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Boundedness of Cauchy singular integral operator under
Holder norm

Yufeng Wang and Jinyuan Du

Abstract. In this article, we will investigate the boundedness of the Cauchy singular integral oper-
ator under Holder norm. This boundedness can be obtained by improving the method used in the
early proof of the famous 2P theorems (Plemelj—Sokhotski formula and Privalov—Muskhelishvili
theorem) by Jinyuan Du, which deepens the 2P theorems. Then, various Cauchy singular integral
operators on the system of curves or open arcs are also proved to be bounded.

1. Introduction and notations

Assume that f is defined on a set 2 of the complex plane C. If

| f(z1) = f(z2)| < Alzi =z 0O <p =<1,
for arbitrary points z;, z» on €2, where A and p are definite constants, or

|f(2) = f(w)

Malf, 1] = sup{ Z—wp

,z,weQ,z;ﬁw} (1.1)

is a definite constant, then f is said to satisfy Holder condition of order p on €2, denoted
by f € H*(Q).

Let I" be a simple arc-wise (positive) smooth curve (closed or open), oriented coun-
terclockwise. If " is closed, then it divides the complex plane C into two domains, a
bounded region and a unbounded region, denoted, respectively, by Qtand Q. Clearly,
QT = (C\@. Sometimes, we write them in detail as Q+(I") and Q~(T"), respectively.

For ¢ € HH*(T), let

o(7)

T—Z

(CrlpDE) = 5 /F dr. zeC\T, (12)

and

1
(SrleD () = —/ &T)t dr, t el (tisnotanendpointif I isopen). (1.3)
wi JrT—
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It is obvious that (Cr[¢])(z) and (St[g])(z) are, respectively, the Cauchy type integral
and the Cauchy principal value integral or Cauchy singular integral. As is well known, the
Cauchy type integral and the Cauchy singular integral are the most important tools in the
theory of boundary value problems for analytic functions. The two important properties of
Cr[e] and St[¢] are, respectively, the famous Plemelj—Sokhotski formula and Privalov—
Muskhelishvili theorem, for short, 2P theorems [1,8,11,13,14], which are the cornerstones
of the boundary value theory of analytic functions. In [5, 6], the 2P theorems are unified
under the framework of Holder property of the projections of the Cauchy type integral
stated as follows.

Theorem 1.1 (Holder continuity of projections of the Cauchy type integral). If I" is a
closed arc-wise smooth curve and ¢ € H*(I') with 0 < u < 1, then

Cilgl € H(QY), Crlgl € H*(Q), (1.4)

where the projections CIT and C. are defined by

. (CrleD(z2) ifzeQt,
c = 1.5
(CrleD(2) (1 _29_,)¢(I)+ l(Sr[(p])(t) Fr—tel (1.5)
T 2
and
(CrleD(2) ifzeQ,
(Crleh(z) = 0, (1.6)

1
_Z‘/’(t) + E(Sr[wl)(t) ifz=1¢€T,

while 0, is the angle spanned by two one-sided tangents of " at t towards the positive side
of T (0 < 8; < 2m), called the opening angle at t. In particular, if t is a smooth point on
I, denoted by t € smooth(I'), 8, = m, then

(CETPD@) = £59(0) + 3(Stlgh @) ift € smooth(T). (17

And a simple proof of this theorem is given in [5, 6]. Monograph [ 1] reproduced this
proof. This theorem was later extended to the field of hypercomplex analysis [3,4].

In addition, the Cauchy singular integral operator is also the cornerstone of the theory
of singular integral equations [9, 10, 12].

For f € H*(R2), the classical Holder norm is defined by

I/ lae@ = 11/ le + Malf. ul. (1.8)

where
I flle = sup{|f(1)].t € Q} (1.9)

is the Chebyshev norm of f on © and Mgq[p, 1] is the Holder semi-norm of f on Q
given in (1.1).

Later, the notation H*(£2) is also used to denote the function space of all f € H* ()
with Holder norm || f'|| g (q) given by (1.8). H*(RQ) is also called Holder space, which
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is a Banach space [2, 10]. In particular, H*(T") is a Banach space. When I' = L is a
closed smooth curve, Si.[¢] € H*(L) (0 < p < 1) [11,14]. So, one wants to explore the
boundedness of the Cauchy singular integral operator

SL HM(L)_)HM(L)v ¢'_)SL[¢]’

where 0 < 1 < 1.
In [9, 12], the researchers got the following classical result, see [9, Theorem 6.1] or
[12, Theorem 4.7].

Theorem 1.2 (Boundedness of the Cauchy singular integral operator Sz ). If L is a closed
smooth curve then the Cauchy singular integral operator Sy, from the Banach space
H*™(L) into the Banach space H" (L) is bounded for i € (0, 1).

In [9], the proof of Theorem 1.1 is not explicitly presented but the authors pointed out
that it could be easily obtained from Muskhelishvili’s estimates in the excellent mono-
graph [14]. In fact, the proof of Theorem 1.1 is fairly tedious although it can be derived
from Muskhelishvili’s results. The classical proof of Theorem 1.1 is so complicated that
its proof is not included in a large number of references after Muskhelishvili. In 1980,
a simpler proof of Plemelj—Sokhotski formula and Privalov—Muskhelishvili theorem was
presented by J. Du in [5, 6], so it is possible to simplify the classical proof of Theorem 1.2
in [14] by use of Du’s method. In [12], Theorem 1.1 is verified by the closed graph the-
orem because there is the additional requirement that I" is a Lyapunov curve. And hence,
the proof in [12] is not appropriate if I" is a piecewise smooth curve. In fact, if L is piece-
wise smooth with corner points including cusps, Theorem 1.2 is still valid but the proof
cannot be found in the pertinent literature.

From the view of application [7], we need a stronger result than Theorem 1.1. To do
s0, by (1.5), we introduce the projection operators

CE: HMT) — HM(Q%), ¢ CElyl.
where 0 < u < 1. Then, we may obtain a nice result.

Theorem 1.3 (Boundedness of the projection operators). Let I' be a closed arc-wise
smooth curve. The projection operators CFi from the Banach space H* (I") into the Banach

space H“(@) are bounded for u € (0, 1).

Obviously, Theorem 1.2 is a direct corollary of Theorem 1.3. Under the assumption
that T" is of class C2, an analog of Theorem 1.3 with respect to the Cauchy operator Cr
is verified in [10]. But its method of proof could not be applied to prove Theorem 1.3.
More importantly, Theorem 1.3 has important applications in the asymptotic analysis of
orthogonal polynomials, which will be presented in a forthcoming paper.

In the present article, we will prove this theorem and give some of its corollaries. The
context is organized as follows. In [5,6, 11], we proved

(CFleD () — (CR[phw)| < Blz —wl* Vz,weQF O<p<1)  (1.10)
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for some constant B. In the next section, using Du’s method [5, 6, 1 1], we will prove the
inequality

ICF 0]l i@y < DMrlp. ] whenp e HYT) (O <p<1).  (LID)

where D is some positive constant and I is piecewise smooth. In Section 3, we ulteriorly
transfer the results of the previous section to the case of a system of curves consisting of a
number of simple closed arc-wise smooth curves. In Section 4, we generalize the results
of closed curves in Section 2 to the case of open curve.

2. Boundedness of the projection operators

In this section, we will make use of Du’s method [5, 6, 11] to verify the inequality (1.11).
To do so, we only need to give some details of Du’s proof for Theorem 1.1 in [5,6, 1 1].
In particular, the relation between the Holder coefficient B in (1.10) involved in the proof
of [5,6,11] and Mt [p, ] must be specified.

A symbol is introduced beforehand. For an arbitrary point z € C, we denote the point
on I nearest to z by zr (if such points are more than one in number, zrr may be any one
of them). In particular, if z = ¢ € T, then tr = t. Obviously,

|t —zr| <2|t—z| VteTl, VzeC. 2.1
In addition, if ¢ € H*(I"), one immediately has
lo(t) — @(zr)| < 2*Mrlp, u]lt —z|* Vit eT, Vz € C. (2.2)
Denote the natural equation of I" by the arc-length parameter as
:z=¢(@), 0<s<T, 2.3)

where the length of I" is also denoted by I'. For the sake of reference, let us give I a little
technical treatment.
Use all corners (including cusps) and z; = ¢ (£1'/2) (£ =0, 1,2), which are denoted as

€o,C1, - - -, Cm in increasing order of parameter, to divide I" into m (finite number) smooth
arcs Tj =¢j_1¢j (j = 1,...,m). Such{I'; = ¢;_1¢;, j = 1,...,m} is referred to as the

standard smooth segments of the curve I' and m is called its number of segments later.
It must be pointed out that some z;’s may not be corner points, called artificial corner
points of I'. Now, by the chord-arc inequality (see, e.g., [11, Lemma 2.2.2]), we know
that, if both ¢(s1) and ¢(s2) are on I'; (j = 1, ..., m), there exists some constant C
(0 < C < 1) such that

Clsi—s2| <|p(s1)—P(s2)| <[s1—52] Tor(s1).p(s2) €T} (j =1,...,m), (2.4)

where C is called the standard segmented chord-arc coefficient of T".
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Lemma 2.1. Let I be a simple arc-wise smooth curve (closed or open) and ¢ € H*(I")
with 0 < u < 1. If y is a subarc of T" (the length of y is also denoted by y for brevity),

then
J

where Mr @, 1] is the Holder semi-norm of ¢ on I" and M,, is a constant independent of
y and z.

¢(1) —¢(zr)

P |dt| < My Mrlo. uly* VzeC, (2.5)

Proof. Lety; =y NI, (j=1,...,m), where {I';, j = 1,..., m} is the standard smooth
segments of I'. Some y; is allowed to be an empty set, which does not affect the subse-
quent proof.

Denote the arc-length parameter of any point ¢ € I by s;. Then, we have

l‘ J—
/ POZGCED g (=12, m)
v; -z
|dz| .
<24 = (by (2.1) and (2.2) with A = Mr[e, u])
Vj |t - Zl/j | "
2 A /‘ ds
< = — (by (2:4))
Cl-nu v |s—szyj|1 w
= i[(s —sa,)" + (sp; — 52, )] (v = a;b; with sq, < sp,)
/LCF“ Zy;j aj j Zyj J 7] aj — °bj
4
< WMp[(p, ullyj]*  (the length of y; is also denoted by y;),
nw
which results in the desired estimate (2.5) with
_ 4m
M, = W (2.6)

where m is the number of segments of the standard smooth division of the curve I' given
in (2.4). [

Example 2.1. Let I' be a simple arc-wise smooth curve (closed or open) and ¢ € H*(T")
with 0 < u < 1. Then, we have

‘/ ¢ —¢r) o
t—z

where M|, is given in (2.6).

<M, T*Mrlp,u] VzeC, 2.7)

Lemma 2.2. Under the same conditions as in Lemma 2.1, one has
/ @(1) — ¢(zr)
v (t —2z)?

where Mt @, ] is the Holder semi-norm of ¢ on I' and N, is a constant independent of
Y, and z.

|dt| < Ny Mrle, ullz — Z,,|”“—l Vz € C\y, (2.8)
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Proof. All the notations used here are the same as in Lemma 2.1. We have

@(1) — ¢(zr) .
/y. W ] (j=1,...,m)
d
< 2#«32—1/«14/ # (by (2.2) with A = Mr[ep, u])
Yj
<2K32HY dr] (by (2.1))

v (It —zy; | + |z _Z}’jl)z_“‘

< Q132 A[ / L / Sb"} & (by (2.4))
a Sa; Szy; (C(s — szyj) + ]z — Zy; |)2_M .

oHA132—4 1
= mﬂr[w’ﬂﬂz—zﬂ ;
which results in the desired estimate (2.8) with
Ny= ™ <<, 2.9)
(I-wC
where m is the number of segments of the standard smooth segmentation of the curve I"
given in (2.4). |

Example 2.2. Under the same conditions as in Lemma 2.1 but I' is a closed arc-wise
smooth curve, then

@(1) —w(Zr)d

N, -
TED t fﬁMr[w,u]lz—zr“ ', zeC\I,

(2.10)

2mi

(CHe) ()] = ’Lﬁ

where N, is given by (2.9).
Remark 2.1. In Lemmas 2.1 and 2.2, we have actually proved
1 Euyl_“ if0<a<l, zeC,
|t < . 2.11)
y lt—z|* Eulz —zy|'7% ifa>1, z€C\y,
where E, is a constant independent of y and z.

Remark 2.2. We have seen that the nearest point zr plays a very important role in the
above proofs. If we select a fixed zr (for example, the closest point with the smallest arc
parameter), (2.2) indicates that the function ¢r(z) = ¢(zr) (z € C) has the (I',C)-Holder
continuity, i.e.,

lor (1) — r(2)| < 2" Mrlp, u]jt —z[* Vi eT, Vz eC. (2.12)

And in general, let ¥ and u be two sets of the complex plane C. If the function f
defined on ¥ U u satisfies the condition

[f(t)— f@)| <M|t—z|* Vteu, Vze X, (2.13)
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where M is a constant, then we say that it satisfies the (X, u)-Holder condition, denoted
by f € H*(X,u). Obviously,

H*"(Q2,Q) = H*(Q).
For f € H*(X,u), we introduce the (X, uw)-Holder norm

I/ lanEwm = 1/ lsuu + Msulf pl, (2.14)

where
|f(z) = f(w)]

Mg,un[f,u]zsup{ i —wl ,zeE,weu,z;ﬁw} (2.15)

is referred to as the (X, u)-Holder semi-norm.

It is not difficult to prove that M [+, ] and ||| g« (z u) are, respectively, a semi-norm
and a norm of H*(X, u). Installed the norm (2.14) it is still referred to as H* (X, u),
which is a Banach space (the proof is exactly the same as for the case H*(2) [2,10]).

Example 2.3. The extended operator
E:HYT)—> H*(C,T) (O<pu<l), ¢ ¢r

from the Banach space H*(I") into Banach space H*(I", C) is bounded, where ¢r(z) =
o(zr) (z € C). More precisely,

IE[e]llc < llelr,
Mc,rlor, p] < 24 Mrlp, u].

Now, let us introduce an auxiliary operator given earlier in [6] by Du,
Or 1 ¢ — Drly],
where ¢ € H*(I') (0 < u < 1) and

@(t) —¢(zr) dr

T—2Z

1
DrleD(z) = %fr zeC, (2.16)

in which the integral on the right-hand side is the Cauchy type integral of the function
A when z € T and an ordinary (improper) integral of the function A when z € I" where
A = ¢ — ¢r with ¢r given in Remark 2.2.

Theorem 2.1 (Boundedness of ®r). Let I" be a simple arc-wise smooth closed curve. If
¢ € HY(T) with0 < p < 1, then Dr[p] € H*(T, C), more precisely,

|(®rleD(z) — (OrleD(@)| < BuMrlp, ullz —11", 1€, zeC, 2.17)

where B,, is some constant. And Ot from the Banach space H"(I') into the Banach
space H*(T', C) is bounded.
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Proof. From Example 2.1, we know that

M, T+ M, T+
e Mrlp,pu] < —£
T 2

IDrlellc = @l ey (2.18)

So, to prove the boundedness of O : H#(I") - H*(T", C), we only need to verify (2.17).
To do so, we just have to prove (2.17) for sufficiently small |z —¢|, i.e.,

|(@rlph (@) — (OrleD ()| = BuMrlp. ullz — 1", |z —1] <6, (2.19)
where § is some positive constant because by (2.18) we already have

M, TH
oM

|(®rleD(2) — (OrleD @) = Mrlp. pllz 1", |z 1] =8> 0.

To do this, take |
§= Emin{|cj —¢|.0<j <k <m}, (2.20)

where {I'; = ¢;_1¢;, j = 1,2,...,m} is the standard smooth segmentation of I". We draw
acircle D, = {w, |w — t| = n} with center at ¢ and radius n = 2|z —t| < §. Obviously,
¢ is inside the circle Dy, and there is at most one corner point, say, ¢y, inside the circle
D,,. Consider the subarc on I' between the points first departing from and last entering
into D, denoted by « and B’. In detail, o and 8’ on the circle D, are, respectively, two
definite points with the longest and shortest arc-lengths if the curve I' is parameterized
counterclockwise from ¢. Some subarcs of this curve may be located outside of D;,. Can-
cel those subarcs (finite in number) which contain corner points outside D, and whose
endpoints are on the circle, and denote the remaining subarcs by I';, (see Figure 1). Then,
obviously, I'; < 2mn/C, where C is the constant given in (2.4).
Therefore, now we may see that

|(®r)lel(z) — (Dr)le] ()]
= 1(®r,)lel@)| + [(Dr,)[e] (1)
z—1 ¢(r) —¢(zr)
+ 27 /1:‘\1"" (t—2)(t—1)

dr| + |o(t) — ¢(zr)|

1 /‘ 1
— dr
2mi nr, T —1

1
£ 561+ 82 + |z = 1185 + (1) — p(zr)|8a).
(2.21)
Let us estimate 6; (j = 1,2,3,4) in turn. By Lemma 2.1,
81,82 < My Mrlp, pu](Ty)* < M Mr[p, u]|z —t]*. (2.22)

where M|, and M, are some constants. By the inequality

[t —z| <2|t —t| <4]z—7| whente'\[Yy (2.23)
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Figure 1. Diagram of 'y, = 0;/\3 +ad.

and Lemma 2.2, we get
53 <2 / de| (by (2.23))
I\[,

|dz|
< 21+“<M1“[§0,M]/ [ -
rr, [T —z|

(t —2)?

(by (2.2)) (2.24)

< N/, Mrlp.u] |z —zp\r, "7 (by (2.11))
< N/ Mrlp. ullz =" (by (2.23)),

where N/, and N/j are some constants.
Clearly, I'\I';, is made up of a finite number (less than m) of subarcs whose endpoints

are on D,. So, we have
/ dr
mnr, t—1

Inserting (2.22), (2.24), and (2.25) into (2.21) and noting (2.2), one gets (2.19). [ ]

84 =

< (m + 1)(27x). (2.25)

By installing Theorem 2.1 in a variety of concrete situations, we can recover some
famous theorems. First, noting

(OrleD(2) + ¢(zr), Qt,

2 (2.26)
®rleD(2), zeQ, .

(CEleD(2) = {
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and o
Srlih@) ==, tel, 2.27)
i
where 6, is the opening angle at ¢, we have the following boundary value formulae.

Corollary 2.1 (Plemelj—Sokhotski formulae). Suppose that
CrlgD*@® = lim_ (Crlp)(z). reT, (2.28)
z—>t,7€QE

which are, respectively, known as the positive and negative boundary valves of Cauchy
type integral (1.2) [11, 14]. Then, they actually exist, and

Qt —
(CrleD~(0) = (Orlph o) = 3 -(0) + 3 (STleD ) = (CF ) ).
(CrleD*(0) = rleh ) + (1) = (CFleh®) + (1) = (D).

tel,

(2.29)
where (CﬁE [e)(2) are, respectively, given in (1.5) and (1.6), which are just the famous
Plemelj—Sokhotski formulae.

Remark 2.3. The projections given in (1.5) and (1.6) can be rewritten as

(CrlpD(2), ifz € QF,

+ —
(CI‘ leD(z) = {(CF[‘/’]):I:(Z)’ ifz=1tel.

This expression can be used with the equivalent definition of projections (1.5) and (1.6),
which will particularly come in handy on system of curves in the next section.

Using (2.29) again and noting

1 1
ESL lp] = (OLleDIL + 3 (2.30)

where L is smooth, we have no trouble getting Sz [¢] € H* (L) and the Cauchy singular
integral operator S;, from the Banach space H*(L) into the Banach space H*(L) is
bounded by using Theorem 2.1.

Corollary 2.2 (Boundedness of Sy,). Theorem 1.2 stated in Section 1 holds.
Similarly,
1
Crlg] = (Orlg) g + 5 or CF11].

From Theorem 2.1 and (2.12), noting Remark 2.3 and Example 2.3, by (2.29) we get a
generalization of the classical Privalov theorem.

Corollary 2.3 (Generalized Privalov theorem of C IjF). Let I be an arc-wise smooth closed
curve and ¢ € H*(I') with0 < u < 1. Then

(CFE[pD(2) = (CEleD O] < BuMrlp, pllz — 1, 1 €T, z € QF,
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where By is some constant. And the projection operators CIZ—L from the Banach spaces
HW®(T) into the Banach space H* (T, Q%) are bounded.

In particular, noting

0, )
(1 - ;)‘P(l) + (Srle) (@) = (Cr',"[(p])(t) +(CrleD()., teTl,

where I could be arc-wise smooth and 6, is the opening angle at ¢.
Suppose that
SE: HMI) - HMT), ¢+ SPlgl. 2.31)
where 0 < u < 1 and

(L)) = (1

We also have the following conclusion, which is the generalization of Theorem 1.2.

’ )fﬂ(t) + (SrleD) (), teTl.

t
T

Corollary 2.4. If T is a closed arc-wise smooth curve, then the operator SIQ from the
Banach space H*(I") into the Banach space H"(I") is bounded for i € (0, 1).

Next, introduce two so-called restricted operators of Cr,

Cro+ ¢ (Crl¢Dla+. Cro- ¢+ (Crlg)la- (2.32)
We also have the following corollary.
Corollary 2.5 (Generalized Muskhelishvili theorem of Cr). Let I be an arc-wise smooth
closed curve and ¢ € H*(T') (0 < o < 1). Then, Cr € H*(Q") and Cr € H*(Q7),
more precisely,
(CrleD () = (Crleh )| < BuMrlp, pllz —w]", 2w e QF, (2.33)
where By, is some constant. And Cr g+ and Cr,q- are bounded from the Banach space

HH™(T), respectively, into Banach spaces H*(Q1) and H"(Q7).

Proof. We are only going to prove the case z, w € Q™. The proof for the case z, w € Q™
is similar. Denote the distance between the segment Zw and I' by p. Then, there exists a
point KX on zw such that | KX — K| = p.

Case 1. If |z — w| > | K — Kr|, one has
|z— Kr| <|z—X|+ |K — Kr| <2|z—w]|,
lw—Kr| <|w—X|+|K —Kr| <2|z—w|.
Therefore, by Corollary 2.3,
|Crle](z) — Crlel(w)|
=< |Crlel(2) — Crlpl(Kr)| + [Crle]l(w) — Crle](Kr)|
< B), Mrlp, ul(|z — Kr|* + [w — Kr[*)
< BuMrlp, u]lz — w|".

(2.34)
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Case 2. If |z — w| < | K — K|, one easily knows that Zw C Q. And hence, by Exam-
ple 2.2,
ICrlgl(2) — Crlpl(w)]

w
—1 [ crloy @z
z (2.35)
< Bubrlypl [ e el
Zw

< B, Mrlp, u]lz — w|".

Equations (2.34) and (2.35) imply (2.33) for both z and w on Q.
Then, by use of the inequality
ICre=llllex < [IDrlellr + llelr.

the proof is complete. ]

The proof of Theorem 1.3. Generalized Privalov theorem of Cl? and generalized Mus-
khelishvili theorem of Cr, in Corollary 2.3 and Corollary 2.5, result in the validity of
Theorem 1.2, which goes deeper than the classical 2P theorems [8, 11, 14].

Remark 2.4. Let I" be a simply closed arc-wise smooth curve, oriented clockwise, denoted
as I'™ in detail. It also divides the complex plane C into two domains, a bounded region
and a unbounded region, denoted, respectively, as 2~ and Q1. Theorem 1.2 still holds for
such T'. And just to make the difference, we are going to write @ and Q~ divided by the
curve I" with the direction, respectively, as Q1 (") and Q(T"). Thus, QT(I'") = Q(I)
and Q~(T'™) = QT ().

Let f be defined on Q™ U Q7. Inspired by (2.33), we introduce the sectional Holder
semi-norm

|f(2) — fw)]

Mq-19+)[f: u] = sup { =z w ,z and w both in 2~ or Q+}, (2.36)

and the sectional Holder norm is introduced accordingly:

| fllzn@-12+) = I lcnr + Mq-jo+)Lfs 1l

If || fllgn@-1o+) is finite, let us say / € H*(Q™ | Q7). Such a space, in which the
sectional Holder norm is fitted, is still denoted as H* (2~ | 7). Obviously, it is a Banach
space.

Theorem 2.2 (Boundedness of Cauchy operator). If I is a simple closed arc-wise smooth
curve (oriented clockwise or counterclockwise) and ¢ € H*(T') with 0 < p < 1, then

Crlp] € HM(Q™ | 7).
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Figure 2. The system L = )7 L.

And the Cauchy type integral operator (briefly, Cauchy operator)
Cr: H"(I) > H(Q™ | Q). ¢ Crlgl. (2.37)
from the Banach space H" (') into the Banach space H*(Q™ | Q1) is bounded.

Proof. Obviously, we have

ICrl¢)lan@-1+) < [ICrlellar@-) + ICr @]l an@)- (2.38)

Then, by Corollary 2.5, we get
[Cr]|l < +oo. (2.39)
The proof is now complete. ]

3. Cauchy singular integral on a system of curves

Asin[11], assume L is a system of n simply closed arc-wise smooth curves Ly,..., L, on
the complex plane C, non-intersecting each other, denoted by L = Z;’zl L;. L divides the
extended complex plane into a finite number of regions. The region containing the point
at infinity is 7, the regions neighboring to it are collected as T, and so on. Then, the
entire plane is divided into two parts QT and ™~ (not necessarily connected). Sometimes,
we write them in detail as Q7 (L) and Q7 (L). Orient each L; and hence L positively
such that each connected component of Q7 lies on the positive (left) side of L while that
of Q7 lies on the negative (right) side (see Figure 2).

A bounded domain enclosed by the subcurve L is called the inner domain, denoted
by id(Lg). If id(Lg) contains no other subcurve Ly (£ # k), the Ly is said to be an
internal subcurve, such as L, L;, and L, in Figure 2. Obviously, there must be an internal
subcurve in the system of curves; otherwise, there exists an L, inside of L;. Similarly,
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there exists an L, inside of Lj,, and so on. Thus, L cannot be made up of finitely many
subcurves. QT and Q™ are, respectively, divided into a number of small regions Q]i (L)
by L, say,

_ ot +
{m(L)—Ql(L)u UQL (L), A

Q (L) =Qy(L)U---U Qg (L)

Clearly, kT + k= =n + 1.
In this section, we try to transfer the results of the previous section to systems of
curves. For this reason, we need to explore some characteristics of the curve system L.
Let X and Y be two sets on the complex plane C, and call them to be separated from

each other, if
d(X,Y):inf{|x—y|,xeX, y EY} > 0. (3.2)

Lemma 3.1 (Separability of L;, jS (L)). Lj’s are separated from each other, i.e., there
is a positive g such that

0<g<min{d(L;j,L¢), j. L =12,....n,j #L} (n>1).

When k+ > 1, Q]"(L), ey Q,‘cﬁ (L) are separated from each other, i.e., there is a
positive gt such that

0<gh <min{d(Q] (L), (L), j,=1,....k",j #L}.

When k= > 1, Q7 (L), ..., 2, (L) are also separated form each other, i.e., there is a
positive g~ such that

0 <g” <min{d(Q} (L).Q;(L).j.L=1.....k™.j #{}.
Proof. In fact, we may take

gt =g =g =min{d(L;,L¢),j,=1,2,....n,j #} Egap(L) (n>1), (3.3)

where g > 0 since L;’s are non-intersecting each other and for all j = 1,2,... k¥ the
boundary 3(52]7:) C L U {oo}. Such g is called the gap distance of the curve system L,
denoted as gap(L). |

For the sake of clarity, we must also establish some lemmas for Holder norm.
Lemma 3.2. Let X and Y be two sets on the complex plane C. If X CY and f € H*(Y)
then

IAx < I flly, Mx[fim] < My[fopdo I fllaecy < 1 laee- (34

Proof. This lemma is almost self-evident because || f||q and Mg f, ] is increasing with
respect to €2 in the sense of inclusion of sets, sois || f || (). But it often plays an obvious
role in the subsequent proofs. ]
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Lemma 3.3. Let X and Y be two sets separated from each other on the complex plane C.
If fe H*(X)and f € H*(Y), then f € H*(X UY),

Myl f, ] < max {Mx[ﬁ . ML 1. %} (35)
and
I flIxuy < max {|| fllx. Il fllv}- (3.6)
So,
1
I/ lzexuy) < max {1’ W}[llﬂlm(x) + 1 f e - (3.7)

Proof. Equation (3.6) is obvious. And to verify (3.5), one just has to pay attention to

I llx + 11/ lly

Mxy[fpu] < X

where Mx y[-, 1] is the (X, Y)-Holder semi-norm defined by (2.15). Then, (3.5) and (3.6)
result in (3.7). u

Sometimes, we need to define a restricted Holder semi-norm

ap { L= S 0)
P

MGLfi ] = P——r ,z,weQ,0<|Z—w|5p}, (3.8)

where p > 0.

Lemma 3.4. Let X and Y be two sets separated from each other on the complex plane C.
If fe H*(X)and f € H*(Y), then f € H*(XUY),

MGy f 1] < max (MELfu). ML ]} when p < d(X.Y),  (3.9)

and

1
M o) = max {1 Y (MGLL ML S L+ 1 ) B0
Proof. Notice the fact that z and w in (3.8) are both in X or both in Y when p < d(X,Y),
and we get (3.9). Then, (3.9) and (3.7) result in (3.10). [
Let
(Celp)(z) = Z(CL [¢D(z), zeC\L,

j=1
where L; is oriented (see Remark 2.4). Its boundary values are defined by

(CLlgh* () = lim  (CLlpD)(z), teL. (3.11)
z—>t,z€QE(L)
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Lemma 3.5 (Plemelj—Sokhotski formulae). Let L = Z?:l L; be a system of simply
closed arc-wise smooth curves defined as above. Then, the boundary values (3.11) exist

and
n

(Crlph* (1) = Y (CiEleh(@), 1 €L, (3.12)
j=1

where the orientation of L; is described earlier in this section. More precisely, there is an

£ (1 <€ < n) such that

CLloD*() = 3 (CLleh) + (CEPD(). teLly (313
j=1,j#L

where (Cr;[p])(t) (j # €) is the Cauchy type integral while (CLil [0 (t) are boundary
values of the Cauchy type integral.

Proof. This conclusion is directly obtained from Lemma 2.1 and Remark 2.3. Noting the
separability of L;’s, then ¢ € L if and only if there is a unique £ (1 < £ < n) such that
t € Ly.So, (3.12) and (3.13) are equivalent. [

The projections on the system of curves are now defined by

(CLlpD(z)  ifz € %,

cE z) =
b {auwﬁa)ﬁz=zeu
which are equivalent to (1.5) and (1.6) when n = 1 by Remark 2.3.

Lemma 3.6. Let .
L=>1,
j=1

be a system of closed arc-wise smooth curves defined as above. Then, for ¢ € H* (L) with
u € (0,1), we have
ICEPllge < Sallelana). (3.14)

where .
Su =Y _lCLl.
j=1
and Cr; : H*(L;) — H"(Q7(L;) | QT (L)) is givenin (2.37) withT = L;.

Proof. In fact, by Theorem 2.2 and Lemma 3.2, we have

n n
ICLlellcve < Y _lICL; [lleve, < Y ICL Mellanw) < Sallelanwy. — (3.15)
j=1 i=1

which is just (3.14). [ ]
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Similarly to (3.8), we introduce

|f(2) — f(w)]

P — - +
M(Q_|Q+)[ﬁu]—sup{ - ,Z,w e orz,w e ,0<|Z—w|§p}.

Lemma 3.7. Let L = Z;’zl L; be a system of closed arc-wise smooth curves defined as
above. Then, for ¢ € H*(L) with u € (0, 1),

Mig-1gn[CLlel. 1] < Mullllgne) (0 < p < gap(L)) (3.16)
and 5
Mo C 1] < 1, ————:§ , 3.17
@ 1eHCLle]. u] _maX{ [gap(L)]M} nllollanw) (3.17)
where
My = max {||C; |l j = 1.....n}, (3.18)

|CL, |l and S, are the same as those in Lemma 3.6 above and

g = gap(L)

is the gap distance of the curve system L given in (3.3) (when n = 1, we agree that gap(L)
is any positive number).

Proof. Let us prove (3.16) by using the induction in n. When n = 1, it is just the Theorem
2.2 proved in the last section. Without loss of generality, we suppose that L, is an internal
subcurve in the system L of curves. Then, its inner domain id(L,) is going to have two
possibilities.

Case 1. Ifid(L,) C Q7, then L, is oriented counterclockwise.

Case 2. 1Ifid(L,) C Q7, then L, is oriented clockwise.
For Case 1, letting
L'=Li+--+ Ly,

we know that
Q7(L) = Q~(LN\QF (L) Cc Q7 (L),
Q7(L) C Q7 (Ln). (3.19)
QH(L) =QT(LHUQT(Ly) (g <dQT(L). QT (Ln)).

For Case 2, we know that

QF(L) = QT (L)\Q™(La) C Q7 (L),
QF(L) C QT (Ln).
QL) =Q (LY UQ (Ly) (g =dQ7(L).Q7(Ln))).
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The proof of these two cases is exactly the same. We will only prove (3.16) for Case 1.
By Lemma 3.2 and the inductive assumption, we immediately have
MG )[CLlpl 1] (0 < p < gap(L))
< M- lCrlel 1] + M- () [CL, el n] by L = L'+ Ly)
< Mo-n[Crlel. k + MG 5 [CL,le] 1] (by (3.19) and Lemma 3.2)  (3.20)
< Mp—illellguwy + ICL, @l ae,) (by the inductive assumption)
< Mullollanw) by L =L+ Ly),

where M, is defined by (3.18). We also have
MG+ p[CLlpl 1] (0 < p < gap(L))
< max {M¢, ;) [CLIg]. ul. MG J[CLIp]. 1]} (by (3.19) and (3.9))
= max {MQ+(L/) [CLle] + CL, l@], ul, MQ+(L )[CL/[(p] + CL, ], M]}

(3.21)
=< max {M(Q+(L/)|Q (L/))[CL’[(p] /L] M(Q (L)t (Ly ))[CLn [¢]7 H’]}
< Mu—1llellgewy + ICL, @l mu(r,) (by the inductive assumption)
< Mullellanw).-
Equations (3.20) and (3.21) result in (3.16). Then, we easily see that
Ma-1a+)[CLl¢], u]
< max { My g [Culol . 1Culgllens| oy Lemma 5.
2
< max{ o }S lellgey (by (3.16) and (3.14))
= max {1, ———8ull¢llanw) by p— gap(L)),
{ [gap(L)w} B
which is just (3.17). ]

Theorem 3.1 (Boundedness of Cauchy operator Cr). Let L = Z;-’zl L; be the system of
closed arc-wise smooth curves defined as above. Then, for ¢ € H* (L) with u € (0, 1),

Zn L@l (3.22)

ICLIeN n (- 10+) = 2max{ W}

i.e., the operator Cr, is a bounded one from the Banach space H" (L) into the Banach
space H*(Q™ | Q7).

Proof. Clearly, (3.22) follows directly from (3.14) and (3.17). [
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The projections are now defined by

+ | (CLiph(2)  ifz € QF,
(CL [eD(z) = {(CL[(P])i(l‘) ——

which are equivalent to (1.5) and (1.6) when n = 1 by Remark 2.3.

Lemma 3.8. Let L = Z?:l L; be the system of closed arc-wise smooth curves defined
as above. Then, for ¢ € H*(L) with u € (0, 1),

ICLIlllcve = max {[ICL [ellg=. IC [e]llg=}. (3.23)

and
Mg-jo+)[CLlp]. u] = max {Mg=[C[ [¢]. u]. MgFIC/ [¢]. ul}. (3.24)
Proof. Using continuous extensions of Cr[¢] from Q™ and Q% to L, respectively, we
obtain (3.23) and (3.24). ]

Auxiliary Theorem 3.1. Ler L = Z;-’zl L; be a system of closed arc-wise smooth curves
defined as above. Then, for ¢ € H*(L) with u € (0, 1), the following (1) and (2) are
equivalent.

(1) The operator Cy, is a bounded one from the Banach space H" (L) into the Banach
space HM(Q™ | Q7).

(2) Both C and C L+ are bounded from the Banach space H" (L) into Banach spaces
H*(Q™) and H" (@) respectively.

Proof. By Lemma 3.8, we have
{max NCT @l ey 1€ [0l gy} < ICLION e@-104)-
ICLlN ar@-190) = 1CL [0l gum) + 1€ 0]l gugry:
Thus, (1) and (2) are equivalent. ]
So, we have the following theorem.

Theorem 3.2 (Boundedness of the projection operators CZ). Let L = Z?:l L; be a
system of closed arc-wise smooth curves defined as above. Then, for ¢ € H* (L) with
ne(0,1),Cpand C L+ are both bounded operators from the Banach space H* (L) into
Banach spaces H*(Q~) and H “(ﬁ), respectively.

4. Cauchy type integral on open arcs

In this section, let I' = ab be a simple piecewise smooth open arc, oriented positively
from a to b. In this case, Theorem 2.1 is still valid for Dr given in (2.16), but its proof
must be appropriately modified.
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C1

C2

C3

ca

Figure 3. T, = 0;,1\3 +ad.

Theorem 4.1 (Boundedness of Dt on open arc I" — first version). Let "' = ab be a simple
piecewise smooth open arc. If p € H*(I') with 0 < u < 1, then Dr[p] € H' (T, C), more
precisely,

|(Drle)(z) = (Or[p)(@)| < BuyMrlp. pullz —1]", 1T, z€C (0<v <),
4.1)
where Or is defined by (2.16) and B, is a positive constant independent of ¢,t and z.
And Dr from the Banach space H"(T") into the Banach space H” (', C) is bounded.

Proof. LetT’ = ab = ijzo Ij,where I'; = ¢;_1¢; (j = 1,2,...,m) with ¢ = a and
cm = b are the smooth subarcs in the increasing order of parameter. {I'; = ¢;_1¢;, j =
1,2,...,m} is still called the standard smooth segmentation of the curve I". All the
notations used here are the same as those in the proof of Theorem 2.1. And the idea of
proof is also the same as that of Theorem 2.1, except that we need to reestimate the upper
bound of §4. Under this case (see Figure 3), we easily see that

d
&:‘/ ‘
p\pn‘l.'—l‘

< 2(m — 2)7'L’+H:/ /ﬂb:|‘f—f (/ﬁ/\b=0if|b—t|<n)
la —1] —1

+1In (say0<n<1)
n n

< 2mm + 2|India(l")| + |In2|t — z|| (dia(T") is the diameter of I")

<M + |In|t —z|| (M is some positive constant).

“4.2)
<2m + In
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€1

C2‘

c3

C4

Figure 4. T, = ab +cd.

Then, we get

|(®DrleD(z) — (OrleDh @)

< [Bu+ |In|t —z||]Mr[ep, u]|lz —t]* (by (2.21), (2.22), (2.24), and (4.2))
[Buldia(D)*™ + By ] Mrlg, wllz — 1” (B, = sup{|xS Inx],0 < x < 1})
=Buylz—t]" O<v<p<l).

IA

The proof is now complete. ]

Remark 4.1. It must be noted that there are two possible scenarios for I'\T,.
Case 1. Both a and b are not in D,, (see Figure 3).

Case 2. Only one of them is in D, and the other is not in D; (see Figure 4). The esti-
mate (4.2) is true for both cases. If we can guarantee that both @ and b are not in D, then
the estimate (4.2) can be improved as follows:

/ dr
mnr, T—1
dr
<2(m —2)w + /A—i-/,\
ac gplt—1

|b—1]
la —1]

84 =

(yvi=1t—al>ny2=1t—-b[>n)

(4.3)

<2mm + |In

O<np<l

r
<2mx + In ; (y = min{yy, y2}).
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If T'ner — o+ 5~ is a subarc of T’ with a #aT and b # b~, which is called an inner
subarc of I'. Clearly,

p = p(L,T™) = d({a, b}, T"™") > 0, (44

where d(A, B) is the distance between A and B, which is called the deviation of [inner
from I'.

Theorem 4.2 (Boundedness of Dt on open arc—second version). Let ' = ab bea simple

piecewise smooth open arc and T'™" = a*b~ an inner subarc of T. If p € H*(T") with
0 < u < 1, then Dr(p] € HH(I'"™er C), more precisely,

|(OrleD)(2) — (OrleD )] < BuMrlp, pllz =1, 1 e€T™ zeC,  (45)

where Or is defined by (2.16) and B, is a positive constant independent of ¢, t, and z.
And Dr from the Banach space H"(T") to the Banach space H*(I'™ C) (equipped
with the H* ('™ C)-norm) is bounded.

Proof. By (2.21), (2.22), (2.24), and (4.3), when 7 is sufficiently small, we get

(®Orle)(@) - (Orle)®)] < [BM tn %}Mr[fp,ﬂ]lz L erm™eco),

which results in (4.5), where B, is some constant and p is given in (4.4). ]

For the open arc I'™°" we introduce Q1 (I'™r) and Q~(T""™") as follows. If ¢ €
rimer we draw a circle T (¢, p) = {z, |z — t| = p} with centre at ¢ and radius p given
in (4.4). Obviously, a and b are outside the circle T (¢, ) (0 < n < p), which is oriented
counterclockwise. We consider the subarc o/t,B on I where o and B are, respectively, the
points first departing from and last entering into T (¢, 1). In detail, « and B are, respec-
tively, two definite points with the shortest arc-lengths if two subarcs fa and thof T are,
respectively, parameterized from ¢. & and § divide T (¢, 1) into two subarcs ,Bcoe and adf B.
We assume that ,gc\oc is oriented from « to B and its orientation is consistent with the cir-
cle T(¢,7n),and adf B is similarly understood Let ¥y be the closed curve cons1st1ng of arc
ﬂca on T (¢, n) and the subcurve oc,B on I', y~ the closed curve consisting of arc adf B on
T (¢, n) and the subcurve aﬂ on I". We call, respectively, id(y ™) and id(y ™) the positive
and negative half-neighborhoods of ¢, denoted as O (¢, ) and O~ (¢, ). Let

NI = D(a, p) U [ Uyerma 0T (1, )] U D(b, p),
N (I = D(a, p) U [Userma O™ (1, 0)] U D(b, p),

(4.6)

which are, respectively, referred to as the positive and negative half-neighborhoods of
rinmer Then, we define

Q+(Finner) — (C\N—(Finner)’ Q—(Finner) — C\EN-l—(l-\inner).



Boundedness of Cauchy singular integral operator under Holder norm 23

From (1.2), we have

1 dr 1 b—z —
(CrlE) = — /A L e T
2ni Jop T —2 2mi a—z
where
b—z
£(z) = log e A(C\I),
a—z

£(oc0) = Zli)n;ologa:j =0,

i.e., £ is to be understood as a definite single-valued branch in the complex plane cut
along I' = ab and it vanishes at infinity [11, 14].
In addition, let

bh—
log Z, z € C\T,

£ (2) = 4=z 4.7)
og 270 - Z i eT\la. by,
a—t
and
logb_z, z € C\T,
£7(z) = a=z (4.8)
logi):t—Zm', z=t¢€T'\{a,b}

where £ (¢) and £ (¢) are, respectively, the positive and negative boundary values when
t € T\{a,b}[11,14].

Lemma 4.1 (Local Holder continuity of £* on T'+9). Let £% be given in (4.7) and (4.8),
and p given in (4.4). Then
£+ € HY(D*(¢.p/2))

with0 < u < 1 and ¢ € QE(T™r), where
+ 1 1 + (pinner
D¢ p) =D\ sp | NQEI™M).
2 2
Proof. We only prove the inequality
1
1€ (w1) — LT (w2)| < Alwy —wa|*, w; € D+(§, Ep) 4.9)

where A is a positive constant which only depends on I' and T, To do so, we ana-
lytically extend £ 7| D+(¢,p/2) to an analytic function on the disc D(, p) if necessary
(D (¢, p/2) intersects I'). For example, let

logL(v)zlogcbl U, veC\L,
v
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where L is a cut line from a to b and does not intersect I except a and b, and log; (v) =
£ (v) whenv € DV (¢, p/2). Thus,

2% 1) — £ ()| (wl,wz e D*(z, %p))

a — W a — Wy

b—w1 Ogb— 2

/ |:1 a—vi|/d
og v

wiwa b—v

1 1
P _ / - _
||logL||D(;,p/2)|w1 wy| (IOgL(U) T uv—b v-— a)

log (21 (w;) = log, (w;))

(wywy is the segment form w; to wy)

IA

IA

4 1 1

_ — I — > —p,lv=>bl>=p],

pulwl wo| (h} alz op.Jv—bl = 2p)

which is just (4.9). [

Example 4.1. Let I' be a simple piecewise smooth open arc and I''"™™" an inner subarc of
I'. Then
£ e HHQT@™e)) (0 <p <1).

In fact, if both w; and w, are in Qi(Fin“er), by Lemma 4.1 and the boundedness of
£* on QF(I'™er) then

4 1
—lel — wy | when |w; — wy| < Ep,
| £% (wr) — £¥ (w2)| = |

_M|I$i||9:t(rinner)|w] — wzl" when |w1 — LU2| > Ep
Example 4.2. Let I" be a simple piecewise smooth open arc, I'"™ an inner subarc of T

and ¢r(z) = ¢(zr) as before. Then, when ¢ € H*(T'),
(/)Fi-’_ c Hu(l-winner, Q+(Finner)) (O <n < 1)’
which is directly derived from Lemma 4.1 and Example 2.3.

We still denote the angle spanned by two one-sided tangents of I' at ¢ towards the
positive side of I' (0 < 6; < 2m) by 6,, i.e., the opening angle at ¢ for O (¢, n) given
in (4.6) with 0 < n < min{|a —t|, |b — t|} (6, is not dependent of 1), which is also called
the opening angle at ¢ for I".

Now, note that

Crlel(z) = OrleD(2) + ¢r(2)£(z). zeC\I, (4.10)

and

1 b—t 2m—90 1 b—t 07
(Sr[1)(t) = — log ST g _% o ser @
Tl a—1 T Tl a—1 T
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where 0 is the opening angle at ¢ [11,14] while 6, is the opening angle at ¢ for O~ (¢, 1)
given in (4.6).
Using (4.10) and (4.11), we get the Plemelj—Sokhotski formulae for the open curve.

Corollary 4.1 (Plemelj—Sokhotski formulae). The boundary values of Cr[¢] exist and
(CrleD* () = (CFlpD (), t€T\{a,b}, (4.12)

where

0
(CFIPD0) = —5p(6) + 5(Stlgh 0).
{ € M\{a, b},

0 1
«#wmn=@—§)mn+4&wmu
14 2
which are just the famous Plemelj—Sokhotski formulae.

Remark 4.2. It must be pointed out that the proof of Plemelj—Sokhotski formulae for
the open curve here is different from that in the present monographs; see, for example,
[11,14]. The proof here is more rigorous and concise.

Using Example 4.2, Theorem 4.2, and (4.10), one gets the desired conclusion as fol-
lows.

Theorem 4.3 (Generalized Privalov—Muskhelishvili theorem on open arc). Let I' be a

simple piecewise smooth open arc and '™ = g+ b~ an inner subarc of T. If o € H*(T")
with 0 < ju < 1, then CE[p] € HH(I'mer, QE(Iimnery) e,

[(CEleD(2) — (CELeD )| < Bull@llnylz —t1*, ¢ e T™, z € QF (),

where By, is a positive constant independent of ¢, t, and z. And CI? is bounded from the
Banach space H*(T) into the Banach space H™(T'™er QF ([inner)),

Proof. We easily see that
[(CEleD(z) — (CE[eD ()| (t € ™,z € QF(T™™T))
< [(CFleD () - (Crlp) ()] by (4.12))

< |®rleh @) — (Orlph@)] + [p()L* (1) — pr(2)2*(2)|  (by (4.10))
< B,llollgraylz —t|* (by Theorem 4.2 and Example 4.2)

And the proof is complete. ]
Still like (2.31), let us consider
S&: HH(T) - HHMI), ¢ — Syl

where 0 < p < 1 and

6,
oﬂwm=@—;ym+@wmxtemmw. “.13)

with St[¢] given in (1.3).
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We also have the following conclusion.

Theorem 4.4 (Boundedness of singular integral operator S# on open arc I'). Let I be a

simple piecewise smooth open arc and T'™" = a* b~ an inner subarc of T'. If p € H*(I')
(0 < p < 1), then SE[p] € HH (™), e,

|(S2IeD (1) — (SEleD)(12)| < Apllelmnylts — ", 11,12 € T,

where A, is a positive constant independent of ¢ and t. And Sg is bounded from the
Banach space H"(T") into the Banach space H*™ ("),

In particular, we have the following common conclusion if L is a smooth open arc.

Corollary 4.2 (Boundedness of singular integral operator St on open arc I'). Let I' be

the simple smooth open arc and T'™" = a™b~ the inner subarc of T. If ¢ € H*(I)
(0 < pu < 1), then Sr[p] € H*(I''™er), je.,

|(SrleD (1) — (SrleD)(12)| < Cullelanmlt — |, n.6 e ™, (4.14)

where St[@] is given in (1.3) and C,, is a positive constant independent of ¢ and t. And
St is bounded from the Banach space H" (T into the Banach space H"(I'™"r),

Proof. In this case, (4.13) becomes

(SFPD) = 300) + (SrlD@). € T\{a. b,
or |
(SrleD () = (SED) = 50(). 1 € T\{a.b}

Thus, by Theorem 4.4 and ¢ € H*(T"), we get (4.14). |
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