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Group-subgroup subfactors revisited

Masaki Izumi

Abstract. For all Frobenius groups and a large class of finite multiply transitive permutation
groups, we show that the corresponding group-subgroup subfactors are completely character-
ized by their principal graphs. The class includes all the sharply k-transitive permutation groups
for k D 2; 3; 4, and in particular the Mathieu group M11 of degree 11.

In memory of Vaughan Jones

1. Introduction

The classical Goldman’s theorem [6] says, in modern term, that every index 2 inclu-
sion M � N of type II1 factors is given by the crossed product M D N Ì Z2, where
Z2 is the cyclic group of order 2. It is a famous story that this fact is one of the moti-
vating examples when Vaughan Jones introduced his cerebrated notion of index for
subfactors [20]. In the case of index 3, there are two different cases: their principal
graphs are either the Coxeter graphD4 or A5 (see [4,7] for example). In theD4 case,
the subfactor is given by the crossed productM DN Ì Z3. In theA5 case, we showed
in [11] that there exists a unique subfactor R � N , up to inner conjugacy, such that

M D R Ì S3 � N D R Ì S2

holds where Sn denotes the symmetric group of degree n. We call such a result
Goldman-type theorem, uniquely recovering the subfactor R and a group action on
it solely from one of the principal graphs of M � N . More Goldman-type theorems
were obtained in [8, 9, 12], but here we should emphasize that only Frobenius groups
had been treated until we recently showed a Goldman-type theorem for the alternating
groups A5 > A4 [19, Theorem A1].

Let G be a finite group, let H be a subgroup of it, and let ˛ be an outer action of
G on a factor R. Then, the inclusion

M D R Ì˛ G � N D R Ì˛ H
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is called a group-subgroup subfactor. LetL be the kernel of the permutation represen-
tation ofG acting onG=H , which is the largest normal subgroup ofG contained inH .
Then, the inclusionM � N remembers at most the information of G=L > H=L, and
so, whenever we discuss group-subgroup subfactors, we always assume that L is triv-
ial, or more naturally, we treat G as a transitive permutation group acting on a finite
set and H as a point stabilizer. A Frobenius group G is a semi-direct product K ÌH
with a free H action on K n ¹eº. In this paper, we show Goldman-type theorems for
all Frobenius groups and for a large class of multiply transitive permutation groups.

One might suspect that every question about group-subgroup subfactors should
be reduced to an easy exercise in either permutation group theory or representation
theory, which turned out to be not always the case. Indeed, Kodiyalam–Sunder [23]
showed that two pairs of groups S4 > Z4 and S4 > Z2 �Z2 give isomorphic group-
subgroup subfactors, which cannot be understood either in permutation group theory
or representation theory. In [14], we gave a complete characterization of two iso-
morphic group-subgroup subfactors coming from two different permutation groups in
terms of fusion categories and group cohomology. To understand this kind of phe-
nomenon, the representation category of a group should be treated as an abstract
fusion category, and ordinary representation theory is not strong enough.

When I discussed the above result [14] with Vaughan more than 10 years ago, he
asked me whether the Kodiyalam–Sunder-type phenomena occur for primitive per-
mutation groups, or in other words, when H is a maximal subgroup in G. Theorem
2.3 of [14] shows that the answer is ‘no’, and when I told it to him, somehow he
looked content. I guess Vaughan believed that one should assume the primitivity of
the permutation group G to obtain reasonable results in group-subgroup subfactors.
Probably, he was right because the primitivity of G is equivalent to the condition that
the corresponding group-subgroup subfactor has no non-trivial intermediate subfac-
tor, and such a subfactor is known to be very rigid. This assumption also rules out the
following puzzling example: while the principal graph of the group-subgroup subfac-
tor for D8 D Z4 Ì�1 Z2 > Z2 is the Coxeter graphD.1/

6 , there are 3 other subfactors
sharing the same principal graph but they are not group-subgroup subfactors [16, The-
orem 3.4]. This means that a Goldman-type theorem never holds for D8 > Z2. Note
that Z2 is not a maximal subgroup of D8, and hence, the D8-action on D8=Z2 is not
primitive.

Typical examples of primitive permutation groups are multiply transitive permu-
tation groups, and we mainly work on Goldman-type theorems for them in this paper.
We briefly recall the basic definitions related to them here. Let G be a permutation
group on a finite set X . For k 2 N, we denote by X Œk� the set of all ordered tuples
.a1; a2; : : : ; ak/ consisting of distinct elements in X . The group G acts on X Œk� by
g � .a1; a2; : : : ; ak/ D .ga1; ga2; : : : ; gak/, and we always consider this action. For
x 2 X , we denote by Gx the stabilizer of x in G, and for .x1; x2; : : : ; xk/ 2 X Œk�, we
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denote

Gx1;x2;:::;xk D

k\
iD1

Gxi :

We say that G is k-transitive if the G-action on X Œk� is transitive. This is equivalent
to the condition that the Gx1;x2;:::;xk�1-action on X n ¹x1; x2; : : : ; xk�1º is transitive.
We say that G is regular if G is free and transitive. A Goldman-type theorem for
a regular permutation group is nothing but the characterization of crossed products
(see [24, 26]).

As will be explained in Section 2.5 in detail, our strategy for proving a Goldman-
type theorem for G > Gx1 is an induction argument reducing it to that of Gx1 >
Gx1;x2 . Assume that G is k-transitive but not k C 1-transitive. Then, the first step of
the induction is a Goldman-type theorem for Gx1;x2;:::;xk�1 > Gx1;x2;:::;xk , and we
need a good assumption on the Gx1;x2;:::;xk�1-action on X n ¹x1; x2; : : : ; xk�1º to
assure it. Therefore, we will treat the following two cases in this paper.

(i) Gx1;x2;:::;xk�1 is regular.

(ii) Gx1;x2;:::;xk�1 is a primitive Frobenius group.

Permutation groups satisfying (i) are called sharply k-transitive, and their complete
classification is known. Other than symmetric groups and alternating groups, the fol-
lowing list exhausts all of them (see [10, Chapter XII]).

(1) We denote by Fq the finite field with q elements. Every sharply 2-transitive
group is either a group of transformations of the form x 7! ax� C b of Fq ,
where a 2 F�q , b 2 Fq , and � 2 Aut.Fq/, or one of the 7 exceptions. They are
all Frobenius groups.

(2) There exist exactly 2 infinite families L.q/ and M.q/ of sharply 3-transitive
permutation groups:

L.q/ D PGL2.q/

acting on the projective geometry PG1.q/ D .F2q n ¹0º/=F
�
q over the finite

field Fq , and its variant M.q/ acting on PG1.q/ with an involution of Fq
when q is an even power of an odd prime. When q is odd, both of them
contain PSL2.q/ as an index 2 subgroup.

(3) The Mathieu group M11 of degree 11 is a sharply 4-transitive group, and the
Mathieu group M12 of degree 12 is a sharply 5-transitive permutation group.

Conjecture 1.1. A Goldman-type theorem holds for every sharply k-transitive per-
mutation group.

In Section 3, we show Goldman-type theorems for all Frobenius groups and ver-
ify the conjecture for k D 2 as a special case (Theorem 3.1). We also classify related
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fusion categories generalizing Etingof–Gelaki–Ostrik’s result [3, Corollary 7.4] (The-
orem 3.5). We verify the conjecture for kD 3 in Section 4 (Theorem 4.1) and for kD 4
in Section 6 (Theorems 6.1, 6.2, and 6.4). When q is odd, the action of PSL2.q/
on PG1.q/ is 2-transitive and it satisfies the condition (ii) above. We will show a
Goldman-type theorem for PSL2.q/ acting on PG1.q/ in Section 5 (Theorem 5.1).

2-transitive extensions of Frobenius groups (satisfying a certain condition) are
called Zassenhaus groups (see [10, Chapter XI] for the precise definition), and there
are exactly 4 infinite families of them:L.q/,M.q/, PSL2.q/ as above, and the Suzuki
groups Sz.22nC1/ of degree 24nC2 for n � 1. One might hope that a Goldman-type
theorem would hold for the Suzuki groups too. However, it is difficult to prove it with
our technique now because the point stabilizers of the Suzuki groups are non-primitive
Frobenius groups and the Frobenius kernels are non-commutative.

2. Preliminaries

2.1. Frobenius groups

A transitive permutation group G on a finite set X is said to be a Frobenius group if
it is not regular and every g 2 G n ¹eº has at most one fixed point. Let H D Gx1 be
a point stabilizer. Then, G being Frobenius is equivalent to the condition that the H -
action onX n ¹x1º is free and is further equivalent to the condition thatH \ gHg�1D
¹eº for all g 2 G nH .

For a Frobenius group G,

K D G n
[
x2X

Gx

is a normal subgroup ofG, called the Frobenius kernel, andG is a semi-direct product
K Ì H (see [27, 8.5.5]). The point stabilizer H is called a Frobenius complement.
Now, the set X is identified with K, and the H -action on X n ¹x1º is identified with
that on K n ¹eº. It is known that K is nilpotent (Thompson), and H has periodic
cohomology (Burnside) in the sense that the Sylow p-subgroups of H are cyclic for
odd p and are either cyclic or generalized quaternion for p D 2 [27, 10.5.6]. We
collect the following properties of Frobenius groups which we will use later.

Recall that a transitive permutation group is primitive if and only if its point sta-
bilizer is maximal in G.

Lemma 2.1. Let G be a Frobenius group with the kernel K and a complement H .
Then, the following hold:

(1) G is primitive if and only if K is an elementary abelian p-group Zlp with a
prime p and there is no non-trivial H -invariant subgroup of K.
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(2) The Schur multiplier H 2.H;T / is trivial.

(3) Every abelian subgroup of H is cyclic.

Proof. (1) Note that G is primitive if and only if there is no non-trivial H -invariant
subgroup of K. Assume that G is primitive. Since K is nilpotent, its center Z.K/ is
not equal to ¹eº and H -invariant, and so, K D Z.K/. Let p be a prime so that the
p-componentKp ofK is not ¹eº. SinceKp isH -invariant, we getK DKp . The same
argument applied to

L D ¹x 2 KI xp D 0º

shows that K is an elementary abelian p-group.
(2) Since the Schur multiplier is trivial for every cyclic group and generalized

quaternion (see, for example, [22, Proposition 2.1.1, Example 2.4.8]), the statement
follows from [1, Theorem 10.3].

(3) The statement follows from the fact that every abelian subgroup of a general-
ized quaternion group is cyclic.

2.2. Sharply k-transitive permutation groups

The reader is refered to [2] for the basics of permutation groups. A transitive permu-
tation group G on a finite set X is said to be sharply k-transitive permutation group if
theG-action onX Œk� is regular. If the degree ofG is n, a sharply k-permutation group
has order n.n � 1/ � � � .n � k C 1/.

For n 2 N, let Xn D ¹1; 2; : : : ; nº. Since X Œn�1�n and X Œn�n are naturally identified,
the defining action of Sn on Xn is both sharply n � 1 and n-transitive. As this fact
might cause confusion, we treat Sn as a sharply n � 1-transitive group in this paper.
The natural action of An on Xn is sharply n � 2-transitive.

Every sharply 2-transitive permutation group G is known to be a Frobenius group
and hence of the formG DZkp ÌH with a prime p and with a Frobenius complement
H acting on Zkp n ¹0º regularly. Let q D pk , and let T .q/ D F�q Ì Aut.Fq/, which
acts on Fq as an additive group isomorphic to .Z=pZ/k . Then, the Zassenhaus theo-
rem says that H is either identified with a subgroup of T .q/ or one of the following
exceptions: SL2.3/ acting on Z25, GL2.3/ acting on Z27, SL2.3/ � Z5 acting on Z211,
SL2.5/ acting on Z211, GL2.3/�Z11 acting on Z223, SL2.5/�Z7 acting on Z229, and
SL2.5/ � Z29 acting on Z259. The reader is referred to [10, Chapter XII, Section 10]
for this fact.

There are two important families H.q/ and S.q/ of sharply 2-transitive permuta-
tion groups. If G D Zkp ÌH is a sharply 2-transitive group with an abelian Frobenius
complement, it is necessarily of the form G D Fq Ì F�q , which is denoted by H.q/.
Assume now that p is an odd prime and q D p2l . Then, the field Fq has an involution
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x� D xp
l
. The group S.q/ has a Frobenius complement F�q as a set, but its action

on Fq is given as follows:

a � x D

´
ax if a is a square in F�q ;

ax� if a is not a square in F�q :

For example, the group S.32/ is isomorphic Z23 ÌQ8. We have small-order coinci-
dences S3 D H.3/ and A4 D H.2

2/.
There are exactly two families of sharply 3-transitive permutation groups L.q/

and M.q/, and they are transitive extensions of H.q/ and S.q/, respectively (see
[10, Chapter XI, Section 2]). To describe their actions, it is convenient to identify
the projective geometry PG1.q/ with Fq t ¹1º. The 3-transitive action of L.q/ D
PGL2.q/ is given as follows:" 

a b

c d

!#
� x D

ax C b

cx C d
:

The group M.q/ is PGL2.q/ as a set, but its action on PG1.q/ is given by" 
a b

c d

!#
� x D

8<: axCb
cxCd

if ad � bc is a square in F�q ;

ax�Cb
cx�Cd

if ad � bc is not a square in F�q :

We have small-order coincidences S4 D L.3/ and A5 D L.2
2/.

When q is odd, the restriction of the L.q/-action on PG1.q/ to PSL2.q/ is 2-
transitive, and its point stabilizer is isomorphic to Zkp Ì Z.pk�1/=2.

Other than symmetric groups and alternating groups, the Mathieu groupsM11 and
M12 are the only sharply 4- and 5-transitive permutation groups, and their degrees
are 11 and 12, respectively (see [10, Chapter XII, Section 3]). To show a Goldman-
type theorem for the permutation group M11 of degree 11, we do not really need its
construction. Instead, we only need the fact that this action is a transitive extension of
the sharply 3-transitive permutation group M.32/ on PG1.32/ (see [10, Chapter XII,
Theorem 1.3]).

2.3. Group-subgroup subfactors

For a finite index inclusionM �N of factors, we need to distinguish the two principal
graphs of it and symbols for them. Thus, we mean by the principal graph of M � N
the induction-reduction graph between N -N bimodules and M -N bimodules arising
from the inclusion and denote it by GM�N , while we mean by the dual principal
graph the induction-reduction graph between M -M bimodules and M -N bimodules
and denote it by G dM�N .
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Let G be a transitive permutation group on a finite set X , and let H D Gx1 with
x1 2 X . Let

M D R Ì˛ G � N D R Ì˛ H

be a group subgroup subfactor with an outer G-action on a factor R. The reader is
referred to [25] for the tensor category structure of the M -M , M -N , N -M , and N -
N bimodules arising from the group-subgroup subfactor M � N . The category of
M -M bimodules is equivalent to the representation category Rep.G/ of G, and we
use the symbol yG to parameterize the equivalence classes of irreducibleM -M bimod-
ules. The set of equivalence classes of irreducibleM -N bimodules are parameterized
by yH , and G dG>H is the induction-reduction graph between yG and yH . For this reason,
we denote by GGH the dual principal graph G dM�N .

The description of the category of N -N bimodules is much more involved. We
choose one point from each Gx1-orbit in X n ¹x1º and enumerate them as x2; x3; : : : ;
xk . Then, the set of the equivalence classes of irreducible N -N bimodules arising
from M � N is parameterized by the disjoint union

bGx1 t 1Gx1;x2 t � � � t2Gx1;xk ;

and the graph GM�N is the union of the induction-reduction graph between bGx1 and
1Gx1;xi over 1 � i � k with convention Gx1;x1 D Gx1 . The dimension of the irre-

ducible object corresponding to � 2 1Gx1;x2 is jGx1=Gx1;x2 j dim � . We denote by
G.G;X/ or GG>Gx1 the principal graph GM�N depending on the situation.

The category ofN -N bimodules for the inclusionN �R is equivalent to Rep.H/,
and we denote the equivalence classes of irreducible objects of it by ¹Œˇ� �º�2 yH . Then,
the set ¹Œˇ� �º�2 yH actually coincides with yH in GG>H as equivalence classes ofN -N
bimodules. (This fact is not usually emphasized, but one can see it from [25].) Let
� D MMN be the basic bimodule. Then, the set of equivalence classes of irreducible
M -N bimodules arising from M � N is given by ¹Œ�˝N ˇ� �º�2 yH .

If G is 2-transitive, we have k D 2, and the graph G.G;X/ can be obtained from

G
Gx1
Gx1;x2

by putting an edge of length one to each even vertex of G
Gx1
Gx1;x2

. More gener-

ally, for a bipartite graph G , we denote by zG the graph obtained by putting an edge of

length one to each even vertex of G . Then, we have G.G;X/ D
B
G
Gx1
Gx1;x2

.
Let Gn be a depth 2 graph without multi-edges and with n even vertices (see

Figure 1). Assume that Gn is the principal graph GM�N of a finite-index inclusion
M � N of factors. Then, the characterization of crossed products shows that M D
N Ì˛ G, and the G-action is unique up to inner conjugacy. Thus, a Goldman-type
theorem holds for regular permutation groups, but in a weak sense because the graph
Gn determines only the order n of G, and not the group structure unless n is a prime.
Even when we specify the dual principal graph ofM � N , it does not distinguish the
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Figure 1. Gn.

dihedral group D8 of order 8 and the quaternion groupQ8. As this example suggests,
we should clarify what we really mean by a Goldman-type theorem.

Definition 2.2. Let G be a bipartite graph.

(1) We say that a strong Goldman-type theorem for G (or for .G; X/ if G D

G.G;X/) holds if the following holds: there exists a unique transitive permuta-
tion group G on a finite set, up to permutation conjugacy, such that whenever
the principal graph of a finite index subfactor M � N is G , there exists a
unique subfactorR ofN , up to inner conjugacy inN , satisfyingM \R0 DC

and
M D R Ì˛ G � N D R Ì˛ H;

where H is a point stabilizer of G.

(2) We say that a weak Goldman-type theorem for G holds if the following holds:
whenever the principal graph of a finite index subfactor M � N is G , there
exists a unique subfactor R of N , up to inner conjugacy in N , satisfying
M \R0 D C and

M D R Ì˛ G � N D R Ì˛ H;

for some transitive permutation group G on a finite set with a point stabilizer
of H .

Note that the action ˛ is automatically unique, up to inner conjugacy, thanks to
the irreducibility of R in M .

We will show weak Goldman-type theorems for all Frobenius groups (includ-
ing sharply 2-permutation groups) and strong ones for sharply 3- and 4-permutation
groups and for PSL2.q/ acting on PG1.q/.

2.4. Intermediate subfactors

In what follows, we use the sector notation for subfactors (see, for example, [13,
Section 2] or [15, Section 2.1]), though all results are stated for general factors. The
inclusion map � W N ,!M and its conjugate N� W N !M in the statements should be
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read as the basic bimodules � D MMN and N� D NMM , respectively, in the type II1
case. In the proofs, we always assume that factors involved are either of type II1
or type III without mentioning it. In the type II1 case, this can be justified by either
directly working on bimodules instead of sectors or replacing M � N with

M ˝ B.`2/ � N ˝ B.`2/:

For example, assume that a statement insists existence of a subfactorR�N satisfying

.M � N/ D .R ÌG � R ÌH/:

Then, it suffices to prove that there exists a subfactor P � N ˝ B.`2/ satisfying

.M ˝ B.`2/ � N ˝ B.`2// D .P ÌG � P ÌH/:

Indeed, let e be a minimal projection in B.`2/, and we choose a projection p in the
fixed-point algebra PG that is equivalent to 1˝ e in N ˝ B.`2/. Then, we get

.M � N/ Š .p.M ˝ B.`2//p � p.N ˝ B.`2//p/ D .pPp ÌG � pPp ÌH/:

For two properly infinite factors A and B and unital homomorphisms �; � from
A to B , we say that � and � are equivalent if there exists a unitary u 2 B satisfying
� D Ad u ı � . We denote by Œ�� the equivalence class of �, which is called a sector.
The statistical dimension d.�/ of � is defined to be the square root of the minimum
index ŒB W �.A/�0.

Assume that ˛ is an outer action of a finite group G on a factor M . Let N be the
fixed-point algebra MG , and let � be the inclusion map � W N ,! M . Then, we have
˛g � D � for all g 2 G, and the Frobenius reciprocity implies that ˛g is contained in �N�
for all g 2 G. Since d.�N� / D jGj, we get

Œ�N� � D
M
g2G

Œ˛g �:

In fact, the fixed-point subfactor is completely characterized by the fact that �N� is
decomposed into automorphisms. The other product N�� generates a fusion category
equivalent to the representation category of G, and N�� corresponds to the regular rep-
resentation.

We collect useful statements for our purpose in the next theorem concerning inter-
mediate subfactors extracted from [18, Corollary 3.10].

Theorem 2.3. Let M � N be an irreducible inclusion of factors with finite index,
and let � W N ,!M be the inclusion map. Let

Œ�N� � D
M
�2ƒ

n� Œ��

be the irreducible decomposition.
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(1) Let P be an intermediate subfactor betweenM andN , and let � W P ,!M be
the inclusion map. If �1; �2 2 ƒ are contained in �x� and �3 2 ƒ is contained
in �1�2, then �3 is contained in �x�.

(2) Assume that P and Q are intermediate subfactors between M and N , and
the inclusion maps � W P ,!M and �1 WQ ,!M satisfy Œ�x��D Œ�1 x�1�. If for
each � 2 ƒ the multiplicity of � in �x� is either 0 or n� , then P D Q.

(3) Assume that ƒ1 is self-conjugate subset of ƒ such that whenever �3 2 ƒ is
contained in �1�2 for some �1; �2 2 ƒ1, we have �3 2 ƒ1. Then, there exists
a unique intermediate subfactor P between M and N such that the inclusion
map � W P ,!M satisfies

Œ�x�� D
M
�2ƒ1

n� Œ��:

2.5. The strategy of the proofs

Let � be a doubly transitive permutation group acting on a finite setX , and let x1;x2 2
X be distinct points. We further assume that the �x1;x2-action on X n ¹x1; x2º has no
orbit of length 1. Our basic strategy to prove a Goldman-type theorem for � > �x1
is to reduce it to that of �x1 > �x1;x2 . To explain it, we first discuss the relationship
between the group-subgroup subfactor of the former and that of the latter. We denote
G D �x1 and H D �x1;x2 for simplicity.

Assume that we are given an outer action ˛ of � on a factor R. We set N D
R Ì˛ H ,M D R Ì˛ G, and L D R Ì˛ � . We denote by �1 WM ,! L, �2 W N ,!M ,
and �3 WR ,!N the inclusion maps. Since the �-action onX is doubly transitive, there
exists g0 2 � exchanging x1 and x2. Such g0 normalizes H , and we get � 2 Aut.N /
extending ˛g0 , that is, ��3 D �3˛g0 . Let

Œ�3 x�3� D
M
�2 yH

d.�/Œˇ� �

be the irreducible decomposition. The automorphism � as above is not unique, and
there is always a freedom to replace � with �ˇ� with d.�/ D 1.

Since
Œ�1�2��3� D Œ�1�2�3˛g0 � D Œ�1�2�3�;

we have

1 D dim.�1�2��3; �1�2�3/ D .�2��3 x�3 x�2; x�1�1/ D
X
�2 yH

d.�/ dim.�2�ˇ� x�2; x�1�1/:

We claim .�2�ˇ� x�2; id/ D 0 for all � . Indeed, if it were not the case, we would
have � with d.ˇ�/ D 1 satisfying Œ�2�ˇ� � D Œ�2� thanks to the Frobenius reciprocity.
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However, this implies that �ˇ� would be contained in x�2�2. Since d.�ˇ�/ D 1, this
contradicts the assumption that the H -action on G=H nH has no orbit of length 1.

Since � is doubly transitive, there exists irreducible � with d.�/ D jX j � 1 satis-
fying Œx�1�1� D Œid�˚ Œ� �. On the other hand, we have d.�2�ˇ� x�2/ D .jX j � 1/d.�/,
which shows that there exists � 2 yH with d.�/ D 1 satisfying Œ� � D Œ�2�ˇ� x�2�. This
means that by replacing � with �ˇ� if necessary, we may always assume

Œx�1�1� D Œid�˚ Œ�2� x�2�:

Now, forget aboutR, ˛,N , and assume that we are just given an inclusionL�M
with GL�M D G�>G . We denote by �1 WM ,! L the inclusion map. We assume that
a Goldman-type theorem is known for G > H . Our task is to recover R and ˛ from
the inclusion L �M . Our strategy is divided into the following steps.

(1) Find a fusion subcategory C1 in the fusion category C generated by x�1�1 that
looks like the representation category of G.

(2) Show that the object in C1 corresponding to the induced representation IndGH 1
has a unique Q-system satisfying the following condition: if N � M is the
subfactor corresponding to the Q-system and �2 W N ,! M is the inclusion
map, then there exists � 2 Aut.N / satisfying

Œx�1�1� D Œid�˚ Œ�2� x�2�:

(3) Show GM�N D GG>H .

(4) Apply the Goldman-type theorem for G > H to M � N , and obtain a sub-
factor R and an outer action  of G on R � N satisfying M D R Ì G and
N D R Ì H . Show that R is irreducible in L. Let �3 W R ,! N be the inclu-
sion map.

(5) Show that L � R is a depth 2 inclusion.

(6) Show that there exists �1 2 Aut.R/ satisfying Œ��3� D Œ�3�1�.

Lemma 2.4. Assume that the above (1)–(6) are accomplished. Then, there exist a
finite group �0 including G as a subgroup of index jX j and an outer action ˛ of �0
on R such that ˛ is an extension of  and L D R Ì˛ �0. Moreover, the action of �0
on �0=G is a doubly transitive extension of the G-action on X n ¹x0º.

Proof. By (2),

Œx�3 x�2 x�1�1�2�3� D Œx�3 x�2.id˚ �2� x�2/�2�3� D
M
g2G

Œg �˚ Œx�3 x�2�2� x�2�2�3�;

which containsM
g2G

Œg �˚ Œx�3��3� D
M
g2G

Œg �˚ Œx�3�3�1� D
M
g2G

Œg �˚
M
h2H

Œh�1�
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by (6). Let �0 be the group of 1-dimensional sectors contained in Œx�3 x�2 x�1�1�2�3�. Then,
�0 is strictly larger than ŒG �, and R Ì �0 is a subfactor of L strictly larger than
M . Thanks to Theorem 2.3, there is no non-trivial intermediate subfactor between L
and M , and we conclude L D R Ì �0. From the shape of the graph G�>G , we can
see that the �0-action on �0=G is doubly transitive.

To identify �0 with � , we will use the classification of doubly transitive permuta-
tion groups.

In concrete examples treated in this paper, (1) and (3) are purely combinatorial
arguments, (2) follows from Theorem 2.3, (4) is an induction hypothesis, and (5) is a
simple computation of dimensions. To deal with (6), we give useful criteria now.

Lemma 2.5. Let G be a transitive permutation group on a finite set with a point
stabilizer H , and let ˛ be an outer action of G on a factor R. Let

M D R Ì˛ G � N D R Ì˛ H:

Let L be a factor including M as an irreducible subfactor of index jG=H j C 1. We
denote by �1 WM ,! L, �2 WN ,!M , and �3 WR ,!N the inclusion maps. We assume
the following two conditions.

(1) The inclusion L � R is irreducible and of depth 2.

(2) There exists � 2 Aut.N / satisfying Œx�1�1� D Œid�˚ Œ�2� x�2�.

Then, we have
dim.� x�2�2�3 x�3��1; x�2�2�3 x�3/ D jH j:

Proof. Since ŒL WM� D .jG=H j C 1/jGj, the depth 2 condition implies

.jG=H j C 1/jGj D dim.x�3 x�2 x�1�1�2�3; x�3 x�2 x�1�1�2�3/

D dim.x�3 x�2.id˚ �2� x�2/�2�3; x�3 x�2.id˚ �2� x�2/�2�3/

D dim
�M
g2G

˛g ˚ x�3 x�2�2� x�2�2�3;
M
g2G

˛g ˚ x�3 x�2�2� x�2�2�3

�
D jGj C dim.x�3 x�2�2� x�2�2�3; x�3 x�2�2� x�2�2�3/

and

jG=H jjGj D dim.x�3 x�2�2� x�2�2�3; x�3 x�2�2� x�2�2�3/ D dim.� x�2�2�3 x�3 x�2�2��1; x�2�2�3 x�3 x�2�2/

by the Frobenius reciprocity. Thus, to prove the statement, it suffices to show

Œx�2�2�3 x�3 x�2�2� D jG=H jŒx�2�2�3 x�3�:

Indeed, note that �2�3 x�3 x�2 is an M -M sector corresponding to the regular representa-
tion of G, and hence, .�2�3 x�3 x�2/�2 is an M -N sector corresponding to the restriction
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of the regular representation of G to H , which is equivalent to jG=H j copies of the
regular representation of H . Since �3 x�3 is an N -N sector corresponding the regular
representation of H , we get

Œ.�2�3 x�3 x�2/�2� D jG=H jŒ�2.x�3�3/�;

which finishes the proof.

In concrete cases where Lemma 2.5 is applied, we can further show

dim.��3 x�3��1; �3 x�3/ D jH j;

resulting in Œ��3 x�3��1� D Œ�3 x�3�.
From [17, Theorem 3.3 and Lemma 4.1], we can show the following global invari-

ance criterion.

Lemma 2.6. Let H be a finite group, and let ˛ be an outer action of H on a factor
R. Let N D R Ì˛ H , and let � W R ,! N be the inclusion map. We assume that there
is no non-trivial abelian normal subgroupK GH with a non-degenerate cohomology
class ! 2 H 2. yK;T / invariant under the H -action by conjugation. If � 2 Aut.N /
satisfies Œ��N���1� D Œ�N� �, there exists �1 2 Aut.R/ satisfying

Œ��� D Œ��1�:

Even when the cohomological assumption in Lemma 2.6 is not fulfilled, we still
have a chance to apply the following criterion. For an inclusion N � R of factors, we
denote by Aut.N;R/ the set of automorphisms of N globally preserving R.

Lemma 2.7. Let N � R be an irreducible inclusion of factors with finite index, and
let P be an intermediate subfactor between N and R. We denote by � W R ,! N and
� W P ,! N the inclusion maps. Let

Œ�N� � D
M
�2ƒ

n� Œ��

be the irreducible decomposition. We assume that for each � 2 ƒ the multiplicity of �
in �x� is either 0 or n� . If � 2 Aut.N;R/ satisfies Œ��x���1� D Œ�x��, then �.P / D P .

Proof. Let Q D �.P /, let ' W P ! Q be the restriction of � to P regarded as an
isomorphism from P onto Q, and let �1 W Q ,! N be the inclusion map. Then, by
definition, we have � ı � D �1 ı '. Thus,

Œ�1 x�1� D Œ�1' x' x�1� D Œ� �Œ�x��Œ�
�1� D Œ�x��;

and the statement follows from Theorem 2.3.
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Figure 2. G.14;2/;1 D GS.32/>Q8 .

3. Goldman-type theorems for Frobenius groups

In this section, we establish weak Goldman-type theorems for all Frobenius groups,
generalizing results obtained in [12].

For a tuple of natural numbers mD .m0;m1; : : : ;ml/ withm0 D 1 and l � 1 and
a natural number n, we assign a bipartite graph Gm;n as follows. Let I D ¹0; 1; : : : ; lº,
and let J be an index set with jJ j D n. The set of even vertices is ¹v0i ºi2I t ¹v

2
j ºj2J

and the set of odd vertices is ¹v1i ºi2I . The only non-zero entries of the adjacency
matrix � of Gm;n are

�.v0i ; v
1
i / D �.v

1
i ; v

0
i / D 1 8i 2 I;

�.v1i ; v
2
j / D �.v

2
j ; v

1
i / D mi 8i 2 I; 8j 2 J:

The vertex v00 is treated as a distinguished vertex �.

We use notation ka D

a‚ …„ ƒ
k; k; : : : ; k for short. With this convention, the graph Gm;n

considered in [12] is G.1m/;n. An edge with a number b means a multi-edge with
multiplicity b.

Let

m WD kmk2 D
lX
iD0

m2i :

Then, the Perron–Frobenius eigenvalue of � is
p
1Cmn. The Perron–Frobenius

eigenvector d with normalization d.v00/ D 1 is

d.v0i / D mi ; d.v1i / D mi
p
1Cmn; d.v2j / D m:

Let G D K ÌH be a Frobenius group with the Frobenius kernel K and a Frobe-
nius complementH . Then, we have GG>H DGm;n, where n is the number ofH -orbits
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in K n ¹eº and m is the ranks of the irreducible representations of H . Therefore, we
have jH j D m and jKj D 1Cmn (see Figure 2). If moreoverK is abelian, the graph
GGH is also Gm;n.

Conversely, we can show the following theorem.

Theorem 3.1. Let N � P be a finite index inclusion of factors with GN�P D Gm;n.
Then, there exists a unique subfactor R � P , up to inner conjugacy, such that N \
R0 D C, and there exists a Frobenius group G D K ÌH with the Frobenius kernel
K and a Frobenius complement H satisfying jKj D 1 C mn, jH j D m, the tuple
.m0; m1; : : : ; ml/ being the ranks of the irreducible representations of H , and

N D R ÌG � P D R ÌH:

Moreover,

(1) If n D 1, then 1Cm is a prime power pk with a prime p and K D Zkp . The
G-action on G=H is sharply 2-transitive. The dual principal graph is also
Gm;1 in this case.

(2) If n D 2 or n D 3, then 1Cmn is a prime power pk with a prime p, and G
is a primitive Frobenius group withK D Zkp . The dual principal graph is also
Gm;n in this case.

We prove the theorem in several steps. Let � W P ,! N be the inclusion map. We
denote by ˛i the irreducible endomorphism of N corresponding to v0i and by �j the
ones corresponding to v2j . Then, � ı ˛i corresponds to v1i (see Figure 3). From the
graph Gm;n, we get the following fusion rules:

Œ N� �Œ�� D Œid�˚
M
j2J

Œ�j �;

Œ��Œ�j � D
M
i2I

mi Œ�˛i �;

Œ N� �Œ�˛i � D Œ˛i �Cmi
M
j2J

Œ�j �;

d.˛i / D mi ; d.�/ D
p
1Cmn; d.�j / D m:

Let C be the fusion category generated by N��. Then, since d.˛i1˛i2/ is smaller than
m D d.�j /, we have a fusion subcategory C0 with the set (of equivalence classes) of
simple objects Irr.C0/ D ¹˛iºi2I .

We introduce involutions of I and J by Œ x̨i �D Œ˛Ni � and Œ x�j �D Œ� Nj �. Note that �j� Nj
contains ˛i at most d.˛i / D mi times (see [18, p. 39]). Since it contains id, dimen-
sion counting shows that it contains ˛i with full multiplicity mi . Thus, the Frobenius
reciprocity implies

Œ˛i�j � D mi Œ�j �:
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Figure 3. G.13/;2 D GZ7ÌZ3>Z3 .

Lemma 3.2. Let the notation be as above. There exist a unique intermediate subfac-
tor P � Rj � �j .P / and an isomorphism �j W R Nj ! Rj for each j 2 J such that if
�j W Rj ,! P is the inclusion map,

Œ�j � D Œ�j �j � Nj �;

Œ�j x�j � D
M
i2I

mi Œ˛i �:

Moreover, P � Rj is a depth 2 inclusion of index m.

Proof. Theorem 2.3 shows that there exists a unique intermediate subfactorP �Rj �
�j .P / such that if �j W Rj ,! P is the inclusion map, we have

Œ�j x�j � D
M
i2I

mi Œ˛i �:

Since mi D d.˛i /, Frobenius reciprocity implies

Œ˛i �Œ�i � D mi Œ�i �;

and P � Rj is a depth 2 inclusion of index m.
Let �j be �j regarded as a map from P toRj . By definition, we have �j D �j ı �j ,

and since d.�j / D m and d.�j / D
p
m, we get d.�j / D

p
m. Taking conjugate, we

get
Œ� Nj � D Œ x�j �Œ x�j �:

Perturbing x�j by an inner automorphism if necessary, we may and do assume � Nj D
x�j ı x�j . Since Œ x�j�j � contains id and is contained in � Nj�j , dimension counting shows

Œ x�j�j � D
M
i2I

mi Œ˛i �;

and Theorem 2.3 implies x�j .Rj / D R Nj . Let �j be the inverse of x�j , which is an
isomorphism from R Nj onto Rj . Then, we get � Nj D � Nj ı �

�1
j ı x�j , and

Œ�j � D Œ�j �j � Nj �:
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Lemma 3.3. With the above notation, x�j �k is decomposed into 1-dimensional sectors
for all j; k 2 J .

Proof. Let
Œ x�j �k� D

M
a2ƒj;k

najkŒ�
a
jk�

be the irreducible decomposition. Since

Œ x�j �k x�k�l � D
M
i2I

mi Œ x�j˛i�l � D
M
i2I

m2i Œ x�j �l � D mŒ x�j �l �;

the product �a
jk
�b
kl

is a direct sum of irreducibles from ¹�c
jl
ºc2ƒj;l . Since Œ x�k�j � D

Œ x�j �k�, we can arrange the index sets so that for any a 2 ƒj;k there exists Na 2 ƒk;j
satisfying Œ�a

jk
� D Œ� Na

kj
�.

Since
ıj;k D dim.�j ; �k/ D dim.� Nj � Nk; �

�1
j x�j �k�k/;

we have
¹Œ��1j �Œ�ajj �Œ�j �ºa2ƒj;j \ ¹Œ�

b
Nj Nj
�ºb2ƒ Nj; Nj D Œid�; (3.1)

and for j ¤ k,
¹Œ��1j �Œ�ajk�Œ�k�ºa2ƒj;k \ ¹Œ�

b
Nj Nk
�ºb2ƒ Nj; Nk D ;:

Assume we have �a
jk

with d.�a
jk
/ > 1. Since � Nj �

�1
j �a

jk
�k� Nk is contained in � Nj�k ,

the former contains either ˛i with i 2 I or �l with l 2 J . The first case never occurs
because

dim.� Nj �
�1
j �ajk�k� Nk; ˛i / D dim.��1j �ajk�k; � Nj˛i� Nk/ D mi dim.��1j �ajk�k; � Nj � Nk/ D 0:

Thus,
0 ¤ dim.� Nj �

�1
j �ajk�k� Nk; �l/ D dim.��1j �ajk�k; � Nj �l�l� Nl� Nk/;

and there exist �b
Nj l

and �c
Nl Nk

such that ��1j �a
jk
�k is contained in �b

Nj l
�l�

c
Nl Nk

. In fact, the
latter is irreducible because of

dim.�bNj l�l�
c
Nl Nk
; �bNj l�l�

c
Nl Nk
/ D .��1l �

Nb

l Nj
�bNj l�l ; �

c
Nl Nk
� NcNk Nl
/

and equation (3.1). Therefore, we get

Œ��1j �ajk�k� D Œ�
b
Nj l
�l�

c
Nl Nk
�: (3.2)

Since d.�a
jk
/ > 1, we have either d.�b

Nj l
/ > 1 or d.�c

Nl Nk
/ > 1. We first assume that

d.�c
Nl Nk
/ > 1. We have Œ�a

jk
�k� D Œ�j �

b
Nj l
�l�

c
Nl Nk
�. Since �j �j �bNj l�l� Nl is contained in �j�l ,

the former contains either ˛i with i 2 I or �r with r 2 J . In the first case, we have

0 ¤ dim.�j �j �bNj l�l� Nl ; ˛i / D dim.�j �bNj l�l ; x�j˛i� Nl/ D mi dim.�j �bNj l�l ; x�j � Nl/;
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and there exists �d
j Nl

satisfying Œ�j �bNj l�l � D Œ�
d

j Nl
� and Œ�a

jk
�k� D Œ�

d

j Nl
�c
Nl Nk
�. By the Frobe-

nius reciprocity, there exists �e
k Nk

satisfying Œ�k� D Œ�e
k Nk
�. Since

Œ�k x�k� Nk� D
M
i12I

mi1 Œ˛g� Nk� D mŒ� Nk�;

we get Œ�k�e
k Nk
� D Œ� Nk�, and

Œ�k� D Œ�k�k� Nk� D Œ�k�
e

k Nk
� Nk� D Œ� Nk� Nk� D

M
i12I

Œ˛i1 �;

which is a contradiction. Thus, we are left with

0 ¤ dim.�j �j �bNj l�l� Nl ; �r/ D dim.�j �bNj l�l ; x�j �r�r� Nr� Nl/;

which shows that there exist �ejr and �f
Nr Nl

satisfying

dim.�j �bNj l�l ; �
e
jr�r�

f

Nr Nl
/ ¤ 0:

As before, the right-hand side is irreducible, and we get Œ�j �bNj l�l � D Œ�ejr�r�
f

Nr Nl
� and

Œ�a
jk
�k� D Œ�

e
jr�r�

f

Nr Nl
�c
Nl Nk
�. Since the left-hand side is irreducible, so is �f

Nr Nl
�c
Nl Nk

, and there

exists �s
Nr Nk

satisfying Œ�f
Nr Nl
�c
Nl Nk
� D Œ�s

Nr Nk
�, and Œ�a

jk
�k� D Œ�ejr�r�

s

Nr Nk
�. Note that we have

d.�s
Nr Nk
/ > 1. By the Frobenius reciprocity,

1 D dim.�ajk�k; �
e
jr�r�

s

Nr Nk
/ D dim.��1r � Nerj �

a
jk�k; �

s

Nr Nk
/;

and there exists � t
rk

satisfying Œ��1r � t
rk
�k� D Œ�

s

Nr Nk
�, which contradicts equation (3.1).

Now, the only possibility is d.�b
Nj l
/ > 1. Taking conjugate of equation (3.2), we

get
Œ��1k � Nakj �j � D Œ�

Nc
Nk Nl
��1l �

Nb

l Nj
�;

and Œ� Na
kj
�j �D Œ�k�

Nc
Nk Nl
��1
l
�
Nb

l Nj
�. Since �k�k� NcNk Nl�

�1
l
x�l is contained in �k� Nl , a similar argu-

ment as above works, and we get a contradiction again. Therefore, d.�a
jk
/ D 1 for all

j , k, a.

Proof of Theorem 3.1. We fix j0 2 J . Since �j0�k contains an isomorphism

'j W Rj ! Rj0 ;

by the Frobenius reciprocity, we get Œ�j �D Œ�j0'j �. Thus, there exists a unitary uj 2P
satisfying Aduj ı �j D �j0 ı 'j , which means that for every x 2 Rj ,

ujxu
�
j D 'j .x/:
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This implies ujRju�j D Rj0 : By replacing �j with Ad uj ı �j if necessary, we may
assume Rj D Rj0 for all j 2 J . We denote R D Rj0 and � D �j0 for simplicity. Now,
we have �j 2 Aut.R/ and Œ�j � D Œ��j x��.

Since x�� is decomposed into 1-dimensional sectors, the inclusion P � R is a
crossed product by a finite group of order m, say, H , and there exists an outer action
ˇ of H on R such that P D R Ìˇ H , and

Œx��� D
M
h2H

Œˇh�:

Note that N � R is irreducible because

dim.��; ��/ D dim.N��; �x�/ D 1:

Now, we have

Œ.��/��� D Œx� N���� D Œx���˚
M
j2J

Œx��j �� D
M
h2H

Œˇh�˚
M

j2J; h1;h22H

Œˇh1�jˇh2 �:

This shows that there exists a finite group G including H , and its outer action  on R
extending ˇ satisfying N D R Ì G. Moreover,M

g2G

Œg � D
M
h2H

Œˇh�˚
M

j2J; h1;h22H

Œˇh1�jˇh2 �

holds, which shows that every .H; H/-double coset except for H has size jH j2.
Therefore, G is a Frobenius group with a Frobenius complement H , and it is of the
formK ÌH with the Frobenius kernelK. Since jKj D ŒN WP �, we get jKj D 1Cmn.

When n D 1, we have jKj D jH j C 1, and G acting on G=H is a sharply 2-
transitive permutation group.

For (2), it suffices to show that H is maximal in G. For this, it suffices to show
that there is no non-trivial intermediate subfactor between N and P . Assume n D 2
first. Suppose that Q is a non-trivial intermediate subfactor, and let �1 W P ,! Q be
the inclusion map. Since ŒN��� D Œid�˚ Œ�1�˚ Œ�2�, we have either Œx�1�1� D Œid�˚ Œ�1�
or Œx�1�1� D Œid�˚ Œ�2�. In any case, we get ŒQ W P � D 1Cm, and

ŒN W Q� D
ŒN W P �

ŒQ W P �
D
1C 2m

1Cm
D 2 �

1

1Cm
;

which is forbidden by the Jones theorem.
The case n D 3 can be treated in a similar way.

Remark 3.4. The above theorem together with the classification of sharply 2-transi-
tive permutation groups with abelian point stabilizers shows that the graph G.1m/;1
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uniquely characterizes the group-subgroup subfactor forH.q/D Fq Ì F�q > F�q with
q D m C 1. In the case of non-commutative H , probably the graph Gm;1 does not
uniquely determine the groupK ÌH in general. However, [10, Chapter XII, Theorem
9.7] shows that possibilities ofK ÌH for a given qDmC 1 are very much restricted.
For example, the graph G.14;2/;1 uniquely characterizes S.32/ > Q8.

In the rest of this section, we classify related fusion categories, which is a gener-
alization of [3, (7.1)].

Let C0 be a C �-fusion category with the set of (equivalence classes of) simple
objects Irr.C/ D ¹˛iºi2I . We may assume 0 2 I and ˛0 D 1. Let C be a fusion
category containing C0 with Irr.C/ D ¹˛iºi2I [ ¹�º. Then, we have

˛i ˝ � Š �˝ ˛i D d.˛i /�:

Indeed, if ˛i ˝ � contained j̨ , the Frobenius reciprocity implies that ˛Ni ˝ j̨ would
contain �, which is impossible, and the claim holds. In particular, mi D d.˛i / is an
integer. By the Frobenius reciprocity again, we get

�˝ � Š
M
i2I

mi˛i ˚ k�;

where k is a non-negative integer. We now consider the case with k D m � 1, where

m D
X
i2I

m2i :

Then, d.�/ D m.

Theorem 3.5. Let C be as above. Then, there exists a sharply 2-transitive permuta-
tion group G D K Ì H with the Frobenius kernel K and a Frobenius complement
H such that C0 is equivalent to the representation category of H . In particular, the
number mC 1 is a prime power pk . The category C is classified by

¹! 2 H 3.K ÌH;T / j !jH D 0º=Aut.K ÌH;H/;

(or equivalently by H 3.K;T /H=NAut.K/.H/).

Proof. For the proof of Theorem 3.5, we may assume that the category C is embedded
in End.P / for a type III factor P .

In the same way as in the proofs of Theorem 3.1, there exist a unique subfactor
R � P , up to inner conjugacy, a unique finite group H of order m, � 2 Aut.R/, and
an outer action ˇ of H on R such that

P D R Ìˇ H;
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and if � W,! P is the inclusion map,

Œ�x�� D
M
i2I

mi Œ˛i �;

Œx��� D
M
h2H

Œˇh�;

Œ�� D Œ��x��:

Let G be the group generated by ŒˇH � D ¹Œˇh�ºh2H and Œ� � in Out.R/. We will
show

G D ŒˇH � t ŒˇH �Œ� �ŒˇH �;

whose order is m.mC 1/, and it is a Frobenius group with a Frobenius complement
ŒˇH �.

The proof of Lemma 3.3 shows Œ� � … ŒˇH �,

Œ� �ŒˇH �Œ�
�1� \ ŒˇH � D Œid�;

and jŒˇH �Œ� �ŒˇH �j D m2. Let G0 D ŒˇH �[ ŒˇH �Œ� �ŒˇH �, which is a subset of G with

jG0j D m.mC 1/:

To prove that G0 coincides with G, it suffices to show Œ� �ŒˇH �Œ� � � G0 and Œ��1� 2
ŒˇH �Œ� �ŒˇH �.

Let h 2H . Since ��ˇh�x� is contained in �2, it contains either ˛i with i 2 I or �.
If it contains ˛i , we have

0 ¤ dim.��ˇh�x�; ˛i / D dim.�ˇh�; x�˛i�/ D mi dim.�ˇh�; x��/

D mi
X
k2H

dim.�ˇh�; ˇk/;

which shows Œ�ˇh�� 2 ŒˇH �. If it contains �,

0 ¤ dim.��ˇh�x�; ��x�/ D dim.�ˇh�; x���x��/ D
X
k;l

dim.�ˇh�; ˇk�ˇl/;

which shows Œ�ˇh�� 2 ŒˇH �Œ� �ŒˇH �. Therefore, we get Œ� �ŒˇH �Œ� � � G0.
Since � is self-conjugate, we have

1 D dim.x�; �/ D dim.���1x�; ��x�/ D dim.��1; x���x��/ D
X
h;k2H

dim.��1; ˇh�ˇk/;

which shows Œ��1� 2 ŒˇH �Œ� �ŒˇH �. Therefore, we get G D G0.
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Since G has only two .H;H/-double cosets and the size of ŒˇH �Œ� �ŒˇH � is jH j2,
the group G is a Frobenius group with a Frobenius complement ŒˇH �. Moreover, the
G action on G=H is sharply 2-transitive.

For the classification of the category C , we may assume thatR is the injective type
III1 factor. Then, the conjugacy class of G in Out.R/ is completely determined by its
obstruction class ! 2 H 3.G;T /. Since H has a lifting ˇH � Aut.R/, the restric-
tion of ! to H is trivial. Since H is a Frobenius complement, the Schur multiplier
H 2.H;T / is trivial, and the lifting is unique, up to cocycle conjugacy, and one can
uniquely recover P from R and ŒˇH �. This means that the generator � of the category
zC is uniquely determined by !. On the other hand, there always exists a G-kernel in
Out.R/ for a given ! 2 H 3.G;T /, which shows the existence part of the statement.

Finally, since jKj and jH j are relatively prime, we have

E
p;q
2 D Hp.H;H q.K;T // D 0

for p;q � 1 in the Lindon/Hochschild–Serre spectral sequence forG DK ÌH . Thus,
the group

¹! 2 H 3.G;T / j !jH D 0º

is isomorphic to H 3.K;T /H .

WhenH is abelian (in fact cyclic in this case), the groupH 3.K;T /H is explicitly
computed in [3, Corollary 7.4].

4. Goldman-type theorems for sharply 3-transitive permutation
groups

Let m, n, I , and m be as in the previous section. Now, we consider the graph eGm;1

(see Section 2.3 for the definition of zG for a given G ), which is described as follows.
The set of even vertices of eGm;1 is

¹v0i ºi2I t ¹v
2
i º2I t ¹v

4
ºI

the set of odd vertices is
¹v1i ºi2I t ¹v

3
º:

The only non-zero entries of the adjacency matrix � of eGm;1 are

�.v0i ; v
1
i / D �.v

1
i ; v

0
i / D 1 8i 2 I;

�.v1i ; v
2
i / D �.v

2
i ; v

1
i / D 1 8i 2 I;

�.v2i ; v
3/ D �.v3; v2i / D mi 8i 2 I;

�.v3; v4/ D �.v4; v3/ D 1:
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� � � � � � �

�

�
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�

Figure 4. AG.13/;1 D G.L.22/;PG1.22// D G.A5;X5/.

The vertex v00 is treated as a distinguished vertex �. The Perron–Frobenius eigenvalue
of � is

p
2Cm (see Figure 4). The Perron–Frobenius eigenvector d normalized as

d.v00/ D 1 is

d.v0i / D mi ; d.v2i / D mi .1Cmn/; d.v4/ D m:

d.v1i / D mi
p
2Cmn; d.v3/ D m

p
2Cmn:

In [19], we showed that a strong Goldman-type theorem holds for AG.13/;1. Now,
we show it for general sharply 3-transitive permutation groups.

Although we excluded the case m D .1/ in the definition of Gm;1 in Section 3, the
graph itself makes sense for m D .1/, and we include this case in the next theorem.

Theorem 4.1. Let M � N be a finite index subfactor with GM�N D eGm;1. Then,

q D 1Cm

is a prime power, and there exists a unique subfactor R � N that is irreducible in M
such that if m D 1m,

M D R Ì L.q/ � N D R ÌH.q/;

and otherwise,
M D R ÌM.q/ � N D R Ì S.q/:

Proof. If m D .1/, the graph AG.1/;1 is nothing but the Coxeter graph A5, and the
statement follows from [11] as .S3; X3/ Š .PGL2.2/;PG1.2//. We assume m ¤ .1/
in what follows.

We follow the strategy described in Section 2.5 taking the 6 steps.
(1) Let " W N ,! M be the inclusion map, and let C be the fusion category gen-

erated by x"". We first parameterize Irr.C/. Let Œx""� D Œid� ˚ Œ�� be the irreducible
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decomposition, which means that � corresponds to the vertex v20 . We denote by ˛0i
and �0 the endomorphisms of N corresponding to v0i and v4, respectively. Then, "˛0i ,
�˛0i , and "�0 are irreducible, and they correspond to v1i , v2i , v3, respectively. Thus,

Irr.C/ D ¹˛0iºi2I t ¹�˛
0
iºi2I t ¹�

0
º:

We have

d.˛i / D mi ; d."/ D
p
2Cm; d.�/ D 1Cm; d.�0/ D m:

Two endomorphisms � and �0 are self-conjugate. We introduce two involutions of I
by Œ˛0i � D Œ˛

0
Ni
� and Œ�˛0i � D Œ�˛

0
i� �. Then, they are related by

Œ�˛0i� � D Œ˛
0
Ni
��:

By dimension counting, we see that there exists a fusion subcategory C0 of C with

Irr.C0/ D ¹˛0iºi2I :

We claim that there exists another fusion subcategory C1 of C with

Irr.C1/ D ¹˛0iºi2I t ¹�
0
º:

Indeed, if �0˛i contained �˛0i1 , the Frobenius reciprocity implies that �˛0i1˛
0
Ni

would
contain �0, and hence, �˛0i2 would contain �0 for some i2, which is a contradiction.
Thus, �˛i is decomposed into a direct sum of sectors in ¹˛0i1ºi12I [ ¹�

0º, and dimen-
sion counting shows

Œ�0˛0i � D mi Œ�
0�; Œ˛0i�� D mi Œ��;

where the second equality follows from the first one by conjugation.
From the shape of the graph eGm;1, we can see

Œ�2� D Œid�˚ Œ�0�˚
M
i2I

mi Œ�˛
0
i �; (4.1)

Œ��0� D
M
i2I

mi Œ�˛
0
i �: (4.2)

Using these and associativity, we have

Œ��Œ��0� D
M
i12I

mi Œ��Œ�˛
0
i �

D

M
i2I

mi

�
Œid�˚ Œ�0�˚

M
i 02I

mi 0 Œ�˛
0
i 0 �
�
Œ˛0i �

D

M
i2I

mi Œ˛
0
i �˚mŒ�

0�˚
M
i;i 0

mi 0 Œ�˛
0
i 0˛
0
i �:
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On the other hand,

Œ��Œ��0� D Œ�2�Œ�0� D
�
Œid�˚ Œ�0�˚

M
i2I

mi Œ�˛
0
i �
�
Œ�0�

D Œ�0�˚ Œ�0
2
�˚

M
i2I

m2i Œ��
0� D Œ�0�˚ Œ�0

2
�˚m

M
i2I

mi Œ�˛
0
i �:

Since �˛0i 0˛
0
i is a direct sum of irreducibles of the form �˛0i 00 , the endomorphism �2

contains M
i2I

mi Œ˛
0
i �˚ .m � 1/Œ�

0�;

and comparing dimensions, we get

Œ�0
2
� D

M
i2I

mi Œ˛
0
i �˚ .m � 1/Œ�

0�:

Therefore, the claim is shown.
(2) Form equation (4.1) and Theorem 2.3, there exists a unique intermediate sub-

factor N � P � �.N / such that if � W P ,! N is the inclusion map, we have

Œ�N� � D Œid�˚ Œ�0�:

Let C2 be the fusion category generated by N��. As in the proof of Lemma 3.2, there
exists � 2 Aut.P / satisfying

Œ�� D Œ�� N� �:

(3) From the fusion rules of C1, we can see that the dual principal graph G dN�P is
Gm;1, and Theorem 3.1 (1) shows that so is the principal graph GN>P too. Therefore,
we can arrange the labeling of irreducibles of C2 so that

Irr.C2/ D ¹˛iº t ¹�iº;

and Œ˛0i �� D Œ�˛i � and ŒN��� D Œid�˚ Œ��.
(4) Now, we apply Theorem 3.1, and we get a unique subfactorR�P , up to inner

conjugacy such that R0 \ P D C, and there exists an outer action ˇ of a Frobenius
group K ÌH satisfying

N D R Ìˇ .H ÌK/ � P D R Ìˇ H:

Moreover, the K Ì H -action on .K Ì H/=H is sharply 2-transitive. We denote by
� W R ,! P the inclusion map. Then, we have

Œ��x� N� �D
M
i2I

mi Œ�˛i N� �D
M
i2I

mi Œ˛
0
i �N� �D

M
i2I

mi Œ˛
0
i �.Œid�˚ �

0/D
M
i2I

mi Œ˛
0
i �˚mŒ�

0�;
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which shows
dim."��; "��/ D dim.x""; ��x� N� / D 1;

and R is irreducible in M .
(5) Since

ŒM W P � D ŒM W N�ŒN W P �ŒP W R� D .mC 2/.mC 1/m;

to prove that the inclusion L � R is of depth 2, it suffices to show that the number
.mC 2/.mC 1/m coincides with the following dimension:

dim."��."��/; "��."��// D dim.x""��x� N���x� N� x""/

D dim..id˚ �/��x� N�; ��x� N�.id˚ �//:

Note that Œ�� commutes with Œ�0� andM
i2I

mi Œ˛
0
i �;

and hence with Œ��x� N� �. Thus, this number is equal to

D dim..id˚ �/��x� N�; .id˚ �/��x� N� / D dim..id˚ �/2; .��x� N� /2/:

Since the fusion category generated by ��x� N� is equivalent to the representation cate-
gory Rep.K ÌH/ and ��x� N� corresponds to the regular representation of K ÌH , we
get

Œ.��x� N� /2� D m.mC 1/Œ��x� N� �:

Thus,

dim..id˚ �/2; .��x� N� /2/

D m.mC 1/.id˚ 2� ˚ �2; ��x� N� /

D m.mC 1/ dim
�
2id˚ �˚ 2� ˚

M
i2I

mi�˛
0
i ;
M
i2I

mi˛
0
i ˚m�

0
�

D m.mC 1/.mC 2/;

and the inclusion M � R is of depth 2.
(6) Now, Lemma 2.5 shows that we have

m D dim.� N���x���1; N���x�/

and
ŒN���x�� D

h
.id˚ �/

M
i2I

mi˛i

i
D

M
i2I

mi Œ˛i �˚mŒ��:



Group-subgroup subfactors revisited 27

Dimension counting implies

m D dim
�M
i2I

mi�˛i�
�1;

M
i2I

mi˛i

�
;

and this is possible only if Œ��x���1� D Œ�x��. Since H is a Frobenius complement,
every abelian subgroup of H is cyclic, and Lemma 2.6 implies there exists �1 2
Aut.R/ satisfying Œ��� D Œ��Œ�1�.

Now, Lemma 2.4 shows that there exists a group G including K ÌH , and outer
G-action on R extending ˇ satisfying M D R Ì G. The principal graph GM�N

shows that the G-action on G=.K ÌH/ is 3-transitive. Since

jG=.K ÌH/j D mC 2 and jGj D m.mC 1/.mC 2/;

the permutation group G is sharply 3-transitive. Now, the statement follows from the
classification of sharply 3-transitive permutation groups.

We devote the rest of this section to a preparation of the Goldman-type theorem
for the Mathieu groups M11. Since M.32/ and S.32/ are a point stabilizer and a two-
point stabilizer of the sharply 4-transitive action ofM11, we denoteM.32/DM10 and
S.32/ D M9. We first determine the dual principal graph GMN in the case of M10 >

M9. Since this graph is the induction-reduction graph G
M10
M9

, the irreducible M -M
sectors are parameterized by the irreducible representations of M10, whose ranks are
1, 1, 9, 9, 10, 10, 10, 16 (see [5, Table 8]).

We parameterize the irreducibleN -N andM -N sectors as in the above proof and
Figure 5. Theorem 3.1 (1) shows that N � P and its dual inclusion are isomorphic
subfactors associated with .S.32/; F32/ (see Remark 3.4), and the two fusion cate-
gories C1 and C2 are equivalent. On the other hand, the fusion subcategory generated
by �x� in C2 is equivalent to Rep.Q8/. Thus, the fusion category C0 is equivalent to
Rep.Q8/. In particular, we have Ni D i for all i . Since at least one of ¹1;2;3º is fixed by
the other involution i 7! i�, we may and do assume 1�D 1, and �˛1 is self-conjugate.
Since d.˛04/ D 2, the two sectors ˛04 and �˛04 are self-conjugate.

Let Œ"x" � D Œid�˚ Œ�� be the irreducible decomposition. Then, d.�/ D 9. Since

dim."˛0ix"; "˛
0
ix" / D dim.x""˛0i ; ˛

0
ix""/ D dim..id˚ �/˛0i ; ˛

0
i .id˚ �//

D 1C dim.�˛0i ; �˛
0
i�/;

if i�D i , the endomorphism "˛0ix" is decomposed into two irreducibles, and otherwise,
it is irreducible. Thus, "˛01x" is decomposed into two irreducibles. Since d."˛01x" / D
10, it is a direct sum of a 1-dimensional representation and a 9-dimensional repre-
sentation, and we denote the former by �. Then, the Frobenius reciprocity implies
Œ�"� D Œ"˛01�, and

Œ"˛01x" � D Œ�"x" � D Œ��˚ Œ���:
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�˛04

"˛04

˛04

Figure 5. BG.14;2/;1 D G.M.32/;PG1.32//.

Since "˛0ix", for i D 2; 3, cannot contain a 1-dimensional representation, we have
2� D 3, and � WD "˛02x" is irreducible. By

Œ"˛0ix" �Œ"� D Œ"˛
0
i .id˚ �/� D Œ"˛

0
i �˚ Œ"˛

0
i��

D Œ"˛0i �˚ Œ"�˛
0
i� � D Œ"˛

0
i �˚ Œ"˛

0
i� �˚ d.˛

0
i /Œ"�

0�;

and the Frobenius reciprocity, we also have Œ"˛02x" � D Œ��; and

Œ�"� D Œ"˛02�˚ Œ"˛
0
3�˚ Œ"�

0�:

Since d."˛04x" / D 20, we have

Œ"˛04x" � D Œ�1�˚ Œ�2�;

with d.�1/ D d.�2/ D 10, and

Œ�1"� D Œ"˛
0
4�˚ Œ"�

0�;

Œ�2"� D Œ"˛
0
4�˚ Œ"�

0�:

There is one irreducible representation ofM10 missing, which we denote by �. By
the Frobenius reciprocity and d.�/ D 16, we get

Œ"�0x" � D Œ��˚ Œ���˚ Œ��˚ Œ�1�˚ Œ�2�˚ 2Œ��:

Thus, the graph G
M10
M9

is as in Figure 6.
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Figure 6. G
M10

M9
.

Theorem 4.2. LetM �N be a finite-index subfactor with G dM�N D G
M10
M9

. Then, we
have

GM�N D GM10>M9 :

In consequence, there exists a unique subfactor R � N up to inner conjugacy, which
is irreducible in M such that

M D R ÌM10 � N D R ÌM9:

We divide the proof into a few steps. We parameterize theM -M sectors andM -N
sectors as in Figure 6. Then,

d.�/ D 1; d.�/ D 9; d.�/ D d.�1/ D d.�2/ D 10; d.�/ D 16;

d."/ D d."2/ D d."3/ D
p
10; d."4/ D 2

p
10; d."0/ D 8

p
10:

From the graph, we can see that � , �� , �, � are self-conjugate,

¹Œx��; Œ x�1�; Œ x�1�º D ¹Œ��; Œ�1�; Œ�2�º;

and this with the graph symmetry implies

Œ�2� D Œid�; Œ��� D Œ���; Œ��� D Œ��� D Œ��; Œ��� D Œ��;

¹Œ��1�; Œ��2�º D ¹Œ�1�; Œ�2�º:

The basic fusion rules coming from the graph are

Œ�"� D Œ"�˚ Œ"0�; Œ�"� D 2Œ"0�; Œ�"� D Œ"2�˚ Œ"3�˚ Œ"0�;

Œ�1"� D Œ�2"� D Œ"4�˚ Œ"0�;

Œ"x" � D Œid�˚ Œ��; Œ"2x" � D Œ"3x" � D Œ��; Œ"4x" � D Œ�1�˚ Œ�2�;

Œ"0x" � D Œ��˚ Œ���˚ Œ��˚ Œ�1�˚ Œ�2�˚ 2Œ��:
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We denote the last sector by† for simplicity. Then, we have†D†, and associativity
implies

Œ�2� D Œid�˚†; Œ��� D Œ��˚†; Œ�1�� D Œ�2�˚†;

Œ�2�� D Œ�1�˚†; Œ���˚ Œ�� D 2†:

The Frobenius reciprocity implies

dim.x��; �/ D dim. x�2�1; �/ D dim. x�1�2; �/ D 2; (4.3)

dim. x�i�; �/ D dim.x��i ; �/ D dim. x�i�i ; �/ D 1: (4.4)

dim.x��; �/ D dim. x�i�; �/ D 2; (4.5)

dim.x��; �/ D 3: (4.6)

Lemma 4.3. With the above notation, we have Œx�� D Œ�� and Œ��1� D Œ�1�� D Œ�2�.

Proof. Note that we have Œ��� D Œ��. First, we claim Œ��� D Œ��. Indeed, assume that
it is not the case. Then, we may assume Œ��� D Œ�1�, which implies

Œ��1� D Œ���� D Œ��� D Œ�1�;

and so, Œ��2� D Œ�2�. Since ¹Œx��; Œ x�1�; Œ x�2�º D ¹Œ��; Œ�1�; Œ�2�º, we get a contradiction,
and the claim holds.

Now, to prove the statement, it suffices to show Œ�2�� D Œ�3�. For this, we assume
Œ�1�� D Œ�1� (and consequently Œ�2�� D Œ�2�) and will deduce contradiction. Taking
conjugate, we also have Œ��1� D Œ�1� and Œ��2� D Œ�2� in this case. Then, since Œx���
contains � with multiplicity 2 and Œ�x��D Œx��, it contains Œ��� with multiplicity 2, and
so, dimension counting shows

Œx��� D Œid�˚ Œ��˚ 2Œ��˚ 2Œ���˚ 2Œ��˚ 3 � 10 dim; (4.7)

where 3� 10 dim means a direct sum of 3 elements from ¹�; �1; �2º. In the same way,
we get

Œ x�1�1� D Œid�˚ Œ��˚ Œ��˚ Œ���˚ 80 dim;

where the last part is decomposed as either 80 D 5 � 16 or 80 D 8 � 10. Also, we get

Œ x�1�2� D Œ x�2�1� D 2Œ��˚ 2Œ���˚ 4Œ��:

This implies

0 D dim. x�1�2; �/ D dim. x�1�2; �1/ D dim. x�1�2; �2/

D dim. x�2�1; �/ D dim. x�2�1; �1/ D dim. x�2�1; �2/: (4.8)
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Also, the Frobenius reciprocity implies

d.�1�; �2/ D 4:

Since Œ��� D Œ��, equation (4.5) shows

dim.�1�; ��/ D dim.�1�; ��/ D dim.�1�; �/ D 2

and
Œ�1�� D 2Œ��˚ 2Œ���˚ 4Œ��˚ 4Œ�2�˚ 2 � 10 dim:

Since dim.�1; �1�/ D dim. x�1�1; �/ is either 5 or 0, we get

Œ�1�� D 2Œ��˚ 2Œ���˚ 4Œ��˚ 4Œ�2�˚ 2Œ��

and
Œ x�1�1� D Œid�˚ Œ��˚ Œ��˚ Œ���˚ 8 � 10 dim: (4.9)

A similar reasoning shows

Œ x�i�� D Œ��˚ Œ���˚ 2Œ��˚ 5 � 10 dim; (4.10)

For the contragredient map, we have the following 3 possibilities up to relabeling
�1 and �2:

(i) Œx�� D Œ��, Œ x�1� D Œ�1�, Œ x�2� D Œ�2�,

(ii) Œx�� D Œ��, Œ x�1� D Œ�2�, Œ x�2� D Œ�1�,

(iii) Œx�� D Œ�1�, Œ x�1� D Œ��, Œ x�2� D Œ�2�.

However, direct computation shows that there are no fusion rules consistent with
equations (4.7), (4.8), (4.9), and (4.10) in each case.

Lemma 4.4. With the above notation,

Œ�"2� D Œ"3�;

Œ"2 x"2� D Œid�˚ Œ��;

Œ�"2� D Œ"0�˚ Œ"2�; Œ�"3� D Œ"0�˚ Œ"3�;

Œ�"4� D 2Œ"0�˚ Œ"4�;

Œ�"0� D Œ"�˚ Œ�"�˚ Œ"2�˚ Œ"3�˚ 2Œ"4�˚ 8Œ"0�:

Proof. Since d."2 x"2/ D 10 and "2 x"2 contains id, we have only the following two
possibilities:

Œ"2 x"2� D Œid�˚ Œ��;

Œ"2 x"2� D Œid�˚ Œ���:

Since "2 x"2 does not contain � in any case, we have Œ�"2�¤ Œ"2�, and so, Œ�"2�D Œ"3�.
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Assume that Œ"2 x"2� D Œid�˚ Œ��� holds. Then,

dim.�1"2;�1"2/D dim.�1;�1"2 x"2/D dim.�1;�1.id˚��//D 1Cdim.�1;�2�/D 3:

Since d.�1"2/ D 10
p
10, we have

Œ�1"2� D Œ"0�˚ 2 �
p
10 dim:

However, we have

dim.�1"2; "/ D dim.�1; " x"2/ D dim.�1; x�/ D dim.�1; �/ D 0;

dim.�1"2; �"/ D dim.�2"2; "/ D dim.�2; " x"2/ D dim.�2; x�/ D dim.�2; �/ D 0;

dim.�1"2; "2/ D dim.�1; id˚ ��/ D 0:

dim.�1"2; "3/ D dim.�1"2; �"2/ D dim.�1; �˚ �/ D 0;

and we get a contradiction. Therefore, we get Œ"2 x"2� D Œid�˚ Œ��.
The Frobenius reciprocity implies dim.�"2; "2/ D 1. Since d.�"2/ D 9

p
10, we

get Œ�"2� D Œ"2�˚ Œ"0�, and Œ�"3� D Œ"3�˚ Œ"0� in the same way.
By associativity,

2Œ�"0� D Œ��"� D Œ��"�

D Œ.2� ˚ 2�� ˚ 2� ˚ 2�1 ˚ 2�2 ˚ 3�/"�

D 2.Œ"�˚ Œ"0�/˚ 2.Œ�"�˚ Œ"0�/˚ 2.Œ"2�˚ Œ"3�˚ Œ"0�/

˚ 2.Œ"4�˚ Œ"0�/˚ 2.Œ"4�˚ Œ"0�/˚ 6Œ"0�;

which shows the last equation. The Frobenius reciprocity together with the equations
obtained so far implies the fourth one.

Proof of Theorem 4.2. It suffices to show GM�N D GM10>M9 (which is BG.142/;1). Let
Œx""� D Œid�˚ Œ�� be the irreducible decomposition. Since

Œ"x""� D Œ.id˚ �/"� D 2Œ"�˚ Œ"0�;

we get Œ"�� D Œ"�˚ Œ"0�.
Since

dim.x"�"; x"�"/ D dim."x"�; �"x" / D dim.�˚ ��; �˚ ��/ D 2;

the sector x"�" is decomposed into two distinct irreducibles. Since d.x"�"/ D 10 and

Œ"x"�"� D Œ.id˚ �/�"� D Œ�"�˚ Œ��Œ�"� D 2Œ�"�˚ Œ�0�;
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one of the irreducible components of x"�" is an automorphism of N , say, ˛1, and the
Frobenius reciprocity implies Œ�"� D Œ"˛1�. Thus,

Œx"�"� D Œ�˛1�˚ Œ˛1�;

and Œ"�˛1� D Œ�"�˚ Œ"0�. Since

Œ"�˛1� D Œ."˚ "0/˛1�;

we get Œ"0�Œ˛1� D Œ"0�.
In the same way, Lemma 4.4 implies

dim.x""2; x""2/ D ."x"; "2 x"2/ D dim.id˚ �; id˚ �/ D 2;

and there exists ˛2 2 Aut.N / satisfying Œ"2� D Œ"˛2�, and

Œx""2� D Œ�˛2�˚ Œ˛2�:

Letting Œ˛3� D Œ˛1˛2�, we get

Œ"3� D Œ�"2� D Œ�"˛2� D Œ"˛1˛2� D Œ"˛3�

and
Œx""3� D Œ�"3�˚ Œ˛3�:

Since
Œ"x""2� D Œ.id˚ �/"2� D 2Œ"2�˚ Œ"0�;

we get Œ"�˛2� D Œ"2�˚ Œ"0�. Since

Œ"�˛2� D Œ."˚ "0/˛2� D Œ"˛2�˚ Œ"0˛2�;

we get Œ"0˛2� D Œ"0�, and Œ"0˛3� D Œ"0� too.
Lemma 4.4 implies

dim.x""4; x""4/ D dim."4; "x""4/ D ."4; .id˚ �/"4/ D 1C ."4; �"4/ D 2;

and x""4 is decomposed into two distinct irreducibles, say, y�1 and y�2. On the other
hand, we have

Œ"x""4� D Œ.id˚ �/"4� D 2Œ"4�˚ 2Œ"0�:

Thus, there are the following two possibilities.

(i) Œ"y�1� D Œ"y�2� D Œ"4�˚ Œ"0�.

(ii) Œ"y�1� D Œ"4�˚ 2Œ"0� and Œ"y�2� D Œ"4�.
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Assume that the case (i) occurs. Then, d.y�1/ D d.y�2/ D 10. Lemma 4.4 implies

dim.x""0; x""0/ D ."0; "x""0/ D 1C dim."0; �"0/ D 9:

Thus, the Frobenius reciprocity together with the fusion rules obtained so far shows
that there exists distinct irreducibles �1, �2, �3 with d.�1/ D d.�2/ D d.�3/ D 8

satisfying

Œx""0� D

3M
iD0

Œ�˛i �˚ Œy�1�˚ Œy�2�˚ Œ�1�˚ Œ�2�˚ Œ�3�;

Œ"�1� D Œ"�2� D Œ"�3� D Œ"0�;

where ˛0 D id. For the fusion category C generated by x"", we have

Irr.C/ D ¹Œ˛i �º4iD0 t ¹Œ�˛i �º
3
iD0 t ¹Œy�1�; Œy�2�; Œ�1�; Œ�2�; Œ�3�º:

Let ƒ D ¹Œ˛i �º4iD0, which forms a group of order 4. Then, the ƒ-action on the set
¹Œ�1�; Œ�2�; Œ�3�º by left multiplication has a fixed point, and we may assume that it is
Œ�1�. Thus, there exists an intermediate subfactor of index 4 betweenN � �1.N /, and
�1 factorizes as �1 D �1�2 with d.�1/ D 2, d.�2/ D 4. Since x�2�2 is contained
in x�1�1, it belongs to C . However, we have d.x��/ D 16, and x�� contains either 1,
2 or 4 automorphisms, which is impossible because d.�˛i / D 9, d.y�i / D 10, and
d.�i / D 8. Therefore, (i) never occurs.

Now, we are left with the case (ii). In this case, we have d.y�1/ D 2, and

Œx""4� D Œx""y�2� D Œ.id˚ �/y�2�;

which implies Œy�1� D Œ�y�2�. The Frobenius reciprocity and dim.x""0; x""0/ D 9 imply
that there exists an irreducible � satisfying

Œx""0� D

3M
iD0

Œ�˛i �˚ 2Œ�y�2�˚ Œ��;

Œ"�� D Œ"0�;

which shows GM�N D G.142/;1.

5. Goldman-type theorems for .PSL2.q/; PG1.q//

Theorem 5.1. Let M � N be a finite index subfactor with GM�N DBG.1m/;2. Then,
q D 1C 2m is an odd prime power, and there exists a subfactor R � N up to inner
conjugacy such that R is irreducible in M and

M D R Ì PSL2.q/ � N D R Ìƒ;
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Figure 7. AG.13/;2.

where

ƒ D

´ 
a b

0 a�1

!
I a 2 F�q ; b 2 Fq

µ
=¹˙1º:

Proof. Note that ifmD 1, we have AG.1/;2 DE.1/6 D G.13/;1, and the statement follows
from [8] (or Theorem 3.1) as we have .A4; X4/ Š .PSL2.3/; PG1.3//. We assume
m > 1 in what follows.

Let " W N ,!M be the inclusion map, and let Œx""� D Œid�˚ Œ�� be the irreducible
decomposition. Let C be the fusion category generated by x"", and let I be the group
of (the equivalence classes of) the invertible objects in C . Then, jI j D m.

We can make the following parameterization of irreducible N -N and M -N sec-
tors, respectively (see Figure 7):

¹˛0iºi2I t ¹�˛
0
iºi2I t ¹�

0
1; �
0
2º;

¹"˛0iºi2I t ¹"�
0
1; "�

0
2º;

with properties

d.˛0i / D 1; d."/ D
p
2C 2m; d.�/ D 1C 2m; d.�01/ D d.�

0
2/ D m;

Œx""� D Œid�˚ Œ��;

Œ˛0i1˛
0
i2
� D Œ˛0i1i2 �;

Œ"�� D Œ"�˚ Œ"�1�˚ Œ"�2�;

Œ��01� D Œ��
0
2� D

M
i2I

Œ�˛0i �; (5.1)

Œ�2� D Œid�˚ Œ�01�˚ Œ�
0
2�˚ 2

M
i2I

Œ�˛0i �: (5.2)

By definition of I , we have Œ˛0i � D Œ˛
0

i�1
�. We can introduce another involution in I

by Œ.�˛0i /� D Œ�˛
0
i� �. We also introduce an involution in ¹1; 2º by Œ�0j � D Œ�

0
Nj
�. Taking
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conjugation of equation (5.1), we also have

Œ�01�� D Œ�
0
2�� D

M
i2I

Œ�˛0i �:

We claim that there exists a fusion subcategory C1 of C satisfying

Irr.C1/ D ¹˛0iºi2I t ¹�1; �2º:

Indeed, let

Ij D ¹i 2 I I Œ˛
0
i �Œ�
0
j � D Œ�

0
j �º;

I 0j D ¹i 2 I I Œ�
0
j �Œ˛

0
i � D Œ�

0
j �º:

Since the group I acts on the 2-point set ¹Œ�01�; Œ�
0
2�º by left (and also right) multipli-

cation, we have the following two cases.

(i) I1 D I2 D I . In this case, we also have I 01 D I 02 D I as ¹Œ�01�; ¹Œ�
0
2�ºº D

¹Œ�01�; Œ�
0
2�º.

(ii) jI1j D jI2j D m=2. In this case, we also have jI 01j D jI
0
2j D m=2.

Assume that (i) occurs first. Then, the Frobenius reciprocity implies

Œ�0j�
0
j � D

M
i2I

Œ˛0i �˚ aj1Œ�
0
1�˚ aj2Œ�

0
2�˚

M
i2I

bj i Œ�˛
0
i �:

Let
bj D

X
i2I

bj i :

Then,
m2 D mC .aj1 C aj2/mC bj .2mC 1/;

and we see that m divides bj . If bj � m, we would have m � 2m C 1, which is
contradiction. Thus, bj i D 0 for all i , j . The Frobenius reciprocity shows that neither
Œ�01�

0
2� nor Œ�02�

0
1� contain any automorphism, and a similar argument as above shows

that �01�
0
2 and �02�

0
1 are also direct sums of sectors in ¹˛0iº t ¹�

0
1; �
0
2º. This proves the

claim in the case (i).
Assume that (ii) occurs now. Then, l D m=2 is a natural number. A similar argu-

ment as above shows that for

aj D dim.�0j�
0
j ; �
0
1/C dim.�0j�

0
j ; �
0
2/;

bj D
X
i2I

dim.�0j�
0
j ; �˛

0
i /;

we have
4l2 D l C 2aj l C bj .4l C 1/:
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This shows that l divides bj , and so, bj D 0. Note that there exists i0 2 I satisfying

Œ�01� D Œ˛
0
i0
�02�;

which implies
Œ�01�

0
2� D Œ�

0
1�
0
1˛
0
i0
�; Œ�02�

0
1� D Œ˛

0

i�1
0

�01�
0
1�:

Therefore, �0j1�
0
j2

, 1 � j1; j2 � 2 are direct sums of sectors in ¹˛0iº t ¹�
0
1; �
0
2º, which

shows the claim in the case (ii).
The rest of the proof is very much similar to that of Theorem 4.1, and we briefly

address it except for the last part deciding the group structure of � . Theorem 2.3 and
equation (5.2) show that there exists a unique intermediate subfactor P between N
and �.N / such that if � W P ,! N denotes the inclusion map, we have

Œ�N� � D Œid�˚ Œ�1�˚ Œ�2�:

Moreover, there exists � 2 Aut.P / satisfying Œ�� D Œ�� N� �. The fusion rules of C1 tell
that the dual principal graph G dN�M is G.1m/;2, and Theorem 3.1 shows that GM�N is
also G.1m/;2. The group I is the cyclic group Zm now. Let C2 be the fusion category
generated by N��. Then, we can parameterize Irr.C2/ so that

Irr.C2/ D ¹Œ˛i �ºi2I t ¹Œ�1�; Œ�2�º;

Œ�˛i � D Œ˛
0
i ��;

ŒN��� D Œid�˚ Œ�1�˚ Œ�2�:

Applying Theorem 3.1, we see that there exists a unique subfactor R � P , up to
inner conjugacy, that is irreducible in M such that there exists a primitive Frobenius
groupK ÌH with jH j Dm, jKj D 1C 2m and an outer action ˇ of it onR satisfying

N D R Ìˇ .K ÌH/ � P D R Ìˇ H:

Note that the number q D 1C 2m is an odd prime power pk andK D Zkp ,H D Zm.
Moreover, there exists a group � including K Ì H such that ˇ extends to an outer
action  of � satisfying

M D R Ì �:

From the graph GM�N , we can see that the �-action on �=.K Ì H/ is a 2-
transitive, but not 3-transitive, extension of the Frobenius group K Ì H acting on
.K ÌH/=H . Note that j�j D .2mC 2/.2mC 1/m. Thus, [10, Chapter XI, Theorem
1.1] shows that � is a Zassenhaus group. The order of � shows that it is not one of
the Suzuki groups. Since � is not 3-transitive, we conclude from [10, Chapter XI,
Theorem 11.16] that � D PSL2.q/.
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Figure 8. G.S5;X5/.

6. Goldman-type theorems for sharply 4-transitive permutation
groups

Since the finite depth subfactors of index 5 are completely classified in [19], the only
point of the following theorem is to see how to find a subfactor R and an S5-action
on it from the principal graph.

Theorem 6.1. LetL�M be a finite index inclusion of factors with GL�MDG.S5;X5/.
Then, there exists a unique subfactor R � M , up to inner conjugacy, such that R0 \
L D C and there exists an outer action  of S5 on R satisfying

L D R Ì S5 �M D R Ì S4:

Proof. We follow the strategy described in Section 2.5.
(1) Let ı WM ,!L be the inclusion map, and let Œxıı�D Œid�˚ Œ�� be the irreducible

decomposition. We parameterize the irreducible M -M sectors and the L-M sectors
generated by ı as in Figure 8. Then, we have

d.�/ D 4; d.�/ D 3; d.�/ D 2; d.�/ D 1; d.ı/ D
p
5:

From the graph, we can see that all theM -M sectors are self-conjugate, which implies
Œ���D Œ���, Œ���D Œ���. The graph symmetry implies Œ���D Œ��, and since � is self-
conjugate, we get

Œ�2� D Œid�˚ Œ��˚ Œ��

by dimension counting.
The basic fusion rules coming from the graph are

Œ�2� D Œid�˚ Œ��˚ Œ��˚ Œ���; (6.1)

Œ��� D Œ��˚ Œ���;

Œ�.��/� D Œ��˚ Œ���˚ Œ��˚ Œ���˚ Œ��˚ 2Œ���:
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Taking conjugate, we also have

Œ��� D Œ��˚ Œ���:

Now, direct computation using the Frobenius reciprocity and associativity shows
the following fusion rules:

Œ�2� D Œid�˚ Œ��˚ Œ���˚ Œ��;

Œ��� D Œ��� D Œ��˚ Œ���:

Let C be the fusion category generated by xıı. Then, the above fusion rules show
that there exists a fusion subcategory C1 of C with

Irr.C1/ D ¹id; �; �; �; ��º:

(2) Theorem 2.3 and equation (6.1) imply that there exists a unique intermediate
subfactor N between M and �.M/ such that if " W N ,!M is the inclusion map, we
have

Œ"x" � D Œid�˚ Œ��:

In the same way as in the proof of Lemma 3.2, there exists ' 2 Aut.N / satisfying
Œ�� D Œ"'x" �.

(3) Note that we have ŒM W N� D 1C d.�/ D 4. Thanks to the classification of
subfactors of index 4 (see [21, Section 3.2]) and Irr.C1/, we can see that G dM�N is
the Coxeter graph E.1/7 , and so is GM�N too. Note that we have E.1/7 D AG.12/;1, and
.L.3/; PG1.3// Š .S4; X4/. Let C2 be the fusion category generated by x"". As in
Theorem 4.1, we can parameterize Irr.C2/ as

Irr.C2/ D ¹id; ˛0; �0; �; �˛0º;

with the following properties:

d.˛0/ D 1; d.�0/ D 2; d.�/ D 3;

Œ˛0
2
� D Œid�;

Œ˛0�� D Œ�0˛0� D Œ�0�;

Œ�0
2
� D Œid�˚ Œ˛0�˚ Œ�0�;

Œ�2� D Œid�˚ Œ��˚ Œ�0�˚ Œ�˛0�;

Œ˛0�� D Œ�˛0�;

Œ��0� D Œ�0�� D Œ��˚ Œ�˛0�;

Œx""� D Œid�˚ Œ��:
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(4) Theorem 4.1 shows that there exists a unique subfactor R � N , up to inner
conjugacy such that R0 \M D C, and there exists an outer action ˇ of S4 on R
satisfying

M D R Ìˇ S4 � N D R Ìˇ S3:

To use notation consistent with that in Theorems 3.1 and 4.1, we let P D R Ìˇ S3 �

N , and we let � W P ,! N and � W R ,! P be the inclusion maps. Let "1 D "��. Then,
"1 x"1 corresponds to the regular representation of S4, and

Œ"1 x"1� D Œid�˚ Œ��˚ 2Œ��˚ 3Œ��˚ 3Œ���:

Thus, since Œxıı� D Œid�˚ Œ��,

dim.ı"1; ı"1/ D dim.xıı; "1 x"1/ D 1;

and L � R is irreducible.
(5) Note that we have ŒL W R� D 120. On the other hand,

dim.ı"1.ı"1/; ı"1.ı"1// D dim.xıı"1 x"1; "1 x"1xıı/:

Note that Œ�� commutes with Œ"1 x"1�, and Œ."1 x"1/2� D jS4jŒ"1 x"1�. Thus,

dim.xıı"1 x"1; "1 x"1xıı/ D dim.xıı"1 x"1; xıı"1 x"1/ D dim..xıı/2; ."1 x"1/2/

D 24 dim..id˚ �/2; "1 x"1/ D 120:

Thus, the inclusion L � R is of depth 2.
(6) We denote �3 D ��. By Lemma 2.5, we get

dim.'x""�3 x�3'�1; x""�3 x�3/ D jS3j D 6:

Note that �3 x�3 corresponds to the regular representation in Rep.S3/, and

Œ�3 x�3� D Œid�˚ Œ˛0�˚ 2Œ�0�:

Thus,

Œx""�3 x�3� D Œ.id˚ �/.id˚ ˛0 ˚ 2�0/� D Œid�˚ Œ˛0�˚ 2Œ�0�˚ 3Œ��˚ 3Œ�˛0�:

Dimension counting implies

dim.'.id˚ ˛0 ˚ 2�0/'�1; id˚ ˛0 ˚ 2�0/ D 6;

and Œ'�3 x�3'�1� D Œ�3 x�3�.
Now, we can apply Lemma 2.6 to S3, and we obtain '1 2 Aut.R/ satisfying

Œ'"1� D Œ"1'1�:
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Lemma 2.4 implies that there exists a group � including S4 such that ˇ extends to an
outer action  of � satisfying L D R Ì � . Note that

j�j D ŒL W R� D 120:

Since the graph G.S5;X5/ shows that the �-action on �=S4 is a 3-transitive extension
of .S4; X4/, we conclude � D S5.

The remaining two cases are the most subtle because we cannot apply Lemma 2.6
to either A4 D H.2

2/ D Z22 Ì Z3 or M9 D S.3
2/ D Z33 ÌQ8 in step (6).

Since G.A6;X6/ D
e
G

A5
A4

, we can obtain it from the induction-reduction graph G
A5
A4

between A5 and A4 (see, for example, [19] for the latter).

Theorem 6.2. LetL�M be a finite-index inclusion of factors with GL�MDG.A6;X6/.
Then, there exists a unique subfactor R �M , up to inner conjugacy, such that

R0 \ L D C;

and there exists an outer action  of A6 on R satisfying

L D R Ì A6 �M D R Ì A5:

Proof. (1) Let ı WM ,! L be the inclusion map, and let

Œxıı� D Œid�˚ Œ��

be the irreducible decomposition. We parameterize the irreducible M -M sectors and
the L-M sectors generated by ı as in Figure 9. Then, we have

d.�/ D d.�1/ D d.�2/ D d.�3/ D 5; d.�/ D 4;

d.�/ D 15; d.�1/ D d.�2/ D 3; d.ı/ D
p
6:

From the graph, we can see that �, � , and � are self-conjugate, and

¹Œ x�1�; Œ x�2�; Œ x�3�º D ¹Œ�1�; Œ�2�; Œ�3�º; ¹Œ x�1�; Œ x�2�º D ¹Œ�1�; Œ�2�º:

We use the notation Œx�i � D Œ�Ni � and Œ x�j � D Œ� Nj � for simplicity.
The basic fusion rules coming from the graph and their conjugate are

Œ�2� D Œid�˚ Œ��˚ Œ��˚ Œ��; (6.2)

Œ��� D Œ��� D Œ��˚ Œ��; (6.3)

Œ��� D Œ��� D Œ��˚ Œ��˚ Œ�1�˚ Œ�2�˚ Œ�3�˚ Œ�1�˚ Œ�2�˚ 3Œ��; (6.4)

Œ��i �C Œ�i � D Œ�i��˚ Œ�i � D Œ�1�˚ Œ�2�˚ Œ�3�˚ Œ��; (6.5)

Œ��i � D Œ�i�� D Œ��: (6.6)
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Figure 9. G.A6;X6/.

By associativity, we get

Œ�2�˚ Œ��� D Œid�˚ Œ��˚ Œ��˚ Œ�1�˚ Œ�2�˚ Œ�3�

˚ Œ�1�˚ Œ�2�˚ 3Œ��; (6.7)

Œ���˚ Œ�2� D Œid�˚ 4Œ��˚ 3Œ��˚ 4Œ�1�˚ 4Œ�2�

˚ 4Œ�3�˚ 2Œ�1�˚ 2Œ�2�˚ 12Œ��; (6.8)

Œ��i �˚ Œ��i � D Œ�i �˚ Œ��˚ Œ��˚ Œ�1�˚ Œ�2�˚ Œ�3�

˚ Œ�1�˚ Œ�2�˚ 4Œ��; (6.9)

Œ�i �˚ Œ��i �˚ Œ��i � D Œ��˚ Œ��˚ Œ�1�˚ Œ�2�˚ Œ�3�˚ Œ�1�˚ Œ�2�˚ 2Œ��: (6.10)

Equation (6.3) shows

1 D dim.��; �/ D dim.�; ��/:

Since d.�i�/ < d.�/, we have

0 D dim.�i�;�/ D dim.�i ; ��/:

Equation (6.7) shows that �2 contains id, �1,�2, and it cannot contain � by dimension
counting, which implies dim.�;��/D 0 by the Frobenius reciprocity. Equation (6.7)
again shows that �� contains � with multiplicity 3 and �2 contains � with multiplic-
ity 1. Thus, we get

Œ�2� D Œid�˚ Œ��˚ Œ�1�˚ Œ�2�˚ 5 dim; Œ��� D Œ3��˚ Œ��˚ 10 dim;

where the remainder is �1 ˚ �2 ˚ �3. Therefore, we may and do assume that �2

contains �1, and we get

Œ�2� D Œid�˚ Œ��˚ Œ�1�˚ Œ�1�˚ Œ�2�; (6.11)

Œ��� D Œ3��˚ Œ��˚ Œ�2�˚ Œ�3�: (6.12)
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In consequence, �1 is self-conjugate. Taking conjugate of equation (6.12), we also get
Œ��� D Œ���, and equation (6.8) implies

Œ�2� D Œid�˚ 3Œ��˚ 3Œ��˚ 4Œ�1�˚ 3Œ�2�˚ 3Œ�3�˚ 2Œ�1�˚ 2Œ�2�˚ 9Œ��: (6.13)

The Frobenius reciprocity implies

Œ��1� D Œ��˚ 16 dim; Œ��1� D 4Œ��˚ Œ��˚ 10 dim;

and equation (6.9) with dimension counting implies

Œ��1� D Œ��˚ Œ�1�˚ Œ�2�˚ 10 dim; Œ��1� D 4Œ��˚ Œ��˚ 10 dim;

where the remainder is 2Œ�1�˚ Œ�2�˚ Œ�3�:
For i D 2; 3, equations (6.9) and (6.13) show that we have

3 D dim.�i ; �2/ D dim.��i ; �/;

and ��i contains � with multiplicity 3, while it does not contain � as

0 D dim.�2; �i / D dim.�; ��i /:

Thus,

Œ��i � D Œ��˚ 5 dim; Œ��i � D Œ��˚ Œ��˚ 3Œ��˚ Œ�1�˚ Œ�2�˚ 15 dim;

where the remainder is Œ�i �˚ Œ�1�˚ Œ�2�˚ Œ�3�: If ��i contained �i with multiplicity
2, the Frobenius reciprocity implies that �i x�i would contain � with multiplicity 2,
which is impossible. Thus, we get

Œ��i � D Œ��˚ Œ�i �; i D 2; 3; (6.14)

Œ��i � D Œ��˚ Œ��˚ Œ�1�˚ Œ�2�˚ Œ�3�˚ Œ�1�˚ Œ�2�˚ 3Œ��; i D 2; 3: (6.15)

Equation (6.14) shows

0 D dim.��i ; �1/ D dim.�i ; ��1/; i D 2; 3:

Thus,

Œ��1� D Œ��˚ Œ�1�˚ Œ�2�˚ 2Œ�1�; (6.16)

Œ��1� D 4Œ��˚ Œ��˚ Œ�1�˚ Œ�2�: (6.17)

The Frobenius reciprocity together with the fusion rules obtained so far implies

Œ��1� D Œ��˚ Œ�1�˚ Œ�2�;

Œ��2� D Œ��˚ Œ�1�˚ Œ�1�;

Œ��i � D 2Œ��˚ Œ��˚ Œ�2�˚ Œ�3�:
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Let C be the fusion category generated by xıı. Then, the above computation shows
that the fusion subcategory C1 of C generated by � satisfies

Irr.C1/ D ¹id; �; �1; �1; �2º:

(2) Theorem 2.3 and equation (6.2) imply that there exists a unique intermediate
subfactor N between M and �.M/ such that if " W N ,!M is the inclusion map, we
have

Œ"x" � D Œid�˚ Œ��:

Note that we have d."/ D
p
5. In the same way as in the proof of Lemma 3.2, there

exists ' 2 Aut.N / satisfying Œ�� D Œ"'x" �.
(3) Since

dim.�"; �"/ D dim.�2; "x" / D dim.�2; id˚ �/ D 2;

there exists an irreducible sector "0 with Œ�"� D Œ"�˚ Œ"0� and d."0/ D 3
p
5. Since

Œ�"x" � D Œ�.id˚ �/� D Œid�˚ 2Œ��˚ Œ�1�˚ Œ�1�˚ Œ�2�;

we get
Œ"0x" � D Œ��˚ Œ�1�˚ Œ�1�˚ Œ�2�:

The Frobenius reciprocity and dimension counting show Œ�1"� D Œ�2"� D Œ"
0�. Since

�1 is self-conjugate,

dim.�1"; �1"/ D dim.�1; �1"x" / D dim.�1; �1.id˚ �//

D 1C dim.�1; �1�/ D 1C dim.�1; ��1/;

and equation (6.16) shows dim.�1"; �1"/ D 3. This together with the Frobenius reci-
procity imply that there exist irreducible sectors "00 and "000 satisfying d."00/D d."00/D
p
5,

Œ�1"� D Œ"
0�˚ Œ"00�˚ Œ"000�;

and Œ"00x" �D Œ"000x" �D Œ�1�. The above computation shows that the dual principal graph
G dM�N is G

A5
A4

, and the classification of finite depth subfactors of index 5 shows that
GM�N is G.A5;X5/ (see [19]). Note that we have

.A5; X5/ D .L.2
2/;PG1.22// and GM�N D AG.13/;1:

Let C2 be the fusion category generated by x"". As in the proof of Theorem 4.1, we
can parameterize Irr.C2/ as

Irr.C2/ D ¹id; ˛0; ˛0
2
; �0; �; �˛0; �˛0

2
º;
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with the following properties:

d.˛0/ D 1; d.�0/ D 3; d.�/ D 4;

Œ˛0
3
� D Œid�;

Œ˛0�� D Œ�0˛0� D Œ�0�;

Œ�0
2
� D Œid�˚ Œ˛0�˚ Œ˛02�C 2Œ�0�;

Œ�2� D Œid�˚ Œ�0�˚ Œ��˚ Œ�˛0�˚ Œ�˛02�;

Œ˛0�� D Œ�˛0
2
�;

Œ�0�� D Œ��0� D Œ��˚ Œ�˛0�˚ Œ�˛0
2
�;

Œx""� D Œid�˚ Œ��:

(4) Theorem 4.1 shows that there exists a unique subfactor R � N , up to inner
conjugacy, such that R0 \M D C, and there exists an outer action ˇ of A5 on R
satisfying

M D R Ìˇ A5 � N D R Ìˇ A4:

Let P D R Ìˇ A3 � N , and let � W P ,! N and � W R ,! P be the inclusion maps.
Let "1 D "��. Then, "1 x"1 corresponds to the regular representation of A5, and

Œ"1 x"1� D Œid�˚ 3Œ�1�˚ 3Œ�2�˚ 4Œ��˚ 5Œ��:

Thus, since Œxıı� D Œid�˚ Œ��,

dim.ı"1; ı"1/ D dim.xıı; "1 x"1/ D 1;

and L � R is irreducible.
(5) Note that we have ŒL W R� D 6jA5j D 360. On the other hand, since Œ�� com-

mutes with Œ"1 x"1�, and Œ."1 x"1/2� D jA5jŒ"1 x"1�,

dim.ı"1.ı"1/; ı"1.ı"1// D dim.xıı"1 x"1; "1 x"1xıı/ D dim.xıı"1 x"1; xıı"1 x"1/

D dim..xıı/2; ."1 x"1/2/ D 60 dim..id˚ �/2; "1 x"1/

D 60 dim.2id˚ � ˚ 3�˚ �; "1 x"1/ D 360:

Therefore, the inclusion L � R is of depth 2.
(6) We denote �3 D ��. By Lemma 2.5, we get

dim.'x""�3 x�3'�1; x""�3 x�3/ D jA4j D 12:

Note that �3 x�3 corresponds to the regular representation of A4, and

Œ�3 x�3� D Œid�˚ Œ˛0�˚ Œ˛0
2
�˚ 3Œ�0�:
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Thus,

Œx""�3 x�3� D Œ.id˚ �/.id˚ ˛0 ˚ ˛0
2
˚ 3�0/�

D Œid�˚ Œ˛0�˚ Œ˛02�˚ 3Œ�0�˚ 4Œ��˚ 4Œ�˛0�˚ 4Œ�˛02�:

Dimension counting implies

dim.'.id˚ ˛0 ˚ ˛02 ˚ 3�0/'�1; id˚ ˛0 ˚ ˛02 ˚ 3�0/ D 12;

and Œ'�3 x�3'�1� D Œ�3 x�3�. We also have

.'.� ˚ �˛0 ˚ �˛0
2
/'�1; .� ˚ �˛0 ˚ �˛0

2
// D 0: (6.18)

To finish the proof, we cannot apply Lemma 2.6 to A4, and we make a little detour.
We examine the automorphism ' 2Aut.N /more carefully. We first claim Œ'2�D Œid�.
Indeed, since � is self-conjugate,

1 D dim."'x"; "'�1x" / D dim.x""'; '�1x""/ D dim.' ˚ �'; '�1 ˚ '�1�/;

and either Œ'2� D Œid� or Œ'�'� D Œ�� holds. Assume that the latter holds. Then,

Œ�2� D Œ"'x""'x" � D Œ"'.id˚ �/'x" �

D Œ"'2x" �˚ Œ"'�'x" � D Œ"'2x" �˚ Œ"�x" �:

Since

Œ"x" �˚ Œ"�x" � D Œ."x" /2� D .Œid�˚ Œ��/2 D 2Œid�˚ 3Œ��˚ Œ�1�˚ Œ�1�˚ Œ�2�;

we get
Œ�2� D Œ"'2x" �˚ Œid�˚ 2Œ��˚ Œ�1�˚ Œ�1�˚ Œ�2�;

which is a contradiction. Thus, the claim is shown, and we also have Œ'�'� ¤ Œ��.
Let ! D �'x". We show the following 3 properties of !.

(i) ! is irreducible.

(ii) dim.�0; ! x!/ D 1.

(iii) Œ'!� D Œ!�.

Indeed, thanks to equation (6.18), we get

dim.!;!/D dim.�2;'x""'�1/D dim.id˚ �0˚ � ˚ �˛0˚ �˛02;'.id˚ �/'�1/D 1;

and ! is irreducible. (ii) also follows from equation (6.18) as we have

dim.�0; ! x!/ D dim.�0!;!/ D dim.��0�; '.id˚ �/'�1/;
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and ��0� contains id with multiplicity 1. (iii) follows from

1 D dim.�; �2/ D dim."'x"; "'x""'x" / D dim.x""'x"; 'x""'x" /

D dim..id˚ �/'x"; '.id˚ �/'x" / D dim.'x"˚ !; x"˚ '!/

D dim.'; x""/C dim.!; '!/ D dim.!; '!/:

The proof of Theorem 4.1 shows that there exists � 2 Aut.P / such that � factor-
izes as � D �� N�. Thus, we have N � P � !.M/. Since Œ�N� � D Œid�˚ Œ�0�, Lemma 2.7
shows that there exists a unitary u 2 N satisfying Ad u ı '.P / D P , which means
that there exists  2 Aut.P / satisfying Œ'�� D Œ� �. Now, we have

12 D dim.� �x� �1N�; ��x� N� / D dim. �x� �1; N���x� N��/:

We parameterize P -P sectors generated by N�� as in the proof of Theorem 3.1.
Then, ŒN��� D Œid�˚ Œ��, Œ�x�� D Œid�˚ Œ˛�˚ Œ˛2�, d.�/ D 3, d.˛/ D 1, ˛3 D id, and
they satisfy the following fusion rules:

Œ˛�� D Œ�˛� D Œ��;

Œ�2� D Œid�˚ Œ˛�˚ Œ˛2�˚ 2Œ��:

Now, we have
ŒN���x� N��� D 4.Œid�˚ Œ˛�˚ Œ˛2�˚ 3Œ��/;

and we get
3 D dim. .id˚ ˛ ˚ ˛2/ �1; id˚ ˛ ˚ ˛2 ˚ 3�/:

Thus, Œ �x� �1� D Œ�x��. Lemma 2.6 shows that there exists '1 2 Aut.R/ satisfying
Œ �� D Œ�'1�, and so, Œ'��� D Œ��'1�. Lemma 2.4 shows that there exists a group �
containing A5 such that  extends to an outer action of � on R such that

L D R Ì �:

The shape of graph GL�M shows that the �-action on the set �=A5 is 3-transitive
extension of .A5; X5/, and we conclude that � D A6.

Remark 6.3. A similar argument works for .S6; X6/. In this case, we can apply
Lemma 2.6 to S3 D Z3 Ì Z2 instead of A3 D Z3 at the last step.

Note that we computed the graph G
M10
M9

in Section 4, and the graph GM11>M10 for

the Mathieu group M11 can be obtained by GM11>M10 D
A
G
M10
M9

.

Theorem 6.4. Let L �M be a finite-index inclusion of factors with

GL�M D GM11>M10 :
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Figure 10. GM11>M10
.

Then, there exists a unique subfactor R �M , up to inner conjugacy, such that

R0 \ L D C;

and there exists an outer action  of M11 on R satisfying

L D R Ì M11 �M D R Ì M10:

Proof. (1) Let ı W M ,! L be the inclusion map, and let Œxıı� D Œid� ˚ Œ�� be the
irreducible decomposition. We parameterize the irreducible M -M sectors and the
L-M sectors generated by ı as in Figure 10. Then, we have

d.�/ D 1; d.�/ D 9; d.�/ D d.�1/ D d.�2/ D d.�3/ D d.�1/ D d.�2/ D 10;

d.�/ D 16; d.�/ D 20; d.�/ D 80; d.ı/ D
p
11:

From the graph, we can see that �, � , ��, �, �, and � are self-conjugate, and

¹Œ���; Œ x�1�; Œ x�2�; Œ x�3�; Œ x�1�; Œ x�2�º D ¹Œ���; Œ�1�; Œ�2�; Œ�3�; Œ�1�; Œ�2�º:

Since �� is self-conjugate, we have Œ��� D Œ���. By the graph symmetry, we have
Œ��� D Œ��, Œ��� D Œ��, Œ��� D Œ��, and

¹Œ�1��; Œ�2��; Œ�3��º D ¹Œ�1�; Œ�2�; Œ�3�º;

¹Œ�1��; Œ�2��º D ¹Œ�1�; Œ�2�º:

The basic fusion rules coming from the graph are

Œ�2� D Œid�˚ Œ��˚ Œ��˚ Œ��; (6.19)

Œ��� D Œ��˚ Œ��; (6.20)
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Œ��� D Œ��˚ Œ���˚ Œ��˚ Œ���˚ Œ�1�˚ Œ�2�˚ Œ�3�

˚ Œ�1�˚ Œ�2�˚ 2Œ��˚ 2Œ��˚ 8Œ��; (6.21)

Œ��i �C Œ�i � D Œ�1�˚ Œ�2�˚ Œ�3�˚ Œ��; (6.22)

Œ��i � D Œ��˚ Œ��; (6.23)

Œ��� D 2Œ��; (6.24)

Œ��� D Œ�1�˚ Œ�2�˚ Œ��˚ 2Œ��: (6.25)

Since the right-hand sides of equations (6.20), (6.21), (6.23), and (6.24) are self-
conjugate, we have Œ��� D Œ���, Œ��� D Œ���, Œ��i � D Œ x�i��, and Œ��� D Œ���. Since
Œ�2�� D Œ��2�, we get Œ��� D Œ���.

By associativity, we get

Œ�2�˚ Œ��� D Œid�˚ Œ��˚ Œ���˚ Œ��˚ Œ���˚ Œ�1�˚ Œ�2�

˚ Œ�3�˚ Œ�1�˚ Œ�2�˚ 2Œ��˚ 2Œ��˚ 8Œ��; (6.26)

Œ���˚ Œ�2� D Œid�˚ Œ��˚ 9Œ��˚ 9Œ���˚ 8Œ��˚ 8Œ���˚ 9Œ�1�˚ 9Œ�2�

˚ 9Œ�3�˚ 9Œ�1�˚ 9Œ�2�˚ 14Œ��˚ 18Œ��˚ 72Œ��; (6.27)

Œ��i �˚ Œ��i � D Œ��˚ Œ���˚ Œ��˚ Œ���˚ Œ�i �˚ Œ�1�˚ Œ�2�˚ Œ�3�

˚ Œ�1�˚ Œ�2�˚ 2Œ��˚ 2Œ��˚ 9Œ��; (6.28)

Œ�i �˚ Œ��i �˚ Œ��i � D Œ��˚ Œ���˚ Œ��˚ Œ���˚ Œ�1�˚ Œ�2�˚ Œ�3�˚ 2Œ�1�

˚ 2Œ�2�˚ 2Œ��˚ 2Œ��˚ 9Œ��; (6.29)

Œ���˚ Œ��� D 2Œ��˚ 2Œ���˚ 2Œ��˚ 2Œ���˚ 2Œ�1�˚ 2Œ�2�˚ 2Œ�3�

˚ 2Œ�1�˚ 2Œ�2�˚ 3Œ��˚ 4Œ��˚ 14Œ��; (6.30)

Œ���˚ Œ��� D 2Œ��˚ 2Œ���˚ 2Œ��˚ 2Œ���˚ 2Œ�1�˚ 2Œ�2�˚ 2Œ�3�

˚ 2Œ�1�˚ 2Œ�2�˚ 4Œ��˚ 5Œ��˚ 18Œ��: (6.31)

We give a criterion to separate the summations of the left-hand sides. For irre-
ducible X and Y , we have

dim.��X; Y / D dim.�X; �Y /;

and on the other hand,

dim.��X; Y / D dim..�˚ �/X; Y / D dim.�X; Y /C dim.�X; Y /:

Thus,
dim.�X ˚ �X; Y / D dim.�X; Y ˚ �Y / � dim.�X; Y /: (6.32)

The Frobenius reciprocity implies dim.�2; �/D 0 and dim.��;�/D 1. We claim
that �2 does not contain �. Assume on the contrary that �2 contains �. Then, equa-
tion (6.26) implies dim.��; �/ D 7. Since Œ�� commutes with Œ��, equation (6.24)
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shows that 2Œ�� D Œ���, and

14 D dim.2��;�/ D dim.���; �/ D dim.�.�˚ �/; �/ D dim.2�˚ ��; �/:

Since � and � are self-conjugate, we get dim.��; �/ D 12. However, this and equa-
tion (6.30) show dim.��;�/D 2, which is impossible because d.��/< 2d.�/. There-
fore, the claim is shown. The Frobenius reciprocity implies that we have

dim.��; �/ D 0:

Since Œ����D Œ����D Œ���, we get dim.��;��/D 0 too. Thus, dimension count-
ing shows that we may put

Œ�2� D Œid�˚ Œ��˚ Œ���˚ 2Œ��˚
3M
iD1

ai Œ�i �˚

2M
iD1

bi Œ�i �˚ cŒ��;

where ai , bi , and c are non-negative integers satisfying

3X
iD1

ai C

2X
iD1

bi C 2c D 3:

Applying equation (6.32) to this, we obtain a1 C a2 C a3 D 1 and bi D 1 � c. We
may and do assume a1 D 1, a2 D a3 D 0, and

Œ�2� D Œid�˚ Œ��˚ Œ���˚ 2Œ��˚ Œ�1�˚ .1 � c/Œ�1�˚ .1 � c/Œ�2�˚ cŒ��;

Œ��� D 8Œ��˚ Œ��˚ Œ���˚ Œ�2�˚ Œ�3�˚ cŒ�1�˚ cŒ�2�˚ .2 � c/Œ��:

Since Œ��� D Œ���, equation (6.27) shows dim.�2; �i / D 8 for i D 2; 3, and the
Frobenius reciprocity and equation (6.28) show that ��i contains �. Thus,

Œ��i � D Œ��˚ 10 dim; i D 2; 3:

If �i were not contained in ��i , equation (6.28) implies that ��i would contain �i with
multiplicity 2, and consequently, �i x�i would contain � with multiplicity 2, which is a
contradiction because d.�i /2 < 2d.�/. Thus, we have

Œ��i � D Œ��˚ Œ�i �; i D 2; 3;

Œ��i � D Œ��˚ Œ���˚ Œ��˚ Œ���˚ Œ�1�˚ Œ�2�˚ Œ�3�

˚ Œ�1�˚ Œ�2�˚ 2Œ��˚ 2Œ��˚ 8Œ��; i D 2; 3:

Since our argument is already long, we state the next claim as a separate lemma.

Lemma 6.5. With the above notation, we have c D 0.
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Proof. Assume on the contrary that c D 1. Since

2Œ��� D Œ���� D Œ.�˚ �/�� D Œ���˚ 2Œ��;

we can obtain the irreducible decomposition of �� and ��.
Now, equation (6.32), the Frobenius reciprocity, and dimension counting show the

following:

Œ�2� D Œid�˚ Œ��˚ Œ���˚ 2Œ��˚ Œ�1�˚ Œ��; (W1)

Œ��� D Œ��˚ Œ���˚ Œ�2�˚ Œ�3�˚ Œ�1�˚ Œ�2�˚ Œ��˚ 8Œ��; (W2)

Œ�2� D Œid�˚ Œ��˚ 8Œ��˚ 8Œ���˚ 8Œ��˚ 8Œ���

˚ 9Œ�1�˚ 8Œ�2�˚ 8Œ�3�˚ 8Œ�1�˚ 8Œ�2�˚ 14Œ��˚ 17Œ��˚ 64Œ��; (W3)

Œ��� D 2Œ��˚ 2Œ���˚ 2Œ�1�˚ 3Œ��˚ 2Œ��; (W4)

Œ��� D 2Œ��˚ 2Œ���˚ 2Œ�2�˚ 2Œ�3�˚ 2Œ�1�˚ 2Œ�2�˚ 2Œ��˚ 14Œ��; (W5)

Œ��1� D Œ��˚ Œ���˚ 2Œ��˚ 2Œ�1�˚ Œ��; (W6)

Œ��1� D Œ��˚ Œ���˚ Œ�2�˚ Œ�3�˚ Œ�1�˚ Œ�2�˚ Œ��˚ 9Œ��; (W7)

Œ��� D Œ��˚ Œ���˚ 2Œ��˚ Œ�1�˚ 2Œ��˚ Œ��; (W8)

Œ��� D 2Œ��˚ 2Œ���˚ Œ��˚ Œ���

˚ Œ�1�˚ 2Œ�2�˚ 2Œ�3�˚ 2Œ�1�˚ 2Œ�2�˚ 2Œ��˚ 3Œ��˚ 17Œ��: (W9)

Here, the letter ‘W’ stands for wrong equations. Since the right-hand sides are self-
conjugate, we see that Œ�� commutes with Œ��, Œ�1�, Œ��, and Œ��.

An argument similar to the case of ��i with i D 2; 3 shows Œ��1� D Œ��˚ Œ�2�
and Œ��2� D Œ��˚ Œ�1�. Equation (6.28) shows

2 D dim.��i ; �/ D dim.�i�; �/;

and consequently, Œ�i�� D 2Œ��. In the same way, we have Œ�2�� D Œ�3�� D 2Œ��, and
taking conjugate, we also get

Œ�2�� D Œ�3�� D Œ�1�� D Œ�2�� D Œ��2� D Œ��3� D Œ��1� D Œ��2� D 2Œ��; (W10)

Œ��1� D Œ��˚ Œ�2�; Œ��1� D Œ��˚ Œ�1�; (W11)

Œ��2� D Œ��3� D Œ��1� D Œ��2�

D Œ��˚ Œ���˚ Œ��˚ Œ���˚ Œ�1�˚ Œ�2�˚ Œ�3�˚ Œ�1�˚ Œ�2�

˚ 2Œ��˚ 2Œ��˚ 8Œ��: (W12)

From

2Œ��2� D Œ���1� D Œ�.�˚ �2 ˚ �3/� D Œ���˚ Œ�.�1 ˚ �3/� D Œ���˚ 2Œ��˚ Œ��1�;

we get the irreducible decomposition of ��1.
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From
2Œ��i � D Œ���i � D Œ�.�˚ �/� D Œ���˚ Œ���;

we get the irreducible decomposition of Œ���. The Frobenius reciprocity and dimen-
sion counting show

Œ��1� D 2Œ��˚ 2Œ���˚ 4Œ��˚ 2Œ�1�˚ 2Œ��; (W13)

Œ��� D 2Œ��˚ 2Œ���˚ 4Œ��˚ 2Œ�1�˚ 2Œ��˚ 2Œ��; (W14)

Œ�2� D Œid�˚ Œ��˚ 3Œ��˚ 3Œ���˚ 5Œ��˚ 4Œ�1�˚ 4Œ��: (W15)

Next, we determine the left multiplications of Œ�1� and Œ�� by applying associativity
to Œ�2X�. The two equations

Œ�.��1/� D Œ�.� ˚ ��˚ 2� ˚ 2�1 ˚ �/�;

Œ�2�1� D Œ.id˚ � ˚ ��˚ 2� ˚ �1 ˚ �/�1�

show

Œ�21 �˚ Œ��1� D Œid�˚ Œ��˚ 3Œ��˚ 3Œ���˚ 4Œ��˚ 2Œ�1�˚ 4Œ��˚ Œ��:

By the Frobenius reciprocity and dimension computing, we get

Œ�21 � D Œid�˚ Œ��˚ 2Œ��˚ 2Œ���˚ 2Œ��˚ Œ�1�˚ Œ��; (W16)

Œ��1� D Œ��˚ Œ���˚ 2Œ��˚ Œ��˚ Œ�1�˚ 3Œ��: (W17)

The two equations

Œ�.��/� D Œ�.� ˚ ��˚ 2� ˚ �1 ˚ 2� ˚ �/�;

Œ�2�� D Œ.id˚ � ˚ ��˚ 2� ˚ �1 ˚ �/��

show

Œ�1��˚ Œ�
2� D Œid�˚ Œ��˚ Œ��˚ Œ���˚ 3Œ��˚ 3Œ���

˚ 4Œ��˚ 4Œ�1�˚ 3Œ��˚ 4Œ��˚ Œ�2�˚ Œ�3�˚ Œ�1�˚ Œ�2�;

and

Œ�2� D Œid�˚ Œ��˚ Œ��˚ Œ���˚ 2Œ��˚ 2Œ���

˚ 2Œ��˚ 3Œ��˚ 3Œ�1�˚ Œ�2�˚ Œ�3�˚ Œ�1�˚ Œ�2�: (W18)

The two equations

Œ�.��1/� D Œ���˚ Œ��2� D Œ���˚ Œ��˚ Œ�1�;

Œ�2�1� D Œ.id˚ � ˚ ��˚ 2� ˚ �1 ˚ �/�1�

D Œ�1�˚ Œ�2�˚ Œ��2�˚ 6Œ��˚ Œ�1�1�˚ Œ��1�
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show that Œ��2� D Œ�1�, and

Œ�1�1�˚ Œ��1� D Œ��˚ Œ���˚ Œ�2�˚ Œ�3�˚ Œ��˚ 3Œ��:

In a similar way, we have Œ��2� D Œ�3� and

Œ�1�2�˚ Œ��2� D Œ��˚ Œ���˚ Œ�1�˚ Œ�2�˚ Œ��˚ 3Œ��:

We claim
¹Œ x�2�; Œ x�3�; Œ x�1�; Œ x�2�º D ¹Œ�2�; Œ�3�; Œ�1�; Œ�2�º:

Indeed, since Œ���2� D Œ��3� does not contain id, we see that �� is not the conjugate
sector of �2. A similar argument applied to �3, �1, and �2 shows the claim.

Assume first that Œ x�2� is either Œ�1� or Œ�2�. Note that in this case Œ x�3� D Œ x�2�� is
also either �1 or �2. Then,

dim.�1�2; �/ D dim.��1; x�2/ D 1;

and dim.�1�2; ��/ D 1 in the same way. We have

dim.��2; �/ D dim.��; x�2/ D 1;

and dim.��2; ��/ D 1 in the same way. Thus,

Œ�1�1� D Œ�1�2� D Œ��˚ Œ���˚ Œ��; (W19)

Œ��1� D Œ��2� D Œ�2�˚ Œ�3�˚ Œ��˚ 2Œ��; (W20)

Œ�1�2� D Œ�1�3� D Œ�1�˚ Œ�2�˚ Œ��; (W21)

Œ��2� D Œ��3� D Œ��˚ Œ���˚ Œ��˚ 2Œ��: (W22)

Multiplying the both sides of equations (W20) and (W21) by Œ�� from the left, we get

Œ�21�˚ Œ�2�1� D Œ�1�2�˚ Œ�
2
2� D 2Œ�1�˚ Œ�1�˚ Œ�2�˚ 2Œ��;

Œ�22 �˚ Œ�3�2� D Œ�2�3�˚ Œ�
2
3 � D 2Œ��˚ 2Œ��:

Taking conjugate, we get a contradiction.
Assume now that Œ x�2� is either Œ�2� or Œ�3�. In this case, Œ x�3� is either Œ�2� or Œ�3�

too. The Frobenius reciprocity and dimension counting show

Œ�1�1� D Œ�1�2� D Œ��˚ Œ�2�˚ Œ�3�; (W23)

Œ��1� D Œ��2� D Œ��˚ Œ���˚ Œ��˚ 2Œ��; (W24)

Œ�1�2� D Œ�1�3� D Œ��˚ Œ���˚ Œ��; (W25)

Œ��2� D Œ��3� D Œ�1�˚ Œ�2�˚ Œ��˚ 2Œ��: (W26)
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Multiplying both sides of equations (W23) and (W26) by Œ�� from the left, we get

Œ�2�1�˚ Œ�3�1� D Œ�2�2�˚ Œ�3�2� D 2Œ�1�˚ Œ�2�˚ Œ�3�˚ 2Œ��;

Œ�1�2�˚ Œ�2�2� D Œ�1�3�˚ Œ�2�3� D 2Œ��˚ 2Œ��;

which is a contradiction again. Finally, we conclude that c D 0.

Continuation of the proof of Theorem 6.4. The above lemma and equation (6.26) show

Œ�2� D Œid�˚ Œ��˚ Œ���˚ 2Œ��˚ Œ�1�˚ Œ�1�˚ Œ�2�; (6.33)

Œ��� D 8Œ��˚ Œ��˚ Œ���˚ Œ�2�˚ Œ�3�˚ 2Œ��: (6.34)

From equation (6.33), we can see

¹Œ x�1�; Œ x�1�; Œ x�2�º D ¹Œ�1�; Œ�1�; Œ�2�º; (6.35)

and in consequence,

¹Œ���; Œ x�2�; Œ x�3�º D ¹Œ���; Œ�2�; Œ�3�º:

Since
2Œ��� D Œ���� D Œ.�˚ �/�� D Œ���˚ 2Œ��;

we get
Œ��� D 2Œ��˚ 2Œ���˚ 2Œ�2�˚ 2Œ�3�˚ 4Œ��˚ 14Œ��;

and from equation (6.30),

Œ��� D 2Œ��˚ 2Œ���˚ 2Œ�1�˚ 2Œ�1�˚ 2Œ�2�˚ 3Œ��:

Equation (6.34) shows that �� contains � with multiplicity 2. If �� contained
� with multiplicity at most 1, equation (6.31) shows that �2 would contain � with
multiplicity 4, which is impossible because d.�2/ D 4d.�/ and �2 contains id. Thus,
we get

Œ��� D 2Œ��˚ 2Œ��:

Now, the Frobenius reciprocity implies that neither ��1, ��1, nor ��2 contains
�, ��, �2, �3, �, and we get

Œ��1� D Œ��˚ Œ���˚ 2Œ�1�˚ Œ�1�˚ Œ�2�˚ 2Œ��;

Œ��1� D Œ��˚ Œ���˚ Œ�1�˚ Œ�1�˚ 2Œ�2�˚ 2Œ��;

Œ��2� D Œ��˚ Œ���˚ Œ�1�˚ 2Œ�1�˚ Œ�2�˚ 2Œ��:

The above fusion rules show that the fusion category C1 generated by � satisfies

Irr.C1/ D ¹id; �; �; ��; �1; �1; �2; �º:
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.

(2) Theorem 2.3 and equation (6.19) imply that there exists a unique intermediate
subfactor N between M and �.M/ such that if " W N ,!M is the inclusion map, we
have

Œ"x" � D Œid�˚ Œ��:

Note that we have d."/ D
p
10. In the same way as in the proof of Lemma 3.2, there

exists ' 2 Aut.N / satisfying Œ�� D Œ"'x" �.
(3) We show the dual principal graph G dM�N is G

M10
M9

computed in Section 4 (see
Figure 11). Since

dim.�"; �"/ D dim.�; �"x" / D dim.�; �.1˚ �// D 2;

there exists an irreducible "0 satisfying Œ�"� D Œ"�˚ Œ"0� and d."0/ D 8
p
10. Since

equation (6.35) and

Œ�"x" � D Œ��˚ Œ�2� D Œid�˚ 2Œ��˚ Œ���˚ Œ�1�˚ Œ�1�˚ Œ�2�˚ 2Œ��;

we get
Œ"0x" � D Œ��˚ Œ���˚ Œ x�1�˚ Œ x�1�˚ Œ x�2�˚ 2Œ��:

By the Frobenius reciprocity,
Œ�"� D 2Œ"0�:

Since
dim. x�1"; x�1"/ D dim. x�1; x�1.id˚ �// D 3;

there exist two irreducibles "2 and "3 satisfying

Œ x�1"� D Œ"0�˚ Œ"2�˚ Œ"3�;

and d."2/C d."3/ D 2
p
10. By the Frobenius reciprocity, we get

d."2/ D d."3/ D
p
10

and
Œ"2x" � D Œ"2x" � D Œ x�1�:
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In a similar way, we can show

dim. x�1"; x�1"/ D dim. x�2"; x�2"/ D dim. x�1"; x�2"/ D 2;

and there exists irreducible "4 satisfying

Œ�1"� D Œ�2"� D Œ"4�;

and d."4/ D 2
p
10. The Frobenius reciprocity shows

Œ"4x" � D Œ x�1�˚ Œ x�2�:

Note that �1 is self-conjugate and ¹Œ x�1�; Œ x�2�º D ¹Œ�1�; Œ�2�º. Thus, we get

G dM�N D G
M10
M9

:

Now, Theorem 4.2 implies that GM�N D GM10>M9 .
The rest of the proof is very much similar to that of Theorem 6.2, and we make

only points different from it.
(4) Theorem 4.1 shows that there exists a unique subfactor R � N , up to inner

conjugacy, such that R0 \M D C and there exists an outer action ˇ of M10 on R
satisfying

M D R Ìˇ M10 � N D R Ìˇ M9:

The inclusion L � R is irreducible.
(5) To prove that L � R is of depth 2, it suffices to show that Œ�� commutes with

Œid�˚ Œ��˚ 9Œ��˚ 9Œ���˚ 10Œ�1�˚ 10Œ�1�˚ 10Œ�2�˚ 16Œ��;

which corresponds to the regular representation of M11. Indeed, it follows from

Œ��.Œid�˚ Œ��˚ 9Œ��˚ 9Œ���˚ 10Œ�1�˚ 10Œ�1�˚ 10Œ�2�˚ 16Œ��/

D Œ��˚ Œ���˚ 9.Œ��˚ Œ��/˚ 9.Œ���˚ Œ��/˚ 10.Œ��˚ Œ�2�˚ Œ�3�/

˚ 10.Œ��˚ Œ��/˚ 10.Œ��˚ Œ��/˚ 32Œ��

D 10.Œ��˚ Œ���˚ Œ�2�˚ Œ�3�˚ 2Œ��˚ 8Œ��/;

which is self-conjugate as we can take the conjugate of the both sides.
(6) We can apply Lemma 2.6 to Q8 to finish the proof.
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[9] J. H. Hong and W. Szymański, On finite subfactors with principal graph D2nC1=Z2.
J. Funct. Anal. 141 (1996), no. 2, 294–300 Zbl 0923.46062 MR 1418507

[10] B. Huppert and N. Blackburn, Finite groups. III. Grundlehren Math. Wiss. 243, Springer,
Berlin, 1982 Zbl 0514.20002 MR 0662826

[11] M. Izumi, Goldman’s type theorem for index 3. Publ. Res. Inst. Math. Sci. 28 (1992), no. 5,
833–843 Zbl 0809.46071 MR 1196002

[12] M. Izumi, Goldman’s type theorems in index theory. In Operator algebras and quantum
field theory (Rome, 1996), pp. 249–269, International Press, Cambridge, MA, 1997
Zbl 0915.46054 MR 1491121

[13] M. Izumi, Subalgebras of infinite C�-algebras with finite Watatani indices. II. Cuntz–
Krieger algebras. Duke Math. J. 91 (1998), no. 3, 409–461 Zbl 0949.46023
MR 1604162

[14] M. Izumi, Characterization of isomorphic group-subgroup subfactors. Int. Math. Res. Not.
(2002), no. 34, 1791–1803 Zbl 1032.46073 MR 1920326

[15] M. Izumi, The classification of 3n subfactors and related fusion categories. Quantum
Topol. 9 (2018), no. 3, 473–562 Zbl 1403.46048 MR 3827808

[16] M. Izumi and Y. Kawahigashi, Classification of subfactors with the principal graph D.1/n .
J. Funct. Anal. 112 (1993), no. 2, 257–286 Zbl 0791.46039 MR 1213139

[17] M. Izumi and H. Kosaki, On a subfactor analogue of the second cohomology. Rev. Math.
Phys. 14 (2002), no. 7-8, 733–757 Zbl 1030.46098 MR 1932664

[18] M. Izumi, R. Longo, and S. Popa, A Galois correspondence for compact groups of auto-
morphisms of von Neumann algebras with a generalization to Kac algebras. J. Funct. Anal.
155 (1998), no. 1, 25–63 Zbl 0915.46051 MR 1622812

https://doi.org/10.1007/978-1-4684-9327-6
https://zbmath.org/?q=an:0584.20036
https://mathscinet.ams.org/mathscinet-getitem?mr=0672956
https://doi.org/10.1007/978-1-4612-0731-3
https://zbmath.org/?q=an:0951.20001
https://mathscinet.ams.org/mathscinet-getitem?mr=1409812
https://doi.org/10.1155/S1073792804131206
https://zbmath.org/?q=an:1063.18005
https://mathscinet.ams.org/mathscinet-getitem?mr=2098028
https://doi.org/10.1093/oso/9780198511755.001.0001
https://zbmath.org/?q=an:0924.46054
https://mathscinet.ams.org/mathscinet-getitem?mr=1642584
https://doi.org/10.22108/ijgt.2019.115366.1531
https://doi.org/10.22108/ijgt.2019.115366.1531
https://zbmath.org/?q=an:1491.20015
https://mathscinet.ams.org/mathscinet-getitem?mr=4223614
https://doi.org/10.1307/mmj/1028998188
https://zbmath.org/?q=an:0121.10002
https://mathscinet.ams.org/mathscinet-getitem?mr=0107827
https://doi.org/10.1007/978-1-4613-9641-3
https://zbmath.org/?q=an:0698.46050
https://mathscinet.ams.org/mathscinet-getitem?mr=0999799
https://doi.org/10.1007/BF00992723
https://zbmath.org/?q=an:0827.46051
https://mathscinet.ams.org/mathscinet-getitem?mr=1340721
https://doi.org/10.1006/jfan.1996.0129
https://zbmath.org/?q=an:0923.46062
https://mathscinet.ams.org/mathscinet-getitem?mr=1418507
https://doi.org/10.1007/978-3-642-67997-1
https://zbmath.org/?q=an:0514.20002
https://mathscinet.ams.org/mathscinet-getitem?mr=0662826
https://doi.org/10.2977/prims/1195167939
https://zbmath.org/?q=an:0809.46071
https://mathscinet.ams.org/mathscinet-getitem?mr=1196002
https://zbmath.org/?q=an:0915.46054
https://mathscinet.ams.org/mathscinet-getitem?mr=1491121
https://doi.org/10.1215/S0012-7094-98-09118-9
https://doi.org/10.1215/S0012-7094-98-09118-9
https://zbmath.org/?q=an:0949.46023
https://mathscinet.ams.org/mathscinet-getitem?mr=1604162
https://doi.org/10.1155/S107379280220402X
https://zbmath.org/?q=an:1032.46073
https://mathscinet.ams.org/mathscinet-getitem?mr=1920326
https://doi.org/10.4171/QT/113
https://zbmath.org/?q=an:1403.46048
https://mathscinet.ams.org/mathscinet-getitem?mr=3827808
https://doi.org/10.1006/jfan.1993.1033
https://zbmath.org/?q=an:0791.46039
https://mathscinet.ams.org/mathscinet-getitem?mr=1213139
https://doi.org/10.1142/S0129055X02001375
https://zbmath.org/?q=an:1030.46098
https://mathscinet.ams.org/mathscinet-getitem?mr=1932664
https://doi.org/10.1006/jfan.1997.3228
https://doi.org/10.1006/jfan.1997.3228
https://zbmath.org/?q=an:0915.46051
https://mathscinet.ams.org/mathscinet-getitem?mr=1622812


M. Izumi 58

[19] M. Izumi, S. Morrison, D. Penneys, E. Peters, and N. Snyder, Subfactors of index exactly
5. Bull. Lond. Math. Soc. 47 (2015), no. 2, 257–269 Zbl 1328.46048 MR 3335120

[20] V. F. R. Jones, Index for subfactors. Invent. Math. 72 (1983), no. 1, 1–25
Zbl 0508.46040 MR 0696688

[21] V. F. R. Jones, S. Morrison, and N. Snyder, The classification of subfactors of index at
most 5. Bull. Amer. Math. Soc. (N.S.) 51 (2014), no. 2, 277–327 Zbl 1301.46039
MR 3166042

[22] G. Karpilovsky, The Schur multiplier. London Math. Soc. Monogr. (N.S.) 2, Oxford Uni-
versity Press, New York, 1987 Zbl 0619.20001 MR 1200015

[23] V. Kodiyalam and V. S. Sunder, The subgroup-subfactor. Math. Scand. 86 (2000), no. 1,
45–74 Zbl 1032.46530 MR 1738515

[24] H. Kosaki, Characterization of crossed product (properly infinite case). Pacific J. Math.
137 (1989), no. 1, 159–167 Zbl 0693.46058 MR 0983334

[25] H. Kosaki and S. Yamagami, Irreducible bimodules associated with crossed product alge-
bras. Internat. J. Math. 3 (1992), no. 5, 661–676 Zbl 0799.46055 MR 1189679

[26] M. Pimsner and S. Popa, Entropy and index for subfactors. Ann. Sci. École Norm. Sup. (4)
19 (1986), no. 1, 57–106 Zbl 0646.46057 MR 0860811

[27] D. J. S. Robinson, A course in the theory of groups. Grad. Texts in Math. 80, Springer,
New York, 1993 Zbl 0836.20001 MR 1261639

Received 15 April 2023.

Masaki Izumi
Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto
606-8502, Japan; izumi@math.kyoto-u.ac.jp

https://doi.org/10.1112/blms/bdu113
https://doi.org/10.1112/blms/bdu113
https://zbmath.org/?q=an:1328.46048
https://mathscinet.ams.org/mathscinet-getitem?mr=3335120
https://doi.org/10.1007/BF01389127
https://zbmath.org/?q=an:0508.46040
https://mathscinet.ams.org/mathscinet-getitem?mr=0696688
https://doi.org/10.1090/S0273-0979-2013-01442-3
https://doi.org/10.1090/S0273-0979-2013-01442-3
https://zbmath.org/?q=an:1301.46039
https://mathscinet.ams.org/mathscinet-getitem?mr=3166042
https://zbmath.org/?q=an:0619.20001
https://mathscinet.ams.org/mathscinet-getitem?mr=1200015
https://doi.org/10.7146/math.scand.a-14281
https://zbmath.org/?q=an:1032.46530
https://mathscinet.ams.org/mathscinet-getitem?mr=1738515
https://doi.org/10.2140/pjm.1989.137.159
https://zbmath.org/?q=an:0693.46058
https://mathscinet.ams.org/mathscinet-getitem?mr=0983334
https://doi.org/10.1142/S0129167X9200031X
https://doi.org/10.1142/S0129167X9200031X
https://zbmath.org/?q=an:0799.46055
https://mathscinet.ams.org/mathscinet-getitem?mr=1189679
https://doi.org/10.24033/asens.1504
https://zbmath.org/?q=an:0646.46057
https://mathscinet.ams.org/mathscinet-getitem?mr=0860811
https://doi.org/10.1007/978-1-4419-8594-1
https://zbmath.org/?q=an:0836.20001
https://mathscinet.ams.org/mathscinet-getitem?mr=1261639
mailto:izumi@math.kyoto-u.ac.jp

	1. Introduction
	2. Preliminaries
	2.1. Frobenius groups
	2.2. Sharply k-transitive permutation groups
	2.3. Group-subgroup subfactors
	2.4. Intermediate subfactors
	2.5. The strategy of the proofs

	3. Goldman-type theorems for Frobenius groups
	4. Goldman-type theorems for sharply 3-transitive permutation groups
	5. Goldman-type theorems for (PSL_2(q),PG_1(q))
	6. Goldman-type theorems for sharply 4-transitive permutation groups
	References

