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Order-detection of slopes on the boundaries
of knot manifolds

Steven Boyer and Adam Clay

Abstract. Motivated by the L-space conjecture, we investigate various notions of order-detection
of slopes on knot manifolds. These notions are designed to characterise when rational homology
3-spheres, obtained by gluing compact manifolds along torus boundary components, have left-
orderable fundamental groups and when a Dehn filling of a knot manifold has a left-orderable
fundamental group. Our developments parallel the results by Hanselman et al. (2020) in the case
of Heegaard Floer slope detection and by Boyer et al. (2021) in the case of foliation slope detection,
leading to several conjectured structure theorems that connect relative Heegaard Floer homology
and the boundary behaviour of co-oriented taut foliations with the set of left-orders supported by the
fundamental group of a 3-manifold. The dynamics of the actions of 3-manifold groups on the real
line play a key role in our constructions and proofs. Our analysis leads to conjectured dynamical
constraints on such actions in the case where the underlying manifold is Floer simple.

1. Introduction

The background motivation for the work in this paper is the L-space conjecture, which
contends that a closed connected orientable irreducible 3-manifold is not an L-space if
and only if it admits a co-oriented taut foliation and if and only if it has a left-orderable
fundamental group; see [7, Conjecture 1] and [20, Conjecture 5]. The conjecture has
been verified in a number of situations, including all graph manifolds [4, 16], but remains
widely open.

A relative form of the conjecture, introduced in [4], was the key to analysing the graph
manifold case. The ideas involved are best illustrated by considering knot manifolds, i.e.,
compact connected orientable irreducible 3-manifoldsM ¤S1 �D2 with torus boundary.
Each type of structure onM (left-orders on its fundamental group, co-orientable taut foli-
ations, Heegaard Floer homology) determines boundary data (sets of detected slopes) that
encode the information needed to understand the behaviour of the structure with respect
to gluing another knot manifold or a solid torus to M . Consequently, slope detection
comes in three forms: order-detection, foliation-detection, and Heegaard Floer detection.
A fourth notion, representation-detection (referring to representations of the fundamental
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group of M with values in HomeoC.R/), was used in [4] to pass between left-orders and
foliations.

The ideas introduced in [4] readily extend from the Seifert fibred setting to general 3-
manifolds in the case of detection by foliations and Heegaard Floer homology [5, 17, 25],
but doing this for left-orders and representations requires a little more care. Here we focus
on order-detection, though remark that there is a parallel development of representation-
detection through the correspondence between orders on �1.M/ and actions of �1.M/

on the real line. This dynamical interpretation of left-orders is an essential ingredient in
the constructions leading to the proof of our main gluing theorem, Theorem 1.3. It also
suggests strong dynamical constraints on the fundamental groups of Floer simple knot
manifolds. Indeed, Conjecture 1.8 below can be rephrased to say that if M is a Floer
simple knot manifold, then an action of �1.M/ on the real line has a fixed point if and
only if the restriction of the action to �1.@M/ has a fixed point. See Section 6.

The initial difficulty in defining order-detection for general knot manifolds is that the
most immediate notion, and the one sufficient for the Seifert fibred case, is inadequate
in general. Nevertheless, this notion, which we call weak order-detection, is essential in
underpinning our development of the regular and strong forms.

The sets of weakly order-detected slopes, (regularly) order-detected slopes, and strong-
ly order-detected slopes on the boundary of a knot manifold M are denoted, respectively,
by Dwk

ord.M/, Dord.M/ and D str
ord.M/. We will see that

D str
ord.M/ � Dord.M/ � Dwk

ord.M/ � �.M/;

where �.M/ Š S1 denotes the set of slopes on @M , and that Dord.M/ and Dwk
ord.M/ are

closed subsets of �.M/, though D str
ord.M/ is not closed in general.

Weak order-detection has an intuitive foundation: every left-order on �1.M/ restricts
to the subgroup �1.@M/ yielding a left-order of Z ˚ Z � R2, and every such order
determines a line in the plane that divides the subgroup Z˚ Z into positive and negative
halves. The slope of this line is the boundary data carried by weak order-detection.

It turns out that this data alone is inadequate for the purpose of understanding when
a manifold, obtained by gluing together 3-manifolds along incompressible boundary tori,
has a left-orderable fundamental group; the necessary and sufficient conditions, developed
by Bludov and Glass for left-ordering an amalgam, require that the amalgamating iso-
morphism satisfies a certain conjugacy invariance with respect to families of left-orders on
each of the factors [2, Theorem A]. We address this by defining (regular) order-detection
as a strengthened form of weak order-detection which incorporates conjugacy invariance
of the boundary data. Though weak order-detection is a priori very different from order-
detection, our investigation suggests that they may be equivalent in the following sense.

Conjecture 1.1. If M is a knot manifold, then Dord.M/ D Dwk
ord.M/.

We are able to verify this conjecture in a special case.

Theorem 1.2. If Dwk
ord.M/ ¤ �.M/, then Dord.M/ D Dwk

ord.M/.
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Thus Conjecture 1.1 is reduced to proving that if Dwk
ord.M/ D �.M/, then

Dord.M/ D �.M/:

From here, we investigate the behaviour of order-detection with respect to gluing and
prove the following result, where it should be noted that we do not require that the identi-
fied slopes be rational.

Theorem 1.3. Suppose thatM1 andM2 are knot manifolds andW DM1

S
f M2, where

f W@M1
Š
�! @M2 identifies slopes Œ˛1� 2Dord.M1/ on @M1 and Œ˛2� 2Dord.M2/ on @M2.

Then �1.W / is left-orderable.

The utility of this theorem can be seen, for instance, in its use in the verification of the
L-space conjecture for graph manifolds [4], in the proof that toroidal integer homology
3-spheres have left-orderable fundamental groups [5], and in the proof that if a knot in the
3-sphere admits a surgery with non-left-orderable fundamental group, then either the knot
is cabled and the surgery is along the cabling slope or the JSJ graph of the exterior of K
is a rooted interval [6].

Theorem 1.3 leads to a characterisation of the order-detection of rational slopes that
mirrors an analogous result for the Heegaard Floer notion of slope detection proved in
[17, 25] (i.e., NLS-detection for “non-L-space” detection), and for the notion of foliation-
detection investigated in [5]. Here, we useN to denote the twisted I -bundle over the Klein
bottle with rational longitude �N .

Theorem 1.4. Suppose that M is boundary-irreducible, Œ˛� is a rational slope on @M ,
and f W @N ! @M is a homeomorphism which identifies Œ�N � with Œ˛�. Then Œ˛� is order-
detected if and only if �1.M

S
f N/ is left-orderable.

See Section 7.4 for generalisations of Theorems 1.3 and 1.4 to more general manifolds
and gluings, e.g., manifolds with multiple torus boundary components in the first case and
manifolds other than the twisted I -bundle over the Klein bottle in the second.

It is conjectured [5, Conjecture 2.13 and Remark 7.5] that the set of order-detected
slopes on the boundary of a knot manifold coincides with both the set of foliation-detected
slopes and the set of NLS-detected slopes. So, proceeding in analogy with the structure
theorems on NLS-detection found in [17, 25], we expect that Dord.M/ is a connected
subset of �.M/ whose end-points are rational slopes encoded by the Turaev torsion ofM .
Further, we expect the converse to Theorem 1.3 holds.

Conjecture 1.5. Suppose that M1 and M2 are knot manifolds and W D M1

S
f M2,

where f W@M1
Š
�!@M2. If �1.W / is left-orderable, then f identifies slopes Œ˛1�2Dord.M1/

on @M1 and Œ˛2� 2 Dord.M2/ on @M2.

We have verified this conjecture in some cases. Call a left-order o on the fundamental
group of a knot manifold M boundary-cofinal if �1.@M/ is not contained in any proper
o-convex subset of �1.M/. (See Section 2.) We show the following.
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Theorem 1.6. Suppose that M1 and M2 are knot manifolds such that every left-order
on �1.M1/ and on �1.M2/ is boundary-cofinal. Then W DM1

S
f M2 has a left-order-

able fundamental group if and only if f W @M1
Š
�! @M2 identifies slopes Œ˛1� 2 Dord.M1/

on @M1 and Œ˛2� 2 Dord.M2/ on @M2.

In one of the main results of the paper, we provide a sufficient condition for all left-
orders on �1.M/ to be boundary-cofinal.

Theorem 1.7. If there is a slope on @M which is not weakly order-detected, then each
o 2 LO.M/ is boundary-cofinal.

Guided by what is known in the Heegaard Floer situation [17,25], we expect that knot
manifolds M satisfying Dwk

ord.M/ ¤ �.M/ can be characterised as the family of Floer
simple knot manifolds. These are the knot manifolds M for which there are at least two
slopes in �.M/ which are not NLS-detected.

Conjecture 1.8. A knot manifold M is Floer simple if and only if

Dwk
ord.M/ ¤ �.M/

(and therefore each o 2 LO.M/ is boundary-cofinal).

As examples, L-space knot exteriors are known to be Floer simple, and among such
knots it is known that non-trivial torus knot exteriors have the property that Dwk

ord.M/ ¤

�.M/ and that the same is true for certain pretzel knots, twisted torus knots and cables
of such knots [4, 13, 14]. From Corollary 6.3, we know that the exteriors of the closures
of a 1-bridge braids [23], which are L-space knots, and .1; 1/ L-space knot exteriors [24]
provide further examples.

Lastly, we introduce a strong form of order-detection for slopes on the boundary of
a knot manifold M , defining it intrinsically in terms of relatively convex normal sub-
groups of �1.M/ and showing that it is essentially equivalent to the left-orderability of
the fundamental groups of the associated Dehn fillings.

Theorem 1.9. Suppose that Œ˛� is a rational slope on @M . Then Œ˛� 2 D str
ord.M/ if and

only if �1.M.˛// has a left-orderable quotient.

Since the fundamental group of an orientable irreducible 3-manifold is left-orderable
if it admits a left-orderable quotient [8, Theorem 1.1], we have the following corollary.

Corollary 1.10. Suppose that Œ˛� is a rational slope on @M . If �1.M.˛// is left-orderable,
then Œ˛� is strongly order-detected. Conversely, if Œ˛� is strongly order-detected andM.˛/
is irreducible, then �1.M.˛// is left-orderable.

We remark that there are at most three reducible Dehn fillings of an irreducible knot
manifold [15], so strong order-detection does indeed give an accurate picture of which
fundamental groups of manifolds obtained via Dehn filling are left-orderable.
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1.1. Organisation of the paper

We review some basic notions and properties of left-ordered groups in Section 2 and the
construction of the dynamic realisation of a left-order on a countable group in Section 3,
including a discussion of the family of left-orders obtained from the associated action
on the real line. Section 4 contains background material on slopes and left-orderable
3-manifold groups. The notions of weak order-detection, (regular) order-detection, and
strong order-detection are developed in Sections 5, 7, and 8, respectively. Section 6 trans-
lates the order-theoretic notion of boundary-cofinality into a condition on actions on the
real line.

2. Left-orderable groups

In this section, we review some basic notions and properties of left-ordered groups.

2.1. Generalities

A left-order o on a non-trivial group G can be defined by a total order <o on G that is
invariant under left multiplication, or by a semigroup P.o/ � G satisfying G D P.o/ t
¹1º t P.o/�1. (Here we use A�1 to denote ¹g�1 j g 2 Aº for a subset A � G.) One
can see the equivalence of these notions by noting that P.o/ D ¹g 2 G j 1 <o gº � G,
the positive cone of o, satisfies G D P.o/ t ¹1º t P.o/�1. Conversely, any semigroup
S � G such that G D S t ¹1º t S�1 determines a left-order o and its corresponding left-
invariant total order <o of G according to g <o h if and only if g�1h 2 S . A group is
called left-orderable if it is non-trivial and admits a left-order.

Let o be a left-order on a group G. An o-convex subset of G is a subset A � G such
that if k; h 2 A and g 2 G satisfy k <o g <o h, then g 2 A. For h; k 2 G, we define
o-convex subsets .h; k/, Œh; k�, .h;1/, etc. in the usual way.

The o-convex hull of a subset A of G is

C.A/ D ¹g 2 G j there are a1; a2 2 A such that a1 �o g �o a2º:

We say that a subset A ofG is o-cofinal if its o-convex hull is all ofG, and call an element
g 2 G o-cofinal if the cyclic subgroup hgi � G is o-cofinal. We will often say “cofinal”
or “convex hull” for short when the left-order o is understood.

The set of left-orders on a group G is denoted by LO.G/. Endowing LO.G/ with
the Sikora topology [27] yields a compact Hausdorff totally disconnected space which is
metrisable when G is countable. Setting

P.g � o/ D gP.o/g�1

determines an action of G on LO.G/ by homeomorphisms.



S. Boyer and A. Clay 6

A normal family of left-orders onG is aG-invariant subset N of LO.G/. For instance,
the orbit

O.o/ D ¹g � o j g 2 Gº � LO.G/

of o 2 LO.G/ is a normal family, as is its closure O.o/ in LO.G/.
There is a continuous involution on LO.G/ given by taking opposites: For o 2 LO.G/,

oop is the left-order defined by

g <oop h , h <o g:

Equivalently,
P.oop/ D P.o/�1:

2.2. Left-orders on Z2

A key example for us is the caseG DZ2. The basic properties of positive cones imply that
given a left-ordering o of Z2, there is a line L.o/�H1.Z2IR/D Z2˝RŠR2 uniquely
determined by the fact that all elements of Z2 which lie to one side of it are o-positive
and all elements lying to the other side are o-negative. (See [11, Lemma 3.3].) We say that
L.o/ has rational slope ifL0DL.o/\Z2ŠZ, in which caseL0 is o-convex. Otherwise,
we say that it has irrational slope.

Each line L in R2 through .0; 0/ is realised as L.o/ for some o 2 LO.Z2/. Further,
there are exactly two orders realising L when it has an irrational slope and four when it
has a rational slope. More precisely, suppose that L D L.o/. If

• L has irrational slope, ¹o; oopº are the two left-orders on Z2 which realise L;

• L has rational slope and L0 D L \ Z2 Š Z, let o� 2 LO.Z2/ be defined by´
o�jL0 D .ojL0/

op;

P.o�/ n L0 D P.o/ n L0;

then ¹o; oop; o�; .o�/opº are the four left-orders on Z2 which realise L.
For every o 2 LO.Z2/, the set of o-cofinal elements is precisely Z2 n L.o/.

2.3. Convex subgroups

If o is a left-order on a group G, it is straightforward to show that a subgroup C � G
is o-convex if and only if the inequality 1 <o g <o h for g 2 G and h 2 C implies that
g 2 C . Similarly, C is o-convex if and only if the inequality h <o g <o 1 for g 2 G and
h 2 C implies that g 2 C .

The convexity condition has some immediate consequences:

• proper convex subgroups C of G are of infinite index, because if g 62 C , then gn 62 C
for all non-zero integers n;

• proper convex subgroups C of G are o-bounded, because if g 2 P.o/ n C , then C �
Œg�1; g�;
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• the set of o-convex subgroups of a group G is linearly ordered by inclusion, because
if C , D are o-convex and d 2 P.o/ \ .D n C/, then C � Œd�1; d � � D.

Lemma 2.1. Let C be a subgroup of a group G with left-order o.

(1) If C is o-convex, then P.o/ n C is a union of right C -cosets.

(2) C is o-convex if and only if P.o/ n C is a union of left C -cosets.

Proof. First suppose that C is o-convex. If g 2 P.o/ nC and c 2 C , then cg >o 1 as oth-
erwise 1 <o g <o c

�1 so that g 2 C , contrary to our choices. Similarly, gc >o 1 as
otherwise c <o g

�1 <o 1, which would imply g 2 C . Then both Cg and gC are con-
tained in P.o/ n C , which proves (1) and the forward direction of (2).

For the reverse direction of (2), suppose that P.o/ n C is a union of left C -cosets and
that 1 <o g <o c, where g 2 G and c 2 C . If g 62 C , then

gC � P.o/ n C and g�1C D .g�1c/C � P.o/ n C:

But then g; g�1 2 P.o/, which is impossible. Thus g 2 C and therefore C is o-convex,
which completes the proof.

Consequently, we have the following assertion.

Proposition 2.2. Suppose that o1 2 LO.G/ and C is o1-convex.

(1) If o2 2 LO.G/ and P.o1/ n C D P.o2/ n C , then C is o2-convex.

(2) If o0 2 LO.C /, then P.o0/ t
�
P.o1/ n C

�
is the positive cone of a left-order

on G.

Definition 2.3. Let G be a group and o1; o2 2 LO.G/. If C is a proper o1-convex sub-
group of G and P.o1/ n C D P.o2/ n C , we say that o1 is convexly related to o2 and
that o1 and o2 differ by a convex swap.

Since the set of o-convex subgroups of a group G is linearly ordered by inclusion,
Proposition 2.2 implies that being convexly related is an equivalence relation.

It also follows from Lemma 2.1 that if g <h, gC ¤ hC and c1; c2 2C , then gc1<hc2.
To see this, note that g�1h 2 P n C so that g�1h lies in a right coset of C consisting
entirely of positive elements, whence c�11 g�1h is positive. Similarly, since c�11 g�1h 2

P n C and P n C is a union of left C -cosets, we arrive at 1 < c�11 g�1hc2 and so
gc1 < hc2. We therefore obtain the following standard result.

Proposition 2.4 ([21, Proposition 2.1.3]). Suppose that o 2 LO.G/ and C is o-convex.
Then o induces a (left) G-invariant total order o on G=C as follows:

gC <o hC if and only if g�1h 62 C and g <o h:

The following proposition can be seen as a converse to Proposition 2.4.
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Proposition 2.5 ([21, Corollary 5.1.4]). Suppose that a non-trivial groupG acts by order-
preserving permutations on a totally ordered set .E;<E /. Fix x 2 E and let Stab.x/ � G
be the stabiliser of x. Given a left-order o0 on Stab.x/, there is a left-order ox on G
extending o0 given by

g1 <ox g2 if and only if

´
1 <o0 g

�1
1 g2 when g�11 g2 2 Stab.x/;

g1 � x <E g2 � x when g�11 g2 62 Stab.x/:

Further, if g1; g2 2G then g1 �ox g2 implies that g1 � x �E g2 � x. Consequently, Stab.x/
is ox-convex.

Definition 2.6. A subgroup C � G is relatively convex if there exists an ordering o of G
such that C is o-convex.

Since relatively convex subgroups of G are closed under taking roots, not all sub-
groups of all left-orderable groups have this property. Conversely, a non-trivial left-order-
able group that admits no proper, relatively convex subgroup must be an abelian group of
rank one [21, Proposition 5.1.9].

Proposition 2.7 ([21, Proposition 5.1.10]). Suppose thatG is a left-orderable group. Then
an arbitrary intersection of relatively convex subgroups of G is relatively convex.

3. Dynamic realisations and associated left-orders

Throughout this section, we take G ¤ ¹1º to be a countable group endowed with a left-
order o. We review the construction of the dynamic realisation of the pair .G; o/ and
analyse the families of left-orders obtained from the associated action on the real line.

3.1. Tight embeddings of left-orderable groups

An o-gap in G is a pair of elements h; k 2 G such that h < k and .h; k/ D ;.
Consider an order-preserving embedding t W .G; 1/! .R; 0/ which is tight: if �1 �

a < b �1 and the open interval .a; b/ is contained in R n t .G/, then there is a gap ¹h; kº
in G such that

.a; b/ � .t.h/; t.k//:

In other words, the only gaps in t .G/ � R are ones which come from o-gaps in G.
Tight embeddings exist; the standard order-preserving embedding of G into R (cf. [12,
p. 29, §2.4]) is tight. They are also well defined up to composition with an element of
HomeoC.R/ (cf. Section 3.2). It is an immediate consequence of the definition that tight
embeddings are unbounded above and below.

Partition the real line into three subsets

R D t .G/ t .t.G/ n t .G// t .R n t .G//:
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We refer to the points of t .G/ n t .G/ as ideal points of o. It follows from the definition of
a tight embedding that

• each ideal point of o is both a right limit point and left limit point of t .G/;

• the gaps in G correspond bijectively to the components of R n t .G/ under the map
which identifies a gap ¹h; kº with the interval .t.h/; t.k//.

These properties are useful in supplying the details of the construction of a dynamic real-
isation of the pair .G; o/ below.

3.2. Dynamic realisations

Given a tight embedding t WG ! R, there is an associated action of G on R:

• Begin with the free action of G on the subspace t .G/ of R: g � t .g0/ D t .gg0/. The
tightness of t implies that the action on t .G/ is by homeomorphisms.

• Extend the action over the closure t .G/ of t .G/: If g 2 G and ¹t .gn/º is a conver-
gent sequence of elements of t .G/, the tightness of t guarantees that ¹t .ggn/º is also
a convergent sequence. The correspondence

g � lim
n
t .gn/ D lim

n
t .ggn/

determines an action of G on t .G/ by homeomorphisms.

• Extend the homeomorphism of t .G/ determined by g 2 G to R n t .G/ by convex
interpolation: First note that the components of R n t .G/ are open intervals whose
endpoints are elements of t .G/. Therefore, if .x; y/ is a component of R n t .G/ with
x; y 2 t .G/, we may define

g � ..1 � s/x C sy/ D .1 � s/.g � x/C s.g � y/;

where 0 � s � 1. This extension determines a homeomorphism �o.g/ of R and the
correspondence

�oW G ! Homeo.R/

is a homomorphism. Since G acts freely on t .G/, the action is faithful and since
the left action of G on t .G/ is R-order-preserving, the image of �o is contained in
HomeoC.R/. Further, since

g <o h , �o.g/.0/ D t .g/ < t.h/ D �o.h/.0/;

�o determines o by considering the orbit of 0.

The fact that t .G/ is unbounded above and below implies that there is no x 2 R which is
fixed by every element of G. In other words, the action has no global fixed points. Such
an action is called non-trivial.

The representation �oWG!HomeoC.R/ depends only on the embedding t . Further, if
t 0W .G;1/! .R; 0/ is another tight embedding, the method used to construct �o can be used
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to show that the correspondence t .G/! t 0.G/, t .g/ 7! t 0.g/, extends to an orientation-
preserving homeomorphism f of the real line in such a way that if �0oWG ! HomeoC.R/
is the homomorphism associated to t 0, then �0o D f ı �o ı f

�1. Thus �o is well defined
up to conjugation in HomeoC.R/.

Summarising, we have the following proposition.

Proposition 3.1. Given a countable group G with left-order o 2 LO.G/, there is a faith-
ful representation �oWG ! HomeoC.R/, well-defined up to conjugation in HomeoC.R/,
which induces a non-trivial action of G on R. Further, �o determines o via

g <o h, �o.g/.0/ < �o.h/.0/:

The representation �oWG ! HomeoC.R/ is referred to as the dynamic realisation
of .G; o/.

3.3. Left-orders associated to dynamic realisations

We noted in Proposition 3.1 that a left-order o 2 LO.G/ is determined by the natural order
on the orbit of 0 under the dynamic realisation �o of o. Here we show how the orbit of
each x 2 R under �o determines a convexly related family of left-orders Ox .

For x 2 R we denote the stabiliser ¹g 2 G j �o.g/.x/ D xº of x under the �o-action
by Stab�o.x/.

Lemma 3.2. If x 2 R, then Stab�o.x/ ¤ ¹1º implies that x is an ideal point of o.

Proof. It is clear that if x 2 t .G/, then Stab�o.x/ D ¹1º. If, on the other hand, x is con-
tained in a gap .t.g/; t.h// of o, then by construction any k 2 Stab�o.x/ is the identity on
.t.g/; t.h//. In particular, k 2 Stab�o.t.g// D ¹1º, which completes the proof.

The restriction of o to Stab�o.x/ determines a left-order ox 2 LO.G/ (cf. Proposi-
tion 2.5) with respect to which Stab�o.x/ is convex. Further, each orbit

O�o.x/ D ¹�o.g/.x/ j g 2 Gº � R

is a left G-set canonically identifiable with the cosets Ex WD G= Stab�o.x/ under the
map g Stab�o.x/ 7! �o.g/.x/. It is easy to see that this identification also takes the total
order ox on Ex given by Proposition 2.4 to the natural order on O�o.x/ coming from R.

Definition 3.3. Let Ox denote the set of left-orders on G obtained, vis-a-vis Proposi-
tion 2.5, from the action of G on Ex equipped with its natural total order ox and a choice
of left-order on Stab�o.x/.

Proposition 2.5 shows that Stab�o.x/ is o-convex for each o 2Ox and so it is a family
of convexly related left-orders. Further, Ox always contains the left-order ox determined
by the orders ojStab�o .x/

and ox . If Stab�o.x/ is trivial, for instance if x is not an ideal
point of o, then Ox D ¹oxº. However, if Stab�o.x/ is non-trivial, then Ox is uncountable
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unless Stab�o.x/ is a so-called “Tararin group” [21, Theorem 5.2.1], in which case it has
order 2n for some n > 0. Proposition 2.5 shows that for any o0x 2 Ox ,

g �o0x h ) �o.g/.x/ � �o.h/.x/

with equality on the right-hand side if and only if g�1h 2 Stab�o.x/, so whether or not
g �o0x h holds is determined by the chosen ordering of Stab�o.x/.

Proposition 3.4. Let o 2 LO.G/ and let �o be an associated dynamic realisation.

(1) If x 2 R is not an ideal point of o with respect to �o, then Ox D ¹oxº � O.o/.

(2) If x 2 R is an ideal point of o, then Ox \O.o/ ¤ ;.

We divide the proof of Proposition 3.4 into three lemmas. The first proves part (1) of
the proposition.

Lemma 3.5. (1) For each g 2 G, ot.g/ D g � o.

(2) If x 2 .t.g/; t.h//, where ¹g; hº is a gap of o, then ox D g � o.

Proof. (1) Since the stabiliser of t .g/ is trivial, we have 1 <ot.g/ h if and only if t .g/ <
�o.h/.t.g//D t .hg/. The latter holds if and only if g <o hg, or equivalently, 1 <o g

�1hg.
Thus P.ot.g// D gP.o/g�1, which completes the proof.

(2) The orbit of .t.g/; t.h// under G is ¹.t.kg/; t.kh// j k 2 Gº, a family of disjoint
open intervals in obvious bijection with G whose union is R n t .G/. It is easy to see that
ox D ot.g/, so the result follows from (1).

Recall that the power set ¹0; 1ºX of any set X can be topologised by equipping
¹0; 1º with the discrete topology, and ¹0; 1ºX with the resulting product topology. This
makes ¹0; 1ºX into a compact Hausdorff totally disconnected space. In the resulting topo-
logy, a sequence of subsets ¹Snº of X converges to S � X if for every finite F � X
there exists n 2 N such that S \ F D Sn0 \ F for all n0 � n. The Sikora topology on
LO.G/ is obtained by identifying LO.G/ with its image under the embedding LO.G/!
¹0; 1ºG ; o 7! P.o/.

Lemma 3.6. Suppose that x is an ideal point of o, and let ¹gnº be a sequence of elements
of G such that limn t .gn/ D x. Then

P.ox/ n Stab�o.x/ D lim
n
P.ot.gn// n Stab�o.x/:

Proof. Let g 2 G n Stab�o.x/ and observe that as´
g <ox 1) �o.g/.x/ < x;

g >ox 1) �o.g/.x/ > x;

there is an integer n.g/ > 0 such that if n � n.g/, then´
g <ox 1) �o.g/.t.gn// < t.gn/ and therefore g <ogn 1;

g >ox 1) �o.g/.t.gn// > t.gn/ and therefore g >ogn 1:



S. Boyer and A. Clay 12

Fix a finite generating set of G, and let Bj be the ball of radius j in G in the associated
word metric. If n0 D max¹n.g/ j g 2 Bj n Stab�o.x/º, then for n � n0 we have

Bj \ .P.ox/ n Stab�o.x// D Bj \ .P.ot.gn// n Stab�o.x//;

which proves the lemma.

Part (2) of Proposition 3.4 is contained in the next lemma.

Lemma 3.7. Suppose that x is an ideal point of o. Then Ox \O.o/ ¤ ;.

Proof. Let ¹gnº be a sequence of elements of G such that limn t .gn/ D x. Since LO.G/
is a compact metric space, we can choose a subsequence ¹gnj º such that ¹ot.gnj /º con-
verges to a left-order yo 2 LO.G/. Then limj P.ot.gnj //D P.yo/ and therefore Lemma 3.6
implies that

P.yo/ n Stab�o.x/ D P.ox/ n Stab�o.x/:

It follows that yo and ox differ by a convex swap on Stab�o.x/, so yo 2 Ox . On the other
hand, Lemma 3.5 (1) shows that yo D limj ot.gnj / D limj gnj � o, so yo 2 O.o/.

4. 3-manifolds, their groups, and left-orderability

4.1. Prime and JSJ decompositions

Recall that every compact connected orientable 3-manifold M other than S3 can be
expressed as a connected sum of prime manifolds

M ŠM1 ] � � � ]Mn;

and correspondingly, �1.M/ D �1.M1/ � � � � � �1.Mn/. Assuming that @M contains no
2-sphere components, �1.Mi /¤ ¹1º for each i and therefore the fundamental group ofM
is left-orderable if and only if each �1.Mi / is left-orderable [29]. Observe that if Mi is
reducible for some i , then �1.Mi / Š Z and so �1.Mi / is left-orderable in this case;
therefore, the question of left-ordering �1.M/ for an arbitrary 3-manifold M reduces to
considering only the fundamental groups of irreducible 3-manifolds. In this case, a key
tool is the following result.

Theorem 4.1 ([8, Theorem 3.2]). Suppose that M is a compact connected orientable
irreducible 3-manifold. Then �1.M/ is left-orderable if and only if there exists a surjection
�1.M/! L onto a left-orderable group L.

Note that, as a corollary, if M is a compact connected orientable irreducible 3-man-
ifold with @M a union of tori, an Euler characteristic argument shows that b1.M/ > 0,
so there exists a surjection �1.M/! Z and thus �1.M/ is left-orderable [8, Lemma 3.5].
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We use this fact as follows. If M is orientable, irreducible and closed, the JSJ decom-
position of M provides a unique (up to isotopy) minimal collection T of embedded dis-
joint incompressible tori such that M n T consists of pieces M1; : : : ;Mn, where each Mi

is either Seifert fibred or atoroidal. This decomposition allows one to realise �1.M/ as the
fundamental group of a graph of groups whose vertex groups are �1.M1/; : : : ; �1.Mn/

and whose edge groups are �1.T / Š Z˚ Z, where T ranges over all tori in the collec-
tion T .

By our observations above, if M contains essential tori, then �1.M/ is thus express-
ible as a fundamental group of a graph of groups, all of whose edge groups and vertex
groups are left-orderable. As no obstruction to left-orderability arises from considering
these groups independently, the key to understanding left-orderability of �1.M/ therefore
lies in an analysis of the gluing maps used to reassemble M from the pieces Mi , and the
behaviour of the left-orderings of each �1.Mi / restricted to the components of @Mi with
respect to these gluing maps. Such an analysis has already been completed in the case
where all Mi are Seifert fibred [4]. The analysis of the general case occupies much of the
remainder of the manuscript.

4.2. Slopes

A slope on the boundary of a knot manifold M (cf. Section 1) is an element Œ˛� of the
projective space ofH1.@M IR/, where ˛ 2H1.@M IR/ n ¹0º. We use �.M/ to denote the
set of slopes on @M topologised in the usual way, so that �.M/Š S1. The subset �rat.M/

of rational slopes consists of those slopes represented by non-zero elements ofH1.@M/.1

Rational slopes can be identified as either

• a˙-pair of primitive elements of H1.@M/ � �1.@M/;

• a @M -isotopy class of essential simple closed curves on @M .

To each rational slope Œ˛� on @M or, more generally, on a torus boundary component T
of a 3-manifold W , we can associate the ˛-Dehn filling of W given by W.˛/ D W

S
f

.S1 �D2/, where f W @.S1 �D2/! T is a homeomorphism for which f .¹�º � @D2/ is
a simple closed curve of slope Œ˛�. A standard argument shows that W.˛/ is independent
of the choice of f up to a homeomorphism which is the identity on the complement inW
of a collar neighbourhood of T .

5. Weak order-detection of slopes

For the remainder of the paper, we take M to be a knot manifold unless otherwise indic-
ated. That is, M is a compact connected orientable irreducible boundary incompress-
ible 3-manifold such that @M is a torus. As the first Betti number of an M is at least 1,
Theorem 4.1 implies that �1.M/ is left-orderable.

1Integer coefficients are to be understood when no others are specified.
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We assume that the base points x0 of our fundamental groups lie on @M , though we
shall suppress them from our notation. For simplicity we denote the space of left-orders
LO.�1.M// by LO.M/.

5.1. Weak order-detection

If we think of H1.@M/ as a lattice in H1.@M IR/ D H1.@M/˝ R, it is easy to see that
every left-ordering o of �1.M/ determines a line in H1.@M IR/: The basic properties of
positive cones imply that there is a line L.o/ � H1.@M IR/ uniquely determined by the
fact that the elements ofH1.@M/D �1.@M/ which lie to one side of it are o-positive, and
those lying to the other side are o-negative (cf. Section 2.2). We denote the slope of this
line by ŒL.o/� 2 �.M/, and it follows from a straightforward check that the slope function

sW LO.M/! �.M/ Š S1; s.o/ D ŒL.o/�;

is continuous [10, Chapter 6].

Definition 5.1. A slope Œ˛� on @M is weakly order-detected if there is some o 2 LO.M/

such that ŒL.o/� D Œ˛�.

Set
Dwk

ord.M/ D ¹Œ˛� 2 �.M/ j Œ˛� is weakly order-detectedº

and observe that, as Dwk
ord.M/ is the image of the compact space LO.M/ under the con-

tinuous map s, it is closed in �.M/.

5.2. Weak order-detection and convexity

It follows from the discussion in Section 2.2 that a rational slope Œ˛� is weakly order-
detected if and only if there is a left-order o 2 LO.M/ such that ŒL.o/� \ �1.@M/ is
oj�1.@M/-convex. Our next result shows that we can define the weak order-detection of
a rational slope in terms of relatively convex subgroups of �1.M/.

Proposition 5.2. If a rational slope Œ˛� is weakly order-detected, then there is a relatively
convex subgroup C of �1.M/ such that C \ �1.@M/ D h˛i. Indeed, if Œ˛� D ŒL.o/� for
some o2 LO.M/, there are a left-order o0 2O.o/ and an o0-convex subgroupC of �1.M/

such that C \ �1.@M/ D h˛i.

Proof. Suppose that Œ˛� is weakly order-detected by o 2 LO.M/ and let t W�1.M/! R
be an o-tight order-preserving embedding and �oW�1.M/! HomeoC.R/ be the associ-
ated dynamic realisation of o, as constructed in Section 3.2. Since Œ˛� is o-detected, h˛i is
oj�1.@M/-convex. Hence it is oj�1.@M/-bounded (above and below) in �1.@M/ (cf. Sec-
tion 2.3), and therefore o-bounded in �1.M/. Thus the closure of the convex hull of t .h˛i/
is a closed interval Œx0; x1�, where x0 < 0 < x1. It is clear that x1 2 Fix�o.˛/, and so it
follows from Lemma 3.2 that x1 is an ideal point of o. Thus,

Œx0; x1� \ t .�1.@M// D t .h˛i/:
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If ˇ 2 �1.@M/ n h˛i, then the oj�1.@M/-convexity of h˛i implies that for all integers n,m,

• ˇ˛n <o ˛
m when ˇ <o 1, and

• ˛m <o ˇ˛
n when 1 <o ˇ.

Thus either �.ˇ/.Œx0; x1�/ � .�1; x0� or �.ˇ/.Œx0; x1�/ � Œx1;1/. In either case,
�.ˇ/.x1/ D x1 is impossible, so Stab�o.x1/ \ �1.@M/ D h˛i.

Recall the family Ox1 of left-orders associated to o and its ideal point x1, as defined
in Section 3.3. By construction, C D Stab�o.x1/ is convex with respect to each left-order
in Ox1 . Further, by Lemma 3.7 there is a left-order o0 2 O.o/\Ox1 . Then C is o0-convex
and C \ �1.@M/ D h˛i, which completes the proof.

The set of weakly order-detected slopes can be proper in �.M/, for instance, this is
often the case when M is Seifert fibred, but in this case �1.@M/ is never contained in
a relatively convex proper subgroup of �1.M/, as the following proposition will show.

Proposition 5.3. Suppose that o is a left-order on �1.M/ for which �1.@M/ is contained
in a proper o-convex subgroup C of �1.M/. Then Dwk

ord.M/ D �.M/. More precisely,
there is a family F of left-orders on �1.M/ whose positive cones differ only on C such
that for each slope ˛ on @M there is a left-order o˛ 2 F on �1.M/ which weakly
detects Œ˛�.

Proof. Since C has infinite index in �1.M/, the cover W ! M such that �1.W / D C
is non-compact. By construction, @M lifts to a torus T � @W . We divide the proof into
a series of claims.

Claim 1. The set Z of rational slopes ˇ on @M D T such that the image of the homo-
morphism H1.T /! H1.W.ˇ// is zero is a discrete subset of �.M/.

Proof. Consider the inclusion i WT ! W . Suppose that the homomorphism H1.T IQ/!
H1.W IQ/ it induces is zero. Then there is a compact W0 � W containing T such that
H1.T IQ/! H1.W0IQ/ is zero. But in this case, we can attach compact 3-manifolds
to W0 along @W0 n T to create a compact orientable 3-manifold W1 with boundary T for
which H1.T IQ/! H1.W1IQ/ is zero, which is impossible [18, Lemma 3.5]. Thus the
image of H1.T IQ/! H1.W IQ/ is at least Q.

If the image of H1.T IQ/! H1.W IQ/ is Q2, then for each primitive ˇ 2 H1.T /,
the image of H1.T IQ/ in H1.W.ˇ/IQ/ has dimension 1, so that Z D ; and the claim
holds.

If the image of H1.T IQ/ ! H1.W IQ/ is Q, the kernel of H1.T / ! H1.W IQ/
is a summand of rank 1. Fix a primitive element 
0 2 H1.T / spanning this kernel, and
let 
1 2 H1.T / be a primitive element dual to 
0. Then if i�WH1.T /! H1.W / is the
inclusion-induced homomorphism, i�.
1/ has infinite order in H1.W /. It follows that for
a primitive element ˇ of H1.T /, the order of 
1 in H1.W.ˇ// is a non-zero multiple of
�.ˇ; 
0/ D jˇ � 
0j. In particular, H1.W.ˇ// is non-trivial if �.ˇ; 
0/ ¤ 1. It follows
that Z is contained in ¹Œ
1 C n
0� j n 2 Zº, which is a discrete subset of �.M/.
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Let Z� be the union of Z and the set of rational slopes Œ˛� on T such that W.˛/ is
reducible. Gordon and Luecke have shown that there are at most three rational slopes of
the latter type [15], so Z� is a nowhere dense subset of �.M/. Hence �rat.T / n Z

� is
dense in �.M/.

Claim 2. If Œ˛� is a rational slope on T not contained in Z�, then �1.W.˛// is infinite
and torsion-free.

Proof. Since Œ˛� 62 Z�, W.˛/ is irreducible. Further, Claim 1 shows that �1.W.˛// ¤ 1,
and so as an irreducible, non-compact 3-manifold has a torsion-free fundamental group,
the conclusion of Claim 2 holds [1, p. 48, Justifications (C.1) and (C.3)].

Claim 3. If Œ˛� is a rational slope on T not contained in Z�, then the image of �1.T / in
�1.W.˛// is infinite cyclic.

Proof. On the one hand, the inclusion-induced homomorphism �1.T /! �1.W.˛// fac-
tors through �1.T /=h˛i Š Z, so its image is a cyclic group. On the other hand, we saw
in the proof of Claim 1 that the image H1.T /! H1.W.˛// is non-zero when Œ˛� 62 Z,
so Claim 2 shows that the image of �1.T / in �1.W.˛// is infinite cyclic.

Claim 4. If Œ˛� is a rational slope on T not contained in Z�, then �1.W.˛// is left-
orderable.

Proof. We will show that �1.W.˛// is locally indicable, hence left-orderable by the
Burns–Hale theorem [9]. To that end, letH be a non-trivial finitely generated subgroup of
�1.W.˛// and V ! W.˛/ be the associated cover.

If V ! W.˛/ is a finite cover, then �1.W.˛// is finitely generated. We claim that at
least one boundary component of a compact core N of the non-compact manifold W.˛/
has genus 1 or more. Otherwise, each is a 2-sphere, so the irreducibility of W.˛/ couples
with the non-triviality of its fundamental group to show that each boundary component
of N bounds a 3-ball contained in W.˛/ n int.N /, which is impossible as it would imply
that W.˛/ is compact. It follows that the first Betti number of N , and hence W.˛/, is
positive [8, Lemma 3.5], so the same is true of any of its finite degree covers. In particular,
there is a surjection H D �1.V /! Z.

On the other hand, if V !W.˛/ is an infinite degree cover, an argument of Howie and
Short shows that the first Betti number of V is positive (cf. the proof of [8, Theorem 1.1]).
Thus �1.W.˛// is locally indicable.

Now we can complete the proof of the proposition.
Given ˛ 2 �rat.T / nZ

�, the exact sequence

1! hh˛iiC ! C ! C=hh˛iiC D �1.W.˛//! 1

determines a left-order oC on C for which hh˛iiC is a proper convex subgroup. Claim 3
shows that hh˛iiC \ �1.T / D h˛i, and therefore h˛i is a proper oC j�1.@M/-convex sub-
group of �1.@M/�C . Proposition 2.2 then shows thatP.oC /t

�
P.o/ nC

�
is the positive
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cone of a left-order on �1.M/which weakly order-detects Œ˛�. It follows that �rat.T / nZ
�

is contained in the image of the map LO.M/! �.M/;o 7! ŒL.o/�. Since this map is con-
tinuous and LO.M/ is compact, density of �rat.T / nZ

� in �.M/ yields the result.

A bi-order on a non-trivial group G is a total order on G that is invariant under both
left multiplication and right multiplication.

Our next two corollaries show how one can use epimorphisms and bi-orders to satisfy
the convexity condition required in Proposition 5.3.

Corollary 5.4. Suppose that 'W�1.M/! G is an epimorphism. Then Dwk
ord.M/D �.M/

if either of the following two conditions holds:

(1) �1.@M/ � kernel.'/ and G is left-orderable;

(2) �1.@M/ \ kernel.'/ D ¹1º and G is bi-orderable.

Proof. In each case, it suffices to show that �1.@M/ is contained in a relatively convex
proper subgroup of �1.M/ by Proposition 5.3.

In the case of assertion (1) of the corollary, the left-orderability of �1.M/ and that
of G combines with Proposition 2.5 to show that kernel.'/ is relatively convex, so the
claim follows.

For (2), first note that if G is abelian, then every bi-order of '.�1.@M// Š Z ˚ Z
extends to a bi-order of G [26, Theorem 4], so every slope is weakly detected by applying
Proposition 2.5.

On the other hand, if G is nonabelian, then fix a left-order on �1.M/ and let o be
a bi-order on G. If Zg denotes the centraliser of any element g 2 G, then '�1.Zg/ is the
stabiliser in �1.M/ of g under the o-preserving action g 7! '.
/g'.
/�1 of �1.M/ onG.
Since �1.M/ is left-orderable, so is the subgroup '�1.Zg/, and therefore Proposition 2.5
produces a left-order og on �1.M/ for which '�1.Zg/ is convex.

Using this construction, we proceed as follows. Fix non-identity elements ˛0; ˛1 2
�1.@M/ that generate �1.@M/, and suppose that Z'.˛i / ¤ G for some i 2 ¹0; 1º. Then
'�1.Z'.˛i //¤�1.M/ is a proper o˛i -convex subgroup of �1.M/which contains �1.@M/.
On the other hand, if Z'.˛i / D G for i D 0; 1, then '.�1.@M// is contained in the
centre Z.G/ of G, which is a proper subgroup since G is nonabelian. Now since G is
bi-orderable, Z.G/ is relatively convex subgroup of G by [3, Theorem 2.2.4] and thus
'�1.Z.G// is a proper, relatively convex subgroup of �1.M/ containing �1.@M/.

Recall that if M is a knot manifold and H1.M IQ/ D Q, then a rational longitude
of M is a primitive element �M 2 H1.@M/ such that �M has a finite order in H1.M/.

Corollary 5.5. Suppose thatH1.M IQ/DQ,G is a bi-orderable group, 'W�1.M/! G

is an epimorphism, and that '.�M / ¤ 1. Then Dwk
ord.M/ D �.M/.

Proof. Let � 2 �1.@M/ be an element dual to �M , and note that the image of � under
any non-trivial homomorphism from �1.M/ to a torsion-free abelian group must be non-
trivial, while the image of �M must be trivial.
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Now sinceM is compact, �1.M/ is finitely generated and therefore so isG; so by [12,
Theorem 2.19] there exists an epimorphism G ! Z. The image of � under the composi-
tion �1.M/! G ! Z is non-trivial, and so '.�/m ¤ '.�M /n unless m D n D 0. The
result now follows from Corollary 5.4 (2).

Example 5.6. Suppose that �1.M/ admits a bi-order o, for instance, M could be the
figure eight knot exterior. Then taking ' to be the identity in Corollary 5.4 (2) implies that
every slope on @M is weakly order-detected.

5.3. Weak order-detection and boundary-cofinality

In this section, we introduce the concept of boundary cofinality, which turns out to be
essential in the study of slope detection. In particular, it is closely related to whether or
not �.M/ DDwk

ord.M/ (Theorem 1.7) and is key in connecting the notions of weak order-
detection and order-detection (proof of Theorem 1.2).

Definition 5.7. A left-order o 2 LO.M/ is boundary-cofinal if �1.@M/ is o-cofinal.

Example 5.8. It was shown in [4, Proposition 4.7 (2)] that if M is a torus knot exterior,
then each o 2 LO.M/ is a boundary-cofinal.

Here we convert the convexity condition on �1.@M/ of Proposition 5.3 into a bound-
ary-cofinality condition.

Lemma 5.9. Let o be a left-order on �1.M/.

(1) If �1.@M/ is contained in a proper o-convex subgroup of �1.M/, then o is not
boundary-cofinal.

(2) If o is not boundary-cofinal, there are a left-order o0 2 O.o/ and an o0-convex
subgroup of �1.M/ which contains �1.@M/.

Proof. (1) Say that �1.@M/ is contained in a proper o-convex subgroup C of �1.M/.
Since C is proper, there is some 
 2 .�1.M/ n C/\ P.o/, and since C is convex, 
�1 <
c < 
 for all c 2 C . In particular, this holds for all c 2 �1.@M/. Hence �1.@M/ is not
o-cofinal.

(2) Suppose that �1.@M/ is not o-cofinal, and let ˛ 2 �1.@M/ be oj�1.@M/-cofinal
(cf. Section 2.2). Let t W �1.M/! R be a tight order-preserving embedding, as used in
the construction of a dynamic realisation �o of o. Since h˛i is not o-cofinal, it is either
o-bounded above or o-bounded below by some element of �1.M/. Hence, after possibly
replacing ˛ by its inverse, we can assume that limn t .˛

n/ D x 2 R. Then �o.˛/.x/ D

limn t .˛ � ˛
n/ D limn t .˛

nC1/ D x. If ˇ 2 �1.@M/ is also not oj�1.@M/-cofinal and has
the same sign as ˛, then it is easy to see that limn t .ˇ

n/ D x and therefore �o.ˇ/.x/ D x.
Since we can always choose ˛, ˇ to form a generating set of �1.@M/, it follows that
�1.@M/ � Stab�o.x/. On the other hand, Stab�o.x/ is convex with respect to any left-
order in Ox (cf. Definition 3.3). Lemma 3.7 finishes the proof.
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Theorem 1.7. If there is a slope on @M which is not weakly order-detected, then each
o 2 LO.M/ is boundary-cofinal.

Proof. Fix o 2 LO.M/ and suppose that �1.@M/ is not o-cofinal. Then Lemma 5.9 (2)
implies that there are a left-order o0 2 LO.M/ and a proper o0-convex subgroup of �1.M/

which contains �1.@M/. Proposition 5.3 then shows that Dwk
ord.M/D �.M/, contradicting

our hypotheses. Thus, �1.@M/ is o-cofinal for each o 2 LO.M/.

6. A dynamical interpretation of boundary-cofinality

In this section, we interpret boundary-cofinality in terms of actions on the real line to
connect it with work of Nie [23, 24].

Lemma 6.1. Let o 2 LO.M/ and let �oW�1.M/!HomeoC.R/ be a dynamic realisation
of o.

(1) 
 2 �1.M/ is o-cofinal if and only if �o.
/ acts fixed-point freely on R.

(2) o is boundary-cofinal if and only if each element of �o.�1.@M/ n ŒL.o/�/ acts
fixed-point freely on R.

(3) For each ˛ 2 ŒL.o/� \ �1.@M/, �o.˛/ has fixed points in R.

Proof. Suppose that o is boundary-cofinal and let t W �1.M/ ! R be the tight order-
preserving embedding used to construct �o. If 
 2 �1.M/ is o-cofinal, then t .h
i/ is
unbounded above and below in R, from which it follows that �o.
/ acts fixed-point freely
on R. Conversely, if �o.
/ acts fixed-point freely on R, note that as the supremum and
infimum of t .h
i/ (thought of as lying in Œ�1;C1�) are fixed by �o.
/, t .h
i/ must be
unbounded above and below. Thus 
 is o-cofinal, which proves (1).

For (2), recall from Section 2.2 that each element ˛ of �1.@M/ n ŒL.o/� is oj�1.@M/-
cofinal, so the boundary-cofinality of o implies that each such ˛ is o-cofinal. Thus
(1) implies (2).

Assertion (3) clearly holds for ˛ D 1, so suppose otherwise. If there exists ˛ ¤ 1

in ŒL.o/� \ �1.@M/, then ŒL.o/� \ �1.@M/ Š Z and without loss of generality we can
suppose that ŒL.o/� \ �1.@M/ D h˛i. Then h˛i is an oj�1.@M/-convex. Hence it is o-
bounded above and below in �1.@M/. It follows that �o.˛/ fixes x D sup t .h˛i/, which
completes the proof of (2).

This lemma leads to a reformulation of the notion of boundary-cofinality.

Proposition 6.2. The following statements are equivalent.

(1) Each o 2 LO.M/ is boundary-cofinal.

(2) If �W�1.M/! HomeoC.R/ has no fixed point in R, then �j�1.@M/ has no fixed
points in R.
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Proof. Assume (1), and suppose that �W�1.M/! HomeoC.R/ is such that �j�1.@M/ has
a fixed point x0 2 R. Then as �1.M/ is left-orderable, the subgroup Stab�.x0/ is also
left-orderable, and it also contains �1.@M/. By Proposition 2.5, there is a left-order ox0
on �1.M/ relative to which Stab�.x0/ is convex. However, as ox0 must be boundary-
cofinal, its definition in Proposition 2.5 forces Stab�.x0/ D �1.M/. Thus (2) holds.

In the other direction, suppose (2) holds, and let �oW�1.M/! HomeoC.R/ be a dy-
namic realisation of o 2 LO.M/ constructed using the tight embedding t W�1.M/! R.
By construction, �o has no global fixed point, so condition (2) implies that the same is
true for �oj�1.@M/. Then ¹�o.˛/.0/.t.˛// j ˛ 2 �1.@M/º must be unbounded above and
below, otherwise the supremum or infimum of this set would be bounded and be fixed by
the action of every element in �1.@M/. Thus o 2 LO.M/ is boundary-cofinal.

Statement (2) of the proposition appears as condition (a) on a knot manifold M in
recent work of Nie [23]. Nie had considered the exteriors of knots in S3, but it is natural
to work in full generality.

Corollary 6.3. Every left-order o 2 LO.M/ is boundary-cofinal if and only if each homo-
morphism �W �1.M/! HomeoC.R/ which has no fixed point in R, has no fixed points
when restricted to �1.@M/.

Nie has shown that many L-space knots satisfy property (a), including those .1; 1/-
knots which are L-space knots [23]. This family includes 1-bridge braid knots and cer-
tain families of twisted torus knots. We expect property (a) to hold for all L-space knot
groups and, more generally, the fundamental groups of Floer simple manifolds (cf. Con-
jecture 1.8).

7. Order-detection of slopes

Here we introduce a form of slope detection adapted to understanding the left-orderability
of the fundamental groups of 3-manifolds obtained by gluing knot manifolds together
along their boundary tori. We begin with an analysis of how weak order-detection behaves
with respect to the action of �1.M/ on LO.M/.

7.1. Weak order-detection and peripheral subgroups

A peripheral subgroup of �1.M/ is a subgroup of the form g�1.@M/g�1, where g 2
�1.M/. If o 2 LO.M/, the restriction ojg�1.@M/g�1 determines a line

L.oIg�1.@M/g�1/ in H1.g�1.@M/g�1IR/ D g�1.@M/g�1 ˝R

in the usual way: All elements of g�1.@M/g�1 D H1.g�1.@M/g�1/ which lie to one
side of it are o-positive and all elements lying to the other side are o-negative.



Order-detection of slopes on the boundaries of knot manifolds 21

This line determines a slope ŒL.oIg�1.@M/g�1/� on @M using the isomorphism

H1.�1.@M/IR/ D �1.@M/˝R! .g�1.@M/g�1/˝R D H1.g�1.@M/g�1IR/;

ˇ ˝ t 7! .g�1ˇg/˝ t:

The following example shows that in general, ŒL.oIg�1.@M/g�1/� can vary with the
choice of peripheral subgroup.

Example 7.1. Suppose that �1.M/ admits a bi-order o; for instance, M could be the
figure eight knot exterior. Then taking ' to be the identity in Corollary 5.4 (2) and con-
sidering its proof show that if we take ˛ 2 �1.@M/ with centraliser Z˛ D �1.@M/ [28,
Theorem 1], then �1.M/ admits a left-order o˛ for which �1.@M/ is convex. Hence,
we can create new left-orders on �1.M/ by arbitrarily altering o˛ on �1.@M/ and leaving
it unaltered on �1.M/ n �1.@M/ (Proposition 2.2 (2)). In particular, this can be done so
that ŒL.oI�1.@M//� ¤ ŒL.oIg�1.@M/g�1/� for an appropriately chosen g 2 �1.M/.

The following proposition shows how boundary-cofinality guarantees that the slope
ŒL.o/Ig�1.@M/g�1� is independent of the choice of g 2 �1.M/.

Proposition 7.2. Suppose that o 2 LO.M/ is boundary-cofinal. Then

ŒL.oI�1.@M//� D ŒL.oIg�1.@M/g�1/�

for all g 2 �1.M/.

Proof. Fix g 2 G and let �o W �1.M/ ! HomeoC.R/ be a dynamic realisation of o.
It follows from Section 2.2 that each 
 2 �1.@M/ n ŒL.o/� is oj�1.@M/-cofinal, and since
we have assumed that o is boundary-cofinal, each such 
 is o-cofinal. Lemma 6.1 (1)
shows that �o.
/ acts fixed-point freely on R, so the same is true of �o.g
g

�1/. Another
application of Lemma 6.1 (1) then shows that g
g�1 is o-cofinal. Further, it follows
from [4, Lemma 4.6 (1)] that g
g�1 >o 1 if and only if 
 >o 1. Thus, each element
of g.�1.@M/ n ŒL.o/�/g�1 is o-cofinal and of the same o-sign as 
 . It follows that

ŒL.oIg�1.@M/g�1/� D ŒL.oI�1.@M//�:

We end our discussion of weak order-detection with a lemma that will prove important
in our gluing theorem.

Lemma 7.3. For every order o 2 LO.M/ and g 2 �1.M/, we have

ŒL.g�1 � oI�1.@M//� D ŒL.oIg�1.@M/g�1/�:

Proof. Recall that for ˛; ˇ 2 �1.@M/ and g 2 �1.M/, we have

˛ <g�1�o ˇ , g˛g�1 <o gˇg
�1:
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It follows that there is a bijection

P.g�1 � o/ \ �1.@M/! P.o/ \ g�1.@M/g�1;

ˇ 7! gˇg�1;

and therefore L.g�1 � oI�1.@M// maps to L.oIg�1.@M/g�1/ under the isomorphism

H1.�1.@M/IR/ D �1.@M/˝R! .g�1.@M/g�1/˝R D H1.g�1.@M/g�1IR/;

ˇ ˝ t 7! .g�1ˇg/˝ t:

Thus ŒL.g�1 � oI�1.@M//� D ŒL.oIg�1.@M/g�1/�.

Here is an immediate consequence of the last two results.

Corollary 7.4. If o 2 LO.M/ is boundary-cofinal, then

ŒL.g � oI�1.@M//� D ŒL.oI�1.@M//�

for each g 2 �1.M/.

7.2. Order-detection

Set

LO.M I Œ˛�/ D ¹o 2 LO.M/ j ŒL.g � oI�1.@M//� D Œ˛� for all g 2 �1.M/º:

We have noted elsewhere that the slope map sW LO.M/! �.M/, s.o/ D ŒL.o/�, is
continuous and that given g 2 �1.M/, the map o 7! g � o is a homeomorphism of LO.M/.
Hence the identity

LO.M I Œ˛�/ D
\

g2�1.M/

g � .s�1.Œ˛�//

expresses LO.M I Œ˛�/ as an intersection of closed subsets of LO.M/, and it is therefore
closed itself.

Definition 7.5. A slope Œ˛� on @M is order-detected if LO.M I Œ˛�/ ¤ ;.

For instance, the slope corresponding to the rational longitude is always order-detect-
ed. See [5, Example 6.3].

Set
Dord.M/ D ¹Œ˛� 2 �.M/ j Œ˛� is order-detectedº

and note that Dord.M/ � Dwk
ord.M/ follows immediately from the definitions. Moreover,

if ¹onº is a sequence of orders in
S
Œ˛�2�.M/ L.M I Œ˛�/ converging to o and g 2 �1.M/,

then
s.g � o/ D s.g � lim

n
on/ D lim

n
s.g � on/ D lim

n
s.on/ D s.o/:

It follows that
S
Œ˛�2�.M/ LO.M I Œ˛�/ is closed in the compact space LO.M/, so

Dord.M/, its image in �.M/ under s, is closed as well. We record this as a proposition
for future use.
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Proposition 7.6. The set of slopes Dord.M/ is closed in �.M/.

Here is a restatement of Corollary 7.4.

Proposition 7.7. Let o be a boundary-cofinal left-order on �1.M/ which weakly order-
detects a slope Œ˛� 2 �.M/. Then o 2 LO.M I Œ˛�/ and therefore o order-detects Œ˛�.

Referring to Example 5.8, we see that Dord.M/ D Dwk
ord.M/ when M is a torus knot

exterior. A similar conclusion follows from Theorem 1.7 and Proposition 7.7 whenever
Dwk

ord.M/ ¤ �.M/, thus proving Theorem 1.2.

Theorem 1.2. If Dwk
ord.M/ ¤ �.M/, then Dord.M/ D Dwk

ord.M/.

7.3. Order-detection and gluing

Here we prove a gluing theorem for left-orders on knot manifolds and use it to provide an
alternate characterisation of the order-detection of rational slopes (cf. Theorem 1.4).

For a slope Œ˛� on @M , let LO.@M I Œ˛�/ denote the set of left-orders o on �1.@M/ for
which ŒL.o/� D Œ˛�. Recall from Section 2.2 that if Œ˛� is irrational and o 2 LO.@M I Œ˛�/,
then

LO.@M I Œ˛�/ D ¹o; oop
º;

while if Œ˛� is rational and o 2 LO.@M I Œ˛�/, there is a left-order o� 2 LO.@M/ such that

LO.@M I Œ˛�/ D ¹o; oop; o�; .o�/op
º:

Lemma 7.9. Suppose that o order-detects a slope Œ˛�.

(1) If Œ˛� is an irrational slope and N is the normal family

O.o/ [O.oop/ � LO.M I Œ˛�/;

then the restriction map N ! LO.@M I Œ˛�/ is surjective.

(2) If Œ˛� is a rational slope, there are left-orders yo;yo0 2 LO.M I Œ˛�/, where yo 2O.o/,
yo0 differs from yo by a convex swap, and yo0j�1.@M/ D .yoj�1.@M//

�. Consequently,
if N is the normal family O.yo/[O.yo0/[O.yoop/[O..yo0/op/� LO.M I Œ˛�/, then
the restriction map N ! LO.@M I Œ˛�/ is surjective.

Proof. Assertion (1) is obvious, so we need only deal with (2).
Suppose that Œ˛� is a rational slope and, without loss of generality, that ˛ 2 H1.@M/

is primitive. By Proposition 5.2, there are a left-order yo 2 O.o/ � LO.M I Œ˛�/ and an
yo-convex subgroup C of �1.M/ for which C \ �1.@M/ D h˛i. Since C is yo-convex, we
can apply Proposition 2.2 (2) to define yo0 by

P.yo0/ D .P.yo/ \ C/�1 [ .P.yo/ n C/:

Then C is yo0-convex and as C \ �1.@M/ D h˛i, we have

yo0j�1.@M/ D .yoj�1.@M//
�
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(cf. Section 2.2). To complete the proof, it suffices to show that yo0 2 LO.M I Œ˛�/. That is,
we must show ŒL.yo0Ig�1.@M/g�1/� D Œ˛� for each g 2 �1.M/ (Lemma 7.3).

If g 2�1.M/, thenC\ g�1.@M/g�1 is a relatively convex subgroup of g�1.@M/g�1

and so we have three possibilities:

• C \ g�1.@M/g�1 D ¹1º and therefore

P.yo0/ \ g�1.@M/g�1 D P.yo/ \ g�1.@M/g�1I

• C \ g�1.@M/g�1 Š Z is a direct summand of �1.@M/ and therefore

C \ g�1.@M/g�1 D hg˛g�1i

since yo detects Œ˛�;

• C \ g�1.@M/g�1 D g�1.@M/g�1 and therefore

P.yo0/ \ g�1.@M/g�1 D P.yo/�1 \ g�1.@M/g�1 D P.yoop/ \ g�1.@M/g�1:

In the first of the three cases, it is clear that

ŒL.yo0Ig�1.@M/g�1/� D ŒL.yoIg�1.@M/g�1/� D Œ˛�;

while in the third we have

ŒL.yo0Ig�1.@M/g�1/� D ŒL.yoop
Ig�1.@M/g�1/� D ŒL.yoIg�1.M/g�1/� D Œ˛�:

Finally, in the second case we see that hg˛g�1i is convex in g�1.@M/g�1 with respect to
both yo and yo0, and therefore

ŒL.yo0Ig�1.@M/g�1/� D ŒL.yoIg�1.@M/g�1/� D Œ˛�:

This completes the proof.

Theorem 1.3. Suppose thatM1 andM2 are knot manifolds andW DM1

S
f M2, where

f W@M1
Š
�! @M2 identifies slopes Œ˛1� 2Dord.M1/ on @M1 and Œ˛2� 2Dord.M2/ on @M2.

Then �1.W / is left-orderable.

Proof. According to the Bludov–Glass theorem [2], �1.W / is left-orderable if and only if
there are normal families of left-orderings N1 � LO.M1/ and N2 � LO.M2/ which are
compatible with the gluing map f W @M1 ! @M2 in the sense that f induces a bijection

¹oj�1.@M1/ j o 2 N1º
f
 !
Š
¹oj�1.@M2/ j o 2 N2º:

If we take N1 � LO.M1I Œ˛1�/ and N2 � LO.M2I Œ˛2�/ to be the normal families guaran-
teed by Lemma 7.9, then the restriction maps Ni! LO.@Mi I Œ˛i �/, i D 1;2, are surjective,
and therefore as f identifies Œ˛1� and Œ˛2�, the Bludov–Glass condition holds. (Note that
Œ˛1� and Œ˛2� are either both rational or both irrational.) Thus �1.W / is left-orderable.
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Here is a partial converse. Given 3-manifolds M1 and M2 with torus boundaries, and
a homeomorphism f W @M1 ! @M2, we use M1

S
f M2 to denote the manifold obtained

by attaching M1 to M2 via f .

Theorem 1.6. Suppose that M1 and M2 are knot manifolds such that every left-order on
�1.M1/ and on �1.M2/ is boundary-cofinal. Then W DM1

S
f M2 has a left-orderable

fundamental group if and only if f W@M1
Š
�! @M2 identifies slopes Œ˛1�2Dord.M1/ on @M1

and Œ˛2� 2 Dord.M2/ on @M2.

Proof. The reverse direction is Theorem 1.3. For the forward direction, fix a left-order
o 2 LO.W /, and let oi be the restriction of o to �1.Mi /. Then o1 and o2 are boundary-
cofinal. Proposition 7.7 then shows that

oi 2 LO.Mi ; ŒL.oi I�1.@Mi //�/

and therefore
ŒL.oi I�1.@Mi //� 2 Dord.Mi / for i D 1; 2:

Let N be a twisted I -bundle over the Klein bottle with rational longitude �N . The
next theorem provides an alternative characterisation of order detection of rational slopes.

Theorem 1.4. Suppose that M is boundary-irreducible, Œ˛� is a rational slope on @M ,
and f W @N ! @M is a homeomorphism which identifies Œ�N � with Œ˛�. Then Œ˛� is order-
detected if and only if �1.M

S
f N/ is left-orderable.

Proof. All left-orderings of �1.N / arise lexicographically from the short exact sequence

1! hyi ! �1.N / D hx; y j xyx
�1
D y�1i ! hxi ! 1

(see [12, Example 2.17], for instance) and so may be listed as ¹o; o.x/; o.y/; o.x; y/º,
where a generator appears in the parentheses if and only if it is positive with respect
to that ordering. The element y 2 �1.N / is peripheral and primitive, representing the
rational longitude of N , and hyi is convex with respect to every order. Thus ŒL.o0/� D
Œ�N � for each left-order on �1.N / and the restriction map induces a bijection LO.N /!
LO.�1.@N /I Œ�N �/. Theorem 1.3 then shows that �1.M

S
f N/ is left-orderable.

Conversely, suppose thatM
S
f N has a left-orderable fundamental group and let N1,

N2 be normal families of left-orders as guaranteed by the Bludov–Glass theorem. As noted
above, each left-order in N2 detects f�.Œ�N �/D Œ˛� and therefore ŒL.g � o/�D Œ˛� for each
o 2 N1 and g 2 �1.M/. Thus Œ˛� 2 Dord.M/.

Remark 7.13. We could replace N in this theorem by any LO-generalised solid torus.
In other words, by a knot manifold M whose rational longitude is the only order-detected
slope on @M . Examples include the knot manifolds Nt of [4, §2.2.3], t � 2, any Seifert
fibred knot manifold with base orbifold the Möbius band with cone points [4, Proposi-
tion 4.7], and the hyperbolic knot manifold v2503 [5, Proposition 7.2].
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7.4. Extensions of the gluing theorem

The results of the previous section can be extended in several useful ways which require
only minor adjustments to the proofs.

First note that if T is an incompressible torus in the boundary of a 3-manifold M ,
the restriction of each left-order o 2 LO.M/ to �1.T / weakly detects (i.e., determines)
a slope on T as in Section 5.1. The set of all such slopes is denoted by Dwk

ord.M; T /, while
Dord.M; T / denotes the set of slopes Œ˛� on T for which there is some o 2 LO.M/ such
that 
 � o weakly detects Œ˛� for all 
 2 �1.M/.

The proof of Theorem 1.3 is easily modified to this more general situation. Sup-
pose that M1 and M2 are 3-manifolds and T1 � @M1; T2 � @M2 are incompressible tori.
If W DM1

S
f M2, where f W T1

Š
�! T2 identifies slopes Œ˛1� 2 Dord.M1; T1/ on @M1

and Œ˛2� 2Dord.M2;T2/ on @M2, then �1.W / is left-orderable. With applications in mind,
we present a more refined version of this result. To state it, we introduce multislopes and
their order-detection.

Suppose that M is a compact connected orientable irreducible 3-manifold whose
boundary is a union @M D T1 t T2 t � � � t Tr of incompressible tori. Each o 2 LO.M/

determines a multislope

ŒL.o/� D .ŒL.oj�1.T1//�; : : : ; ŒL.oj�1.Tr //�/ 2 �.M/

D �.T1/ � �.T2/ � � � � � �.Tr / Š .S
1/r :

We say that o weakly order-detects ŒL.o/� and denote the set of weakly order-detected
multislopes by Dwk

ord.M/. We say that o order-detects ŒL.o/� if 
 � o weakly order-detects
it for each 
 2 �1.M/, and denote the set of order-detected multislopes by Dord.M/.

Theorem 7.14. Suppose that M1 and M2 are 3-manifolds and that @Mi is a union of
incompressible tori Ti1 t Ti2 t � � � t Tiri . Suppose, moreover, that oi is a left-order on
�1.Mi / which order-detects a multislope .Œ˛i1�; Œ˛i2�; : : : ; Œ˛iri �/, and that f WT11 ! T21
is a homeomorphism which identifies Œ˛11� with Œ˛21�. Then there is a left-order on
�1.M1

S
f M2/ which order-detects the multislope .Œ˛12�; Œ˛13�; : : : ; Œ˛1r1 �; Œ˛22�; Œ˛23�;

: : : ; Œ˛2r2 �/ on @.M1

S
f M2/.

Proof. The proof proceeds as in that of Theorem 1.3, though with a more careful applic-
ation of the Bludov–Glass theorem.

The result is obvious if Mi is a product on Ti1, in this case ri D 2 and Œ˛i2� is identi-
fied with Œ˛i1� under the identifications Tij � Ti1 � ¹j º. Assume then that neither Mi is
a product on Ti1. Equivalently, �1.Ti1/ is a proper subgroup of �1.Mi / for both i , which
implies that if conjugation by 
 2 �1.M1

S
f M2/ stabilises �1.Mi /, then 
 2 �1.Mi /.

If Œ˛11� is an irrational slope, the Bludov–Glass theorem is applied (in the proof of The-
orem 1.3) with respect to the normal families Ni D O.oi /[O.o

op
i / on �1.Mi /, i D 1; 2.

Then for each 
 2 �1.M1

S
f M2/, the resulting left-order o of �1.M1

S
f M2/ restricts to

a left-order on each conjugate 
�1.Mi /

�1 of �1.Mi / in �1.M1

S
f M2/ which corres-
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ponds to a left-order in Ni under the isomorphism �1.Mi /! 
�1.Mi /

�1, x 7! 
x
�1

(see [2, proof of Theorem A]2).
As this isomorphism is well defined up to conjugation in �1.Mi / and each element

of Ni order-detects .Œ˛i1�; Œ˛i2�; : : : ; Œ˛iri �/, o order-detects .Œ˛12�; Œ˛13�; : : : ; Œ˛1r1 �; Œ˛22�;
: : : ; Œ˛2r2 �/, as claimed.

A similar argument holds when Œ˛11� is a rational slope, where the Bludov–Glass
theorem is applied with respect to normal families Ni D O.yoi / [ O.yo0i / [ O.yo

op
i / [

O..yo0i /
op/, yoi 2O.oi /, yo0i differs from yoi by a convex swap, and yo0i j�1.Ti1/ D .yoi j�1.Ti1//

�.
We first observe that the orderings yoi , yo0i provided to us by Lemma 7.9 order-detect
.Œ˛i1�; Œ˛i2�; : : : ; Œ˛iri �/, and the same holds for yoop

i , .yo0i /
op.

In the proof of Lemma 7.9, we first arrive at yoi from oi by an application of Propo-
sition 5.2, which implies that yoi 2 O.oi /. The slope map sij WLO.Mi /! �j .Mi /, where
�j .Mi / D H1.Tij IR/=¹˙1º, is continuous and constant on O.oi / by assumption. More-
over, O.oi / is invariant under the action of �1.Mi / on LO.Mi /, from which we conclude
that sij .g � yoi /D sij .oi / for all g 2 �1.Mi /. Thus yoi order-detects .Œ˛i1�; Œ˛i2�; : : : ; Œ˛iri �/.
To show the same is true of yo0i , we can proceed as in the proof of Lemma 7.9.

From here, the reasoning in the rational case of the proof of Theorem 1.3 applies, and
as in the previous paragraph, this implies that the order o, arising from an application of
the Bludov–Glass theorem, order-detects .Œ˛12�; Œ˛13�; : : : ; Œ˛1r1 �; Œ˛22�; : : : ; Œ˛2r2 �/.

Proposition 7.15. Suppose that M is a compact connected orientable boundary-in-
compressible 3-manifold whose boundary is a non-empty union of incompressible tori
T1; T2; : : : ; Tm, and consider a multislope Œ˛�D .Œ˛1�; Œ˛2�; : : : ; Œ˛m�/ 2 �.M/, where Œ˛i �
is rational for 1 � i � r . SetW DM

S
T1
N1
S
T2
� � �
S
Tr
Nr , where eachNi is a copy of

the twisted I -bundle over the Klein bottle glued to M along Ti so that Œ�Ni � is identified
with Œ˛i �.

(1) For r < m, Œ˛� 2 Dord.M/ if and only if .Œ˛rC1�; : : : ; Œ˛m�/ 2 �.W /.

(2) For r D m, Œ˛� 2 Dord.M/ if and only if �1.W / is left-orderable.

Proof. The proof is analogous to that of Theorem 1.4. In the forward direction, we replace
the use of Theorem 1.3 there with an inductive application of Theorem 7.14 here. The
proof in the reverse direction is entirely analogous.

We could replace any of the copies of N in this result by an arbitrary LO-generalised
solid torus (cf. Remark 7.13).

We finish this section with a result which gives sufficient conditions for the left-
orderability of the fundamental group of a closed 3-manifold split into pieces along incom-
pressible tori. A result of this nature first appeared in [4] in the case of graph manifolds,

2In particular, this fact is implied by the sentence “By the construction, each ˛-order on L, ˛ 2 �#,
induces orders on G1 and G2 belonging to R1 and R2, respectively” appearing in the proof of Theorem A
on p. 596.



S. Boyer and A. Clay 28

while the one we state below is [5, Theorem 7.6]. For completeness, we provide its proof,
which is a simple consequence of Theorem 1.3 and Proposition 7.15.

Let W be closed, connected, irreducible rational homology 3-sphere, and suppose
that T1; T2; : : : ; Tm is a disjoint family of essential tori in W which split it into pieces
M1;M2; : : : ;Mn. For 1 � j � n, write @Mj D Ti1 t Ti2 t � � � t Tir.j / . For each family of
slopes .Œ˛1�; Œ˛2�; : : : ; Œ˛m�/ 2 �.T1/ � �.T2/ � � � � � �.Tm/, let

ŒL.j /� D .Œ˛i1 �; Œ˛i2 �; : : : ; Œ˛ir.j / �/ 2 �.Mj /:

Here is the generalised gluing theorem of [5].

Definition 7.16. We call .Œ˛1�; Œ˛2�; : : : ; Œ˛m�/ 2 �.T1/ � �.T2/ � � � � � �.Tm/ gluing
coherent if ŒL.j /� 2 Dord.Mj / for each j .

Theorem 7.17 (Boyer–Gordon–Hu). Let W D
S
j Mj be a closed connected irreducible

3-manifold expressed as a union of submanifoldsM1;M2; : : : ;Mn along a disjoint family
of essential tori T1;T2; : : : ;Tm. If there is a gluing coherent family of slopes .Œ˛1�; Œ˛2�; : : : ;
Œ˛m�/ 2 �.T1/ � �.T2/ � � � � � �.Tm/, then W has a left-orderable fundamental group.

Proof. Without loss of generality, we can suppose thatW is a rational homology 3-sphere
[8, Theorem 1.1], so that each Ti is separating. We induct on m, the case m D 1 being
Theorem 1.3. Suppose then that m � 2.

After re-indexing, we can suppose thatM1; : : : ;Mr lie to one side of T1,MrC1; : : : ;Mn

to the other, and Mr \MrC1 D T1. Set M 0 DM1 [ � � � [Mr and M 00 DMrC1 [ � � � [

Mn, so thatW DM 0
S
T1
M 00. We can assume that T2; : : : ; Ts are contained in the interior

of M 0 and TsC1; : : : ; Tm in the interior of M 00.
For j D r; r C 1, defineM 0j DMj [N , whereN is a twisted I -bundle over the Klein

bottle which is attached to Mj by a homeomorphism which identifies the longitudinal
slope of N with Œ˛1�. An application of Proposition 7.15 then shows that .Œ˛2�; : : : ; Œ˛s�/
is gluing coherent in the closed manifold W1 DM1 [ � � � [Mr�1 [M

0
r , so our inductive

hypothesis implies that �1.W1/ is left-orderable. Another application of Proposition 7.15
implies that Œ˛1� is order-detected on @.M1 [ � � � [Mr /. Similarly, Œ˛1� is order-detected
on @.MrC1 [ � � � [Mn/. The case m D 1 now implies that W has a left-orderable funda-
mental group.

8. Strong order-detection of slopes

The notion of order-detection introduced in the previous section was designed to under-
stand the left-orderability of the fundamental group of a union of two knot manifolds
M1, M2 glued along their (incompressible) boundary tori. Here we introduce a form of
order-detection adapted to the situation whereM2 is a solid torus. In other words, to Dehn
fillings of M1.
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Definition 8.1. Let Œ˛� be a slope on @M . We say that Œ˛� is strongly order-detected if
it is an irrational slope and order-detected or it is a rational slope and there are a left-
order o 2 LO.M/ and a proper o-convex, normal subgroup C of �1.M/ such that h˛i �
C \ �1.@M/.

Set
D str

ord.M/ D ¹Œ˛� 2 �.M/ j Œ˛� is strongly order-detectedº:

Though the definition of strong order-detection is intrinsic to LO.M1/, in the case of
rational slopes it is essentially equivalent to the left-orderability of the associated Dehn
filling of M1. It is interesting to compare this situation with Theorem 1.4.

Theorem 1.9. Suppose that Œ˛� is a rational slope on @M . Then Œ˛� 2 D str
ord.M/ if and

only if �1.M.˛// has a left-orderable quotient.

Proof. If Œ˛� 2 D str
ord.M/, then there is a proper o-convex, normal subgroup C of �1.M/

such that h˛i � C \ �1.@M/, and therefore we have an epimorphism from �1.M.˛// to
the left-orderable group �1.M/=C .

Conversely, suppose that there is an epimorphism �1.M.˛//! G, where G is left-
orderable, and let C be the kernel of the composition �1.M/ ! �1.M.˛// ! G, so
h˛i � C \ �1.@M/. As a subgroup of a left-orderable group, C is left-orderable, so we
can use the exact sequence

1! C ! �1.M/! G

to find a left-order o on �1.M/ for which C is o-convex, which completes the proof.

Corollary 1.10. Suppose that Œ˛� is a rational slope on @M . If �1.M.˛// is left-orderable,
then Œ˛� is strongly order-detected. Conversely, if Œ˛� is strongly order-detected andM.˛/
is irreducible, then �1.M.˛// is left-orderable.

Proposition 8.4. Suppose that M is a knot manifold, o 2 LO.M/, and C is a proper
o-convex, normal subgroup C of �1.M/ which contains �1.@M/. Then,

(1) �.M/ nD str
ord.M/ � ¹Œ˛� 2 �rat.M/ jM.˛/ is reducibleº. Hence

#.�.M/ nD str
ord.M// � 3:

(2) Dord.M/ D �.M/.

Proof. Part (1) is an immediate consequence of Theorem 1.9.
As a prelude to proving part (2), let

K.M/ D ¹primitive ˇ˙1 2 �1.@M/ j �1.@M/ � hhˇiiº;

where hhˇii denotes the normal closure in �1.M/ of ˇ, and

K�.M/ D ¹primitive ˇ 2 �1.@M/ j ˇ 2 K.M/ or M.ˇ/ is reducibleº:
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We expect K�.M/ to be small and know of no knot manifold M where #K�.M/ > 3.
Simple considerations show that K.M/ � ¹primitive ˇ 2 �1.@M/ j jˇ � �M j D 1º, a dis-
crete subset of �.M/.

By hypothesis, any rational slope Œ˛� 2 �.M/ n K�.M/ is strongly order-detected
rational slope, and as M.˛/ is irreducible, Corollary 1.10 implies that �1.M.˛// is left-
orderable.

Let o0 to be any left-order on �1.M/ obtained from the short exact sequence

1! hh˛ii ! �1.M/! �1.M.˛//! 1:

Then hh˛ii is o0-convex, so �1.@M/ \ hh˛ii is a primitive subgroup of �1.@M/. But then
as ˛ 62 K.M/, �1.@M/ \ hh˛ii D h˛i. Thus o0 weakly order-detects Œ˛�. Moreover, if
g 2 �1.M/,

hh˛ii \ g�1.@M/g�1 D g.hh˛ii \ �1.@M//g�1 D gh˛ig�1 D hg˛g�1i:

Thus o0 order-detects Œ˛� and consequently, �rat.M/ n K�.M/ � Dord.M/. Then since
�rat.M/ n K�.M/ is dense in �.M/ and Dord.M/ is closed, Dord.M/ D �.M/, which
is (2).

Corollary 8.5. We have D str
ord.M/ � Dord.M/.

Proof. Let Œ˛� 2 D str
ord.M/. If it is irrational, it is order-detected by definition. If it is

rational, there are a left-order o 2 LO.M/ and a proper o-convex, normal subgroup C
of �1.M/ such that h˛i � C \ �1.@M/. If �1.@M/ � C , then the previous proposition
shows that Dord.M/D �.M/, which completes the proof. Otherwise, C \�1.@M/D h˛i

and therefore the normality of C implies that hh˛ii � C . Then

C \ g�1.@M/g�1 D g.C \ �1.@M//g�1 D gh˛ig�1 D hg˛g�1i;

so Œ˛� is order-detected.

It is possible that D str
ord.M/ DDord.M/. For instance, this occurs in the extreme cases

that D str
ord.M/ D �.M/ (e.g., b1.M/ � 2) or Dord.M/ D ¹�M º. The latter occurs for any

Seifert fibre space with base orbifold a Möbius band without cone points (e.g., the twisted
I -bundle over the Klein bottle), as is shown in [4]. However, the next example illustrates
that in general, the containment D str

ord.M/ � Dord.M/ may be proper.

Example 8.6. Suppose that M is the exterior of an .r; s/ torus knot Tr;s � S3 (r; s � 2)
and denote its standard meridian and longitude basis for �1.@M/ by ¹�; �º. It follows
from the works of Jankins and Neumann [19] and of Naimi [22] that under the usual
identification of �.M/ with R [ ¹1º, Œx�C y��$ x=y,

D str
ord.M/ D .�1; rs � r � s/ � Œ�1; rs � r � s� D Dord.M/:

(See [4, Appendix A].) In particular, ¹Œ��; Œ�rs�r�s��º � Dord.M/ nD str
ord.M/.
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