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Random finite noncommutative geometries and topological
recursion

Shahab Azarfar and Masoud Khalkhali

Abstract. In this paper, we investigate a model for quantum gravity on finite noncommutative
spaces using the theory of blobbed topological recursion. The model is based on a particular
class of random finite real spectral triples (4, #, D, y, J), called random matrix geometries of
type (1, 0), with a fixed fermion space (4, #,y, J) and a distribution of the form e ~5?) dD
over the moduli space of Dirac operators. The action functional §(D) is considered to be a
sum of terms of the form [];_, Tr(D") for arbitrary s > 1. The Schwinger-Dyson equations
satisfied by the connected correlators W), of the corresponding multi-trace formal 1-Hermitian
matrix model are derived by a differential geometric approach. It is shown that the coefficients
Wg n of the large N expansion of W;,’s enumerate discrete surfaces, called stuffed maps, whose
building blocks are of particular topologies. The spectral curve (X, w1, wo,2) of the model is
investigated in detail. In particular, we derive an explicit expression for the fundamental sym-
metric bidifferential wp > in terms of the formal parameters of the model.

1. Introduction and basics

In metric noncommutative geometry, the formalism of spectral triples [15] encodes,
in the commutative case, the data of a Riemannian metric on a spin manifold in terms
of the Dirac operator. More precisely, by Connes’s reconstruction theorem [18], one
knows that a spin Riemannian manifold can be fully constructed if we are given a
commutative spectral triple satisfying some natural conditions like reality and regu-
larity. A simple manifestation of this fact is a distance formula [ 14] according to which
one can recover the Riemannian metric from the interaction between the Dirac oper-
ator and the algebra of smooth functions on a spin manifold through their actions on
the Hilbert space of L2-spinors. This naturally leads to the view that spectral triples in
general, without commutativity assumption, can be regarded as noncommutative spin
Riemannian manifolds.

The data of a real spectral triple (4, #, D, y, J) consists of a *-algebra +4 together
with a *-representation 7 : A — £(J€) on a Hilbert space #, a self-adjoint Dirac
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operator D, a Z/2-grading y, and an anti-linear isometry J acting on J¢. The above-
mentioned operators should satisfy certain (anti-)commutation relations and technical
functional analytic conditions (see [12, 15, 19] for the detailed axiomatic definition of
a real spectral triple).

A spectral triple (4, #, D) is called finite if the Hilbert space # is finite dimen-
sional, i.e., #/ = C". The data (+, ¥, y, J) corresponding to a finite real spectral
triple is referred to as a fermion space. Given a fixed fermion space (A, #, y, J), the
moduli space of Dirac operators of the finite real spectral triple (A, #, D, y, J) con-
sists of all possible self-adjoint operators D (up to unitary equivalence) which satisfy
the axiomatic definition of a real spectral triple [27]. It is considered as the space of
all possible geometries, that is, Riemannian metrics, over the noncommutative space
(A, H,p,J).

The theory of spectral triples has been used in constructing geometric models
of matter coupled to gravity, using an action functional, called the spectral action,
which is given in terms of the spectrum of the Dirac operator (see [11, 12,16, 17]; see
also [24] for a recent work in the spirit of matrix models).

This paper is about a second application of the idea of spectral triples by creating
a connection with the recently emerged theory of topological recursion [21]. Roughly
speaking, if we understand quantization of gravity as a path integral over the space
of metrics, it is natural to consider models of Euclidean quantum gravity over a finite
noncommutative space in which one integrates over the moduli space of Dirac oper-
ators for a fixed fermion space. Given a fermion space (4, #, y, J), the distribution
over the moduli space of Dirac operators is considered to be of the form

5P dp,

where the action functional §(D) is defined in terms of the spectrum of the Dirac
operator D.

The investigation of the relation between models of quantum gravity on a certain
class of finite noncommutative spaces and (anti-)Hermitian matrix ensembles started
in the work of Barrett and Glaser ([3], cf. also [2]), although largely through numer-
ical simulations. In this paper, we consider a much larger class of models and show
that an analytic approach to analyzing these models is possible, using techniques
of topological recursion and blobbed topological recursion pioneered by Eynard,
Orantin [21,22], Chekhov [13], and Borot [4,6,9].

In the following, we recall the definition of a particular type of finite real spectral
triples whose Dirac operators are classified in terms of (anti-)Hermitian matrices in
[2]. Denote the real Clifford algebra associated to the vector space R” and the pseudo-
Euclidean metric 1 of signature (p, g), given by

2 2 2 2
nw,v) =v1" 4+ +Vvp° —Vpp1” — - —VUptq ., VER",
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by C£, 4." Consider the complexification C¢, := C{, ,®QrC of C{, 4. Let{e;}7_, be
the standard oriented orthonormal basis, i.e., n(e;, ej) = %6;;, for R". The chirality
operator T is given by

I = i%S(”l)ewz---en,

where s = ¢ — p (mod 8), 0 < s < 8. We denote by V), ; the unique (up to unitary
equivalence) irreducible complex C¢, ,-module, where, for n = p + ¢ odd, the chi-
rality operator I acts trivially on V), ;.* We refer to Yi=ple),i=1,...,nie.,
the Clifford multiplication by e;’s, as the gamma matrices. There exists a Hermitian
inner product (-, -) on V), 4 such that the gamma matrices act unitarily with respect to
it, i.e., (y'u, y'v) = (u,v),i =1,...,n[26]."

Consider the Hilbert space (V,.4. (-,*)). Let C : V}, g — V) 4 be a real structure
of KO-dimension s = g — p (mod 8) (see, e.g., [27]) on V}, 4 such that

(Cly, Vpq.T.C)

satisfies all the axioms of a fermion space.’

Definition 1.1. A matrix geometry of type (p, q) is a finite dimensional real spectral
triple (A, #, D, y, J), where the corresponding fermion space is given by

* A =My(C),

s H =V, ®Mpy(C),

* (V@A u®B)=(v,u)Tr(AB*), v,u e V,4, A,B € My(C),

e 7(A)(v® B)=v® (4B),

e ywv® A =Tv)® A4,

e Jw®A) =(Cv)® A*.

!Given a quadratic form g on a vector space V, we follow the convention to define
the Clifford algebra C{(V,q) associated to V and g as CL(V,q) =T (V)/I4(V), where
TV = Zf‘;o VO and I ¢ (V') denotes the two-sided ideal generated by elements of the
formv @ v —g(v)1 forv e V.

2Letp : Clp.4 — Homc (V, V) be an irreducible complex unitary representation of C{,, 4.
The following can be shown [26] that.

» If n = p + q is even, then the representation p is unique up to unitary equivalence.

e If n = p 4 ¢ is odd, then either p(I") = 1y or p(I') = —1 . Both possibilities can occur,
and the corresponding representations are inequivalent.
3We have V, 4 = Ck, where k = 2"/2 (resp., k = 20"=D/2) for n even (resp., odd).
4Fori = 1,...,p (resp.,i = p + 1,...,n), the gamma matrix yi is Hermitian (resp., anti-
Hermitian) with respect to (-, -).
>In the physics literature, the operator C is called the charge conjugation operator.
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The Dirac operators of type (p, ¢) matrix geometries are expressed in terms of
gamma matrices ¥’ and commutators or anti-commutators with given Hermitian ma-
trices H and anti-Hermitian matrices L (see [2,3]). For a recent survey of interactions
between fuzzy spectral triples and random matrix theory initiated in this paper, we
recommend [25].

2. Random matrix geometries of type (1, 0)

In this section, we describe a model for Euclidean quantum gravity on finite noncom-
mutative spaces corresponding to the random matrix geometries of type (1,0). The
Dirac operator of type (1, 0) matrix geometries is given by [3]

D ={H,-}, H e ¥y,

where J denotes the space of N x N Hermitian matrices. The Dirac operator D
acts on the Hilbert space # = My (C) in the following way:

D(B)={H,B}= HB + BH ¥B €My(C).

The moduli space of Dirac operators is isomorphic to the space of Hermitian
matrices J€n . A distribution of the form

dp=e 3PV dD
is considered over #, where
N
dD :=dH =[]dH; [] d(Re(H;))d(Im(H;)))
i=1 1<i<j<N

is the canonical Lebesgue measure on . Let us describe the action functional
S(D). Let

NI ={{eZ" 1< <l < <ly).

Suggested by Connes’ spectral action, we define the action functional § (D) of the
model by

S(D) = Sunstable(D) + Sstable(D)’ (2-])

where

Sunane(D) = TE(V(D)).  V(x) = — (x2 Ed:oz xn> (2.2
unstable = s = — |\ = - n— .
2t \ 2 o n
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and

ﬂtable(D) - Z (N/Z)_4s Z O(nl 1_[ TI'(D"’

n[GNS i=1

In the definition of the action functional, ¢ is a fixed parameter (“temperature”), the
(o, Oy s )n n, Are formal parameters, and, for each s, the summation over ny € N% 1s
a finite sum.° Let

h=—.
N

For large N, the term Sgpie(D) can be considered as higher-order terms in A-expan-
sion of the action functional § (D).
Using

n
_ t _ n —k kt
n_(H®]1((CN)*_|_]1(0N®H)H_kE_O(k)H” ® (H")',

we get

N 4
Sunstable(D) = (E Tr (Hz) - Z 7” Tr(Hn))

n=3
d
(——(Tr(H))2 n Z Zr Z ( ) Tr (H"™") Tr (H’)). 2.3)

In addition, we have

li[ Tr(D") =

i=1

Z(ZN)S "> 11 Tr(H”l)( > ]_[( )Tr(H"/'_’/)(H’/))

JCI iel\J (r,l ..... Tim) JE€J
J|=m 1<r;<n;—1, jeJ

(2.4)

where I = {1,...,s}. By substituting (2.3) and (2.4) into (2.1), we get the expression
for the action functional § (D) in terms of the spectrum of the Hermitian matrix

HGJ(N.

The formal parameters («;;, &, ) n.n, Play the role of coupling constants in physics litera-
ture.
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3. Topological expansion of the action functional

In the following, we rewrite the action functional $ (D), in succinct form, as a sum-
mation over a finite set of (properly defined) equivalence classes of surfaces.

We start by recalling the notion of a surface with polygonal boundary. A compact,
connected, oriented surface C is said to have n polygonal boundary components of
perimeters {¢;}/_,, {; = 1, if, for each 1 <i < n, the i-th connected component of
dC is equipped with a cellular decomposition into £; 0-cells and £; 1-cells. We refer to
the 1-cells in each connected component of dC as the sides of that polygon. We define
an equivalence relation between surfaces with polygonal boundaries in the following
way.

Definition 3.1. Two compact, connected, oriented surfaces C;, C, with polygonal
boundaries are considered equivalent if there exists an orientation-preserving diffeo-
morphism F : C; — C, which restricts to a cellular homeomorphism f : dC; — dC,
whose inverse is also a cellular map.

The set € of equivalence classes of compact, connected, oriented surfaces with
polygonal boundaries is in bijective correspondence with the set

{(g:0) 1 g20,{eN n=1),

where g denotes the genus of the corresponding closed surface. Inspired by [4], we
refer to the combinatorial data (g; { ), and its corresponding equivalence class [C] € ¢
of surfaces with polygonal boundaries, as the elementary 2-cell of type (g; { ).
We isolate the free part of the action functional and denote it by
So(H) = N Tr(H?).
2t
Let

fQ(]J):zz

Tr(f() Vi eN, H e Jy. 3.1
Consider the following two sets:
Lok =€ eN|3<L<d},
Leytinger = {(£1.42) € N% |12< 4+ 4, <d}.
We rewrite Synsable (D) in the following form:

N
Sunsabie(D) = So(H) = — 3 " Po(H)
LeLaisk

1
—5 2 e Pu(H)Py(H), (3.2)
£1.42) Ei?fcylinder
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where ((” = 0y, 3 < € < ds ) = =1/, and for (€1, 62) € Leyinaer\{(1 D} (7,
is an integral multiple of (¢, 4¢,)/1.

Foreach1 <s < g,and0 < m < s, let

Tom = U {(ry.ng —ry.npg)}/ ~,
nr,|Il=s
JCI,|J|=m
Isrj<n;—1,jeJ

where two (s 4 m)-tuples are considered equivalent if there exists a permutation o €
Ss+m which maps one to the other. Consider the set

Lsm = {E € fRST’Lm lfo-€]e Ys,m for some 0 € Gy}

We rewrite Sgpie(D) in the following form:

(N/I)Z—Z(s—l—l)—(s-l—m) (54+1) s+m
Sante(D) = — > Ty > ST Pat. 33
where, for each E € &sm» t?H) =5 "y 7 and & 7 is a finite linear combination of the

formal parameters &, ’s with integral coefficients.
Consider the following two sets of elementary 2-cells:

Cunstable = {(07 Z) | ZE Liisk U 8cylinder}a
Cable = U {(S + I;Z) | ZE 8s,m}-

1<s<g
0s<ms<s

We identify the set

€ = Cunsuble U Csuable (3.4)
with the corresponding set of equivalence classes [C] of surfaces with polygonal
boundaries. We assign a Boltzmann weight, equal to (& ), to each elementary 2-cell
[C] € € of type (g; Z). Note that the elementary 2-cells in €ypspapie (resp., Csuable) are
represented by surfaces whose Euler characteristic satisfies y = 0 (resp., y < 0). For
each elementary 2-cell [C] € € of type (g; Z) with Boltzmann weight t(gg )l e N%‘,
let

n
Ticy)(H) = tég) ]_[ Py, (H), H e Hy, (3.5)
i=1
where Py(H) is defined by (3.1). We rewrite (3.2) and (3.3), respectively, in the fol-
lowing form:

(/)
2

Sunstable(D) = SO(H) - m [C]

(H)a

[C]eeunslable
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(/)

(Bo@C)! c1(H),

Sstavle (D) = — Z

[C]e\eslable

where S (0C) denotes the zeroth Betti number, i.e., the number of connected compo-
nents, of the boundary dC of a surface C. Thus, we get the following proposition.

Proposition 3.2. The action functional S(D) for the random matrix geometries of
type (1,0), given by (2.1), can be decomposed in the following form:

S(D) = So(H) + Sin(H), (3.6)
where
(/)
Sin(H) = — ———— Tic|(H),
(Clee (Bo(9C))!

and € is given by (3.4).

4. The corresponding 1-Hermitian matrix model

From now on, we consider the multi-trace 1-Hermitian matrix model corresponding to
the random matrix geometries of type (1, 0) with the distribution dp = e~5(P )dD in
the sense of formal matrix integrals. In other words, we treat the term S;, (H ) in (3.6)
as a perturbation of $o(H ).

Consider the normalized Gaussian measure

N
dpg = ce 50 g = ¢ exp(—z Tr(HZ)) dH
over J¢y with total mass one. Here,
2
R Y (ﬂ_f)”
N

Denote by t the sequence of Boltzmann weights t%g ) in Sint(H). We consider

—-1/2

O(H) = exp(—Sin(H))

as a formal power series in t, i.e., an exponential generating function. The partition
function Z y of the model is defined by

Zy = pol®@(H)] "= ¢ / S(H) e 50 qH,
Hn
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where the second integral is understood in the sense that we expand ®(H ) as a power
series in t and interchange the integration with the summation.

The disconnected n-point correlators Wn (xX1,...,Xxn), n =1, of the model are
defined as the joint moments of

X; = Tr((xj1y — H)™"), x; € C\ Spec(H),
i.e.,

Wn(xl, ey Xp) = %pO[QD(H) l_[ Tr((xj]lN - H)—l):|
j=1

forma! IE‘,|:1_[ Tr((x;j 1y — H)_l):|, 4.1)
j=1

where (x; 1y — H) ™! denotes the resolvent of H.” The connected n-point correlators

Wau(x1,...,xz),n = 1, of the model are defined as the joint cumulants of X;’s, i.e.,
K]
Waxt,...oxg) = Y (DEITV(K] = D! [[ Wik, (k). 43)
KH[1,n] i=1
In (4.3), the sum runs over partitions of [1,n] := {1,2,3,...,n}, the number of sub-

sets in a partition K is denoted by [K], and

I//I\/IK,'I(xKi) = V’[\/|Ki|((xj)jeKi)‘

4.1. Topological expansion of the correlators

Proposition 4.1. The connected n-point correlators Wy (xy,...,x,) of the random
matrix geometries of type (1,0) with the distribution dp = e3P dD have a large
N expansion of topological type, given by

Wa(xi..oxn) =Y (N/1)* 287" W n(x1.. ... Xn), (4.4)

g=0

where W (X1, ..., X,) is defined, in the following, by (4.8).%

7Strictly speaking, in the context of formal matrix integrals, one works with the formal

series
S 4
= Tr(H*)
Xp=2 & (42)
=0 %
instead of Tr((x,; 1y — H)™1).
80ne should not misinterpret (4.4) as the asymptotic expansion of the connected correlators

as N — oo (see [8,20]).
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Proof. We use Wick’s theorem and the techniques of [10] to relate the formal matrix
integrals in our model to the combinatorics of stuffed maps [4,9]. Considering (4.1)
and (4.2), the computation of Wn (x1,...,xp) leads to Gaussian integrals of the fol-
lowing form:

€| (C) k;
Te(HY) (N/)*™ ’
1(H . 4.5
p“[jljl oo +(GaeTer *
To compute (4.5) using Wick’s theorem, we will represent each term of the form
Tr(H ) / xf-j H, in (4.5), by a marked face of perimeter £; with Boltzmann weight
xj_(ej +1), j=1,..., n.? Also, we represent each term of the form
(N/Z)X(Ci)
L Tic(H).
(Bo(3C))!

in (4.5), by a surface C; of Euler characteristic y(C;) and Boltzmann weight t(g’ rep-

resenting the corresponding elementary 2-cell [C;] € € of type (g;; E ),i=1,...,]¢€|.
The orientation on each C; induces an orientation on dC;.

Let E be the collection of all surfaces representing the terms in (4.5) in the above-
mentioned way. Consider a pairing o on the set of sides of the connected components
of the boundary of surfaces in E. We glue the surfaces in Z along the sides of their
boundary, according to o, such that the gluing map reverses the orientation. The
resulting stuffed map

M = (S,G)

consists of an oriented, not necessarily connected surface S and a graph G embedded
into S.'° We denote by S the surface that one gets by deleting the marked faces
from S.

It can be shown that each vertex (resp., edge) of G contributes a weight N (resp.,
t/N) [10]. In addition, each unmarked connected component U of S\ G contributes a
weight (N/1)¥™_ Hence, the exponent of N, in the total contribution corresponding
to M = (S, G), equals y(S5)."

°A polygon of perimeter £ is an oriented 2-dimensional CW complex consisting of a 2-cell,
homeomorphic to a disk, whose boundary is equipped with a cellular decomposition into £ 0-
cells and £ 1-cells. A polygon is called rooted if we distinguish one of the O-cells and its incident
1-cell on the boundary. We refer to a labeled rooted polygon of perimeter £ as a marked face of
perimeter £.

191f each connected component of S\ G is homeomorphic to an open disk, then M = (S, G)
is called a map.

I'This fact about the exponent of N, in the case of maps (or, equivalently, ribbon graphs),
was first noticed by Gerard "t Hooft in [29] (see, e.g., [20]).
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In addition to the pre-mentioned Boltzmann weights assigned to the 2-cells of M,
we assign a Boltzmann weight equal to ¢ to each vertex of G. The total Boltzmann
weight of the isomorphism class [M] of a stuffed map M, denoted by Bw([M]), is
defined to be the product of all Boltzmann weights assigned to the cells in M divided
by the order |Aut(M)| of the automorphism group of M. The contribution of the
isomorphism class [M] of a Boltzmann-weighted, not necessarily connected stuffed
map M = (S,G) to Wn(xl, ..., Xp) is given by

(N/ 6O Buw(M)). 4.6)

Let Mg, (€) be the set of isomorphism classes of the Boltzmann-weighted con-
nected closed stuffed maps M = (S, G) of genus g with n marked faces such that
the equivalence class of each unmarked connected component of S\G (in the sense
of Definition 3.1) is in €. Considering (4.6) and

(K]
Walxio..ooxn) = Y [[WkiGxk) @.7)
KH[1,n]i=1

we have

Walrteeeox) =3 3 (N Bu((M)).

&20 [M]eMg n (€)

Since, for a connected closed stuffed map M = (S, G) of genus g with n marked
faces,
x(S)=2-2g—n,

we get (4.4), where

Wenlxi,.oox) = ) Bw(M) € QUI[;,]. 8

[M]eMg.n (€) | |

Let M 76, (= (€1, ...,¢,) € N", be the set of isomorphism classes [M] €
Mg »(€) of the stuffed maps w1th n marked faces of perimeters £;, j =1,...,n.
By (4.8), the generating series Qg; ;€ QI[t][#] of the stuffed maps, correspondlng to
our model, of genus g with n polygonal boundaries of perimeters {;, j =1,...,n,
satisfies

Wg,n(xls ceyXn) = 5g 05n 1 + Z Z %m([M])
e [M]eMg .7(©)
—(¢;
_5g05,,1—+ X0 X G 4.9)

feNn =1
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4.2. Large-N spectral distribution

Using (4.9), we see that the generating series Qg.¢, £ € N, of the rooted planar stuffed
maps with topology of a disk and perimeter £, is given by

Qo = > Buw(M])x’ e Q[tg.o)][[zﬂ, (4.10)

[M]eMy, 1;¢ (Cunstable)

where tg)) denotes the sequence of Boltzmann weights tg)), £ € Laisk U Leylinder-

If the Boltzmann weights tg)) (or, equivalently, the formal parameters o, 3 <
n < d) have given values, then there exists a critical temperature ¢, > 0 such that, for
any |t| < t., we have Q¢,¢ < oo, V£ € N [4]. From now on, we restrict ourselves to
the case 0 < ¢ < t., where . is specified according to each set of given values to o, ’s.

Hence, we have the following one-cut Lemma [4,5].

Lemma 4.2. For given values to the Boltzmann weights tg)), and 0 <t <t the
series
— Qo
+2 T (.11)
=1

is the Laurent expansion at x = oo of a holomorphic function, denoted by Wy 1(x),

on C\T', where T" = [a, b] C R depends on tg)), t. The limits lim,_ o+ Wo,1(s £ ie),

Wo,1(x) =

= |~

Vs € I'° exist, and the jump discontinuity
| . .
o(s) = =— lim (Wo,1(s —ie) — Wp,1(s + i¢)) (4.12)
271 e—0+
assumes positive values on the interior I'° of the discontinuity locus I" and vanishes

at dT".

Consider the measure i = ¢(s) ds on R, where ds denotes the Lebesgue measure,
and ¢(s) is given by (4.12). By the Sokhotski—Plemelj theorem, the function Wy 1 (x)
is, indeed, the Stieltjes transform S[u](x) of w, i.e.,

Woa =Sl = [ L a0 xeCismpn. @i

In addition, consider the empirical spectral distribution (empirical measure)
| N
i=1

on R, where {A; }fvzl, A; € R, denotes the eigenvalues of the random Hermitian matrix

H € #p corresponding to the random matrix geometries of type (1,0) with the
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distribution dp = e~5(P) dD.'? By (4.1), we have

1

NWI (x) = E[S[un](x)]. (4.14)

Motivated by (4.4), we assume that

lim ~Wi(x) = Wou (¥)
m — X) = X).

N oy 0,1

Therefore, considering (4.13) and (4.14), the expected distribution of the eigenvalues
{)L,-}{vzl is given by
p = @(s)ds,

up to terms with exponential decay, as N — 00.'? We refer to the measure 1 = ¢(s) ds
as the large-N spectral distribution. In addition, from now on, we assume that the
sequence of Boltzmann weights t, and the parameter ¢, are tame, in the sense of [4,
Definition 4.1]. Hence, each Wy ,(x1,...,x,), a priori defined as the generating
series of stuffed maps, upgrades to a holomorphic function on (C\T')" which has
a jump discontinuity when one of x;’s crosses I'.

5. Schwinger-Dyson equations

Our main tool for analyzing the Wy ,(x1, ..., Xx,)’s is an infinite system of equations,
called the Schwinger—Dyson equations (SDEs), satisfied by the n-point correlators of
the model. In the matrix model framework, they were introduced by Migdal [28] and
referred to as the loop equations. There are several versions of SDEs for matrix mod-
els (and some other closely related models in statistical physics, e.g., the B-ensembles)
in the literature (see, e.g., [7,20]). However, the root of all of them is the invariance of
the integral of a top degree differential form under a 1-parameter family of orientation-
preserving diffeomorphisms on a manifold.

To put the above-mentioned differential geometric fact in a precise form, consider
an oriented connected Riemannian n-manifold M with the Riemannian volume form
w. Let V be a smooth vector field on M with a local flow ¢; : M — M. Consider a
smooth function ¥ : M — R. Let Q@ C M be a compact n-dimensional submanifold

of M. Since
/ Yo :/ ¢ (Vo) Vi e (—¢,8),
61 (2) Q

12The Dirac measure at A € R is denoted by §j.
3The measure j1 = ¢(s) ds plays the same role as what is called, in the context of convergent
matrix integrals, the equilibrium measure (see, e.g., [1]).
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using Cartan’s magic formula and Stokes’s theorem, we get
/ dy(V) +vdiv(V))w — / Y(yw) = 0. 5.1
Q IQ

In (5.1), the exterior derivative, the interior product by V, and the divergence of V
are denoted by d, ty, and div(V'), respectively.

The Schwinger—Dyson equations for the multi-trace 1-Hermitian matrix models
are derived in [4], using Tutte’s decomposition applied to the stuffed maps. In this
section, we give a proof of them based on the above-mentioned differential geometric
fact.!

Consider the action of the unitary group Uy on #y by conjugation, i.e., u - H =
uHu™! for u € Uy and H € #y. Since the action functional $(D): Hy — R
is invariant under the pre-mentioned action of Uy on Hpy, we can rewrite S(D)
as a function of the eigenvalues {)Li}fvzl, Ai € R, of the random Hermitian matrix
HeH N-

Let

(AN =y x - x iy

k-times

be the product measure on R¥ corresponding to the unnormalized empirical measure
N
Ay =Y 5,
i=1

on R. For each elementary 2-cell [C] € € of type (g: Z), le N¥, we rewrite Tic)(H),
defined by (3.5), in the following form:

(€9)
Tr(H by % ¢ ¢
T[C](H) —t(g) l_[ 4 (l'L )k[Sll 2 “skk]’
j=1 ] 1_[]—1
where

N

b4 L1414 Ui

(MN)k[S1 Sz skk] = Z Aillkizz "'Ai;i"

i1, =1

141 general, there are, at least, two approaches in the literature to deriving the SDEs for
matrix models: one is usually referred to as “integration by parts” or “invariance under change of
variable” which is basically the above-mentioned differential geometric approach; and the other
one is combinatorial and based on Tutte’s decomposition. The differential geometric approach
has the advantage that it can be applied to a slightly more general class of models, e.g., the
B-ensembles for arbitrary B > 0, which do not necessarily have a combinatorial interpretation.
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Foreach 1 < k < 2q, let

Te(H) = ~8 5, THY) + Y (N/0X ey (H),

[Cle€e
Bo(@C)=k
Let i (s1. .. ., sx) be the polynomial in {sj }j.c:l satisfying
@) [TicCsrs - 50)] = Te(H). (5.2)
Because of the symmetry of (fiy)¥, we can replace fk(sl, ...,Sk) with its sym-

metrization T (sq, ..., Sk), i.e.,

1 -
Ti(s1,....50) = o Z Tk (Sg(1)s - - - > So(k))

oeBy

in (5.2). We refer to the symmetric polynomials Ty (s1,...,5), 1 <k < 2q, as the
k-point interactions. We will need the following technical lemma on derivatives of T}
in the proof of SDEs.

Lemma 5.1. For each fixed element . of E = {/\i}lNzl, we have
~((7i )k —pin Nk=1p (1)
5 (AN [Tic (1,52, .- si)]) = k(an)" [T (A, 520 o si0)],

where
Tk(l)(sl,sz, coosSk) = 05, Tre(S1. 52, ..., Sk).

Proof. Let E = E\{i} Let
KI = {(X,az,...,ak) | a; € F?, vi},
and, foreach2 < r <k, let

A, = U {(X,az,...,ak)lami =X, Vi, anda; € E, | # m;}.

2<my<--<mp<k

We denote (An)*[Tk(s1,....5¢)] = Zﬁl,m’ikﬁ Ti(Aiys - -5 Aiy) by

> T,

AJ€EEK

Since Ty is a symmetric polynomial, we have

k
Y =) Tk(xz)+Z§ > Ti(a)

AJ€EK AreEk r=1 " el
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and
33 (Te(p) = rTP () YAz € Ay,

Thus, we get

k
8 Y. TG =kY_ > 170

Aj€EK r=1,,eh,
=k Y. TP0A. -

AjeEk—1

We rewrite the measure dp = e~$(P) dD over #y in the following form:

2g

_ [P

dp = e 5PV dD = exp ( D BN TG ,sk)l) dH.
k=1~

By the Weyl integration formula, the measure dp induces a measure dg, given by

Vol(Uy)

45 = ey =),
C= NN TN

2g 1 N
A(X)? exp (Z 7 ) TG sk)]) [Tdh, 63

k=1 i=1

on the space RY of eigenvalues of Hermitian matrices. In (5.3), A(A) denotes the
Vandermonde determinant, i.e.,

AM= [T -l

1<i<j<N

N—N2
andcey =272 .°

Let
Q =TV cRrY, (5.4

where I' C R is a strict e-enlargement of the support I" of the large-N spectral distri-
bution u, ie., I' C T°, and f‘\F has small Lebesgue measure. We assume that if we
replace dg with

do=1gdo

in the definition of the partition function and the correlators, then they get modified in
terms of exponential decay as N — oo.

'5Tn addition, the term Vol(U ) is the volume of the unitary group U with respect to the
Riemannian volume form corresponding to the induced metric on U, from the inner product
(A, B) = Tr(AB™*) on the ambient vector space M (C).
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Theorem 5.2. For any x, (Xj)ies € (C\f' , the rank n Schwinger—Dyson equation for
the connected correlators of the model (up to the boundary term) is given by

W1 (X, %, x1) + Y Wigpe1 (x, X)) War 1y (x, x0\)
JcI

A& Wa1 (8. x1\piy)
+Z¢5A 2mi (x — £)(x; — £)2

iel
K]

kdg, |06, Tl &)
+Z 2 95[1] }(i—kml(x—sf)EW'KI'*M'@KI"W

k=1 KF[1,k]
Jiu- LIJ[K] 1

=0, (5.5)

where I ={1,2,...,n—1}, n =1, and Cf" is a closed counter-clockwise-oriented
contour in an s-tubular neighborhood of T which encloses T.

Proof. Let {7; }"1;} be a sequence of parameters. Consider the random variables X;,
j=1,...,n—1,given by

Yoo
=ij_)ti, XJEC\F

i=1

Let P7 be the probability measure on RY defined by

1 n—1
Epz[f] = - Tij)]IEp|:feXp (; rjxj)},

where f € Co(R¥), and

1
dP = oll] do.
We denote the joint cumulants (resp., moments) of {X; }; —, with respect to the prob-
ability measure P* by W, (x1. ..., x,) (resp., W, (x1, ..., x;)).
Consider the Riemannian manifold RY with the Euclidean metric and the Rie-

N
da =[] dx:.

i=1

mannian volume form

Let  be the compact subset of RY given by (5.4). Consider the smooth vector field

Moo
=) —

ligi’ X € C\f‘,
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where €;,i = 1,..., N, denote the standard constant unit vector fields on R¥. By
considering the invariance of

s (Eo)| - fon (80515 ) o

i=1

under the flow of the vector field V', one gets the rank n Schwinger—Dyson equation
for the connected correlators W, (x, x1, ..., Xp—1).
We rewrite Z}; in the following form:

e _ 1
Zh = o /ﬂmp(x) A,

where (1) = anzl Ym(A) is given by

n—1 N 1
n oo (X 15))
i i

j=1 i=1

2g 1 N
Wz(l):eXP(ZE > Tk(xil,...,xik)),

k=1 i1,nig=1

and

vs) = [ 1-xl

I<i#j<N

By (5.1), the invariance of Z I?V under the flow of V' is equivalent to

3
Ep: [ 2—:1 % + div(V)} =0, (5.6)

up to the boundary term.'°
Using the Cauchy integral formula, the term dvr, (V')/¥ can be expressed in the
following way:'”

d\/fl(V)
Z Z (x — A )(xj —Ai)?

j=1 i=1
N
Sod (e (Seh)

16Since we are considering the case in which I' C f"’, i.e., both edges of T are soft, the
boundary term is of exponential decay as N — oo (see [7]).

17Strictly speaking, we should assume that x and x;’s are not in an &-tubular neighborhood
of T so that the function 1 /((x — £)(x; — £)?) is holomorphic on that neighborhood of r.
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By interchanging the integration on R" with the contour integral, we get

dyn (V) Wi (&)
E[ ] Z 9§Azm<x—s>(x, 6 67

Considering Lemma 5.1, we have

(d Z Tk(/\,l,...,/\,-k))(V)

I yeees ir=1

N 1 N
=ky — > TGl

i=1 Y tsesdi—1=1

k
dé&, | 0g, T (81, - -, Ek)

=k 2 1

) [ [ty (3 )

where the integration is a k-times iterated contour integral along Cp. Thus, using
(4.7), we have

Ay (V
(5
S ! d&, [0g, T (51, ... 6k) ~3
=1¢2::1(k_1)!9§cﬁ |:r=1_[12ni:| x—§& Wi, ... 6k)
< (K]

-> > ¢

k=1K+H[1,k] €T

k
d§, | 0g, Tk (61, &) -
|:H i| (Sk —kl)'l(x - gk) H Wk, Gk (58

r=1
By similar steps, we get

E,. [d%EV)

] = W5 (x.2) + (W () + B (W () (5.9)

and )
Epz [div(V)] = —0x (W[ (x)). (5.10)

By substituting (5.7), (5.8), (5.9), and (5.10) into (5.6), we get

WE(E)

W (x, x) + (W (x)) +Z ¢ 2mi (x — &) (xi — )2

iel

ko dg ] 06 Ter. . &)
+Z Z 95 [n ](i_kl),l(x_;)l_[ |K,|(€1<,)—0 (5.11)

k=1KF[1,k] r=1
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where I = {1,2,...,n — 1}. Considering the definition of joint cumulant, for given
finite subsets L; C N,i =1,..., £, of N, we have

L L
a%h:o(l_[ Wi,-(&,»)) = > T WeirGr.x).

i=1 Jiu-uJe=I i=1
Therefore, by taking the derivative 0;|;_, of each term of (5.11), we get (5.5). |

The system of Schwinger—Dyson equations is not closed in the sense that, for
each n = 1, the rank n SDE gives an expression for W, (x1,...,x,) in terms of
W (x1,...,x)’s with | <r <max{n + 1, n + 2g — 1}. However, we will see that
they are “asymptotically” closed as N — oo, and we can solve them to find the coef-
ficients Wy ,(x1,...,x,) of the large N expansion of the correlators.

Foreachl < k <2gandh = 0,let Ty, (s, . . ., Sx) be the symmetric polynomial
in {s; };;1 satisfying

- Tr(H?)
(AN [Thac(s1. - .. 50)] = =8p,08k.1 S T > Tic)(H),
[Clee
Bo(0C)=k, g(C)=h
where g(C') denotes the genus of a surface C. The k-point interactions Ty (1, ..., Sk)
of the model can be rewritten in the following form:

Ti(s1,ovs0) = D N/ H Thp(srn o osp), (5.12)
h=0

where the summation includes finitely many terms. Considering (5.12) and (4.4), for
eachn > 1, g = 0, the rank n Schwinger—Dyson equation to order N 328" gives

Wetnm1 (. x.x)+ Y Wrrp1 (0 X)) We fnmi gy (x. x170)
JCI, 0<f<g

d§ We n—1(5. x1\(iy)
+ Zf]gf 27 (x — E)(x; —&)?

iel

k d,
DYDY > ¢ T
1<k<2g  KH[1,k] 0= f1,- JIK] r r=1

osh Ji U--uJig1=1 h+k—[K1+Y; fi=¢g

3, Tn i (€. .. &) K
8 [ 2{ f’ifl(x — ;I)C) lljl Wi, ki 1+17:1 Gk, » xf,-)}} =0. (5.13)

Before continuing, we introduce the following notations which are used in this
article. Let V' C X be an open subset of a Riemann surface X. We denote by O, O,
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M, €2, and Q the sheaves on X defined by

*  O(V) = holomorphic functions on V/,

e O*(V) = multiplicative group of nonzero holomorphic functions on V,
*  M(V) = meromorphic functions on V/,

e Q(V) = holomorphic 1-forms on V,

*  Q(V) = meromorphic 1-forms on V,

respectively.

6. Spectral curve

We start by analyzing the rank one Schwinger—-Dyson equation to leading order in NV,
i.e., equation (5.13) forn = 1 and g = 0, given by

2 k k
Woa) + 3 {1‘[ j—fﬂ} e TouCr 8 Ty 6 = 0. 61
k=1"%T Lr=1

X _%_1 r=1

Recall that
(0)

Toa®) = —2VE) = 38 + 3 Logl

LEeRqisk
where V(§) is given by (2.2), and
(0

1 L e
ToaEm =5 D L@+, (62)
(Elan)EBC)IIinder 172

We fix a simply connected open neighborhood U C C such that I' C U. Consider the
following integral operator, called the master operator [4],

01© =52 h REMSdn 0:00U\D) — O,

with the kernel
R(E,n) = 0:T0.2(8,m).

We rewrite (6.1) in the following form:

(Wo1(x))? +g§: 496 6=, 63)

r2mix —§

where

Q&) = (0:To,1(§)) + OWp,1(8).
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Since Wy,1(x) € O(C\I'), using (4.12) and (4.11), we have

gﬁ & @) = e =g§ B 1 (6) = Qo
Cr

27i t—oo 270

where
my = /sz(p(s) ds, £=>1,

denotes the moments of the large-N spectral distribution p = @(s) ds, and Qg is
given by (4.10). Thus, the polynomial Q () can be expressed in terms of nig’s in the
following way:

0®) =+ ) g

LeLqisk

1 m m
b T @[] e
(4 1 9Z2)€8cylindcr 2 1

Considering Wy 1(§) = O(1/§) as § — oo, we rewrite the contour integral in (6.3) as

dE 0® ,, . _ f & 0= (0 - 0)
9§Cr2_7TiX—$WO’1($)_9§Cr2_7Ti o Wo,1(8)
= 0o = TE ALOIw. 6 ©),
where
alg)n. ) = L =20

denotes the noncommutative derivative, aka “finite difference quotient”, of Q (). The
polynomial

P(x) = —gﬁc & A0 ) Wo )

2mi

has the following expression in terms of 1,’s:

{—2
Px)=1- Z t%o) Z My_n_p X"

LeLaisk n=0

l1—2
1 © | W
Y Z A 0, Z wy—pp X"
n=0

([l ;e2)€2cylinder

Therefore, we have proved the following proposition.
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Proposition 6.1. For the random matrix geometries of type (1, 0) with the distribution
dp = e3P dD, the Stieltjes transform Wo.1(x) of the large-N spectral distribution
W = @(s)ds of the model satisfies the following quadratic algebraic equation:

>+ Q(x)y + P(x) =0,

where the polynomials Q(x) and P(x) are given by (6.4) and (6.5), respectively. The
coefficients of Q(x) and P(x) depend on the Boltzmann weights téo) and the moments
wiy of the large-N spectral distribution L.

Let the interval I' = [a, b] C R and the open neighborhood U C C, " C U, be
the same as the above-mentioned ones. We recall the Joukowski map x : C\{0} — C

a+b b-—a 1
x(z) = 5 + 2 Z—i—;.

given by

Denote by T and D the unit circle and the open unit disk in C, respectively. The
preimage x~}(U\I") of U\T" under the Joukowski map x has two connected com-
ponents V¢ ¢ C\D and V! C D, whose common boundary is the unit circle T (see
Figure 1). The exterior neighborhood V¢ is mapped to the interior neighborhood V'
under¢: z > 1/z.

By Proposition 6.1 and Lemma 4.2, the function Wy ;(x) € O(U\I') can be ex-
pressed in the following way:

2Wo,1(x) = —Q(x) + M(x) v/ (x —a)(x — b), (6.6)

where M(x) € O*(U),and I" = [a, b] C R is the support of the large-N spectral dis-
tribution p. Let Wy 1(x(z)) be the pullback of Wy 1(x) € O(U\T") under the biholo-
morphism x|ye : V¢ — U\T. Since

JEE —0GE) b = E);“(z— %)

considering (6.6), the function W 1 (x(z)) has an analytic continuation to
V=x'U)=VeuV urT,

which is denoted by Wy 1 (x(z)) € O(V).
Consider the open neighborhood Y = ]D)\W of the point z = 0. The Riemann
surface
¥ =CPh\T,

which is homeomorphic to a disk, is called the spectral curve of the model. Let

x:X > CP!, xeM(D),
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Figure 1. Illustration of the Joukowski map in the case where the boundary of U is an ellipse
with the foci x = a and x = b. The open neighborhoods U, V¢, and V' are colored green,
brown, and yellow, respectively.

be the restriction of the Joukowski map to X. The map x|y : V C ¥ — U is a two-
sheeted ramified covering map with the ramification points

R={z=1,z=-1},

and the branch points x = a, x = b. In addition, the spectral curve X is equipped
with a local biholomorphic involution

V-V

z1/z,

which satisfies x ot = Xx.

Using the Schwinger—Dyson equations (5.13) recursively, it can be shown [20]
that each Wy ,(x, xy) for fixed (x;);c; € C\TI', initially defined as a holomorphic
function on C\I', has a meromorphic continuation Wg ,(x(z1), x7) € M(X) to X. By
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doing the same process for the other arguments x;, i €1, of W ,,(x(z1), X1, ..., Xp—1),
one gets a meromorphic function Wy ,(x(z1), ..., x(z,)) on X",

Let Ky — X be the canonical line bundle, i.e., the holomorphic cotangent bundle,
on the spectral curve X. Denote by 7; : ¥" — X the projection map onto the i-th
component. Let

KB = (n}Ks) ® - ® (1} K¥x)

be the n-times external tensor product of Ky, where ni* Ky denotes the pullback of
Ky, under ;. The sections of the holomorphic line bundle K %n — X" are referred to
as the differentials of degree n over ¥". A differential of degree n is called symmetric
if it is invariant under the natural action of the symmetric group &, on the line bundle
K& — 3n,

In the theory of (blobbed) topological recursion [4, 6,21], one constructs mero-
morphic symmetric differentials

Wen(Z1,.. . 2n) = Wen(x(z1),...,x(zp))dx(z1) dx(z2) -+ - dx(z,)
+ 8g,05n,2§0(211 22) (67)
of degree n from the meromorphic functions Wy ,,(x(z1), ..., x(2z,)), where dx(z;)

denotes the pullback 7" (dx) of the 1-form dx under ; : ¥" — X. In (6.7), the bid-
ifferential, i.e., differential of degree two,

dx(z1) dx(z2)
[x(z1) — x(22)]

is the pullback of the fundamental symmetric bidifferential of the second kind with
biresidue 1 over CP! x CP1,'8 e,

Bo(z1.22) = (6.8)

dx1 dX2
Bo(x1.x2) = ——,
(X1 — x2)?

under the map (x,x): ¥ x ¥ — CP! x CP!. A couple (g,n) is called stable if
2-2g—n<0ie,(g.n) #(0,1),(0,2).

18For a Torelli marked closed Riemann surface X of genus g > 0, the fundamental symmet-
ric bidifferential B(p, ¢) of the second kind with biresidue 1 over X2 (also referred to as the
Bergman kernel, in some references) is uniquely characterized by the following conditions (see,
e.g., [23,30,31] for details):

(]
« Be HO(X2 KX2(2A)) °, and Bires|o B = 1, where A C X2 denotes the diagonal divi-
SOT.

* For each p € X, the 1-form B(p,-) has vanishing a; -periods, where {a;, b; }le is the sym-
plectic basis of Hy(X, Z) specifying the Torelli making of X.
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Before continuing, we introduce several operators in the following which are used
in our investigation of the differentials wg ,(z1,...,z,). Denote by £ and P_ the
orthogonal idempotents corresponding to the involution ¢ : V' — V, given by

1 1
Py = 5(]1 +:*) and £P_= 5(]1 —), 6.9

respectively, where ¢* denotes the pullback under ¢. Let
Pr =294 (6.10)

The domain of the operators #1 can be M(V') or Q(V'), depending on the context
which they are used in. For a fixed ¢ > 0, consider the closed counter-clockwise-
oriented contour

y={zeC|lz|=1+¢e}C V"

Denote by F C Q(V) the subspace of meromorphic 1-forms on V C % which do not
have poles on y. Denote by Qi (V) (resp., O (V)) the subspace of holomorphic
1-forms (resp., functions) on V' C X which are invariant under the involution ¢*. Let
To,2(x(2),x(¢)), z, ¢ € V, be the pullback of Ty (&, n) under the map

(x,x): VxV—->UxU.

Consider the following integral operator:
~ 1 ~ ~ A
O¢(z) = 2—¢ Rz, 0)¢p(), O :F— Qn(V), (6.11)
mi J,
with the kernel
ﬁ(z, ) =d; Top(x(2),x(0) e I'(V xV,Q K 0O),

where d, denotes the exterior derivative operator acting on the first argument. The
operator (@ is closely related to the master operator () in the sense that, for each fixed
z; € "1 we have

(DWg»n(x(Z)vxl) dx = @wg’n(Z,Z]),

where O Wy ,,(x(2), -)€0iny (V') denotes the pullback of O Wy ,,(x,-) under x : V —U.

7. Fundamental bidifferential w2 (z, ¢)

As the next step, we investigate the large-N spectral covariance Wo,2(x1, x2) of the
model. Fix { € T\ V. Denote by Wy 2(x(z), x({)), z € X, the meromorphic contin-
uation of the pullback of Wy »(x1, x2) under the biholomorphism x|pe : V¢ — U\I'
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to X. From the definition of W 2(x1, x2), we see that the possible singularities of the
function Wy 2(x(z), x(¢)) can only occur in

RUVI C X

To investigate poles of Wy 2(x(z), x({)), we consider the rank two Schwinger—Dyson
equation to leading order in NV, i.e., equation (5.13) for (g,n) = (0, 2), given by

Aot ozt x2)+ 9§c o o —V?;’(lg)— BE

+ §6Cr Zd_yfixl l_g([aéTo,l(f) + OWo,1(§)|Wo,2(8, x2) + [@WO,Z(EXZ)]WO,I(E))

-0, (7.1)

for x; € U\T, and fixed x, € C\I'. We rewrite (7.1) in the following form:
— [2Wo,1(x1) + 0x, To,1(x1) + OWo 1 (x1) | Wo2(x1. x2)

Wo 1(x1) — Wy 1(x
= [OWo 2 (1. x2)]Wo,y (1) + axZ( 0.1( ;3 - x20,1( )

) + Pop(x1,x2), (7.2)

where Py (x1,+) € O(U). By (6.6), the function
2Wo,1(x(2)) + 0xTo,1(x(2)) + OWo,1(x(2))

has a simple zero at the ramification points J. Therefore, considering equation (7.2),
Wo2(x(z), x(¢)) has a simple pole at .
By considering (7.2) as x; — s £ ig, s € I'°, it can be shown [4] that

1
lim [Wo,z(s—Hs, x2)+Wo,2(s—is,xz)]+(9W0’2(s,xz)—|—— =0 Vsel®°
e—0t (s—x2)2
(7.3)

Using the identity theorem for holomorphic functions and the Riemann’s removable
singularities theorem, we deduce from (7.3) that

P Woa((2).5(0) + OWoa(x(2).x(0) + =z =0 (1

forall z € V C X. Considering (7.4), we get the following equation:

P1@02(2.0) + O@o2(2.0) + Bo(2.0) = 0, (1.5)
for the bidifferential

@0,2(2,8) = Wo,2(x(2), x(£)) dx(z) dx(£),

where By(z, ¢) is given by (6.8).
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Consider the function
Fe(z) = Wo2(x(2), x(£)x"(2)x"(9),
where x'(z) = d,x(z). We have
B02(z.0) = Fe(z)dz dt.

In the remaining part of this section, we consider the following set of assumptions and
derive an explicit expression for F¢(z).

Hypothesis 7.1. (i) For each fixed ¢ € C\D, the function F¢(z) has a meromorphic
continuation to the whole CP!.

(i1) The support T" of the large-N spectral distribution p of the model is of the
formT = [-b,b] C R."

To get an explicit expression for the meromorphic function F¢(z), z € CP!, we
find the principal part of the germ of F¢(z) at its poles on CPP! and then analyze
the corresponding Mittag—Leffler problem. More precisely, we consider the following
long exact sequence of Cech cohomology groups:

0— H°(CP!,0) - H°(CP!, M) - H°(CP!, M/0) - HY(CP',0) — --- .
It is well known that
H°(CP!',0)=C and HY(CP',0)=0.
Therefore, given a section f € H°(CP!, M/0), there exists a meromorphic function
f e HY(CP!, M),

unique up to a constant, whose local singular behavior is given by f .

The meromorphic function F¢(z) does not have any poles in CP"\D because
the simple zeros of x’(z) at the ramification points $ cancel out the simple poles of
Wo,2(x(2),x(£)). We use (7.5) to analyze the possible poles of F¢(z) in ID. Rewrite
the function 7y 2(&, n), given by (6.2), in the following form:

d—1 d—k
Toa(E.m) =) &* ( Ve.m n'"), (7.6)
k=1 1

m=

9QOur approach for analyzing the function F(z) has a straightforward extension to the gen-
eral case of I' = [a, b] C R. However, the computational part becomes more cumbersome.
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where each vg ,, is a linear combination of the Boltzmann weights tﬁ?) . £1,4,) €
'gcylinder- ‘We have

- 1 d—1 1 k—1
Odpa(z.0) = (1 — 2_2) k; i (£) (z + ;) dzde, (71.7)

where, foreach 1 <k <d — 1,

k - k+m "
l6) = 5 3 Ve (B/2) $(r+1) moa

Considering (7.5) and (7.7), we get the following equation satisfied by F¢(z) on
C\{0}:

1 1)< 1\ X' (2)x'(§)
Fe(z) = Z—ZFZ(L(Z)) - |:(1 - 2—2) I;bk(f)(z + ;) } T —xOF
(7.8)
We recall the following basic fact from the theory of projective connections on
Riemann surfaces (see, e.g., [31]). Let D C C be an open neighborhood of a point

peC.Let f be abiholomorphism on D. Consider the holomorphic function Ef (v, w)
on D x D given by

f@fw
ORNIO.

Let) = v — p,and W = w — p. By expanding Er (v, w) as a series in ¥ and W, one
gets

Er(v,w) = w € D.

S w)
@)= f@PE ~ - w)?

as U, w — 0, where

(S p) + ), (7.9)

" ” 2
sHo - L @)_;(f(m)

f'py 2\ f"(p)

is called the Schwarzian derivative of f, and H(0, W) is a sum of terms in ¥ and
of strictly positive degree.

Considering (7.8), the function F¢(z) has a pole of order two at z = ¢({). Using
(7.9), we have

L YEYEQ) YO YY)
K@ —x@OF = @) xE) —xCQP

o (1
= wmn‘p—wm2+0m)
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as z — ¢(£). Thus, the principal part of the germ of F¢(z) at z = (({) is given by
B x'(0) . 1 _ 1
Xe@) F-uF @z

In addition, by (7.8), the function F¢(z) has a pole at z=0. Since Wy 2(x(z), x({))
has a zero of order 2 at z = oo, the term F¢(t(z))/z2, in (7.8), is regular at z = 0.

01(z,0) = (7.10)

Therefore, the principal part of the germ of F¢(z) at z = 0 is the same as the principal
part of the Laurent polynomial

_[(1_;);§bk<g>(z+;)"”}

-1, © (51
k
Q2(2.0) = _Z k1 Z ckrz,
k=1 r=0

2r—k (k
Chkr = . Nk

By the Mittag—Leffler theorem, we have

Fe(2) = 01(2.0) + Q2(z.O) +¢()). ¢(§) € HY(CP',0).

and is given by

where

Since the function F¢(z) has a zero of order two at z = 00, the constant function ¢ ({)
should be equal to zero. To get an explicit expression for F¢(z) in terms of z, ¢, it
suffices to find by (£)’s, as a function of £, explicitly. Note that each by (¢) is a linear
combination of the Fourier coefficients

ay () = ng Fe(2) dz, neZ,

2ri J, znt1

of the restriction of F¢(z) to y. Considering the degree of the Laurent polynomial
0>(z,0),itsufficesto findonly X; =a—;—1({),1<i <d — 1.Foreach1 <i <d — 1,
the identity

a-i—1(¢) = ﬁ% [01(2.0) + Qa(2.0)]7" dz
Y

leads to a linear equation of the following form satisfied by the x;’s:
d—1 .
o
> Cixj = s
j=1

where the coefficients C;; depend only on b, and tgl)) 0 (£1,42) € Beylinder-
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We assume that the given values to the Boltzmann weights tg)) (or, equivalently,
the formal parameters «,,, 3 < n < d) of the model are such that the above-mentioned
matrix (C;;) is invertible. Hence, we get the explicit expression of

F(z,0) = 01(2.0) + 02(2.9) (7.11)

in terms of z, ¢, which depends on the support I' = [—b, b] of the large-N spectral
(

distribution u, and the Boltzmann weights te(l)), 0 (£1,42) € eylinder- Since the func-
tion
Wo,2(x(2), x(£)x"(2)x() (7.12)
is symmetric on its initial domain of definition (E\W) X (E\W), the function F(z,¢),
given by (7.11), gives, indeed, the presumed meromorphic continuation of (7.12) to
CP! x CPP'.?Y From now on, we consider the restriction of F(z,¢) to ¥ x X.
The bidifferential

@o2(2.8) = F(z.8)dzd¢

over ¥ x X has only a pole of order 2 at
A={(p.up)|peVCITyCcExz.

Considering (7.10), the singular behavior of @ »(z, ¢) at A is as follows:
X© (
X\ [z =)
In addition, the polar divisor of the bidifferential
dx(z)dx(¢)
[x(2) = x (O]

002(2,8) = + 0(1)) dzd¢, asz—1(0).

§0(27 ;) =

over ¥ X X is given by 2A + 2A, where
A:{(p,p)|peE}CExE

denotes the diagonal divisor. The singular behavior of B (z,¢) at A and A is given
by

Bo(z,¢) = ( + 0(1)) dzdf, asz— ¢,

[z - ¢P?

20For the classical formal 1-Hermitian matrix models, in the one-cut regime, the meromor-
phic continuation of (7.12) to CP! x CP! is given by Q(z, ¢), and it is universal in the sense
that it does not depend on the formal parameters of the model (see [20, Section 3.2.1]).
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and

L*(dé)(
dg \[z =P

respectively. Therefore, the symmetric bidifferential

Bo(z,0) = + 0(1)) dzd¢, asz— u(0),

w0,2(2,8) = Bo2(2,¢) + Bo(2, ) (7.13)

has only a pole of order 2 at A, and its singular behavior is given by

wo2(z,8) = ([z—{]z +0(1)) dzd¢, asz— (.
Succinctly,
wo2(z.¢) € H (22, KE2(2A))®? (7.14)
and
Bires|awo,2(z,¢) = 1. (7.15)

8. Local Cauchy kernel

Let V be the simply connected domain which one gets by cutting the neighbor-
hood V C ¥ along a radial line {z = re'? | r € Ry, fixed 8}. Fix po € V. Consid-
ering (7.14) and (7.15), one gets a local Cauchy kernel

¢
G(z.0) = f 002(2,7)
V4

0
by integrating the 1-form wp 2 (-, 7) on 1% [6]. We have

G(z,0) e T(T x V,Q K O(A))

and

G(z,0) = (ﬁ + 0(1)) dz, asz —C. 8.1)

Denote by [¢], € Qp/2), the image of the germ of a meromorphic 1-form ¢ €
Q(Z) at a point p € X under the projection map 7, : Q, — Q,/2,. Denote the set
of poles of a meromorphic 1-form ¢ € Q(X) by B(¢). Let F € Q(V) be the subspace
of meromorphic 1-forms which have finitely many poles on V' C X. Consider the
operator KX : F — Q(X) given by

1
K = Res G(z, = — G(z, . (8.2
06) = T Res Gle.09(0) 2mp§9|§;_p|=a .09 (0) )
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Note that, for each ¢ € F, a point p € V contributes to the summation in (8.2) iff
P € B(¢). In addition, by (8.1), we have

[Kl, = [#], VpeB(Ke¢)=P(). (8.3)

We use the same notation K to denote the operator ry y K : F— ﬁ, where

ray QX)) = Q)
is the restriction map. By (8.3), we have

1 - X)(F) c Q).
Therefore, X : F — Fis an idempotent operator, and we have the decomposition

F=X(F) & (1 - X)F).
Consider the operator K :F>F given by

Kp@z)=) Res G(z,1(0)g ().

pevV
The following simple lemma will be used several times later.

Lemma 8.1. The operator K : F — F can be decomposed as
1 ~ 1 ~
K = E(K + K)P+ + E(JC — K)P_,

where the orthogonal idempotents Py : F — F. are given by (6.9).

Proof. We rewrite the operator KX in the following form:
1 ~ ~
K = 5[(J< + K) + (K — K)|[P+ + P-].
Since K = K*, we have
(K £ K)P+ =0. n

In the remaining part of this section, we try to explain some elementary aspects
of the blobbed topological recursion formula, which will be discussed in the next
section, in a simpler setup. Consider the operator

T=P,4+0, T:F>oW),

where the operators f+ and O are given by (6.10) and (6.11), respectively. Let
P C V be a fixed finite set of points in V' C X such that P Ny = @. Suppose we
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are given a set of germs s; € Qp, /2, at the points p; € P,i = 1,...,|P|,and an (-
invariant holomorphic 1-form ¢ € Qj,, (V). Denoteby E C H°(XZ, Kx) the subspace
of holomorphic 1-forms 77 on ¥ whose restriction to V' C X satisfies the homogeneous
equation

TH=0, 7nekE.
Let A C Q(X) be the set of meromorphic 1-forms ¢ on X whose restrictionto V C X
satisfies the inhomogeneous equation

To=19y, ¢cA, (8.4)
and their singularities satisfy
Blp) =P (8.5)
and
(@), =i € 9, /Qp; Vpi €P. (8.6)

The set A C Q(X) is an affine space over the vector space E. In the following, we
investigate the space A.
The operator K maps the space A to the meromorphic 1-form ¢y € Q(X), given
by
%@ﬁ=§j§56mo&@, (8.7)

piEP

where each §; € Q,, is a representative of s; € Qp, /Q2,., Vp; € P. Using (8.4), we
get
Prp € Qin(V) Vo €A (8.8)

Thus, by Lemma 8.1, we have

¢o= K¢ = %(JC ~K)P_p V¢ eA. (8.9)
Proposition 8.2. The restriction of the 1-form ¢g € Q(X) to V C X satisfies

T¢o = 0.
Proof. Considering (7.5) and (7.13), since Qi (V) C ker(@), we have
Two2(2.) = Bo(z.9).
for each fixed ¢ € V. Thus,
TG(z,0) = Go(z,0), (8.10)

where

dx(z)

R O]
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is the pullback of the canonical Cauchy kernel xdey over CP! under the map
(x,x): T x X - CP!' xCP!.
Consider the operator K : F— Q(X) given by

Kop(2) = ) Res Go(z.0)p(0).

peV

By (8.10), we have
TK =Ko (8.11)

on the subspace F = Fn Fc Q) of meromorphic 1-forms which have finitely
many poles on V' C X, and their poles are not on the contour y.
Let A = rx,y(A). Considering (8.9) and (8.11), it suffices to show that

A C ker(Ky). (8.12)

By decomposing the operator K in the same way as in Lemma 8.1, using (8.8), we
get

Ko = 3(Ko— Ko)P-p Ve

On the other hand, we have K, = K, because @0(2, 0 = (A?O(Z,L(g“)). Thus, we
get (8.12). [ ]

Let
Ap=(1-X)A) c H*(Z,Kx)

be the image of A under the operator 1 — K. Considering Proposition 8.2, the space
Ay, consists of holomorphic 1-forms 7 on X whose restriction to V' C X satisfies

Tn=1v, neA.
Therefore, A, is an affine subspace of H°(Z, Kx) over the vector space E.

Lemma 8.3. The holomorphic 1-form
1
) = 5= P GOV &.13)
1 Jax

is an element of the affine subspace A, C H°(Z, Kx),”' where the boundary % of
the spectral curve X is assumed to have the induced orientation from X; i.e., it is
clockwise oriented.

2I'We assume that G(-, £) and ¥ (¢) have a continuous extension to V C X.
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Proof. By (8.10), the restriction of ng to V' C X satisfies

Tin) = ~52 $_Golz. OV ).

In addition, we have

36

2 ~ 1 ~ 1 A
3 B G OVO = 52 GoC.ov @+ 5o GOy )

= Res Go(z, )y ({) + Res Go(z, D)y ()
=z t=u(z)
= -2y (2)
for each z € V' C X. Therefore, we get

Tno=1v.

Lemma 8.4. In general, the subspace E C H°(Z, Kx) is non-trivial, and its dimen-

sion depends on the given values to the Boltzmann weights téo) (or, equivalently, the

Sformal parameters oy, 3 < n < d) of the model.

Proof. For simplicity, we give a proof in the case where the support I of the large-
N spectral distribution p of the model is of the form I' = [—b, b] C R. Consider a

holomorphic 1-form 57 = f(z) dz € E. We have
o0

fe =Yy =

n=2

where :
ey = — 95 f(@)z" M dz, n=2,
271 ¥

are the Fourier coefficients of the restriction of f to y. Since
T7=0, onV CZX,

considering (7.6), we get

1 (1 1) 428 1\t
f(Z)_Z_Zf(;)—i_(l_z_Z)Zbk(z—’_E) =0,
k=1
onV C X, where, foreach1 <k <d —1,

ko . 1"
by = 2—711,”2::1 vk,m(b/2)kJr 9% (r + ;) f(r)dr.

(8.14)

(8.15)
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By substituting (8.14) into (8.15), we get d — 1 linear equations of the form

d—1
> Cijx; =0,
=1

satisfied by x; = a—;—1, 1 <i < d — 1, where the coefficients C;; depend only on b,
and t?])), t,» (€1, £2) € cytinder- Thus, the dimension of the subspace E C H 0%(Z,Kyx)
equals the dimension of the kernel of the matrix (C;;). |

Considering Proposition 8.2 and Lemmas 8.3 and 8.4, in general, a 1-form ¢ € A
can be written as

¢=d¢o+mno+7
for some 7 € E. From now on, we consider the following assumption.

Hypothesis 8.5. The given values to the Boltzmann weights tg)) (o1, equivalently,
the formal parameters oy, 3 < n < d) of the model are such that the subspace E C
HY(Z, Kx) of global holomorphic I-forms 7, whose restriction to V C X satisfies
the homogeneous equation

Tn=0,

is trivial.
Therefore, a 1-form ¢ € Q(X), satisfying (8.4)—(8.6), is uniquely given by
¢ = ¢o + no.

where the 1-forms ¢ and 7 are defined by (8.7) and (8.13), respectively.

9. Blobbed topological recursion formula

In this section, we show that all the stable coefficients W, (X1, ..., X,) of the large
N expansion of the correlators of our model can be computed recursively using the
blobbed topological recursion formula [4]. In the following, without further explicit
mention, a couple (g, n) is assumed to be stable, i.e., (g, n) # (0, 1), (0, 2).

Let f(x) € O(C\I') be a holomorphic function on C\I" with a jump discontinuity
on I'. We denote by 1 (s) and o f(s) the functions given by

8f(s) = 1ir(1)1+[f(s +1ie)— f(s—1ig)], seT°CR

and
of(s) = lir51+[f(s—|—i£)+f(s—is)], s eI'° CR,
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respectively. Using the rank n Schwinger-Dyson equation to order N37287" given
by (5.13),as x — s e, s € I'°, we get

SWO,I(S){UWg,n(S,xI) + OWg,n(val) + ang,n(S;xI)}
+ §Wen(s, x1){oWo,1(s) + OWo,1(s) + 35To,1(s)}
1
+ ;(SWg,n—l(saxI\{i}){UWO,Z(S’xi) + (9W0,2(Saxi) + m}

+ > SWr1s141(8, X0 We g n1 51 (5, X1\ 7)
JCI,0<S f<g
(J,)#(2,0),(1,8),
I\{i}.g)
+ OWe g 1108, X1\7) + 05V f.n—171(8: X1\ 1)}
+ 8524051 We—1,n41(5.8.x1) + OWg 1, nr1(5. 5. x7) + 05 Vg1, nt1(s35.x1)}
=0, ©.1)

where &2 (resp., 05,1) means that the operator § (resp., o) is acting on the second
(resp., first) argument. In (9.1), the functions Vy ,(x;xy), called the potentials for
higher topologies [4],% are given by

. ) dgr
Ven(x;x1) = 8g.26n,112,1(x) + Z Z é H 27i
r r=2

2<k<2g KH[2.k]
0<h 0= f1,e- f1K]
h+(k—-1)—[K]+Y; fi=¢g

Jiu--uJig=1

(K]
Thi(x,62,...,8)
) { e | KACTERCEAN ©-2)

: i=1

Let Vg »(z; zr) be the differential of degree n — 1 over £” given by

Ven(2:21) = Ven(x(2): x(z0) [ [ dx ().
iel
Consider the differential
d:Ven(z:21) = [0x()Ven (x(2): x(z1)) ] dx(2) [ [ dx(zi)
iel

of degree n over ¥". From now on, we consider a fixed z; € X", The restriction of
the exact 1-form

dzVen(z:21) = [0x(z) Ve (x(2): x(z1)) ] dx(2)

22We consider a slightly modified version of Equation (4.13) in [4] to get (9.2).
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to V' C Xisin Qi (V). Using (9.1), by induction on 2g + n — 2, it can be shown [4]
that each 1-form wg ,(z, z1) satisfies

T(Ug,n (z,z1) = _dzvg,n (z;z1)

onV C X.
By recasting the Schwinger—Dyson equations, one can show [4] that

wg a1z 2D+ Y. op1(E20) g p o)), 200)
JCI,0<f<g

= Qgn(z:21), 9.3)

where Qg ,(z; zr) is a local holomorphic quadratic differential, i.e., a local section
of K?Z — X over V C X, with double zeros at the ramification points :. One can
rewrite (9.3) in the following form:

1 ~
?—wg,n (z,z1) = A—[gg,n(zv 1(z):zr) + CQg,n (z ZI)], 9.4)
P_wo,1(2)

where

Egn(z,1(2);21) = Wg—1,n+1(z,1(2), 21)

+ > o, 1714+1(2, 27)0g— £ n—1 7 (L(2). 21\ )
JCI,0<f<g
(,.))#.0), (Ig)

and

(Qg,n(Z;ZI) = j)-i-wg,n(Z,ZI)J)-i-wO,l(Z) - @g,n(z§ ZI)-

~

Considering (6.6), the zeros of the 1-from P_wq,1(z) in V' C X occur only at the
ramification points i, and their order is exactly two. Since the quadratic differential
Qg »(z;zr) has double zeros at R, the 1-form

1

A—ég,n(Z; ZI)
P_wo,1(2)

is holomorphic on V. Therefore, the singularities of wg ,(z, z7) in V are the same as
the 1-form

1

!P_a)o,l Z

8g,n(Z7 1(z);zp).

Using (9.4), by induction on 2g 4 n — 2, it can be shown that the poles of the 1-form
wg (2, zr) occur only at the ramification points R.
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Considering (9.4) and (8.9), we can use the local Cauchy kernel G(z, {) to con-
struct a meromorphic 1-form

Bonlz.2r) = (K~ ﬁ)[%eg,n(z, (o) 21)}
P_wo,1(z)

such that
Qg n(z:21) = wgn(z,21) — Dgn(z, 21)
is a holomorphic 1-form on %, satisfying
T Qg n(zizr) =—d;Veu(z;zr) onV C X.

The 1-form &, ,(z, zy) can be expressed in terms of the recursion kernel (see [6,21])

B 1 ff(-;-) wo,2(2,7) -1
KO = i@ —worey < Ex B2

in the following form:

Ben(z.21) = ) Res K(.0)Egn (€ 1(0):21). 9.5)

PER
Considering Lemma 8.3 and Hypothesis 8.5, the 1-form ®4 ,(z; zy) is uniquely given
by
1
cI)g,n(Z;ZI) = 2_ G(Z’g)df'vg,n(g;zl)
1 Joxy

1
=5 @0,2(2,8) Vg (& 21). 9.6)
71 Joxz

Note that, for each stable (g, n), the right-hand side of (9.5) and (9.6) involves only
Wg’ n' with

2¢' +n' —2<2g+n-2.
Therefore, we have the following theorem.

Theorem 9.1. For the random matrix geometries of type (1,0) with the distribution
dp = e—35(D) dD, all the stable wg n, 2g +n — 2 > 0, can be computed recursively,
using the blobbed topological recursion formula given by

1
Oen(z 1) = 5 w025V (Eizn)

+ 2 Res K. 0)En(6.1(2):2). ©.7)

PER
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The initial data for the recursion relation (9.7) is the 1-form wg 1(z) and the funda-
mental bidifferential wy »(z, {).
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