein corresponds to the inclusion �0.Z=`

n.1// ' �`n ,! Gm. It follows that
LKet.Z=`

n.1// ' �`n and that � defines an equivalence Z=`n ' LKet.Z=`
n.1//; in partic-

ular, � is an étale local equivalence. It remains to show that for X 2 Smk the induced
map

H��.X;Z=`n/Œ� �1� D colim
r

H�;�Cr .X;Z=`n/! H��
Ket .X;Z=`

n/

is an isomorphism. This is immediate from the solution of the Beilinson–Lichtenbaum
conjecture [71, Theorem 6.17].

3.3. Spherical Bott elements

Definition 3.10. Let 1�m;n�1, S a scheme. By a spherical Bott element we mean an
element � 2 �0;�r .1=.`n; �m// such that for every map x ! S where x is the spectrum
of a field, the induced element HZ ^ � jx 2 �0;�r .HZx=.`n; �m// is a cohomological
Bott element (see Definition 3.4).
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Remark 3.11. Spherical Bott elements are stable under base change, essentially by defin-
ition.

Lemma 3.12. Choose a multiplication4 on 1=`n 2 �H and one on 1
^
`
=�m 2 �H .S/.

Let n0 � n and choose a 1=`n-module structure m on 1=`n
0

. Let � 2 �0;�r1=.`n; �m/ be
a spherical Bott element. Then the composite

z� W 1=.`n
0

; �m/
�^id
���! †0;r1=.`n; �m/ ^ 1=.`n

0

; �m/
m
�! †0;r1=.`n

0

; �m/

is a � -self map. If the multiplication is chosen to be homotopy commutative, and the
module structure homotopy associative, then the � -self map is good.

Proof. We need to check that forming the mapping telescope of z� ^ HZjk is an étale
localization, for every field k. This is true basically by definition, as soon as we know
that the multiplication onHZ=`n induced by the one on 1=`n is the standard one. This is
indeed the case by Corollary A.8.

The goodness of the � -self map follows from Corollary B.3.

4. Construction of spherical Bott elements

4.1. Construction via roots of unity

Lemma 4.1. Let `n ¤ 2 and suppose S contains a primitive `n-th root of unity �. Then
there exists a spherical Bott element mod.`n; �1/.

Proof. Note that either ` is odd or�1 is a square on S . In both cases, using the notation n"
from Section 2.1, we find that

`n" D `
n
W 1
^
� ! 1

^
� :

By construction, we have a cofibration sequence

1
^
� =`

n.1/
ˇ
�! Gm

^
�

`n

�! Gm
^
� ;

where ˇ is the Bockstein integral. Hence by Lemma 3.9 (and Example 2.6), a spherical
Bott element exists as soon as `nŒ��^� D 0. This is immediate from Proposition 2.1.

4.2. Lifting to higher `-powers

Given an object E in a triangulated symmetric monoidal category and a map mWE ˝
E ! E, by a derivation ıWE ! EŒ1� we mean a map such that ı ım D m ı .id˝ ı C
ı ˝ id/.

4The existence of this structure will be extensively discussed in Appendix A.2.
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Lemma 4.2. Let C be a symmetric monoidal triangulated category. Suppose E 2 C is
an algebra, not necessarily associated, commutative or unital, and let ıWE ! EŒ1� be
a derivation. Then for X 2 C and t WX ! E, we have

ı.tn/ D

nX
iD1

t : : : tı.t/t : : : t W X˝n ! EŒ1�:

Here the sum is over all possible ways of replacing one instance of t in the string tn

by ı.t/, and both sides are associated from the left (i.e., tn D t .t.: : : .t t/ : : : // and so on).

Proof. We write the map ı.tnC1/ as

X˝nC1 ' X ˝X˝n
t˝t˝n

����! E ˝E
id˝tn
���! E ˝E

m
�! E

ı
�! EŒ1�:

The definition of a derivation implies that this is the sum of the two maps tı.tn/ and ı.t/tn.
The result thus follows by induction, starting at n D 2 where we use the definition of
a derivation.

Recall the notion of a regular multiplication from Appendix A.1.

Proposition 4.3. Let q be a prime power. Fix a regular multiplication on 1=q 2 �H and
assume there exists a spherical Bott element mod.q; �1/. Then for every n � 1, there
exists a spherical Bott element mod.qn; �1/.

Proof. Throughout the proof, all spectra are implicitly .�; q/-completed.
As a first step, choose regular multiplications on 1=qn for all n � 1 such that the

sequence of reduction maps � � � ! 1=q3 ! 1=q2 ! 1=q consists of morphisms of ho-
motopy unital ring spectra. This is possible by [52, Lemma 5]. We shall proceed by
induction on n. Thus let � be a spherical Bott element modulo qn. We claim that �q

lifts to an element modulo qnC1; this will be a spherical Bott element by Lemma 3.7 (1).
To see this, we begin with the cofiber sequence in [58, (3.3)]

1=q ! 1=qnC1 ! 1=qn
xı
�! 1=qŒ1�:

We need to show that xı.�q/ D 0. Let r W1=qn ! 1=q be the reduction map; then xı D rı,
where ıW1=qn! 1=qnŒ1� is the coboundary. By our choice, r is multiplicative, and so by
Lemma 4.2, we have

xı.�q/ D rŒı.�/�q�1 C �ı.�/�q�2 C � � � C �q�1ı.�/�;

where the sum consists of q terms.
Note that q D 0 on 1=q since 1=q has a multiplication. Suppose first that the multi-

plication on 1=qn is associative and commutative. Then each of the q terms in our sum is
the same,5 so the sum is zero, and we are done.

5One might be concerned here about an absence of signs. We are given various maps 1^q !
1=qŒ1�, differing by permutations of the source only. But the switch map on 1 ^ 1 is the identity,
whence there are no signs.
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To finish the proof, we observe that we do not actually need the multiplication to be
homotopy associative or commutative. Since ıD u@ (where uW1! 1=qn is the unit map),
we get @ı D 0. This implies that any element commutes with ı.�/, and any two elements
associate with ı.�/ (see Appendix A.2). Thus

ı.�/�mC1
.1/
D ı.�/.��m/

.2/
D .ı.�/�/�m

.3/
D .�ı.�//�m

.2/
D �.ı.�/�m/;

where .1/ is by definition (everything being associated from the left), .2/ is because
everything associates with ı.�/, and .3/ is because everything commutes with ı.�/. This
implies by induction that ı.�/�m is independent of the order of multiplication for any m,
and so all the terms are the same, as before.

4.3. Construction by descent

Let f WS 0 ! S be a morphism of schemes and � WS 0 ! S 0 be an automorphism over S .
Then f� D f D f��1, and so ��f �

˛
' f �, f���1�

ˇ
' f�. This provides us with a se-

quence of equivalences

f�f
�
f�˛
' f��

�f � ' f��
�1
� f �

ˇf �

' f�f
�;

where we have used that an adjoint of an equivalence is canonically equivalent to the
inverse. Hence for every object E 2 �H .S/, we get an automorphism

�E W f�f
�E ! f�f

�E:

This construction is natural in E.
The following result is proved in Appendix C; see Corollary C.10 and the preceding

paragraphs.

Proposition 4.4. Let f WS 0 ! S be a finite Galois cover with group G.

(1) The above incoherent construction refines to a coherent action, i.e., a functor

BG ! �H .S/I � 7! f�f
�E:

(2) The unit of adjunction E ! f�f
�E refines to a G-equivariant map (for the trivial

action of G on E).

(3) Suppose that E 2 �H .S/Œ1=2; 1=jGj�C. Then E! f�f
�E exhibits E as the homo-

topy fixed points of the G-action on f�f �E, and this limit diagram is preserved by
any additive functor.

Remark 4.5. In the situation of Proposition 4.4 (3), the mapE! f�f
�E is a split injec-

tion, i.e., E is a summand of f�f �E. See Corollary C.6 for details.

Corollary 4.6. Let q D `n be an odd prime power, q ¤ 3. Assume 1=` 2 S , and let S 0 be
obtained from S by adjoining a primitive `-th root of unity. If S 0 affords a spherical Bott
element mod.q; �1/, then so does S .
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Proof. We again complete everything implicitly at .�; `/.
If S D S 0, then there is nothing to prove, so assume S 0 ¤ S . Thus f W S 0 ! S is

a Galois cover with Galois group G � Z=.` � 1/ [51, Corollary 10.4]. Consequently,

1=q 2 �H .S/Œ1=2; 1=jGj�C;

and so by Proposition 4.4, we get Œ1;1=q.m/�S D Œ1;1=q.m/�GS 0 . Let � 2 Œ1;1=q.m/�S 0
be a spherical Bott element and put

� 0 D
Y
g2G

.g�/ 2 Œ1;1=q.jGjm/�S 0 :

Then for h 2 G, we have

h� 0 D
Y
g

.hg�/ D � 0

since the multiplication in 1=q is commutative and associative (here we use that q ¤ 3).
In other words � 0 is fixed by G and so defines an element �S 2 Œ1;1=q.jGjm/�S . By con-
struction, f ��S D

Q
g.g
��/ is a product of spherical Bott elements and hence a spherical

Bott element (see Remark 3.6). By Lemma 3.8, it follows that �S is also a spherical Bott
element.

4.4. Construction over special fields

4.4.1. Quadratically closed fields.

Proposition 4.7. Let ` be a prime, S D Spec.k/. Assume that k affords a primitive `-th
root of unity, and k�=` ' ¹1º (i.e., every element of k admits an `-th root). Then there
exists a spherical Bott element

� 2 �0;�1.1
^
`;�/:

Proof. Lemma 4.1 and its proof show that there exists �1 2 �0;�1.1^� =q/, where q D 4 if
` D 2, and q D ` else. We shall show by induction that for each n:

there exists a lifting �nC1 2 �0;�1.1^� =q
nC1/ of �n: (�)

By the Milnor exact sequence [29, Chapter VI, Proposition 2.15], there is a surjection

�0;�1.1
^
`;�/! lim

n
�0;�1.1

^
� =q

n/I

hence there is a (non-canonical) lift � 2 �0;�1.1^`;�/. This will be a spherical Bott element
by Lemma 3.7 (1).

It hence remains to prove (�). The cofiber sequence

1.1/^� =q ! 1.1/^� =q
nC1
! 1.1/^� =q

n
! 1Œ1�.1/^� =q ' Gm

^
� =q

implies that it is enough to prove the vanishing �0.Gm
^
� =q/ D 0.
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Suppose first that ` D 2. Then � is nilpotent by Remark 2.5 (1), so Gm
^
� ' Gm and

�0.Gm
^
� =q/ ' KMW

1 .k/=4 [50, Corollary 6.43]. Recall that we have the fiber product
decomposition [28, Theorem 5.4], [48]

KMW
1 .k/ ' I.k/ �I.k/=I2.k/ K

M
1 .k/:

Since k is quadratically closed, I.k/ D 0 [22, Lemma 31.1] and hence KMW
1 .k/ '

KM1 .k/. Thus
KMW
1 .k/=4 ' KM1 .k/=4 ' k

�=4 ' ¹1º;

and we are done (here the last isomorphism again follows from the fact that k is quadrat-
ically closed).

Now suppose that ` is odd. Then Gm
^
� =q ' GmŒ1=2�

C=` (see Remark 2.5 (2)) and so

�0.Gm
^
� =q/ ' K

MW
1 .k/Œ1=2�C=` ' KM1 .k/=` ' k

�=` ' ¹1º:

Here we have used the fact that for any field k, the group I=I 2.k/Œ1=2� D 0 since it is
a module overW=I.k/' Z=2 and thus the fiber product decomposition forKMW

1 is just
a product. This concludes the proof.

4.4.2. The real numbers. If S D Spec.R/, then there exists �n 2 �0;�r .1^2 =�
n/ lifting

a power of � 2 �0;�1HZ=2 [11, Theorem 7.10 and its proof]. Moreover, 1^2 =�
n is an

E1-ring [11, Lemma 7.8]. Consequently, this defines a spherical Bott element modulo
.21; �n/ by Lemma 3.9 (2).

4.5. Summary of � -self maps

Using Lemma 3.12 and the multiplications and module structures on Moore spectra [52],
as reviewed (and slightly extended in Corollary A.5) in Appendix A, we find that there is
a good � -self map modulo .`n; �m/ as soon as there is a spherical Bott element modulo
.`n
0

; �m/ for some n0 � n. In particular, we have said elements in the following cases:

(1) m D1, ` odd, n <1 (use Corollary 4.6, Proposition 4.3, and Lemma 4.1).

(2) m D1, ` D 2, n <1,
p
�1 2 S (use the same results).

(3) m D1, n D1, ` arbitrary, S defined over a field k containing a primitive `-th root
of unity and satisfying k�=` ' ¹1º (use Proposition 4.7 and Remark 3.11).

(4) m <1, ` D 2, n � 1, S defined over R (use Section 4.4.2 and Remark 3.11).

5. Slice convergence

In this section, we provide an extension of Levine’s results on the convergence of the
slice spectral sequence [36] or, more precisely, convergence of the slice tower for motivic
spectra satisfying certain `-torsion and �-torsion hypotheses; see Theorem 5.3 for a pre-
cise statement. For this we use a very deep result: Voevodsky’s resolution of the Milnor
and Bloch–Kato conjectures [53, 71]. We first set out our conventions on towers.
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Definition 5.1. Let C be a category and let E 2 C .

(1) By a tower over E we mean an object E� 2 Fun.Zop; C=E /. We typically display
towers as

� � � ! E2 ! E1 ! E0 ! E�1 ! � � � ! E or E� ! E:

(2) Suppose C is an abelian 1-category. Given a tower E� ! E in C , we define the
descending filtration

FiE D im.Ei ! E/ � E:

We call the tower E� ! E separated if

0 D
\
i

FiE

and convergent if in addition it is exhaustive, i.e.,

E D
[
i

FiE:

Clearly, if F WC !D is any functor and E�! E is a tower in C , then FE�! FE is
a tower in D .

We shall utilize this definition of convergence to detect when maps are null.

Lemma 5.2. Let E�! E be a tower in the category �H of spectra. Denote by Ei=EiC1
the cofiber of the canonical morphism EiC1 ! Ei . Let k 2 Z, and assume that

(a) the tower �k.E� ! E/ is convergent,

(b) �k.Ei=EiC1/ D 0 for every i .

Then �k.E/ D 0.

Proof. It suffices to prove the result for k D 0. Let f W 1 ! E be any map. We need
to show that f D 0. We shall show that f 2 Fn�0E for all n; then we are done by
separateness. By definition of exhaustiveness, we have f 2 FN�0E for some N ; hence
it suffices to show that f 2 Fn�0E implies f 2 FnC1�0E. Hence suppose f 2 Fn�0E,
and pick fnW 1! En such that the composite 1! En ! E is homotopic to f ; this is
possible by definition of Fn�0E. Since �0.En=EnC1/D 0 by assumption, the composite
1! En ! En=EnC1 is homotopic to zero, and hence fn lifts to a map

fnC1W 1! EnC1:

It follows that f 2 FnC1�0E.

In order to apply this result, we need a good supply of convergent towers. We shall
produce them from Voevodsky’s slice tower, using a strengthening of Levine’s conver-
gence theorem for the slice filtration [36, Theorem 7.3] that we will establish next.

Recall that there is a functorial tower

�H .S/! �H .S/Z[¹1ºI E 7! .f�E ! E/
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called the slice tower [70]; see also [60, Section 3] for a more extensive discussion and
references therein. Recall the definition of virtual cohomological dimension from Sec-
tion 2.3. In order to state our result, we shall make use of the following assumptions on
E 2 �H .k/ and t 2 Z:

(a) E 2 �H .k/�c for some c 2 Z.

(b) For i; j 2 Z, any finitely generated, separable field extensionK=k, a 2 � i .E/j .K/,
we have t ra D 0 for r sufficiently large.

(c) There exists an integer R � 0 such that the endomorphism �RWE ! E ^ G^Rm is
homotopic to zero.

Theorem 5.3. Let k be a field6 of exponential characteristic e and t > 0 coprime to e
such that vcdt .k/ <1. Then there exists a function

Z6 ! N; .c; d; R; i; j;M/ 7! N.c; d;R; i; j;M/ (5.1)

such that for every x 2 X 2 Smk with dimX � d , .i; j; M/ 2 Z3 and E 2 �H .k/

satisfying (a) and (b), the following hold:

(1) For n > N.c; d;R; i; j; 0/, we have7

� i;j .fn.E/=�
R/x D 0:

In particular, the tower

� i;j .f�.E/=�
R/x ! � i;j .E=�

R/x (5.2)

is separated.

(2) In addition, if E also satisfies (c), then the morphism

� i;j .fMCN.c;d;R;i;j;M/E/x ! � i;j .fME/x

is zero. In particular, the tower

� i;j .f�E/x ! � i;j .E/x (5.3)

is separated.

A few remarks are in order.

Remark 5.4. This result is closely related to [36, Conjecture 5]. Indeed, the main idea in
our argument is that for fields with vcd2.k/ <1, � is the only obstruction to nilpotence
of the ideal I D I.k/ � GW.k/. In particular, under assumption (c), I acts nilpotently
on each � i;j .E/x , and therefore this module is I -adically complete. Levine’s conjecture
thus predicts our separatedness result.

6Not necessarily perfect, contrary to Levine’s assumption in [36].
7Here for a sheaf F on Smk , we denote by Fx its stalk at x 2 X .
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Conversely, over fields of finite vcd2, the I -adic and �-adic filtrations are commensur-
ate onKMW

� ; so it thus seems justified to think (over such fields) of derived �-completion
as a form of I -adic completion. We thus view our results as establishing a derived version
of Levine’s conjecture.

Remark 5.5. Function (5.1) indicates the dependence of the number N.c; d; R; i; j;M/

on the connectivity of E (given by c), the bidegrees we are interested in (given by .i; j /),
the effective cover of E we are taking (given by M ) and the dimension of the scheme
(or, rather, the point; this is given by d ). Note that this function does not depend on the
number r that appears in condition (b).

Remark 5.6. The slice tower is always exhaustive (see, for example, [59, Lemma 3.1]);
hence the theorem implies that towers (5.2), (5.3) are convergent.

Remark 5.7. If u 2 Z is coprime to t , then (b) implies multiplication by u is an iso-
morphism on � i;j .E/ for all i , j , and hence so is uWE ! E. In particular, under the
hypotheses of Theorem 5.3, we have that E 2 �H .k/Œ1=e�.

Remark 5.8. It follows from Remark 2.5 that condition (c) is vacuous if k is unorderable
(e.g., cd2.k/ <1), or if t is odd and E 2 �H .k/Œ1=2�C. In these cases, the statement of
Theorem 5.3 is not quite optimal; in fact, the proof shows that

� i;j .fME/x D 0

for M � 0 (depending on i , j , c, d ).

Remark 5.9. If a 2 �p;q1 and F 2 �H .k/, then standard arguments show that a2W
F=a! †2p;2qF=a is the zero map (see, e.g., [56, Lemma 5.2]). It follows that for E 2
�H .k/�c , Theorem 5.3 applies to E=.�a; tb/ (and also E=tb or .E=tb/C if Remark 5.8
applies).

Our result implies convergence of the slice spectral sequence in novel cases. We record
the following, even though we do not use it in the rest of the article.

Corollary 5.10. Let k be a field of exponential characteristic e and t > 0 coprime to e
such that vcdt .k/ <1. Suppose E 2 �H .k/�c for some c 2 Z.

(1) The map E^t;�
sc
�! sc.E/^t;� induces an isomorphism on ���; here sc denotes the slice

completion functor [60, §3].

(2) There is a conditionally convergent spectral sequence

�p;n.sq.E/
^
t;�/) �p;n.E

^
t;�/;

using the indexing conventions of [60].

Proof. (1) It is enough to show thatE=.�n; tm/! sc.E/=.�n; tm/ is a ���-isomorphism.
Since the slice filtration is exhaustive (Remark 5.6), for this it suffices to prove that

��� lim
j
fj .E=t

m/=�n D 0:
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This is immediate from Theorem 5.3 (1) (and Remark 5.9, which tells us that Theorem 5.3
applies).

(2) We consider the completed slice tower

� � � ! fn.E/
^
t;� ! fn�1.E/

^
t;� ! � � � ! E^t;�:

The cones of the maps in this tower are given by the .t; �/-completed slices sn.E/^t;�.
To prove conditional convergence for the corresponding spectral sequence displayedin (2),
we need to show that

���.lim
n
.fn.E/

^
t;�// ' 0 and ���.colim

n
.fn.E/

^
t;�// ' ���.E

^
t;�/:

Since limits commute, we have the fiber sequence

lim
n
.fn.E/

^
t;�/ ' .limn fn.E//

^
t;� ! E^t;�

sc
�! sc.E/^t;�:

Hence the claim about limits reduces to (1). For the claim about colimits, observe that for
X 2 Smk and n < w we have

map.X.w/; fn.E/^t;�/

' map.X.w/; lim
m
fn.E/=.t

m; �m//

' lim
m

cof.map.X.w/;†�m;�mfn.E/=tm/
�m

��! map.X.w/; fn.E/=tm//

' lim
m

cof.map.†m;mX.w/; fn.E=tm//
�m

��! map.X.w/; fn.E=tm///

' lim
m

cof.map.†m;mX.w/;E=tm/
�m

��! map.X.w/;E=tm//

' map.X.w/;E^t;�/;

where X.w/ WD †0;w†1CX . Since the X.w/ are compact generators of �H .k/, we de-
duce that in fact

colim
n
.fn.E/

^
t;�/ ' E

^
t;�:

Remark 5.11. Under the assumptions of the corollary, it is in fact the case that E^t;� !
sc.E/^t;� is an equivalence. This requires a slightly more elaborate argument and will be
treated elsewhere.

In the rest of this section, we prove Theorem 5.3, adapting the argument of Levine [36,
Theorem 7.3]. Without loss of generality, we make the following standing assumptions:

(1) c D 0,

(2) k is perfect (using [24, Corollary 2.1.7] and Remark 5.7),

(3) k is infinite (using standard transfer arguments; see [36, Appendix A] for details),

(4) x is a generic point, so Xx is the spectrum of a field of transcendence degree � d
over k (using unramifiedness of homotopy sheaves [49, Lemma 6.4.4]).
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With these assumptions at play, we quickly review Levine’s approach to studying the
slice filtration via the simplicial filtration as in [36, Section 4]. For E 2 �H .k/ and for
any M � 0, X 2 Smk , consider the mapping spectrum

fME.X/ D map.†1XC; fME/ 2 �H I

the functor X 7! fME.X/ is an A1-invariant Nisnevich sheaf of spectra. As elaborated
in [36, Section 3], we have an augmented simplicial spectrum of the form

E.M/.X; �/! fME.X/;

which is a colimit diagram. Under the Dold–Kan correspondence [40, Theorem 1.2.4.1],
we get the associated filtered spectrum

sk0E.M/.X; �/! sk1E.M/.X; �/! � � � ! skgE.M/.X; �/! � � � ! fME.X/:

Noting that
� i .E/�j .K/ D Œ†

iG^jm ^KC; E�

(where K=k is a field extension), we obtain for j � 0 a spectral sequence of the form

E1p;q.K;E;M; j /) �pCq.fME/�j .K/: (5.4)

As usual, defining

F simp
g � i .fME/�j .K/ WD im.�i skg.E.M/.G^jm ^KC; �//! � i .fME/�j .K//;

we have the exhaustive increasing filtration

F
simp
0 � i .fME/�j .K/! � � � ! F simp

g � i .fME/�j .K/

! F
simp
kC1

� i .fME/�j .K/! � � � ! � i .fME/�j .K/; (5.5)

and the associated graded identifies with the E1-page [36, sentence before Lemma 4.4]:

grsimp
p � i .fME/�j .K/ Š E

1
p;i�p.K;E;M; j /:

The next lemma concerns the spectral sequence (5.4) and the corresponding filtration
on sections of homotopy sheaves. To state the result, we need some notation. Suppose
that F , G, H are strictly A1-invariant sheaves on Smk , H has transfers in the sense
of [50, Chapter 4], and there is a pairing F ˝ G ! H . Then for a finitely generated
separable extension K 0 of k, recall that we have the subgroup

ŒFG�tr.K/ WD htrK0=KF.K 0/G.K 0/iK0=K finite � H.K/:

We refer to [6, Section 4] or [35, Section 7] for details on this construction. The case that
we are interested in will be

F D KMW
n Š �0.1/n

acting on G D � i .E/j .
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Lemma 5.12 (Levine). Suppose that E 2 �H .k/�0, i.e., (a) holds. Then for all M � 0,
j � 0 and all i 2 Z,

(1) The spectral sequence (5.4) is convergent.

(2) There is an inclusion of abelian groups

E1p;q.K;E;M; j / �
M

w2.�
p
K
;@�

p
K
/.M/

�qCM .E/.K.w//�M�j :

(3) We have

F
simp
� � i .fME/�j .K/ D 0 if � < M;

F
simp
� � i .fME/�j .K/ D � i .fME/�j .K/ if � > M C i:

(4) Under the canonical map � i .fME/�j ! � i .E/�j , Im.F simp
M � i .fME/�j .K// in

� i .E/�j .K/ is the subgroup

ŒKMW
M � i .E/�M�j �

tr.K/:

Proof. The first two points are covered in [36, Lemma 4.4], the third is immediate
from (2) (see also [36, Lemma 5.1]) and the last point is [36, Theorem 5.3].

Lemma 5.13. Let E 2 �H .k/ and M 2 Z. In the notation of Theorem 5.3,

(a) If E satisfies (a), then so does fME.

(b) If E satisfies (b), then so does fME.

Proof. (a) We may assume (replacing E by E ^G^�Mm ) that M D 0. The claim is then
immediate from [4, Proposition 4 (3)].

(b) We may assume (replacing E by E ^†�iG^jm ) that i D j D 0. IfM < 0, there is
nothing to prove, since �0.fME/0'�0.E/0. Thus we may assume thatM � 0. Consider
filtration (5.5) of �0.fME/0.K/. Since this filtration is finite and exhaustive, it suffices
to prove the claim on the level of associated graded groups, which are the E1-terms of
the spectral sequence (5.4). The claim follows since the E1-terms are subquotients of
the E1-terms, which by Lemma 5.12 are in turn subgroups of sums of groups of the form
�a.E/.K.w//b , which satisfy (b) by assumption.

Remark 5.14. It is not clear that if E satisfies condition (c), then so does fME. Instead,
the composite

fME
�R

��! fM .E/ ^G^Rm ! fM�R.E/ ^G^Rm

is zero. We are not going to use this observation (explicitly).

Lemma 5.15. LetE satisfy conditions (b) and (c) of Theorem 5.3. There exists a function
M0.d;R/ (independent ofE) such that for n�M0.d;R/, trdeg.K=k/� d , and i; j 2Z,
we have ŒKMW

n � i .E/j �
tr.K/ D 0. (In fact, M0.d;R/ WD vcdt .k/C d CRC 1 works.)
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Proof. LetK=k be of transcendence degree� d andK 0=K finite. Assumption (b) implies
that every element of � i .E/j .K

0/ is a sum of elements which are `m-torsion for vari-
ous `jt and m � 0. Put F� D KMW

� .K 0/=.�R; `m/. Together with assumption (c), the
above observation implies that it suffices to establish the vanishing FM0 D 0.

If ` is odd, then F� is a quotient of KMW
� .K 0/Œ1=2� and so splits into C and � parts;

moreover, � is an isomorphism on the � part (see Remark 2.5 (2)) and thus F �� is zero.
Hence, it is enough to show that KMM0.K

0/=`m D 0. This is true by choice of M0, the fact
that cd`.K 0/ � d C cd`.k/ D d C vcd`.k/ [66, Tag 0F0T], and the comparison between
Milnor K-theory and étale cohomology [71].

Now let ` D 2. Note that if M is an A-module and a 2 A satisfies aNM D 0 for
some N , then M D 0 if and only if M=a D 0. Hence we may assume that m D 1. Note
that h is nilpotent on F�:

0 D .��/R D .h�1i � 1/R D .h � 2/R D hR:

It thus suffices to show that .FM0/=h D 0. But KMW
� =h D I � [48, Théoréme 2.4.], so it

is enough to show the equality

�RI.K 0/vcd2.K0/ D I.K 0/vcd2.K0/CR:

Under the isomorphism of loc. cit., the element � is sent to the element 2 2 I.k/ �W.k/.
Hence we need to check that I.K 0/vcd2.K0/CR D 2RI.K 0/vcd2.K0/. For a proof, see [23,
p. 619].

The following result is the key step in the proof of Theorem 5.3. It establishes a van-
ishing region in the homotopy sheaves of sufficiently effective (and connective) spectra.

Lemma 5.16. There exists a function M.d;R; r; s/ such that for

E 2 �H .k/eff.M.d;R; r; s//

satisfying (a),8 (b) and (c) of Theorem 5.3, and i � r , 0 � j � s, we have

� i .E/�j .K/ D 0;

whenever trdeg.K=k/ � d .

Proof. We shall define M.d;R; r; s/ by induction on r . If i < 0, then � i .E/�j .K/ D 0
for any j , K by assumption, and hence M.d;R; r; s/ D 0 works for all r < 0, s 2 Z.

Now suppose that M.d; R; r 0; s/ has been defined for all r 0 < r . We first want to
define M.d; R; r; 0/; so we need to investigate �r .E/0.K/. Consider filtration (5.5)
on �r .fnE/0.K/ with associated graded grsimp

p �r .fnE/0.K/. From Lemma 5.12 (2),
it follows that these groups vanish when

(1) p < n by codimension reasons, or
(2) p > nC r by connectivity of E.

8Recall our standing convention that c D 0, so this means E 2 �H .k/�0.
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Conversely, whenever there is a non-zero contribution, we must have (�) n � p � nC r ,
and the contribution comes from some �r 0.E/�n.K.w// (using the notation of Lem-
ma 5.12), where

trdeg.K.w/=K/ D p � n � r and r 0 D nC r � p � r:

Here the last two inequalities just come from (�).
We define

M.d;R; r; 0/ D max¹M.d C r; R; r � 1;M0.d;R//;M0.d;R/º;

whereM0.d;R/ is the function from Lemma 5.15. Set nDM0.d;R/. By assumption, E
is at least n-effective, so fnE ' E and the map

˛nW �r .fnE/0.K/! �r .E/0.K/

is an isomorphism. We claim that for p > n, we have grsimp
p �r .fnE/0.X/ D 0. Indeed,

by the above discussion, any contribution to this group arises from �r 0.E/�n.L/, where
r 0 < r and trdeg.L=k/ � d C r . This vanishes by induction and the construction of M .
Now, part (3) of Lemma 5.12 implies that the image of ˛n is given by F simp

n � i .fnE/0.K/,
which is identified in part (4) as the group

ŒKMW
n �r .E/�n�

tr.K/;

which vanishes by Lemma 5.15. Hence our definition of M.d; R; r; 0/ has the desired
property.

Finally, since � i .E/�j D � i .E ^G^�jm /0, we can define

M.d;R; r; s/ DM.d;R; r; 0/C s:

This concludes the construction of the desired function.

Proof of Theorem 5.3. Let us call a tower of sheaves F � locally null if there exists a func-
tion N.d/ such that for trdeg.K=k/ � d and i � N.d/, we have F i .K/ D 0.

(1) Under our standing assumptions (in particular, (4)), the claim is equivalent to
showing that � i ..f�E/=�

R/j is locally null (with N independent of E). Replacing E by
E ^G^jm (which still satisfies (a), (b)) replaces � i .fM .E/=�

R/0 by � i .fM�j .E/=�
R/j .

It thus suffices to treat the case j D 0. Note that fM .E/=�R is .M � R/-effective, sat-
isfies conditions (a) and (b) by Lemma 5.13, and satisfies condition (c) by Remark 5.9
(with 2R in place of R). Lemma 5.16 thus shows that � i .fM .E/=�

R/0.K/ D 0 as soon
as M �M.d; 2R; i; 0/CR. The claim follows.

(2) Consider the following commutative diagram:

fM .E/ �����! fM .E/=�
R a
�����! fM�R.E/??y ??y ??y

E �����! E=�R
b

�����! E:
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Here the vertical maps are the canonical ones, and the horizontal maps in the left-hand
square are the projections. The map b is a splittingE=�R'E _†E ^G^�Rm !E (using
condition (c)), and the map a is the unique one making the right-hand square commute
(using that fM .E/=�R is .M � R/-effective). The bottom horizontal composite is idE
by construction, and hence the top horizontal composite is the canonical map fM .E/!
fM�R.E/. Since � i .f�.E/=�

R/j is locally null by (1), we deduce that forM sufficiently
large depending only on i , j , d , the map

� i .fMCRE/j .K/! � i .fME/j .K/

factors through
� i .fMCR.E/=�

R/j .K/ D 0:

This implies the claim.
Separateness of both towers follows immediately. This concludes the proof.

6. Spheres over fields

In this section, we treat a special case of our main result to which we will reduce the
general case. Throughout S D Spec.k/, where k is a field of exponential characteristic e,
` ¤ e is a prime and

� W 1=.`� ; ��/! 1=.`� ; ��/.r/

is a � -self map (see Definition 3.1). Here 0 � �; � � 1.
The following is the key technical result.

Lemma 6.1. Suppose that vcd`.k/ <1. Then

lim
n
Œfn.1/=.`

� ; ��/Œ� �1�=.`; �/� D 0:

Proof. Write L D limn Ln for the limit in question. For X 2 Smk , w 2 Z, spectra of
the form X.w/ WD †0;w†1XC generate �H .k/ (see, for example, [20, Theorem 9.2]
or [31, Proposition 6.4] when G is the trivial group), and hence it suffices to show that

ŒX.w/Œi �; L� D 0

for all w, i . By the Milnor exact sequence [29, Chapter VI, Proposition 2.15]

0! lim1
nŒX.w/Œi C 1�; Ln�! ŒX.w/Œi �; L�! limnŒX.w/Œi �; Ln�! 0;

it is enough to show that for .i; w/ fixed and n sufficiently large, we have

ŒX.w/Œi �; Ln� D 0:

Consider the descent spectral sequence

H
p
Nis.X; �q;w.Ln//) ŒX.w/Œq � p�; Ln�;
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which is strongly convergent due to the finite cohomological dimension of the Nisnevich
site (see, e.g., the proof of [25, Proposition 4.3]). This implies that it suffices to prove the
following claim:

� For any N 2 Z and n sufficiently large (depending on N ), all w 2 Z and k � N ,
we have �k;w.Ln/jXNis D 0.

By unramifiedness of homotopy sheaves [49, Lemma 6.4.4], it is enough to show that
�k;w.Ln/� D 0 for generic points � of étale extensions of X . Since homotopy sheaves
commute with filtered colimits, and w 2 Z is arbitrary, for this it suffices to show that

�k;w.fn.1/=.`
� ; ��; `; �//� D 0:

Note that if � D1, then
E=.`� ; `/ D E^` =` ' E=`;

whereas if � <1, then

E=.`� ; `/ ' cof.E=`
`�

�! E=`/:

In either case, to establish some vanishing for E=.`� ; `/, it suffices to establish (perhaps
slightly different) vanishing for E=`. Similar remarks apply to E=.��; �/. Up to increas-
ing N , it is thus enough to show the vanishing

�k;w.fn.1/=.`; �//� D 0:

Using Theorem 5.3 (1) (see also Remark 5.9), we find that the tower of abelian groups

�k;w.f�.1/=.`; �//� ! �k;w.fn.1/=.`; �//�

is convergent (here � � n, and the tower is trivially exhaustive). Hence by Lemma 5.2,
it suffices to prove the following claim:

� For any N 2 Z, there exists n (depending on N and trdeg.�=k/) such that for all
m � n, k � N and w 2 Z, we have

�k;w.sm.1/=.`; �//� D 0:

By [60, Theorem 2.12], each slice sm.1/Œ1=e� is a finite sum of suspensions of motivic
cohomology spectra

†mCs;mHZ=l

for certain s � 0, l � 0.
As before, up to possibly adding a constant to n, it is thus enough to show that

�k;w.†
mCs;mHZ=.`; �//� D 0

for m sufficiently large. Now

�k;w.†
mCs;mHZ=`/� D H

mCs�k.�;Z=`.m � w//;
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and so we need to show that multiplication by � induces an isomorphism on these groups,
for m sufficiently large (depending on N and trdeg.�=k/), all w 2 Z and all k � N ,
s � 0. In particular, s � k ��N . Note also that we have vcd`.�/� vcd`.k/C trdeg.�=k/
by [66, Tag 0F0T]. The required vanishing thus follows from Lemma 2.7: we may put
m � n WD vcd`.k/C trdeg.�=k/CN C 1. This concludes the proof.

Corollary 6.2. If vcd`.k/ <1, then 1=.`� ; ��/Œ� �1�=.`; �/ is étale local.

Proof. We have a cofiber sequence of towers

� � � �����! f2.1/ �����! f1.1/ �����! f0.1/ D 1??y ??y ??y
� � � �����! 1

id
�����! 1

id
�����! 1??y ??y ??y

� � � �����! f 2.1/ �����! f 1.1/ �����! f 0.1/;

where f i D id=fi . Smashing with 1=.`� ;��/Œ� �1�=.`;�/ and applying the (exact) inverse
limit functor, we obtain a cofiber sequence

lim
n
Œfn.1/=.`

� ; ��/Œ� �1�=.`; �/�! 1=.`� ; ��/Œ� �1�=.`; �/

˛
�! lim

n
Œf n.1/=.`� ; ��/Œ� �1�=.`; �/�:

By Lemma 6.1, the map ˛ is an equivalence. Since étale local spectra are closed under
limits and extensions, and each f n.1/ is a finite extension of the slices sm.1/ (recall
that 1 is effective), it suffices to show that si .1/=.`� ; ��/Œ� �1�=.`; �/ is étale local for
every i . By the form of the slices of 1 recalled in the proof of Lemma 6.1, it suffices to
show that

HZ=.`� ; ��/Œ� �1�=.`; �/

is étale local. This holds by the definition of a � -self map.

7. Main result

In this section, we establish our main étale localization results. Before doing so, we need
some preliminaries.

Proposition 7.1. Let 1=` 2 k, vcd`.k/ < 1, and let S be a finite type k-scheme. If
X 2 SmS is quasi-separated and w 2 Z, then†1CX=.`; �/^G^wm 2 �HKet.S/

^
`;�

is com-
pact.

Proof. Since the pullback �HKet.S/
^
`;�
! �HKet.X/

^
`;�

preserves colimits, we may assume
that S D X .
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First suppose that cd`.k/ < 1 (e.g., ` odd). It is enough to show that †1C S=` is
compact in �HKet.S/

^
`

. This is proved in [7, Corollary 5.7 and Example 5.9].
Now let `D 2. Write �H .SKet/ for the category of hypersheaves of spectra on the small

étale site of S (see, e.g., [7, §2.2] for definitions). We have the functors

E 7! ��nE; ��nE;�n.E/W �H .SKet/! �H .SKet/

coming from the standard t -structure; they all preserve filtered colimits (for ��n, this
follows from [42, Proposition 1.3.2.7 (2)], and the other cases follow from this). We thus
have restricted functors

E 7! ��n.E=`/; ��n.E=`/; �n.E=`/W �H .SKet/
^
` ! �H .SKet/

^
`

with the same property. Moreover, E=` ' limn ��n.E=`/ [7, Lemma 2.16]. Via [7, The-
orem 6.6], we transplant these functors to �HKet.k/

^
`

. In order to prove that S=.`; �/ is
compact, it is enough to show that the functorE 7! ŒS=�;E=`� preserves filtered colimits.
Using the Postnikov completeness result just recalled, there is a conditionally convergent
spectral sequence

ŒS=�; �i .E=`/Œj ��) ŒS=�;E=`Œi C j ��:

By standard arguments, it is enough to show that the spectral sequence converges strongly
for every E, and that ŒS=�; �i .E=`/Œj �� is compatible with filtered colimits in E. Con-
sider F D �0.E=`/ 2 �H .SKet/

~. This is a sheaf of Z=`2-modules on the small étale site
of S . There is a canonical filtration 0! K ! F ! F=`! 0 with K, F=` sheaves of
Z=`-modules and an associated long exact sequence

� � � ! ŒS=�;K�! ŒS=�; F �! ŒS=�; F=`�! � � � :

It will thus be enough to show that the functor

F 7! ŒS=�; F Œi ��

is compatible with filtered colimits of sheaves of Z=`-vector spaces on the small étale site
of S and vanishes for i < 0 or i > cd2.SŒ

p
�1�/ (here we note that cd2.SŒ

p
�1�/ <1,

e.g., by [7, Example 5.9]).
We claim that there is a long exact sequence

� � � ! H i .S; F /
.�1/
���! H iC1.S; F /! ŒS=�; F Œi ��! H iC1.S; F /! � � � :

Since étale cohomology commutes with filtered colimits (see, for example, [42, Corol-
lary A.2.3.2 (1)]), the result will follow from Lemma 7.2 below. To prove the claim,
consider the sequence of functors and adjoints

�H .SKet/
^
` � �HKet.S/

^
` � DMKet.S;Z=`/:

There is an object F 2DMKet.S;Z=`/ with image F in �H .SKet/
^
`

; we are thus reduced to
proving the analogous result in DMKet.S;Z=`/. To conclude, we note that �WG^�1m ! 1

induces multiplication by .�1/ in DMKet.k;Z=2/ ' D.kKet;Z=2/.
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Our next result follows from [22, Theorem 99.13] in the case of fields.

Lemma 7.2. Let X be a scheme with 1=2 2 X , and set X 0 D XŒ
p
�1�. Suppose F is an

étale sheaf of Z=2-vector spaces on X . Then for i > cd2.X 0/, the map

.�1/W H i
Ket.X; F /! H iC1

Ket .X; F /

is an isomorphism.

Proof. If X D X 0 or cd2.X 0/ D 1, there is nothing to prove. We may thus assume that
Aut.X 0=X/ is the group C2 of order 2, and that cd2.X 0/ < 1. Consider the strongly
convergent Hochschild–Serre spectral sequence [45, Chapter III, Theorem 2.20]

Hp.C2;H
q.X 0; F //) HpCq.X; F /:

It is a module over the same spectral sequence with the functor F D Z=2. The class
.�1/ 2 H 1.X;Z=2/ is detected by a class ˛ 2 H 1.C2; H

0.X;Z=2// coming from the
isomorphism

H�.C2;Z=2/ ' H
�.RP1;Z=2/ ' Z=2Œ˛�:

The class ˛ has the property that ifG is any Z=2ŒC2�-module and i > 0, the multiplication
map ˛WH i .C2; G/! H iC1.C2; G/ is an isomorphism.9 We deduce that ˛ induces an
isomorphism on all columns of the spectral sequence, except possibly the one containing
H 0.C2;H

�.X 0; F //. The result follows.

We deduce a weak form of Theorem 1.4 (3) from the introduction, which we will use
in the proof of our main result. (The strong form will be deduced later.)

Corollary 7.3. Let k be a field of exponential characteristic e ¤ `, and let vcd`.k/ <1.
Then LKetW �H .k/^

`;�
! �H .k/^

`;�
is a smashing localization, or in other words, for E 2

�H .k/^
`;�

we have LKet.E/ ' E ^ LKet.1/.

Proof. The functor LKetW�H .k/^
`;�
! �HKet.k/

^
`;�

will identify the target as (highly struc-
tured) modules over the étale-local sphere if we can show that both the source and target
are compact-rigidly generated, see, e.g., [6, Lemma 22]. This is indeed the case; see [7,
Example 2.3] (to obtain a family of generators), [38, Corollary B.2] (to see that the gen-
erators are rigid) and Proposition 7.1 (to see that the generators are compact). The result
follows.

With these preparations out of the way, we come to our main theorem. We refer to
Section 4.5 for a summary of the good � -self maps we managed to construct.

9Indeed, A WD Z=2ŒC2� ' Z=2Œ"�="2, so any finitely generated A-module is a sum of copies
of A and Z=2. For such modules, the claim holds. A general A-module is a filtered colimit of
finitely generated ones, and cohomology commutes with filtered colimits, so the claim follows in
general.
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Theorem 7.4. Let S be a scheme locally of finite dimension, 1 � m; n � 1. Suppose
� W1=.`n; �m/! 1=.`n; �m/.r/ is a � -self map. Assume that 1=` 2 S and for every s 2 S ,
we have vcd`.s/ <1. Assume further that either S is the spectrum of a field or � is good.
Then for every E 2 �H .S/^

`;�
, the map

E=.`n; �m/! E=.`n; �m/Œ� �1�^`;�

is an étale localization.

Proof. By Lemma 3.3, the map in question is an étale equivalence. We thus need to prove
that E 0 WD E=.`n; �m/Œ� �1�^

`;�
is étale local.

Let X ! X 2 SmS be an étale hypercover and K D †1C cof.X ! X/. We need to
show that ŒK;E 0Œi �.j /�D 0 for all i , j . Since E was arbitrary, replacing it by E.i/Œj � we
may as well assume that i D j D 0. By the definition of goodness, see Definition 3.1 (3),
any map K ! E 0 factors through K ! K 00 WD K=.`n

0

; �m
0

/Œ� �1�^
`;�

. It is thus enough
to show that K 00 D 0. It follows from [9, Proposition B.3] that the collection of functors
¹s�W�H .S/^

`;�
! �H .s/^

`;�
j s 2 Sº is conservative; also each of these functors preserves

colimits (since the uncompleted functors preserve .`; �/-equivalences). It is thus enough
to show that s�.K 00/D 0. By construction, s�.K/ is étale-locally equivalent to zero; hence
it suffices to show that s�.K 00/ ' s�.K/=.`n

0

; �m
0

/Œ� �1�^
`;�

is étale local. We have thus
reduced to the case of fields.

Assume now that S D Spec.k/. Then 1=.`n; �m/Œ� �1�=.`; �/ is étale local by Corol-
lary 6.2, and hence so is 1=.`n; �m/Œ� �1�^p;�, being a limit of extensions of the former
term. Note that

E 0 ' E^`;� ^ 1=.`
n; �m/Œ� �1� 2 �H .k/^`;�;

with the smash product being formed in �H .k/^
`;�

(i.e., completed). Since étale local-
ization is smashing on �H .k/^

`;�
by Corollary 7.3, we deduce that E 0 is étale local in

�H .k/^
`;�

, and hence also in �H .k/.

Remark 7.5. Suppose that ` is not invertible on S . Write j W U D SŒ1=`� ,! S for the
canonical inclusion and denote byZ D S nU the closed complement. As �HKet.Z/

^
`
D 0

[10, Theorem A.1] and �HKet.�/ satisfies localization, we see that

LKetE=`
n
' j�LKetj

�E=`n:

Consequently, the assumption that 1=` 2 S in Theorem 7.4 is essentially harmless.

We conclude with three immediate applications.

Corollary 7.6. Assumptions as in Theorem 7.4.

(1) Let ` be odd, n <1 and m D1. Then

E=`n ! .E=`n/CŒ� �1�

is an étale localization.
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(2) Let ` D 2, n <1, m D1 and assume that �1 a square in S . Then

E=2n ! E=2nŒ� �1�

is an étale localization.

(3) Suppose that S is defined over a field containing a primitive `-th root of unity and
satisfying k�=` D ¹1º. Then we have

�HKet.S/
^
` ' �H .S/^` Œ�

�1�:

Proof. In each case, the �-completion is unnecessary (or simplified to .�/C in case (1)),
by Remark 2.5. In (1), (2) also the `-completion is unnecessary, by Remark 3.2.

Denote by L^
Ket W�H .S/! �HKet.S/

^
`;�

the left adjoint to the inclusion �W�HKet.S/
^
`;�
�

�H .S/.

Corollary 7.7. Assumptions as in Theorem 7.4. Suppose thatm;n <1. Then the functor
� ı L^

Ket W �H .S/! �H .S/ is equivalent to Bousfield localization at the homology theory
1=.`n; �m/Œ� �1�.

Proof. Let E 2 �H .S/, and let ˛WE ! �L^
KetE be the .`; �/-complete étale localization

map. We first show that ˛ is a 1=.`n; �m/Œ� �1�-equivalence, or in other words, that ˛ ^
1=.`n; �m/Œ� �1� is an equivalence. By Theorem 7.4, both sides are étale local, so it is
enough to show that

LKet.˛ ^ 1=.`
n; �m/Œ� �1�/ ' LKet.˛/ ^ LKet.1=.`

n; �m/Œ� �1�/

is an equivalence. This is clear.
It remains to show that �HKet.S/

^
`;�

consists of 1=.`n; �m/Œ� �1�-local objects. In other
words, if E 2 �H .S/ with E ^ 1=.`n; �m/Œ� �1� D 0, then we need to show that
�L^
Ket.E/ D 0. Again by Theorem 7.4, we have

�L^
Ket.E/=.`

n; �m/ ' �L^
Ket.E=.`

n; �m// ' E ^ 1=.`n; �m/Œ� �1� D 0:

Since �L^
Ket.E/ is .`; �/-complete, we deduce that �L^

Ket.E/ D 0, as desired.

Corollary 7.8. Assumptions as in Theorem 7.4. Then étale localization is smashing on
�H .S/^

`;�
.

Proof. Denote by LKetW �H .S/^
`;�
! �H .S/^

`;�
the étale localization functor. It suffices

to show that for E 2 �H .S/^
`;�

, the spectrum

E 0 WD E ^ LKet.1/ 2 �H .S/^`;�

is étale local. By definition, E 0 is .`; �/-complete, so E 0 ' limn;m E
0=.`n; �m/, and it

suffices to show that E 0=.`n; �m/ is étale local (for n, m sufficiently large). Theorem 7.4
implies that

E 0=.`n; �m/ ' E ^ LKet.1=.`
n; �m// ' E ^ 1=.`n; �m/Œ��1n;m�;
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where �n;m denotes a � -self map mod.`n; �m/ (it follows from our assumptions that this
exists, at least for n > 1). Again by Theorem 7.4, E ^ 1=.`n; �m/Œ��1n;m� is étale local.
This concludes the proof.

We also obtain the following new base change result, generalizing [25, Theorem 7.5].

Theorem 7.9. Assumptions as in Theorem 7.4. Suppose that f WT ! S is a morphism of
finite type. Then the functor

f �W �H .S/^`;� ! �H .T /^`;�

preserves étale local spectra. In particular, the canonical map

f �.1Ket/S ! .1Ket/T

is an equivalence in �H .T /^
`;�

.

Proof. The claims follow from from Theorem 7.4 and the fact that the Bott elements are
stable under base change by definition.

Remark 7.10. If S is finite-dimensional, then étale localization is smashing on �H .S/Q,
since it just corresponds to “passing to the plus part”,10 or equivalently, �-completion.
In particular, Corollary 7.8 holds rationally (instead of completed at `) as well. Using
Remark 7.5, we see that it also holds completed at ` which fails to be invertible on S
(provided that vcdp.s/ < 1 for all s 2 S ). One may deduce that étale localization is
smashing on �H .S/^� , provided that vcd.s/ <1 for all s 2 S (in addition to S being
finite-dimensional). Similarly,

f �W �H .S/^� ! �H .T /^�

preserves étale local spectra (under the given assumption).

Appendix A. Multiplicative structures on Moore objects

A.1. Definitions and setup

Let C be a semiadditive [40, Definition 6.1.6.13] symmetric monoidal 1-category. For
n 2 N, we call

1=n D cof.1
n
�! 1/

the mod n Moore object, which by construction comes with a map uW 1! 1=n, which
we call the unit. By a (homotopy) multiplication on 1=n we mean a map

mW 1=n˝ 1=n! 1=n 2 hC ;

10The minus part vanishes étale locally (see, e.g., the proof of [7, Theorem 7.2]), and the plus
part has étale hyperdescent by [18, Corollary 4.39]: condition (1) holds by [9, §10.2] and for (2) we
can take A D HQ (this is where we need to be in the plus part).
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which is compatible with the unit in the sense that

m ı .id˝ u/ D id D m ı .u˝ id/W 1=n! 1=n 2 hC :

Lemma A.1. If m is a multiplication on 1=n, then uW1! 1=n is a morphism of homo-
topy ring objects.

Proof. Consider the diagram

1˝ 1
id˝u
�����! 1˝ 1=n

u˝id
�����! 1=n˝ 1=n

m0

??y ??y m

??y
1

u
�����! 1=n 1=n:

Here, m0 and the unlabelled map are canonical isomorphisms; at the same time m0 is the
multiplication in the canonical ring structure on 1. Since the top composite is u˝ u,
we need to show that the outer rectangle commutes. The left-hand square commutes
by definition of a symmetric monoidal category, and the right-hand square commutes
by assumption.

If C is stable, then we have the cofiber sequence

1
n
�! 1

u
�! 1=n

@
�! 1Œ1�:

The composite
ı D u ı @W 1=n! 1=nŒ1�

is called the coboundary. A multiplication m on 1=n is called regular if ı is a deriva-
tion [52, Definition 1], in the sense that

ı ım ' m ı .id˝ ı C ı ˝ id/:

A.2. Review of Oka’s results

The case C D �H has been treated by Oka. Among other things, the following are shown
in [52, Theorem 2].

� 1=n has a multiplication if and only if n 6� 2 .mod 4/; the multiplication is unique
if n is odd.

� Whenever 1=n has a multiplication, it may be chosen to be regular.
� A multiplication on 1=n is (homotopy) commutative if and only if n � 0 .mod 8/

or n is odd; it is (homotopy) associative if and only if n 6� 2 .mod 4/ and n 6� ˙3
.mod 9/.

� For any multiplication on any 1=n, the commutator

m ı .id � switch/W 1=n ^ 1=n! 1=n
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factors through
@ ^ @W 1=n ^ 1=n! 1Œ1� ^ 1Œ1�:

Similarly, the associator

m ı .m ^ id � id ^m/W 1=n^3 ! 1=n

factors through11

@^3W 1=n^3 ! 1Œ1�^3:

A.3. Asymptotic unicity and associativity

For a small idempotent complete1-category C with finite limits, let Pro.C/D Ind.Cop/op

denote the category of pro-objects in C [42, §A.8.1, Remark A.8.1.2]. If C has a symmet-
ric monoidal structure, then so does Pro.C/ [40, Remark 2.4.2.7, Proposition 4.8.1.10].

Lemma A.2. Let C be a small stable idempotent complete symmetric monoidal 1-
category C . Then `-completion is a smashing localization on Pro.C/.

Remark A.3. Even though Pro.C/ is not presentable, `-completion (i.e., localization at
the `-equivalences) exists: it is clear that E 7! limn E=`

n is an `-equivalence to an `-
complete object.

Proof. From the formula given in Remark A.3, this is the case in any symmetric mon-
oidal stable1-category where the tensor product commutes with cofiltered limits, such
as Pro.C/ (apply [40, Proposition 4.8.1.10 (1)] to Pro.C/op).

Let cW �H! ,! Pro.�H!/ denote the inclusion “at constant cofiltered systems”.

Proposition A.4. Let �i W 1=`i ^ 1=`i ! 1=`i be a sequence of unital multiplication
maps in �H (for i � 2 if `D 2) such that the reductions r W1=`iC1! 1=`i are multiplic-
ative (up to homotopy). Then the following hold:

(1) The pro-spectrum c.1/^
`

is represented by the inverse system

� � �
r
�! 1=`4

r
�! 1=`3

r
�! 1=`2:

(2) The multiplication on c.1/^
`

is represented by the system of maps

c.1/^` ^ c.1/
^
` ' ¹.1=`

i /^2ºi
�i
�! ¹1=`iºi :

Proof. (1) Clear by the formula for `-completion in any stable category; see Remark A.3.
(2) Since `-completion is smashing in Pro.�H!/ by Lemma A.2, the multiplication

map is inverse to the unit map (on either side), and hence it is enough to show that the
following composite map of pro-systems is homotopic to the identity:

˛W ¹1=`nºn ' ¹1 ^ 1=`
n
ºn

r^id
���! ¹1=`n ^ 1=`nºn

�n
��! ¹1=`nºn:

11These statements are only interesting if the multiplication is not commutative/associative.
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Using the formula for mapping spaces in categories of pro-objects and the Milnor exact
sequence, we obtain an exact sequence

0! lim
m

1 colim
n
Œ†1=`n;1=`m�! Œ¹1=`nºn; ¹1=`

m
ºm�Pro.�H!/

! lim
m

colim
n
Œ1=`n;1=`m�! 0:

By assumption, ˛ corresponds to the identity in the right-hand group; it thus suffices to
show that the lim1-term vanishes. The (strong) dual of 1=`n is †�11=`n, and multiplica-
tion by `n is zero on 1=`m for n sufficiently large. It follows that

colim
n
Œ†1=`n;1=`m� ' �1.1=`

m/˚ �2.1=`
m/:

These groups are all finite (in fact, independent of m for m� 0), and hence the inverse
system is Mittag-Leffler, and lim1

D 0 as desired.

Corollary A.5. Let ¹�iº be as in Proposition A.4. Then for n� 0, the Moore object 1=`
can be given the structure of a homotopy associative 1=`n-module.

Proof. Since c.1/^
`

is a commutative monoid,M D c.1/^
`
=`' c.1/=` is an A1-module

under c.1/^
`

. Note that M is represented by the constant pro-spectrum ¹1=`ºn. The mul-
tiplication map

c.1/^` ^M !M

thus yields (compatible) multiplication maps 1=`n ^ 1=`! 1=`, for n sufficiently large.
The associator c.1/^

`
^ c.1/^

`
^M ! M is zero as a map of pro-objects (the module

structure being A1). Hence the associator 1=`n ^ 1=`n ^ 1=`! 1=` is zero for n suf-
ficiently large. Unitality of the multiplication is handled similarly.

Remark A.6. Oka constructs similar module structures by hand (and for explicit n) [52,
Section 6], without addressing associativity.

A.4. Uniqueness for HZ

Lemma A.7. Let n � 1.

(1) The Moore object Z=n 2 D.Z/ admits a unique (up to homotopy) multiplication.

(2) Letm� 1. The Moore object Z=n2D.Z/ admits a unique (up to homotopy) structure
of Z=mn-module such that the canonical map Z=mn! Z=n is a module map.

Proof. For A;B;C 2 D.Z/~, we have

ŒA˝ B;C � ' Œ�0.A˝ B/; C �:

This implies that a multiplication on Z=n is the same as a multiplication in the category
of abelian groups, and similarly for the module structure of (2). But then uniqueness
follows from the fact that Z ! Z=mn ! Z=n are surjections (and existence is even
more obvious).
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Equivalently, the Eilenberg–MacLane spectrum HZ=n 2 �H admits a unique HZ-
linear multiplication compatible with the canonical unit map.

Corollary A.8. Let n � 1 and choose a multiplicationmW1=n^ 1=n! 1=n 2 �H . Let
cW�H! �H .S/ denote the “constant sheaf” functor. Then the induced multiplication on
c.1=n/^HZ'HZ=n is the canonical one. The same holds for any choice of a 1=mn-
module structure on 1=n.

Proof. Consider the commutative diagram

�H
c

�����! �H .S/

M

??y ??yM
D.Z/

c
�����! DM.S/;

where the left (resp. right) vertical functors is given by tensoring with the Eilenberg–
MacLane spectrum (resp. motivic Eilenberg–MacLane spectrum). Along the left vertical
arrow, by Lemma A.7, we see the multiplication on M.1=n/ induced by the choice of
multiplication on 1=n is the same as the standard multiplication on M.1=n/ D Z=n.
It follows that the induced multiplication on M.c.1=n// ' c.M.1=n// is also the stand-
ard one. Let U WDM.S/ ! �H .S/ denote the right adjoint to M ; it follows that
UMc.1=n/ ' U.1/ ^ 1=n ' HZ=n carries the correct multiplication. The same argu-
ment works for module structures.

Appendix B. Inverting elements in homotopy rings

A variant of the following result is stated without proof in [1, p. 1].

Lemma B.1. Let C be a symmetric monoidal1-category in which N-indexed colimits
exit and are preserved by˝ in each variable separately. LetE;L 2 C , and suppose given
a map � WE ! E ˝ L.

(1) There exists a canonical diagram F WN ! C , informally described as

E
�
�! E ˝ L

�˝idL
����! E ˝ L˝2 ! � � � :

Denote its colimit by EŒ� �1�.

(2) Given a map uW1! E, there is a canonically induced map xuW1! EŒ� �1�.

(3) Given a map mWE ˝E ! E and a homotopy h as in the diagram

E ˝E E ˝ L˝E ˝ L E ˝E ˝ L˝ L

E E ˝ L E ˝ L˝ L;

�˝�

m

'

m˝idL˝idL

�

h

�˝idL

there is a canonically induced map xmWEŒ� �1�˝EŒ� �1�! EŒ� �1�.
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(4) Suppose that C is stable and compactly generated, and L is invertible. Suppose fur-
thermore that the diagrams

E ˝ 1 E ˝E E ˝ 1 E ˝E ˝ L

E E; E E ˝ L;

id˝u

m

id˝�u

m'

id

'

�

commute in hC . (In other words, the multiplication m is homotopy left unital, and �
is given by left multiplication by a certain homotopy element.) Then the composite

EŒ� �1� ' EŒ� �1�˝ 1
id˝xu
���! EŒ� �1�˝EŒ� �1�

xm
�! EŒ� �1�

is an equivalence. (A similar result holds for left multiplication.)

Proof. (1) Let N 0 be the simplicial set with 0-cells 0; 1; 2; : : :, and for each n 2N, let a 1-
cell be from n to nC 1. There is a canonical map of simplicial sets N 0 ! NN (here we
use N to indicate the nerve of a category, for once not silently identifying categories with
their nerves) which is an inner anodyne extension [41, Tag 00J6] and hence in particular
a categorical equivalence [39, Lemma 2.2.5.2]. It follows that Fun.N;C/! Fun.N 0;C/
is an equivalence. The endomorphism � induces an element of Fun.N 0;C/ as displayed,
which hence canonically lifts as claimed.

(2) The map xu exists by definition of a colimit diagram. We can make it slightly more
explicit as follows. Note that N 0 ��1! NN ��1 is also a categorical equivalence [39,
Corollary 2.2.5.4], and consequently maps in Fun.N;C/ can be produced as the evident
ladder diagrams, with homotopies filling the squares. We now consider the morphism of
diagrams

1 1 1 � � �

E E ˝ L E ˝ L˝ L � � � ;

'

u

'

�u

'

�2u

� �˝idL

where the homotopies are the tautological ones. The induces map on colimits is xu.
(3) Since ˝ in C preserves N-indexed colimits in each variable separately (by as-

sumption), we have
EŒ� �1�˝EŒ� �1� ' colim

N�N
F ˝ F:

The diagonal �WN ! N �N is cofinal, and hence

EŒ� �1�˝EŒ� �1� ' colim
N

F ˝ F ı� ' colim
N0

F ˝ F ı�:

The map 2WN ! N is also cofinal. Consequently, in order to produce xm, it suffices to
produce homotopies in the following diagram:

E ˝E E ˝ L˝E ˝ L E ˝ L˝2 ˝E ˝ L˝2 � � �

E E ˝ L˝2 E ˝ L˝4 � � � :

�˝�

m0

�˝�

m1 m2

�2

h0

�2

h1
h2
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Here m0 D m and mi for i > 0 is obtained as the evident composite of m and switch
maps. We are provided with h D h0. If we denote the i -th square above as Si , then there
is a canonical equivalence Si ' S0 ˝ idL˝2i . We may thus choose hi D h˝ idL˝2i .

(4) As before, we have EŒ� �1�˝ 1 ' colimN�N F ˝ 1 ' colimN0 F ˝ 1 ı�. The
composite in question is the colimit of the following (composed ladder) diagram:

E ˝ 1 E ˝ L˝ 1 E ˝ L˝2 ˝ 1 � � �

E ˝E E ˝ L˝E ˝ L E ˝ L˝2 ˝E ˝ L˝2 � � �

E E ˝ L˝2 E ˝ L˝4 � � � :

�˝id

id˝u

�˝id˝id

id˝id˝�u id˝id˝�2u

�˝�

m

�˝�

m m

�2 �2

Here, we have suppressed the homotopies and labelled all the multiplication maps m,
even if a switch map is involved. By assumption, the vertical maps are homotopic to
a composite of � ’s and switch maps.

Now, let T 2 C be compact, and denote by � WC ! Set the functor ŒT;��. Then �
preserves filtered colimits and the collection of all such functors � is conservative (by
assumption). Hence it suffices to show that when applying � to the above morphism
of diagrams, we obtain an isomorphism of ind-objects in sets. Restricting to the cofinal
subcategory ¹2; 4; 8; 16; : : : º of N, we obtain a diagram

�.E ˝ L˝2/ �.E ˝ L˝4/ �.E ˝ L˝8/ �.E ˝ L˝16/ � � �

�.E ˝ L˝4/ �.E ˝ L˝8/ �.E ˝ L˝16/ �.E ˝ L˝32/ � � � ;

�2

z�2

�4

z�4

�8

z�8 z�16

�4

id

�8

id

�16

id id

where z�n denotes an appropriate composite of � and switch maps. We claim that the
dashed identity maps define an inverse morphism of ind-objects. Since we are working
in a 1-category, we need only verify that all triangles commute. Since L is invertible, the
switch map on L2 is homotopic to the identity [19, Lemma 4.19], and hence z�2n D �2n.
This proves the desired commutativity.

Hence, under the assumption that L is an invertible object in C and C is compactly
generated (these will hold for all our applications), we conclude that EŒ� �1� admits
“homotopy multiplication” which is not quite, but close to, left unital. We need the next
variant for modules.

Lemma B.2. In the situation of Lemma B.1, further assume that we are given an object
M 2 C equipped with a map aWE ˝M !M .

(1) In the situation of Lemma B.1 (2), consider the map

� �W M
u˝id
���! E ˝M

�˝id
���! E ˝ L˝M ' L˝E ˝M

id˝a
���! L˝M:
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Then there is a diagram FM WN ! C informally described as

M
� �
�! L˝M

id˝� �
���! L˝ L˝M

id˝.� �/˝2
������! � � � :

Denote its colimit by MŒ� �1�.

(2) In the situation of Lemma B.1 (3), suppose further that there we are given a homo-
topy hM :

E ˝M E ˝ L˝ L˝M L˝ L˝E ˝M

M L˝M L˝ L˝M:

�˝� �

id˝a

'

id˝a

� �

hM

� �

Then, there is a canonically induced map

xaW EŒ� �1�˝MŒ� �1�!MŒ� �1�

such that the diagram

E ˝M M

EŒ� �1�˝MŒ� �1� M Œ� �1�

a

xa

commutes.

(3) Assume that we are in the situation of Lemma B.1 (4) and further assume that the
diagram

1˝M E ˝M

M M;

u˝id

a'

id

commutes. Then the composite

MŒ� �1� ' 1˝MŒ� �1�
xu˝id
���! EŒ� �1�˝MŒ� �1�

xa
�!MŒ� �1�

is an equivalence.

Proof. (1) By the same reasoning as in Lemma B.1 (1), the described diagram exists.
(2) By the same reasoning as in Lemma B.1 (3), it suffices to produce a transformation

F ˝ FM ı�) FM :

This is displayed in the following diagram:

E ˝M E ˝ L˝ L˝M E ˝ L˝2 ˝ L˝2 ˝M � � �

M L˝2 ˝M L˝4 ˝M � � � :

�˝�

a0

�˝�

a1 a2

�2�

h0

�2�

h1
h2
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Here, a0 D a and ai is a composite of the evident switch maps and a. The homotopy h0
is hM , while hi WD hM ˝ idL˝2i .

(3) By the same reasoning as in Lemma B.1 (4), the composite is given by taking
colimits:

1˝M 1˝ L˝M 1˝ L˝2 ˝M � � �

E ˝M E ˝ L˝ L˝M E ˝ L˝2 ˝ L˝2 ˝M � � �

M L˝2 ˝M L˝4 ˝M � � � ;

id˝� �

u˝id

id˝� �

�u˝id˝id �2u˝id˝id

�˝�

a

�˝�

a id˝a

�2 �2

where we have suppressed the switch maps. By assumption, the vertical composites are
homotopic to a composite of � ’s and switch maps. It remains to note that the diagram in
sets

�.L˝2 ˝M/ �.L˝4 ˝M/ �.L˝8 ˝M/ �.L˝16 ˝M/ � � �

�.L˝4 ˝M/ �.L˝8 ˝M/ �.L˝16 ˝M/ �.L˝32 ˝M/ � � �

�2�

z�2

�4�

z�4�

�8�

z�8� z�16�

�4�

id

�8�

id

�16�

id id

is commutative. This follows by the same reason as in Lemma B.1 (4) – the switch maps
are homotopic to the identity.

Corollary B.3. Let C be a compactly generated, stable, presentably symmetric monoidal
1-category,E 2 C be a homotopy unital associative ring,L 2 Pic.C/ and � W1!E ˝L

be a homotopy central element (i.e., left and right multiplication by � induce homotopic
maps E ! E ˝L). LetM be a homotopy associative E-module (for example, E DM ).
Then for any X; Y 2 C , any map X ! Y ˝MŒ� �1� factors through X ˝EŒ� �1�.

Proof. We may apply the above lemmas (condition (2) is where we use centrality of � ),
and hence obtain

xuW 1! EŒ� �1�; xmW EŒ� �1�˝MŒ� �1�!MŒ� �1�

such that “right” multiplication by xu is an equivalence

˛W MŒ� �1� 'MŒ� �1�˝ 1
id˝xu
���!MŒ� �1�˝EŒ� �1�

xm0

�!MŒ� �1�:

Here, xm0 is Nm composed with the switch map. Let f WX ! Y ˝EŒ� �1� be any map, and
consider the commutative diagram

X ˝EŒ� �1� Y ˝MŒ� �1�˝EŒ� �1�

X ˝ 1 Y ˝MŒ� �1�˝ 1 Y ˝MŒ� �1� Y ˝MŒ� �1�:

f˝id

id˝xm0
id˝xu

f˝id

id˝id˝xu

id˝˛ id˝˛�1

Since the bottom composite is f , the result follows.
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Appendix C. Galois descent in invertible characteristic

In this section, we establish some folklore results to the effect that homotopy orbits
and fixed points are “the same” and “non-homotopical” if the group order is invert-
ible. Then we apply this to obtain some essentially trivial Galois descent results for �H

and DM. They are well known to experts and generalize [25, Appendix C] (via a different
approach).

C.1. Universality of homotopy fixed points

LetG be a finite group. Let C be an1-category with finite coproducts and finite products.
Denote by i W � ! BG the canonical map. The functor i�W Fun.BG;C/! C has a left
adjoint i# and a right adjoint i�, given by

i#X D
a
g2G

X and i�X D
Y
g2G

X:

If C is furthermore pointed, i.e., .�1/-semiadditive, there is a natural transformation
�W i# ! i�. Equivalently, there is a natural transformation i�i# ! id; it is even natural
in C [30, Construction 3.13 and Observation 3.14]. In particular, if F WC ! D is a func-
tor of pointed 1-categories with finite coproducts and finite products, preserving finite
coproducts, and A 2 C , then the following diagram commutes canonically:

F i#A
F�A
�����! F i�A


 ??y

i#FA
�FA
�����! i�FA:

Now suppose that C is semiadditive (i.e., 0-semiadditive); then in particular, �A is an
equivalence for all A 2 C . Denote by ˛W i#! i# the natural transformation corresponding
by adjunction to the diagonal

id! i�i# '
a
G

id '
Y
G

id:

Inverting the second arrow in the span

id
�
�! i�i

�
�i�

 �� i#i
� ˛i�

��! i#i
� "
�! id 2 Fun.Fun.BG;C/;Fun.BG;C//

yields a natural transformation T W id ! id of the identity endofunctor of Fun.BG; C/.
This construction is natural in the semiadditive1-category C .

Remark C.1. For A 2 Fun.BG;C/, the object i�A has a canonical endomorphism tAW

i�A! i�A given by
P
g g. In the notation of [15, Definition 2.11] we have TA '

R
i
tA.

Example C.2. If C is the category of abelian groups, then Fun.BG;C/ is the category of
abelian groups A with an action by G, and TAWA! A is given by a 7! jGj

P
g2G ga.



T. Bachmann, E. Elmanto, P. A. Østvær 46

Lemma C.3. LetG have order n. Then T 2 ' n2T as endotransformations of the identity
endofunctor of Fun.BG;C/.

Proof. This follows from [15, Corollary 3.1.14].

Definition C.4. For a semiadditive1-category C and a finite group G, denote by

Fun.BG;C/0 � Fun.BG;C/

the full subcategory of those objects on which T acts invertibly. If C is additive, denote
by Fun.BG;C/r � Fun.BG;C/ the full subcategory on which jGj2 � T acts invertibly.

Proposition C.5. Suppose that n D jGj is invertible in C , and assume that C is idem-
potent complete and stable.

(1) Every object of Fun.BG;C/ splits asADA0˚Ar , withAi 2 Fun.BG;C/i , i D 0; r .

(2) For A 2 Fun.BG;C/0, B 2 Fun.BG;C/r , we have Map.A;B/ D 0 D Map.B;A/.

(3) Let pWBG ! � be the canonical map. Then p�C � Fun.BG;C/0.

(4) The functor i�WFun.BG;C/0 ! C is an equivalence.

(5) The functor p�WC ! Fun.BG;C/0 is an equivalence.

Proof. It follows from Lemma C.3 that T=n2 defines an idempotent of every object, and
thus 1 � T=n2 defines a complementary idempotent [40, Warning 1.2.4.8]. Since these
idempotents are by construction preserved by all morphisms, this (together with idem-
potent completeness of C and hence Fun.BG;C/ [39, Corollaries 4.4.5.15 and 5.1.2.3])
immediately implies (1) and (2).

(3) It follows from Remark C.1 and [15, Proposition 3.13, Example 3.12] applied to
the cartesian square

G �����! �??y i

??y
�

i
�����! BG

that i�TA D ntA. If A D p�A0, then tA D n and so i�TA D n2 is an isomorphism. The
result follows since i� is conservative.

(4) The functor i�W Fun.BG;C/0 ! C has a left (and right) adjoint which is given
by A 7! .i�A/

0. Since i� is conservative, it suffices to show that for all A 2 C , we
have i�.i�.A/0/ ' A. Let B 2 C . It suffices to show that we obtain an equivalence
after applying �iMap.B;�/. Since �iMap.B;�/WC ! .ModZŒ1=n�/�0 is additive, this
reduces to C D .ModZŒ1=n�/�0, i.e., the ordinary 1-category of ZŒ1=n�-modules. This
case is straightforward. (If M is a ZŒ1=n�-module, then i�.M/ is M viewed as a trivial
G-module, and so by Example C.2, we get Ti�M D n

2, whence i�.M/0 D i�.M/ and so
i�.i�.M/0/ DM , as needed.)

(5) Since i�p� ' .pi/� ' id, this follows from (3) and (4).
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Corollary C.6. Assumptions as in Proposition C.5. For every A 2 Fun.BG;C/, we have
canonical equivalences

AhG ' i�A0 ' AhG :

Proof. The functors .�/hG and .�/hG are given by p� and p#, respectively. Proposi-
tion C.5 implies that p� can be identified with the inclusion Fun.BG;C/0! Fun.BG;C/,
and that its common right and left adjoint is given by A 7! A0. The result follows.

Corollary C.7. Let F WC ! D be an additive functor of additive, idempotent complete
1-categories on which jGj is invertible. Then for any A 2 Fun.BG;C/, we have

.FA/hG ' F.AhG/ ' F.AhG/ ' .FA/hG :

Proof. Any additive functor commutes with formation of .�/0 (and i�), so this follows
from Corollary C.6.

C.2. Galois descent

Fix a finite groupG. In the category FinG , we have the objectG with automorphism group
canonically isomorphic toG itself. In this way, we obtain an action of the groupG onG 2
FinG , i.e., GWBG ! FinG . Composing with the canonical functor FinG ! Span.FinG/,
we obtain an action of G on G 2 Span.FinG/. In the category Span.FinG/, we also have
the maps aW � ! G and bWG ! �, corresponding to the spans

�  � G
'
�! G and G

'
 � G ! �:

It is straightforward to check that these refine to G-equivariant maps, where we let G act
trivially on �. The composite baW � ! � is given by the span �  G ! � and denoted
by .G/.

In the following result, we denote by �H .BG/'P†.Span.FinG//Œ.S1/�1� the genu-
ine G-equivariant stable category; see, for example, [9, §9].

Lemma C.8. Consider the functor � W Span.FinG/ ! �H .BG/Œ1=jGj; 1=.G/�. Then
�.a/ exhibits �.�/ as �.G/hG .

Proof. The composite abWG ! G is homotopic to TG=jGj by construction. It follows
from Corollary C.6 that in any category where jGj is invertible, GhG is given by the
summand of G corresponding to the idempotent ab=n.

After inverting jGj, we obtain a splittingG 'GhG ˚G0, and we can write the maps a
and b in matrix form as aD .a1a2/ and bD .b1 b2/. Since a factors throughGhG , we have
a2 D 0. If we further invert .G/, then .G/D baD b1a1C b2a2 D b1a1 is an equivalence,
and also �

id 0

0 0

�
D ab D

�
a1b1 a1b2
a2b1 a2b2

�
;

so a1b1 D id. It follows that a D a1W1! GhG is an equivalence.
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Now let S be a scheme and S 0=S a finitely presented finite étale scheme with a free
and transitive G-action; i.e., a G-torsor, or in other words, a G-Galois extension of S .
We then have a functor �H .BG/! �H .S/. In fact, Grothendieck’s Galois theory sup-
plies us with a functor

gW FinG ! SmS ; X 7! X �G S
0;

and we have a natural transformation [9, Proposition 10.6]

cW �H .�/! �H .g.�// 2 Fun.FinG ;Cat/:

Lemma C.9. The functors

�H .BG/! �H .S/! �H .S/Œ1=2; 1=jGj�C;

�H .BG/! �H .S/! DM.S;ZŒ1=jGj�/

invert the endomorphism .G/ of 1 2 �H .BG/.

Proof. The problem is Zariski local on S , so we may assume that S is affine. Then
since S 0 is finitely presented, it is already defined (as a G-torsor) over some scheme T
under S of finite type over Spec.Z/. We may thus assume that S is finite-dimensional.
In this situation, a pullback to fields is conservative [9, Proposition B.3], and so we reduce
to the case when S is the spectrum of a field. In this case, the morphism

A.G/ ' Œ1;1��H.BG/ ! Œ1;1��H.S/Œ1=2�C ' ZŒ1=2�

is given by the rank homomorphism [9, Theorem 10.12], and similarly for

A.G/ ' Œ1;1��H.BG/ ! Œ1;1�DM.k/ ' Z:

The result follows.

Now let E 2 �H .S/ and write f WS 0! S for the canonical map. The object f�f �E
acquires a G-action, coming from the action of G on S 0.

Corollary C.10. Let f WS 0 ! S be a G-Galois covering of schemes.

(1) The natural map E ! f�f
�E refines to a G-equivariant map (where the source is

given the trivial G-action).

(2) If E 2 �H .S/Œ1=2; 1=jGj�C or DM.S;ZŒ1=jGj�/, then the above map presents E
as .f�f �E/hG . Moreover, this limit diagram is preserved by any additive functor.

Proof. We claim that the G-equivariant map E ! f�f
�E is given by c.a/ ^ E, where

a is the map from Lemma C.8. The same lemma, together with Lemma C.9 (and Corol-
lary C.7), then implies the result.

To prove the claim, note that by the projection formula, we indeed have f�f �E '
.f�f

�
1/^E, compatibly with theG-actions. This reduces toE D 1. The transformation

cW �H .�/! �H .g.�// induces by passage to adjoints exchange transformations

f#cS 0 ! cSf# and cSf� ! f�cS 0 :
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The former is an equivalence essentially by construction, and the latter is an equivalence
because f# ' f� on both sides (compatibly). It follows that theG-action on f�f �1�H.S/

is the same as the one induced by c from the G-action on f�f �1�H.BG/. We have thus
reduced to showing that the G-action on f�f �1 ' f#f

�
1 ' †1CG 2 �H .BG/ is the

same as the one we constructed at the beginning of this subsection. This can be verified
directly by working in Span.FinG/.

Remark C.11. In Lemma C.9 and Corollary C.10, the parts regarding DM hold more
generally for modules over any ring spectrum in which the Hopf map � is trivial, such as
algebraic cobordism MGL.
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