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Bimodule coefficients, Riesz transforms on Coxeter
groups and strong solidity

Matthijs Borst, Martijn Caspers, and Mateusz Wasilewski

Abstract. In deformation-rigidity theory, it is often important to know whether certain bimodules
are weakly contained in the coarse bimodule. Consider a bimodule H over the group algebra CŒ��
with � a discrete group. The starting point of this paper is that if a dense set of the so-called coef-
ficients of H is contained in the Schatten �p class p 2 Œ2;1/, then the n-fold tensor power H˝n

�
for n � p

2 is quasi-contained in the coarse bimodule. We apply this to gradient bimodules associ-
ated with the carré du champ of a symmetric quantum Markov semi-group. For Coxeter groups, we
give a number of characterizations of having coefficients in �p for the gradient bimodule construc-
ted from the word length function. We get equivalence of: (1) the gradient-�p property introduced
by the second named author, (2) smallness at infinity of a natural compactification of the Coxeter
group, and for a large class of Coxeter groups, (3) walks in the Coxeter diagram called parity paths.
We derive several strong solidity results. In particular, we extend current strong solidity results for
right-angled Hecke von Neumann algebras beyond right-angled Coxeter groups that are small at
infinity. Our general methods also yield a concise proof of a result by Sinclair for discrete groups
admitting a proper cocycle into a p-integrable representation.

1. Introduction

This paper establishes bridges between the Riesz transform in modern harmonic analysis
and von Neumann algebra theory. The original Riesz transform can be defined as fol-
lows. Consider the positive unbounded Laplace operator� and the directional gradient rj
on L2.Rn/ given by

� D �

nX
jD1

@2

@x2j
; rj D

@

@xj
; 1 � j � n:

Then the Riesz transform Rj D rj ı�
� 12 for 1 � j � n is an isometry on L2.Rn/ that

has been studied extensively in classical harmonic analysis in the context of Fourier mul-
tipliers, singular integral operators and Calderón–Zygmund theory.
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Riesz transforms can be defined abstractly for any C0-semi-group of positive measure
preserving unital contractions on L1.X; �/, with .X; �/ a finite Borel measure space.
Such semi-groups admit a generator� and a natural replacement of the gradient r known
as the carré du champ. The Riesz transform is then defined as r ı ��

1
2 . These Riesz

transforms were studied by Meyer [37] for (commutative) Gaussian algebras, and their
study was continued by Bakry [3,4], Gundy [27], Pisier [42], amongst others. This in par-
ticular involves an analysis of diffusion semi-groups on compact Riemannian manifolds
with lower bounds on the Ricci curvature [4]. In the non-commutative situation, Clifford
algebras were considered by Lust-Piquard [35,36]. Also recently the Riesz transform was
studied on general groups [31] using certain multipliers associated with cocycles.

In this paper, we study Riesz transforms associated with non-commutative general-
izations of diffusion semi-groups: (symmetric) quantum Markov semi-groups. Let M be
a finite von Neumann algebra and ˆ D .ˆt /t�0 a point-strongly continuous semi-group
of trace preserving unital completely positive maps. Such a semi-group comes with a gen-
erator�. The proper replacement of the gradient is played by a bilinear form that is a non-
commutative version of the carré du champ. For simplicity, we consider mostly quantum
Markov semi-groups of Fourier multipliers associated with a discrete group � , acting
on the group algebra CŒ��. Then the carré du champ allows the construction of a CŒ��
bimodule Hr and a derivation, i.e., a map satisfying the Leibniz rule, rWCŒ��! Hr
such that (here formally) � D r�r. So r is a root of � just as in the case of the Laplace
operator and the gradient. We refer to Cipriani and Sauvageot [18] where also the ana-
lytical framework is established. Then there is an isometry r ı��

1
2 W `2.�/! Hr called

the Riesz transform. This Riesz transform was studied in the context of q-Gaussian algeb-
ras [16, 35, 36] and compact quantum groups [13, 14].

In the current paper, we are interested in applications of the Riesz transform to group
von Neumann algebras of discrete groups; we focus on Coxeter groups but we also obtain
results for other groups.

Recall that to a discrete group � we may associate the group von Neumann algebra
L.�/ which is the von Neumann algebra generated by the left regular representation.
Let F2 be the free group with two generators. In his fundamental papers on free probab-
ility, Voiculescu [50] showed that L.F2/ does not possess a Cartan subalgebra, meaning
that there does not exist a maximal abelian subalgebra (MASA) of L.F2/ whose nor-
malizer generates L.F2/. An important consequence is that L.F2/ does not non-trivially
decompose as a crossed product and cannot be constructed from an equivalence rela-
tion with a cocycle as was shown by Feldman and Moore [23, 24]. In [39], Ozawa and
Popa gave an alternative proof of the Voiculescu’s result. They showed that L.F2/ is
strongly solid. This means that the normalizer of any diffuse amenable von Neumann sub-
algebra of L.F2/ generates a von Neumann algebra that is amenable again. Since L.F2/
is nonamenable and since MASA’s are diffuse, it automatically follows that L.F2/ does
not possess a Cartan subalgebra. After [39] many von Neumann algebras were proven to
be strongly solid, see, e.g., [29, 40, 44] and references given there. As a consequence of
the methods in this paper, we are able to prove such strong solidity results as well.
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To motivate the first part of this paper, we recall the following theorem from [16]. We
do not explain for now the technical terms that occur in this theorem but in the subsequent
paragraph, we explain what the crucial part is. Theorem 1.1 itself is actually not that hard
to prove; however, its consequences (see [29, 44]) and proving that its assumptions hold
in examples is rather intricate.

Theorem 1.1 ([16, Proposition 5.2]). Let H be a CŒ�� bimodule, and let V W `2.�/! H

be bounded. Assume that H is quasi-contained in the coarse bimodule of � , V is almost
bimodular and that V �V is Fredholm. Assume that C �r .�/ is locally reflexive. Then L.�/

satisfies AOC.

The Akemann–Ostrand property AOC (as in [29]) will be used frequently in this paper
for which we refer to Definition 3.10. If � is weakly amenable, then AOC implies strong
solidity [29, 44]. The Coxeter groups in this paper are weakly amenable [25, 30] as are all
hyperbolic discrete groups [38].

In view of Theorem 1.1, we are mostly still interested in two things: (1) constructing
almost bimodular maps V W `2.�/! H with H a CŒ�� bimodule; (2) showing that the
CŒ�� bimodule H is quasi-contained in the coarse bimodule `2.�/˝ `2.�/ of � . It turns
out that very often the Riesz transform is an almost bimodular map. Further, we provide
comprehensible conditions that show that the gradient bimodule is quasi-contained in the
coarse bimodule. We will develop general theory for this as follows.

In the first part of this paper, we study bimodules over CŒ�� and their coefficients.
We define coefficients of a CŒ�� bimodule as a certain map CŒ��! CŒ��. This notion
occurs, for instance, in [2, Section 13] for von Neumann algebras; the more algebraic
notion we present here is more convenient for our purposes. Since CŒ�� � `2.�/, a coef-
ficient determines a densely defined map `2.�/! `2.�/. We study when these maps are
contained in the Schatten von Neumann non-commutative Lp-space �p .

For two CŒ�� bimodules H1 and H2, we shall also show that H1 ˝H2 has a natural
CŒ�� bimodule structure, and we denote this bimodule byH1 ˝� H2. As a Hilbert space,
H1 ˝� H2 D H1 ˝H2. Recall that the coarse bimodule of � is given by `2.�/˝ `2.�/
where the left action of CŒ�� is on the first tensor leg and the right action on the second
tensor leg. In Section 3, we prove the following, amongst other results (except for part (4),
which is proved in Section 4, see Corollary 4.13).

Theorem 1.2. Let H , H1 and H2 be CŒ�� bimodules.

(1) If a dense set of coefficients of H is in �2, then H is a L.�/ bimodule that is
quasi-contained in the coarse bimodule of � .

(2) If a dense set of coefficients of Hi , i D 1; 2, is contained in �pi , pi 2 Œ1;1/, then
a dense set of coefficients of H1 ˝� H2 is contained in �p , where 1

p
D

1
p1
C

1
p2

.

(3) If Vi W `2.�/ ! Hi , i D 1; 2, is almost CŒ�� bimodular, then so is V1 � V2 WD
.V1 ˝ V2/ ı�� W `2.�/! H1 ˝� H2, where �� W `2.�/! `2.�/˝ `2.�/ is the
comultiplication.
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(4) Consider a proper length function  W� ! Z�0 that is conditionally of negative
type, defined on a finitely generated group � . Then the associated Riesz transform
RW `2.�/! `2.�/r is almost bimodular.

Theorem 1.2 provides a clear strategy towards obtaining the input of Theorem 1.1.
Namely, we start with a proper length function  W� ! R that is conditionally of negative
type. We construct the associated gradient bimodule Hr and show that its coefficients are
in �p for some p 2 Œ1;1/. By tensoring, we obtain a bimodule .Hr/˝n� , n � dp

2
e and

a map
V �nW `2.�/! .Hr/

˝n
� ;

with the desired properties of Theorem 1.1. This is the rough idea of our strategy. We say
‘rough’ since in all applications we need some suitably adapted variation of this idea.

In the second part of this paper, we analyse when coefficients of a gradient bimod-
ule Hr are in �p , p 2 Œ1;1/. In order to do so, we recall the property gradient-�p
for quantum Markov semi-groups from [13, 16]. If a quantum Markov semi-group has
gradient-�p , then a dense set of coefficients of Hr are in �p; consequently, Hr is quasi-
contained in the coarse bimodule of � .

We first show (Lemma 4.11) that if  W�!Z is a proper length function that is condi-
tionally of negative type, then gradient �p , p 2 Œ1;1/ for the associated quantum Markov
semi-group is independent of p. Then we analyse when the word length function of a gen-
eral (finite rank) Coxeter group is gradient-�p . We find the following characterization.

Theorem 1.3. Let W D hS jM i be a finite rank Coxeter system. Fix p 2 Œ1;1�. The
following are equivalent:

(1) The quantum Markov semi-group associated with the word length is gradient-�p .

(2) For all s; t 2 S , the set ¹w 2 W Wws D twº is finite.

(3) The Coxeter system hS jM i is small at infinity (as in [33]).

In particular, for right-angled Coxeter groups these statements are equivalent to the
Coxeter group being a free product of finite abelian Coxeter groups, see [33]. This shows
that gradient-�p is rather rare. However, with the right tensor techniques it can still be
turned into a very useful property. We also provide an almost characterization of when the
equivalent statements of Theorem 1.3 hold in the following theorem. For the definition of
the graph GraphS .W /, we refer to Definition 5.5. The definition of a parity path is given
in Definition 5.6.

Theorem 1.4. Let W D hS jM i be a Coxeter group. If there does not exist a cyclic parity
path in GraphS .W /, then the semi-group .ˆt /t�0 associated to the word length  S is
gradient-�p for all p 2 Œ1;1�. The converse holds true if mi;j 6D 2 for all i , j .

Section 5 shows that it is usually easy to determine whether GraphS .W / has a parity
path, see Corollaries 5.11 and 5.12.
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We now come to the applications. The first one is essentially the main result of [46].
Now this theorem follows rather directly from our analysis of bimodule coefficients in
Section 3. The theorem in particular applies to infinite conjugacy class (icc) lattices in the
groups SO.n; 1/, n � 3, and SU.m; 1/, m � 2.

Theorem 1.5 (Application A, Theorem 3.15). Let � be a discrete group admitting a prop-
er cocycle into a p-integrable representation for some p <1. Assume C �r .�/ is locally
reflexive. Then L.�/ has property AOC.

Next we obtain strong solidity results for Hecke von Neumann algebras: q-deforma-
tions of Coxeter groups. The following theorem extends [33, Theorem 0.7] in the case
of a right-angled Coxeter system. What is of particular interest is that our methods really
improve on the approach based on compactifications and boundaries in [33]. More pre-
cisely, [33] shows that if the action of a right-angled Coxeter group on a natural boundary
associated with it is small at infinity, then actually the Coxeter group is a free product
of finite (commutative) Coxeter groups. So the approach in [33, Theorem 0.7] cannot be
extended to the current generality.

Theorem 1.6 (Application B, Theorem 8.3). Let W D hS jM i be a right-angled Coxeter
group, and let q D .qs/s2S with qs > 0. Assume that all elements in

	 WD ¹r 2 S W 9 s; t 2 S such that mr;s D mr;t D 2 and ms;t D1º

commute. Then the Hecke von Neumann algebra Nq.W / satisfies AOC and is strongly
solid.

We note that a large part of the analysis in proving Theorem 1.6 applies to general
Hecke algebras. However, the strong solidity properties are still pending on whether cer-
tain semi-groups extend to quantum Markov semi-groups. In the final Section 9 of this
paper, we summarize some problems that are open to the knowledge of the authors.

Structure of the paper. Section 2 contains the preliminaries. Section 3 contains results
on bimodules and their coefficients. We prove Theorem 1.2. We also directly obtain the
first strong solidity result, namely Theorem 1.5. Section 4 introduces quantum Markov
semi-groups, the gradient bimodule and the Riesz transform. We also derive many of the
basic properties. In Section 5, we prove Theorems 1.3 and 1.4. Note that here we also
establish the Corollaries 5.11 and 5.12 which make it easy to see if a Coxeter group is
small at infinity. Section 6 contains an analysis of quantum Markov semi-groups with
weights on the generators. This applies mostly to right-angled Coxeter groups, and it is
crucial in the later sections. Section 7 proves strong solidity results for Coxeter groups
using tensor methods. In Section 8, we prove Theorem 1.6. We have included Section 9 to
list some problems that are left open.
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2. Preliminaries

Inner products are linear on the left and anti-linear on the right.

2.1. Von Neumann algebras

For standard theory of von Neumann algebras, we refer to [2, 47, 48]. Let B.H/ be
the bounded operators on a Hilbert space H . A von Neumann algebra M is a unital
�-subalgebra of B.H/ that is closed in the strong operator topology. A von Neumann
algebra is finite if it admits a faithful normal tracial state � WM ! C. We will say that the
pair .M; �/ is a finite von Neumann algebra. We let L2.M/ be the Hilbert space comple-
tion of M with respect to the inner product hx; yi� D �.y�x/. Note that we suppress �
in the notation of L2.M/. In case M is a group von Neumann algebra (see below), � is
understood as the trace defined by (2.2). We denote �� 2 L2.M/ for the element 1 2M
identified within L2.M/. A map between von Neumann algebras is called normal if it is
strongly continuous on the unit ball.

2.2. Operator spaces

For operator spaces, we refer to [22,43]. A mapˆWM !M on a von Neumann algebraM
is called completely positive if for every n 2 N, the map idn ˝ ˆWMn.C/ ˝ M !
Mn.C/˝M maps positive elements to positive elements.

2.3. Approximation properties

A von Neumann algebra M has the weak-� completely bounded approximation property
if there exists a net of normal completely bounded finite rank maps ˆi WM ! M , i 2 I ,
such that supi kˆikcb < 1 and for every x 2 M , we have ˆi .x/ ! x in the � -weak
topology. If the ˆi can moreover be chosen to be unital and completely positive, then M
is called amenable. We refer to [10] for further equivalent notions of amenability.

2.4. Bimodules and containment

A bimodule over an algebra A is a Hilbert space H with commuting actions of A and the
opposite algebra Aop. For x; y 2 A, � 2 H , we denote by x � � � y or x�y the left action
of x and the right action of y on the vector �. In the case where A is also a C�-algebra, we
require that both actions are continuous as maps A! B.H/ (and therefore contractive).
In the case where A is a von Neumann algebra, we require both actions to be normal. We
refer to these bimodules as A bimodules and it should be clear from the context whether
this is a bimodule over a �-algebra, C�-algebra or von Neumann algebra.

We say that an A bimodule H is contained in an A bimodule K if H is a Hilbert
subspace ofK that is invariant under the left and right action of A. We say thatH is quasi-
contained in K if H is contained in

L
i2I K for some index set I (if H is separable, we

may choose I D N). We say that H is weakly contained in K if for every " > 0, every
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finite set F � A and every � 2 H , there exist finitely many �j 2 K indexed by j 2 G
such that for x; y 2 F , ˇ̌̌

hx�y; �i �
X
j2G

hx�jy; �j i
ˇ̌̌
< ":

Containment implies quasi-containment which implies weak containment. In this paper,
we mostly deal with quasi-containment though in most of our applications a weak con-
tainment would be sufficient.

LetM be a finite von Neumann algebra. ThenM acts onL2.M/ by left and right mul-
tiplication. This turns L2.M/ into an M bimodule called the trivial bimodule. Similarly,
L2.M/˝ L2.M/ has a bimodule structure by extending

x.� ˝ �/y D x� ˝ �y; x; y 2M; �; � 2 L2.M/:

The M bimodule thus obtained is called the coarse bimodule.

2.5. Schatten classes

Let H be a Hilbert space. For p 2 .0;1/, we define �p D �p.H/ as the space of all
x 2 B.H/ for which

kxkp WD Tr.jxjp/
1
p D

�X
i2I

hjxjpei ; ei i
� 1
p

(2.1)

is finite, where ei , i 2 I , is any orthonormal basis of H . If p 2 Œ1;1�, then (2.1) defines
a norm turning �p into a Banach space that is moreover a 2-sided ideal in B.H/. In the
case p 2 .0; 1/, we have that �p is a quasi-Banach space as the triangle inequality only
holds up to a constant; we shall only encounter this space in Lemma 3.5.

2.6. Group algebras

Let � be a discrete group. We denote by e the identity of � . Let

� 7! B.`2.�//W s 7! �s

be the left regular representation, where �sıt D ıst , and where ıt is the delta function at
t 2 � . The group algebra CŒ�� is the �-algebra generated by �s , s 2 � . The reduced group
C�-algebra C �r .�/ is the norm closure of CŒ��. The group von Neumann algebra L.�/

is the strong operator topology closure of CŒ��. The von Neumann algebra L.�/ is finite
with faithful normal tracial state

�.x/ D hxıe; ıei; x 2 L.�/: (2.2)

Note that we have an identification as Hilbert spaces L2.L.�// ' `2.�/ by x 7! xıe
with x 2 CŒ��. Under this identification, `2.�/ is the trivial bimodule with actions given
by the left and right regular representations � and �. The coarse bimodule is then given by
`2.�/˝ `2.�/ with left and right actions given by

x � .� ˝ �/ � y D .x�/˝ .�y/; �; � 2 `2.�/:
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We simply call `2.�/˝ `2.�/ with these bimodule actions the coarse bimodule of � . We
also summarize that

� � CŒ�� � C �r .�/ � L.�/ � `2.�/;

where the first inclusion is given by s 7! �s and the others were discussed above.

2.7. Hyperbolic groups

Let .V;E/ be a graph with vertex set V and edge set E. For v;w 2 V , a geodesic from v

to w is a shortest path in the graph. For G � V and ı > 0, we define the ı-neighbourhood
of G as all points in V for which there exists a geodesic of length at most ı to a point
inG. The graph .V;E/ is hyperbolic if there exists ı > 0 such that for every three vertices
v;w; u 2 V and for all geodesics Œv; w�, Œw; u� and Œu; v� between these vertices, we have
that Œu; v� lies in the ı-neighbourhood of Œv; w� [ Œw; u�.

Let � be a finitely generated (discrete) group. The group � is hyperbolic or word
hyperbolic if its Cayley graph is hyperbolic; this definition is independent of the finite
generating set that is used to construct the Cayley graph. We emphasize that in this paper
hyperbolic and word hyperbolic mean the same thing. The terminology ‘word hyperbolic’
is more common in the theory of Coxeter groups.

2.8. Functions on groups

Let � be a discrete group. A length function is a function  W�!R�0 satisfying .uv/�
 .u/ C  .v/ for all u; v 2 � . If � is generated by a finite set S , then a typical length
function is defined by  .w/ D n, where w D s1 : : : sn is the shortest way of writing w as
a product of generators si 2 S . Note that  .w/ is the distance from w to e in the Cayley
graph of � . A function  W� ! R is called conditionally of negative type (also known as
conditionally negative definite) if  .e/D 0,  .s/D  .s�1/, s 2 � and for all n 2 N and
s1; : : : ; sn 2 � and real numbers c1; : : : ; cn with

Pn
iD1 ci D 0, we have

nX
iD1

nX
jD1

cicj .s
�1
j si / � 0:

In this paper, we shall frequently work with length functions that are conditionally of
negative type. A function  W� ! R is called proper if the inverse image of a compact set
is compact (hence finite as � is discrete).

2.9. Tensor products

With mild abuse of notation, we use ˝ for several different tensor products in this paper.
If V1 and V2 are vector spaces, then V1 ˝ V2 is the tensor product of these vector spaces.
If V1 and V2 are algebras or �-algebras, then we see V1 ˝ V2 as an algebra or �-algebra as
well. When V1 and V2 are Hilbert spaces, then V1˝ V2 is the Hilbert space tensor product
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(closure of the vector space tensor product) and it should be understood from the context
which tensor product is meant. We further use˝ to denote tensor products of linear maps
or elements. In the case where V1 and V2 are C�-algebras, we will write˝alg instead of˝
for their tensor product as a �-algebra and˝min for their spatial tensor product; this is also
the minimal tensor product by Takesaki’s theorem. If V1 and V2 are von Neumann algeb-
ras, we denote by V1 x̋ V2 the von Neumann algebraic tensor product (strong operator
topology closure of the spatial tensor product).

3. Coefficients of bimodules

In this section, we study bimodules over the group algebra of a discrete group and provide
sufficient criteria for when such a bimodule is quasi-contained in the coarse bimodule.
We also consider tensor products of such bimodules. We conclude this section with our
first strong solidity result in Section 3.4.

3.1. Coefficients and quasi-containment

Let � be a discrete group with group algebra CŒ��, reduced group C�-algebra C �r .�/ and
group von Neumann algebra L.�/. They include naturally

CŒ�� � C �r .�/ � L.�/:

In turn L.�/ � `2.�/ by x 7! xıe . Hence we may and will view CŒ�� as the subspace
of `2.�/ of functions with finite support. Now a CŒ�� bimodule will be a Hilbert spaceH
with commuting left and right actions of � and thus of CŒ�� by extending the actions
linearly.

Definition 3.1 (Coefficients). LetH be a CŒ�� bimodule. Let �; � 2H be such that there
exists a map T�;�WCŒ��! CŒ�� such that

�.T�;�.x/y/ D hx�y; �i; x; y 2 CŒ��: (3.1)

The map T�;� is called the coefficient of H at �, �. Set T� WD T�;� . The coefficient T�;� is
in �p with p 2 Œ1;1� if T�;� exists and extends to a bounded operator T�;�W`2.�/! `2.�/

that is moreover in �p WD �p.`2.�//.

Note that if the map T�;� is existent, then it is uniquely determined by (3.1). Indeed,
if T 0

�;�
is another map with this property, then �..T�;� � T 0�;�/.x/y/D 0 for all x;y 2CŒ��

so that T 0
�;�
D T�;� .

Remark 3.2. In [2, Definition 13.1.6], the notion of a coefficient of a von Neumann
bimodule is defined. Definition 3.1 is an algebraic analogue which is more convenient
for our purposes. The reason that we work in this algebraic setting is that the bimodules
we consider in this paper are a priori not necessarily von Neumann bimodules. In fact, for
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the gradient bimodules we consider in Section 4, this is not even true in general. However,
under the conditions of Proposition 3.3, the normal extensions of the left and right actions
automatically exist.

Proposition 3.3 (Quasi-containment). Let H be a CŒ�� bimodule. Suppose that there
exists a dense subset H0 � H such that for any � 2 H0 the coefficient T� WCŒ��! CŒ��
is in �2. Then the left and right CŒ�� actions on H extend to (bounded) normal L.�/

actions, and the L.�/ bimodule H is quasi-contained in the coarse bimodule `2.�/˝
`2.�/.

Proof. Take � 2 H0. Define the functional

�W CŒ��˝alg CŒ��op
! CW x ˝ yop

7! hx � � � y; �i:

For x; y 2 CŒ�� by definition of T� ,

�.x ˝ yop/ D hx � � � y; �i D �.T�.x/y/ D �.yT�.x// D hT�.x/; y
�
i� :

Now as T� is Hilbert–Schmidt, there exists a vector �� 2 `2.�/˝ `2.�/ such that

�.x ˝ yop/ D hx ˝ yop; ��i D h.x ˝ y
op/ � .1˝ 1/; ��i:

This shows that � extends contractively to C �r .�/ ˝min C
�
r .�/. Moreover, this shows

that � extends to a normal contractive map on the von Neumann algebraic tensor product
L.�/ x̋ L.�/ ! C. By Kaplansky’s density theorem, this extension of � is moreover
positive. Since `2.�/˝ `2.�/ is the standard form of L.�/ x̋ L.�/op, there exists � 2
`2.�/˝ `2.�/ such that

�.x ˝ yop/ D hx � � � y; �i; x; y 2 L.�/:

This proves that the conditions of [16, Lemma 2.2] are fulfilled, and hence H is quasi-
contained in the coarse bimodule. We already observed in the preliminaries that this quasi-
containment implies that the left and right actions extend to normal actions of L.�/.

A subsetH00 �H of a CŒ�� bimoduleH is called cyclic ifH0 WD spanCŒ��H00CŒ��
is dense inH . The following lemma tells us that we can reduce Proposition 3.3 to checking
the property only for the coefficients in a cyclic subset.

Lemma 3.4 (Reduction to cyclic subset). Suppose that H00 � H is a subset whose
coefficients T�;� for �; � 2 H00 are in �2. Then the coefficients T�;� for �; � 2 H0 WD
span CŒ��H00CŒ�� are in �2. Consequently, if H00 is cyclic, then H is a L.�/ bimodule
that is quasi-contained in the coarse bimodule `2.�/˝ `2.�/.

Proof. Let � 0 D �g��h and �0 D �s��t for some g; h; s; t 2 � and �; � 2 H00. We have
that

�.T� 0;�0.x/y/ D hx�
0y; �0i D hx�g��hy; �s��t i D h�s�1x�g��hy�t�1 ; �i

D �.T�;�.�s�1x�g/�hy�t�1/ D �.�t�1T�;�.�s�1x�g/�hy/:
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This shows that T� 0;�0.x/D �t�1T�;�.�s�1x�g/�h and so T� 0;�0 is in �2. The first statement
then follows by linearity. By Proposition 3.3, we find that H is quasi-contained in the
coarse bimodule `2.�/˝ `2.�/ in the case H00 is cyclic.

3.2. Tensoring bimodules

If H1 and H2 are two CŒ�� bimodules, then we can construct a bimodule H1 ˝� H2,
which, as a Hilbert space, is the same as H1 ˝H2, and the actions are given by

s � .� ˝ �/ WD s� ˝ s� and .� ˝ �/s WD �s ˝ �s; � 2 H1; � 2 H2; s 2 �:

The actions extend by linearity to actions of CŒ��. If we take an n-fold tensor power of
a given bimodule H , it will be denoted by H˝n� . For later use, we also recall that the
comultiplication

�� W CŒ��! CŒ��˝CŒ��

is given by the linear extension of the assignment  7!  ˝  ,  2 � . Then �� extends
to an isometry `2.�/! `2.�/˝ `2.�/ which we still denote by �� .

The following lemma shall mostly be used in the situation where 1� r <1 and hence
also 1 � p; q <1 so that all Schatten spaces are Banach spaces. It holds true however in
the more general range of exponents 0 < p; q; r <1, where the Schatten spaces are only
quasi-Banach spaces.

Lemma 3.5. Let 0 < p; q; r <1 with 1
r
D

1
p
C

1
q

. Let H1 and H2 be CŒ�� bimodules,
and let � 2 H1 and � 2 H2. Suppose that the coefficient T� is in �p and the coefficient T�
is in �q . Then the coefficient T�˝� of H1 ˝� H2 is in �r .

Proof. We have for s; t 2 �;

�.T�˝�.s/t/ D hs�t ˝ s�t; � ˝ �i D hs�t; �ihs�t; �i D �.T�.s/t/�.T�.s/t/:

It follows that T�˝� D���.T� ˝ T�/�� . Now we want to determine the �r -norm of T�˝� .
As �� is an isometry on `2.�/, we have ����� D 1. Using the (slightly unusual) con-
vention jT j WD

p
T T �, we get jT�˝�jr D ���.jT� j

r ˝ jT�j
r /�� . So we have

kT�˝�k
r
Sr
D Tr.jT�˝�jr / D

X
g2�

hjT�˝�j
rg; gi D

X
g2�

hjT� j
rg; gihjT�j

rg; gi:

Using the fact that r
p
C

r
q
D 1, we can apply Hölder’s inequality to this sum and obtain

an upper bound

kT�˝�k
r
Sr
�

�X
g2�

hjT� j
rg; gi

p
r

� r
p
�

�X
g2�

hjT�j
rg; gi

q
r

� r
q
:

We will now use the following inequality: if S is a positive operator and v is a unit vector,
then hSv; vit 6 hS tv; vi for any t > 1. Indeed, let � be the spectral measure of S at v
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(which is a probability measure), then hSv; vit D .
R
xd�/t 6

R
xtd� D hS tv; vi by

Jensen’s inequality applied to the convex function x 7! xt . Now our upper bound becomes

kT�˝�k
r
Sr
�

�X
g2�

hjT� j
pg; gi

� r
p
�

�X
g2�

hjT�j
qg; gi

� r
q
D kT�k

r
Sp
� kT�k

r
Sq
:

To sum up, we get the inequality

kT�˝�kSr 6 kT�kSp � kT�kSq :

Proposition 3.6. Let H be a CŒ�� bimodule such that for a dense subset of H the coef-
ficients are in �p . Then the bimodule H˝n� is quasi-contained in the coarse bimodule for
any n > p

2
.

Proof. By Lemma 3.5 (and induction), we get that a dense subset of coefficients of H˝n�
is in � p

n
� �2, so by Proposition 3.3, we get the quasi-containment.

Definition 3.7. Let H and K be CŒ�� bimodules. A linear map V WH ! K is called
almost bimodular if for every x; y 2 CŒ��, the map

H ! KW � 7! xV.�/y � V.x�y/

is compact.

Lemma 3.8. Let H1 and H2 be bimodules over CŒ��. Suppose V1W `2.�/ ! H1 and
V2W `2.�/! H2 are almost bimodular bounded linear maps. Then

V1 � V2 WD .V1 ˝ V2/ ı�� W `
2.�/! H1 ˝� H2

is almost bimodular.

Proof. It suffices to check the almost bimodularity for x D s and y D t , as the general
case will follow by taking linear combinations. For a map V W `2.�/! H with H a CŒ��
bimodule, we will write

.sV t/.�/ D sV .�/t and V s;t .�/ WD V.s�t/;

where � 2 `2.�/. It follows from the definitions that

s.V1 � V2/t D .s ˝ s/ � ..V1 ˝ V2/ ı��/ � .t ˝ t / D .sV1t � sV2t /:

Further, for � 2 `2.�/,

.V1 � V2/
s;t .�/ D .V1 ˝ V2/��.s�t/ D .V1 ˝ V2/..s ˝ s/��.�/.t ˝ t //

D .V
s;t
1 � V

s;t
2 /.�/:

Hence
.V1 � V2/

s;t
D V

s;t
1 � V

s;t
2 :
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Therefore, we have

s.V1 � V2/t � .V1 � V2/
s;t
D ..sV1t � V

s;t
1 / � sV2t /C .V

s;t
1 � .sV2t � V

s;t
2 //: (3.2)

By our assumption, the operators sV1t � V
s;t
1 and sV2t � V

s;t
2 are compact. So it suffices

to check that ifK is compact and T is bounded, then bothK � T and T �K are compact.
To check that, for every finite subset F � � consider the corresponding finite rank ortho-
gonal projection PF onto the linear span of ıs 2 `2.�/, s 2 F . We can easily check that
� ı PF D .PF ˝ Id/ ı�D .Id˝PF / ı�. It follows that .K � T /PF D .KPF � T /, so
.K � T /PF �K � T D .KPF �K/ � T . Further,

k.K � T /PF �K � T k � kKPF �KkkT k:

By compactness ofK, we see that kKPF �Kk goes to 0 as F increases. SoK � T can be
approximated in norm by finite rank operators and thus is compact. The proof for T �K
is the same. Hence the operator in (3.2) is compact, i.e., V1 � V2 is almost bimodular.

Lemma 3.9. For i D 1; 2, suppose that Vi W `2.�/! Hi is a partial isometry to a CŒ��
bimodule Hi such that ker.Vi / is spanned linearly by a subset Fi � � . Then V1 � V2 is
a partial isometry whose kernel is the linear span of F1 [ F2.

Proof. The comultiplication�� is an isometry `2.�/! `2.�/˝ `2.�/. Clearly,��.s/D
s ˝ s is contained in ker.S1 ˝ S2/ if s is in F1 [ F2. Further, S1 ˝ S2 is isometric on
ker.S1/? ˝ ker.S2/? and so it is certainly isometric on the linear span of��.s/D s ˝ s,
s 2 � n .F1 [ F2/. These observations conclude the lemma.

3.3. The Akemann–Ostrand property AOC and strong solidity

This section serves as a blackbox that connects the theory that we develop in this paper to a
central concept in deformation-rigidity theory: strong solidity. Firstly, we recall a version
of the Akemann–Ostrand property that was introduced in [29].

Definition 3.10. A finite von Neumann algebra M has property AOC if there exists a � -
weakly dense unital C�-subalgebra A �M such that

(1) A is locally reflexive [10, Section 9];

(2) there exists a unital completely positive map � WA˝min A
op ! B.L2.M// such

that �.a˝ bop/ � abop is compact for all a; b 2 A.

The following theorem will be the main tool to prove that certain von Neumann algeb-
ras have AOC using the Riesz transforms in this paper.

Theorem 3.11 ([16, Proposition 5.2]). LetH be a CŒ�� bimodule, and let V W`2.�/!H

be a bounded linear map. Assume that H is quasi-contained in the coarse bimodule of � ,
V is almost bimodular and V �V is Fredholm. Assume that C �r .�/ is locally reflexive.
Then L.�/ satisfies AOC.
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The following theorem in turn yields the strong solidity results from AOC. For the
notion of weak amenability, we refer to [10, Section 12.3]. If � is a weakly amenable dis-
crete group, then C �r .�/ is automatically locally reflexive. All Coxeter groups are weakly
amenable [25, 30] as well as simple Lie groups of real rank one [19, 21]. We recall that
amenability of a von Neumann algebra was defined in the introduction and preliminaries.
We note that amenability and weak amenability shall not appear explicitly in the proofs
of this paper. We recall that a von Neumann algebra is called diffuse if it does not contain
minimal projections.

Definition 3.12. A finite von Neumann algebra M is called strongly solid if for every
diffuse amenable von Neumann subalgebra B �M , we have that the normalizer

¹u 2M Wu unitary and uBu� D Bº

generates a von Neumann algebra that is amenable again.

Theorem 3.13 (See [29,44]). Let � be a discrete weakly amenable group such that L.�/

satisfies AOC. Then L.�/ is strongly solid.

3.4. Application A: Proper cocycles into p-integrable representations

We are now able to harvest our first result. We use a type of ad hoc Riesz transform which
is slightly different from what we do in Section 4 but with similar fundamental properties.
We use tensoring of bimodules to establish the Akemann–Ostrand property. The method
is exemplary for the rest of the paper.

Definition 3.14. Let � be a discrete group. Suppose that � W � ! B.H/ is a unitary
(or orthogonal) representation. We say that � is p-integrable for some p < 1 if there
exists a dense subspaceH0 such that for any v 2H0, the matrix coefficient g 7! h�.g/v;vi
is in p̀.�/.

The following theorem is the main result of [46]. The idea of the proof parallels [46]
but is somewhat cleaner and more conceptual we believe.

We recall that a derivation @WCŒ��! K into a CŒ�� bimodule K is a linear map that
satisfies the Leibniz rule

@.xy/ D x@.y/C @.x/y; x; y 2 CŒ��:

A function bW � ! K with � W � ! H a representation on a Hilbert space H is called
a cocycle or 1-cocycle if b.st/ D �.s/b.t/C b.s/ for all s; t 2 � . The following theorem
is the only place where cocycles are used in this paper.

Theorem 3.15. Let � be a discrete group admitting a proper cocycle into a p-integrable
representation for some p < 1. Assume C �r .�/ is locally reflexive. Then L.�/ satis-
fies AOC.
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Proof. Let � W � ! B.H/ be a p-integrable representation, H0 � H a dense subspace
with p-integrable coefficients, and let cW� ! H be a proper �-cocycle. The map

�g 7! exp.�tkc.g/k2/�g ; g 2 �; t � 0;

extends to a semi-group of normal unital completely positive maps on L.�/ [10, The-
orem C.11], i.e., a quantum Markov semi-group as will be defined in Section 4. Set
�WCŒ�� ! CŒ�� by �.�g/ WD kc.g/k2�g , g 2 � . Set K WD H ˝ `2.�/ with the left
action given by � ˝ � and the right action given by id˝ �. Now define @WCŒ��! K by
@.�.g// WD c.g/˝ ıg . As c is a cocycle, @ is a derivation. We will check that the coef-
ficients of this bimodule K at vectors of the form � WD v ˝ ıg are in �p , where v 2 H0,
g 2 � . Let us start with the case � D v ˝ ıe . We claim that T�.�g/ D h�.g/v; vi�g .
Indeed, let us take g1; g2 2 � and compute

hg1�g2; �i D h�.g/v ˝ ıg1g2 ; v ˝ ıei D h�.g/v; viıg1g2De:

It is clearly equal to �.T�.g1/g2/ from the definition of the coefficient T� . Therefore,
the coefficients are diagonal operators with p̀-coefficients, so they are in �p . To handle
vectors of the form v ˝ ıg , note that T��g D ��gT��g and .v ˝ ıe/ � g D v ˝ ıg , so these
coefficients are also in �p . The Riesz transform defined as

@ ı��
1
2 W CŒ��! KW �g 7! kc.g/k

�1c.g/˝ ıg ; g 2 �:

extends to an almost bimodular isometry `2.�/! K (see [16, Proposition 5.3]) whose
kernel by definition equals the kernel of�. This kernel is finite-dimensional as c is proper.

Now since K has a dense set of coefficients in �p , we have that the bimodule K˝n�
has a dense set of coefficients in �2 for every n � p

2
. Therefore, by Proposition 3.3

K˝n� is quasi-contained in the coarse bimodule of � . From the previous paragraph and
Lemma 3.8, we see that .@ ı��

1
2 /�n is an almost bimodular map. Moreover, .@ ı��

1
2 /�n

is a partial isometry with a finite-dimensional cokernel by Lemma 3.9. Therefore, the
assumptions of Theorem 3.11 are satisfied and if C �r .�/ is locally reflexive, we conclude
that L.�/ has AOC.

Remark 3.16. In the proof of Theorem 3.15, we may view @ as an unbounded densely
defined operator `2.�/! K. It is not difficult to check that .@�@/.�g/ D �.�g/, g 2 �
as for the derivations that occur in Section 4.

Recall that � is called icc if all conjugacy classes except for the identity are infinite.

Corollary 3.17. Let � be an icc lattice in either SO.n; 1/, n � 3, or SU.m; 1/, m � 2.
Then L.�/ is strongly solid.

Proof. By [19,21], we have that � is weakly amenable and, in particular, C �r .�/ is locally
reflexive. By [45, Theorem 1.9], � admits a proper cocycle in a p-integrable representation
for some p 2 Œ2;1/. Therefore, by Theorem 3.15, L.�/ satisfies AOC. We then conclude
the proof by Theorem 3.13.
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4. Quantum Markov semi-groups, gradients and the Riesz
transforms

In this section, we study quantum Markov semi-groups of Fourier multipliers on the group
von Neumann algebra of a discrete group. We introduce the associated Riesz transform
which takes values in a certain bimodule that we call the ‘gradient bimodule’ or the bimod-
ule associated with the ‘carré du champ’. Our main goal is to analyze when the coefficients
of this bimodule are in the Schatten �p space and consequently when this bimodule is
quasi-contained in the coarse bimodule. We also show that under very natural conditions
the Riesz transform is an almost bimodular map in the sense of Section 3.

4.1. Quantum Markov semi-groups, the gradient bimodule and the Riesz transform

We start defining the Riesz transform of a quantum Markov semi-group.

Definition 4.1. A quantum Markov semi-group (QMS) on a finite von Neumann algebra
.M; �/ is a semi-group ˆ D .ˆt /t�0 of normal unital completely positive maps ˆt W
M !M that are trace preserving (� ı ˆt D � , t � 0) and such that for every x 2 M ,
the map t 7! ˆt .x/ is strongly continuous. We shall moreover assume that a quantum
Markov semi-group is symmetric meaning that for every x; y 2 M and t � 0, we have
�.ˆt .x/y/ D �.xˆt .y//. So QMS always means symmetric QMS.

Fix a QMS ˆ D .ˆt /t�0 on a finite von Neumann algebra M with a normal faithful
tracial state � . By the Kadison–Schwarz inequality, there exists a semi-group of contrac-
tions .ˆ.2/t /t�0 on L2.M/ D L2.M; �/ such that

ˆ
.2/
t .x�� / D ˆt .x/�� ; x 2M:

Here �� D 1M is the cyclic vector in L2.M/. The semi-group .ˆ.2/t /t�0 is moreover
point-norm continuous, i.e., it is continuous for the strong topology on B.L2.M//. By
a special case of the Hille–Yosida theorem, there exists an unbounded positive self-adjoint
operator � on L2.M/ such that ˆ.2/t D exp.�t�/. We will assume the existence of a � -
weakly dense �-subalgebra A � M such that A�� � Dom.�/ and �.A�� / � A�� .
By identifying a 2 A with a�� 2 L2.M/, we may and will view � as a map A! A.
We now introduce the carré du champ or gradient as

�W A �A! AW .a; b/ 7!
1

2
.�.b�/aC b��.a/ ��.b�a//:

Let H be any A bimodule, i.e., we recall H is a Hilbert space with commuting left and
right actions of A. For a; b 2 A, �; � 2 H , we set the possibly degenerate inner product
on A˝H (vector space tensor product) by

ha˝ �; b ˝ �i D h�.a; b/�; �i:

The Hilbert space obtained by quotienting out the degenerate part of this inner product
and taking the completion shall be denoted by Hr . We denote by a ˝r � the element



Bimodule coefficients, Riesz transforms on Coxeter groups and strong solidity 517

a ˝ � identified in Hr . For x; y; a 2 A and � 2 H , we define commuting left and right
actions by

x � .a˝r �/ D xa˝r � � x ˝r a�; .a˝r �/ � y D a˝r �y: (4.1)

In this paper, we shall only deal with the case H D L2.M/ with actions by left and right
multiplication of M . In this case, the actions (4.1) extend to contractive actions on the
norm closure of A. We do not say anything about whether the actions are normal at this
point, but rather use Proposition 3.3 to show that they are normal in the cases that are
relevant. We define a derivation

rW A! L2.M/r W a 7! a˝r �� :

More precisely, r satisfies the Leibniz rule

r.xy/ D xr.y/Cr.x/y; x; y 2 A;

with respect to the module actions (4.1). This fact uses that � is tracial. Since ˆt is � -
preserving, it follows that for x 2 A, we have

h�.x/�� ; �� i D
d

dt

ˇ̌̌
tD0
hˆt .x/�� ; �� i D 0

(upper derivative). Therefore, as � � 0,

kr.a/k2 D h�.a; a/�� ; �� i

D
1

2
.h�.a/�� ; a�� i C ha�� ; �.a/�� i � h�.a

�a/�� ; �� i/

D
1

2
.h�

1
2 .a/�� ; �

1
2 .a/�� i C h�

1
2 .a/�� ; �

1
2 .a/�� i � 0/

D k�
1
2 .a/��k

2:

It follows that we have an isometric map

r��
1
2 W ker.�/? ! L2.M/r :

We extend this map to a partial isometry

RˆW L2.M/! L2.M/r

by defining it to have ker.�/ as its kernel. We call Rˆ the Riesz transform.

Remark 4.2. This Riesz transform was also used in [16, Section 5]. Note that mapping
that was introduced in [16, Section 5, (5.1)] differs from Rˆ only on ker.�/. If the kernel
of� is finite-dimensional, then Rˆ agrees with [16, (5.1)] up to a finite rank perturbation.
In particular, this is the case if�� 0 has a compact resolvent. The results of [16, Section 5]
stay intact under this finite rank perturbation.
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4.2. Coefficients of the gradient bimodule

We now start our analysis of coefficients of the gradient bimodule. The following defini-
tion of ‘gradient-�p’ that first occurred in [13] (for p D 2) and [16] (for general p) plays
a central role in this paper. The definition may depend on the choice of the � -weakly dense
subalgebra A of M which we fixed before in our notation. This paper contains the first
results for the gradient-�p property in the context of group algebras.

Definition 4.3. Let p 2 Œ1;1�. Consider a QMS ˆ on a finite von Neumann algebra
.M; �/ with generator � and a dense �-subalgebra A � M as in Section 4.1. The semi-
group ˆ is called gradient-�p if for every a; b 2 A, the map

‰a;b W A! AW x 7! �.axb/C a�.x/b ��.ax/b � a�.xb/

extends as x�� 7!‰a;b.x/�� to a bounded map onL2.M/ that is moreover in the Schat-
ten p-class �p D �p.L2.M//.

Remark 4.4. Since � is self-adjoint, we have for a; b; x; y 2 A,

h‰a;b.x/�� ; y�� i D h.�.axb/C a�.x/b ��.ax/b � a�.xb//�� ; y�� i

D hx�� ; .�.a
�yb�/C a��.y/b� ��.a�x/b� � a��.yb�//�� i

D hx�� ; ‰
a�;b�.y/�� i:

So it follows that
.‰a;b/� D ‰a

�;b� ; a; b 2 A: (4.2)

The lemma below simplifies verifying whether a QMS has the gradient-�p property.

Lemma 4.5 (Condition that implies Gradient-�p property). Let p 2 Œ1;1�. Let A0 � A

be a self-adjoint subset that generates A as a �-algebra. Then .ˆt /t�0 is gradient-�p if
and only if for all a; b 2 A0, we have that ‰a;b is in �p .

Proof. The only if statement follows directly from the definition of gradient-�p . We will
prove the other direction. We must prove that ‰a;b is in �p for every a; b 2 A. Since A0

is self-adjoint, A is generated by A0 as an algebra. So A is spanned linearly by .A0/
n,

n 2 N. Note that the map ‰a;b depends linearly on both a and b. So in order to prove that
‰a;b is in �p for all a; b 2 A, it suffices to prove that ‰a;b is in �p for all a; b 2 .A0/

n

for every n 2 N�1. We shall prove this latter statement by induction on n. The case n D 1
holds by assumption of the lemma. We now assume that we have proved the statement
for n and shall prove it for nC 1.

First note that for u1; u2; v; w 2 A, we have

‰u1u2;w.v/ D �.u1u2vw/C u1u2�.v/w ��.u1u2v/w � u1u2�.vw/

D .�.u1u2vw/C u1�.u2v/w ��.u1u2v/w � u1�.u2vw//

C u1.�.u2vw/C u2�.v/w ��.u2v/w � u2�.vw//

D ‰u1;w.u2v/C u1‰
u2;w.v/;



Bimodule coefficients, Riesz transforms on Coxeter groups and strong solidity 519

and likewise for u; v;w1; w2 2 A, we have

‰u;w2w1.v/ D ‰u;w1.vw2/C‰
u;w2.v/w1:

Combining these expressions, we see that for u D u1u2 and w D w2w1, we have

‰u;w.v/ D ‰u1u2;w.v/ D ‰u1;w.u2v/C u1‰
u2;w.v/

D ‰u1;w2w1.u2v/C u1‰
u2;w2w1.v/

D .‰u1;w1.u2vw2/C‰
u1;w2.u2v/w1/

C u1.‰
u2;w1.vw2/C‰

u2;w2.v/w1/: (4.3)

By the induction hypothesis, we have that ‰u1;w1 , ‰u1;w2 , ‰u2;w1 , ‰u2;w2 are all in �p .
Since the �p class forms an ideal in B.L2.M; �//, we have that the four operators in (4.3)
are all in �p . This finishes the induction and thus shows that the associated semi-group is
gradient-�p .

4.3. Almost bimodularity of the Riesz transform

Next we analyze when the Riesz transform is almost bimodular. Therefore, we introduce
the following notions. We say that a QMS ˆ on a finite von Neumann algebra is filtered
if the generator � has a compact resolvent and for every eigenvalue � of � there exists
a (necessarily finite-dimensional) subspace A.�/�A such that A.�/�� equals the eigen-
space of � at eigenvalue �. Moreover, we assume that for an increasing enumeration
.�n/n�0 of the eigenvalues of �, we have for all k; l � 0 that

A D

1M
nD0

A.�n/; A.�l /A.�k/ �

lCkM
nD0

A.�n/:

We will further say that � has subexponential growth if

lim
k!1

�kC1

�k
D 1:

Remark 4.6. In [14], a more general notion of filtering and subexponential growth was
considered for central Fourier multipliers on compact quantum groups. The current ‘lin-
ear’ type of definition suffices however for our purposes.

Theorem 4.7 ([16, Theorem 5.12]). Suppose that a QMS ˆ on a finite von Neumann
algebraM is filtered with subexponential growth. Then the Riesz transformRˆWL2.M/!

L2.M/r is almost bimodular.

4.4. Semi-groups of Fourier multipliers on group von Neumann algebras

Now consider the case thatM is a group von Neumann algebra L.�/ of a discrete group �
and A D CŒ��. The following theorem is a version of Schönberg’s theorem.
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Theorem 4.8 (See [5, Appendix C]). Let  W� ! R. The following are equivalent:

(1)  is conditionally of negative type.

(2) There exists a (recall: symmetric) QMS ˆ D .ˆt /t�0 on M determined by

ˆt .� / D exp.�t .//� ;  2 �:

We will call a QMS ˆ as in Theorem 4.8 a QMS of Fourier multipliers or a QMS
associated with  W� ! R. Note that we assume such QMS’s to be symmetric. We view
the generator of this semi-group as a map on CŒ�� which is given by

� W CŒ��! CŒ��W � 7!  ./� :

The following theorem connects Definition 4.3 to Section 3.

Theorem 4.9. Consider a QMS ˆ D .ˆt /t�0 of Fourier multipliers on L.�/. Let

H00 D ¹a˝r c 2 `2.�/r W a; c 2 CŒ��º � `2.�/r :

If ˆ is gradient-�p with p 2 Œ1;1�, then for every �; � 2 span CŒ��H00CŒ��, the coeffi-
cient T�;� is in �p .

Proof. Let a; b; c; d; x; y 2 CŒ��, and let � D a˝r c, � D b ˝r d be elements of H00.
We have

2hx � .a˝r c/ � y; b ˝r d i

D 2hxa˝r cy � x ˝r acy; b ˝r d i D 2h�.xa; b/cy � �.x; b/acy; d i�

D h.b��.xa/C�.b�/xa ��.b�xa/ � b��.x/a ��.b�/xaC�.b�x/a/cy; d i�

D h.�.b�x/aC b��.xa/ ��.b�xa/ � b��.x/a/cy; d i�

D �h‰b
�;a.x/cy; d i� D ��.d

�‰b
�;a.x/cy/:

We conclude that
�2T�;�.x/ D d

�‰b
�;a.x/c:

In particular, if‰b
�;a is in �p , then so is T�;� . The statement follows from Lemma 3.4.

Let us show that in the case of semi-groups of Fourier multipliers, the case gradient-�p
is conceptually much easier to understand. Consider again a QMSˆD .ˆt /t�0 of Fourier
multipliers associated with a function  W�!R that is conditionally of negative type. Let
� WCŒ��! CŒ�� be as before. For u;w 2 � , we define a function  u;w W� ! R as

 u;w.v/ D  .uvw/C  .v/ �  .uv/ �  .vw/: (4.4)

We have that the function  u;w is related to the operator ‰�u;�w associated with � as
follows:

‰
�u;�v
� 

.�v/ D � .�uvw/C �u� .�v/�w �� .�uv/�w � �u� .�vw/

D  u;w.v/�uvw :
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Now by (4.2), we have .‰�u;�w /� D ‰�
�
u;�
�
w D ‰�u�1 ;�w�1 . We obtain that

j‰�u;�w j2.�v/ D ‰
�u�1 ;�w�1‰�u;�w .�v/

D 
 

u�1;w�1
.uvw/ u;w.v/�v

D j u;w.v/j
2�v: (4.5)

This then means that j‰�u;�w jp.�v/ D ju;w.v/jp�v and therefore, as ¹�vºv2� forms an
orthonormal basis, we have that

k‰�u;�wk�p D
�X
v2�

hj‰�u;�w jp.�v/; �vi
� 1
p
D k u;wk p̀.�/: (4.6)

Now for p 2 Œ1;1/, in order to check whether ‰�u;�w is in �p , we thus need to check
whether  u;w 2 p̀.�/. Moreover, for p D 1, the condition that ‰�u;�w 2 �p means
that ‰�u;�w is a compact operator, which is precisely the case when  u;w 2 c0.�/, i.e.,
when  u;w vanishes at infinity.

The above calculations, together with Lemma 4.5, give us a simple condition to check
for p 2 Œ1;1� whether the semi-group .ˆt /t�0 is gradient-�p .

Lemma 4.10. Let p 2 Œ1;1/. Let �0 � � be a subset that generates a discrete group �
with ��10 D �0. LetˆD .ˆt /t�0 be a QMS associated with a proper function  W� ! R
that is conditionally of negative type. If  u;w 2 p̀.�/ for all u;w 2 �0, then the QMS ˆ
is gradient-�p . The same holds true for p D1 when p̀.�/ is replaced by c0.�/.

Proof. We denote A0 WD ¹�g Wg 2 �0º � CŒ��. Since ��10 D �0 and �0 generates � , we
have that A0 is self-adjoint and generates CŒ�� as an algebra. Now, if for u; w 2 �0 we
have that  u;w 2 p̀.�/, then by (4.6) we have that ‰�u;�w 2 �p . Then Lemma 4.5 shows
that ˆ is gradient-�p . The proof is similar for p D1.

Lemma 4.11. Let ˆ D .ˆt /t�0 be a QMS associated to a proper symmetric function
 W� ! Z that is conditionally of negative type. If ˆ is gradient-�p for some p 2 Œ1;1�,
then for every u; v 2 � , the function  u;vW � ! Z has compact support. In particular,
by (4.5) we find that ‰�u;�v is of finite rank and ˆ is gradient-�p for all p 2 Œ1;1�.

Proof. If  takes integer values, then so does  u;v for all u; v 2 � . Therefore,  u;v is
contained in p̀.�/, p 2 Œ1;1/, or c0.�/ if and only if  u;v has compact support. The
remainder of the lemma is clear.

4.5. Almost bimodularity of the Riesz transform for length functions

We show that a QMS of Fourier multipliers associated with a Z�0-valued length function
automatically satisfies the conditions of Theorem 4.7. Recall that  W� ! Z�0 is a length
function if

 .uw/ �  .u/C  .w/ for all u;w 2 �: (4.7)
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Theorem 4.12. Let  W � ! Z�0 be a proper length function that is conditionally of
negative type. Then � is moreover filtered. If  .�/ D Z�0 or if � is finitely generated,
then � has subexponential growth.

Proof. First of all, we have that

.1C� /
�1.�v/ D .1C  .v//

�1�v for all v 2 �:

As  is proper, this shows that .1C� /�1 is a compact operator on `2.�/. Consider the
finite-dimensional spaces

CŒ��.l/ WD Span¹�v 2 CŒ��W .v/ D lº for l 2 Z�0:

Then CŒ��.l/�� equals the eigenspace of � at the eigenvalue l . We have

CŒ�� D
M
l�0

CŒ��.l/; CŒ��.l/CŒ��.k/ �
lCkM
jD0

CŒ��.j / for l; k � 0;

where ˚ denotes the algebraic direct sum. The first equality holds because  only takes
positive integer values, and the second equality holds because  is a length function,
i.e., (4.7). This shows that � is filtered.

The fact that � has subexponential growth follows in the first case from the fact that
Z�0 is the set of eigenvalues, and we have lC1

l
! 1 as l !1. In the case � is generated

by a finite set �0, we set K WD ¹max .u/Wu 2 �0º. Then (4.7) implies that Z�0 n  .�/
cannot contain an interval of length K C 1. Hence if �0 � �1 � � � � is an increasing
enumeration of  .�/, then �kC1 � �k CK. Hence �kC1=�k ! 1 as k !1.

Corollary 4.13. Assume that � is finitely generated. Let  W� ! Z�0 be a proper length
function that is conditionally of negative type. Let ˆ be the associated QMS of Fourier
multipliers. Then the Riesz transform RˆW `2.�/! `2.�/r is almost bimodular.

Proof. This follows from Theorems 4.7 and 4.12.

Theorem 4.14. Assume that � is finitely generated and that C �r .�/ is locally reflexive.
If there exists a proper length function  W� ! Z�0 that is conditionally of negative type
such that the associated QMS is gradient-�p for some p 2 Œ1;1/, then L.�/ has AOC.

Proof. LetHr WD `2.�/r be the gradient bimodule. Let n > p
2

. Then by Proposition 3.6,
the bimodule .Hr/˝n� is quasi-contained in the coarse bimodule. Let RˆW `2.�/! Hr
be the Riesz transform. The kernel of Rˆ is spanned by all ıg with  .g/ D 0. Since
 is proper, ker.Rˆ/ is finite-dimensional. By Corollary 4.13, we see that Rˆ is almost
bimodular. By Lemmas 3.8 and 3.9, the convolved Riesz transformR�nˆ W`

2.�/! .Hr/
˝n
�

is an almost bimodular partial isometry. Therefore, we obtain AOC from Theorem 3.11.
Note that in fact we could have avoided the tensor products in this proof by using

Lemma 4.11 instead.
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5. Characterizing gradient-�p for Coxeter groups

In this section, we will consider the case of Coxeter groups. For any Coxeter group, the
word length defines a proper length function that is conditionally of negative type [6] (see
also [49, Proposition 2.22]). Therefore, it determines a QMS of Fourier multipliers. The
aim of this section is to find characterizations of when this specific QMS is gradient-�p .

Throughout Sections 5.2–5.5, we give an almost characterization of gradient-�p in
terms of the Coxeter diagram. In particular, we give sufficient conditions for gradient-�p
that are easy to verify in Corollaries 5.11 and 5.12. We also argue that these conditions are
necessary for a large class of Coxeter groups.

In Section 5.6, we show that gradient-�p is equivalent to smallness at infinity of the
Coxeter group. More precisely, a certain natural compactification of the Coxeter group
that was considered in [11, 33, 34] (see also [32]) is small at infinity. This result can be
understood directly after Section 5.2.

5.1. Preliminaries on Coxeter groups

Consider a finite set S D ¹s1; : : : ; snº and a symmetric matrix M D .mij /1�i;j�n with
mi;j 2N [ ¹1º satisfyingmi;i D 1 andmi;j � 2whenever i 6D j . Occasionally, we write
msi ;sj for mi;j ; this notation is convenient when considering ms;t without referring to the
indices of the generators s; t 2 S .

We shall write W D hS jM i for the group freely generated by the set S subject to the
relation .sisj /mi;j D e, where e denotes the identity element of W . We call W D hS jM i
a finite rank Coxeter system. We sometimes simply say Coxeter system as we assume that
they are all of finite rank. A group that can be represented in such way is called a Coxeter
group. Generally, a Coxeter group can be represented by different pairs S , M . The group
is called right-angled if moreover mi;j 2 ¹1; 2;1º for all 1 � i; j � n. Throughout this
entire section, W D hS jM i is a general finitely generated Coxeter system.

When we deal with Coxeter groups, we shall usually denote the elements of W with
boldface letters and the generators in S with normal letters. This makes the exposition
more clear. Let w 2 W . We say that an expression w1 : : : wn with wi 2 S is a reduced
expression for w if w D w1 : : : wn and this decomposition is of minimal length. The
minimal length is called the word length and which we denote by jwj D n. We also set

 S W W ! Z�0W w 7! jwj:

Theorem 5.1 (See [6]). For any Coxeter group,  S WW ! Z�0 is conditionally of negat-
ive type.

Therefore, by Theorem 4.8 there exists a QMS of Fourier multipliers on L.W / asso-
ciated with the word length function  S . The aim of the current Section 5 is to describe
when this QMS has gradient-�p . Recall that by Lemmas 4.10 and 4.11, we must thus
investigate for generators u; w 2 S when precisely  Su;w is finite rank where  Su;w was
defined in (4.4).
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5.2. Describing support of the function  Su;w

The aim of this subsection is to describe the support of  Su;w explicitly. In fact, in anti-
cipation of Section 6, we will give this description for more general length functions  .
Let 1.�/ be the indicator function which equals 1 if the statement within brackets is true.

Lemma 5.2. Let W D hS jM i be a Coxeter group. Suppose  WW ! R is conditionally
of negative type satisfying  .w/ D  .w1/ C � � � C  .wk/ whenever w D w1 : : : wk is
a reduced expression. Then for u;w 2 S and v 2 W , we have that

j u;w.v/j D 2 .u/1.uv D vw/ D 2 .w/1.uv D vw/:

Proof. We first note that, since we have u2 D w2 D e as they are generators, we have that

 u;w.v/ D 
 
u;w.uvw/ D � u;w.uv/ D � u;w.vw/:

When v is fixed, we can let z 2 ¹v; uv; vw; uvwº be such that

jzj D min¹jvj; juvj; jvwj; juvwjº:

Then we have j u;w.z/j D j
 
u;w.v/j. Furthermore, because jzj is minimal, we have juzj D

jzwj D jzj C 1. Thus, if zD z1 : : : zk is a reduced expression for z, we have that uz1 : : : zk
and z1 : : : zkw are reduced expressions for uz and zw, respectively. Therefore,  .uz/ D
 .u/C  .z/ and  .zw/ D  .z/C  .w/. Hence

 u;w.z/ D  .uzw/C  .z/ �  .uz/ �  .zw/
D  .uzw/ �  .z/ �  .u/ �  .w/:

Now, since juzj D jzj C 1, we have that either juzwj D jzj C 2 or juzwj D jzj. We shall
consider these two separate cases, from which the result will follow.

In the first case, we have that uz1 : : : zkw is reduced so that .uzw/D .u/C .z/C
 .w/ and therefore, j u;w.v/j D j

 
u;w.z/j D 0. We note that in this case also uv 6D vw.

Namely, uv D vw would imply uz D zw and hence uzw D z, which contradicts that
juzwj D jzj C 2.

In the second case, we have that uz1 : : : zkw is not reduced. Therefore, by the exchange
condition (see [20, Theorem 3.3.4.]) and the fact that juzwj D jzj < jzwj, we have that
uz1 : : : zkw is equal to z1 : : : zi�1ziC1 : : : zkw for some index 1� i � k, or uz1 : : : zkw D
z1 : : : zk . Now in the former case, we also have that uz D z1 : : : zi�1ziC1 : : : zk so that
juzj < jzj which is a contradiction. In this case, we must thus have that uzw D z and
hence uz D zw. This then implies that  .uzw/ D  .z/ and  .u/ D  .uz/ �  .z/ D
 .zw/ �  .z/ D  .w/. In this case, we thus obtain that

 u;w.z/ D  .uzw/ �  .z/ �  .u/ �  .w/ D �2 .u/ D �2 .w/

which shows that j u;w.v/j D j
 
u;w.z/j D 2 .u/ D 2 .w/.
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The result now follows from these cases. Namely, either we have that j u;w.v/j D 0
and that v does not satisfy uv D vw, or we have that j u;w.v/j D 2 .u/ D 2 .w/ and
that v does satisfy uv D vw. This thus shows us that

j u;w.v/j D 2 .u/1.uv D vw/ D 2 .w/1.uv D vw/:

5.3. A characterization in terms of Coxeter diagrams

We note that for the word length  S , we have  S .s/ > 0 for all generators s 2 S . Now by
Lemma 5.2, in order to see when  Su;w is finite-rank, we have to know what kind of words
v 2 W have the property that uv D vw. For this we introduce some notation.

For distinct i; j 2 ¹1; : : : ; jS jº we will, whenever the labelmi;j is finite, denote ki;j D
b
mi;j
2
c � 1. Now if mi;j is even, then mi;j D 2ki;j , and we set ri;j D si .sj si /ki;j�1. If

mi;j is odd, then mi;j D 2ki;j C 1, and we set ri;j D .sisj /ki;j . Furthermore, we set

ai;j D si ; bi;j D

´
si ; mi;j even;

sj ; mi;j odd;
ci;j D sj ; di;j D

´
sj ; mi;j even;

si ; mi;j odd:

Then ai;j and bi;j are respectively the first and last letters of the word ri;j . Furthermore,
when mi;j is even, we have

ci;j ri;j D sj si .sj si /ki;j�1 D .sj si /ki;j D .sisj /ki;j D ri;j sj D ri;jdi;j ;

and when mi;j is odd, we have

ci;j ri;j D sj .sisj /ki;j D si .sj si /ki;j D ri;j si D ri;jdi;j :

Thus in either case ci;j ri;j D ri;jdi;j .
For given generators u; w 2 S , we will now check for what kind of words v 2 W

with jvj � juvj; jvwj, we have that uv D vw. In Proposition 5.4, we then give a precise
description of the support of  Su;w .

Lemma 5.3. For generators u;w 2 S and a word v 2 W with jvj � juvj; jvwj, we have
uv D vw if and only if v can be written in the reduced form v D ri1;j1 : : : rik ;ik so that
u D ci1;j1 and w D dik ;jk and so that for l D 1; : : : ; k � 1 we have that cilC1;jlC1 D dil ;jl
and ailC1;jlC1 62 ¹sil ; sjl º and bil ;jl 62 ¹silC1 ; sjlC1º.

Proof. First, suppose that v can be written in the given form v D ri1;j1 : : : rik ;ik with
the given conditions on cil ;jl and dil ;jl . Then since we have cil ;jl ril ;jl D ril ;jldil ;jl D
ril ;jl cilC1;jlC1 for l D 1; : : : ; k � 1, and since uD ci1;j1 andw D dik ;jk , we have uvD vw,
which shows the ‘if’ direction.

We now prove the opposite direction. First note that the statement holds for v D e as
this can be written as the empty word. We now prove by induction on n that for v 2 W
with jvj � 1 and jvj � n and jvj � juvj; jvwj and uvD vw for some u;w 2 S , we can write
v in the given form. Note first that the statement holds for nD 0, since then no such v 2W
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exists. Thus, assume that the statement holds for n � 1, we prove the statement for n. Let
u;w 2 S and v 2W be with jvj D n and juvj D jvwj D jvj C 1 and uvD vw. Let v1 : : : vn
be a reduced expression for v. Then the expressions uv1 : : : vn and v1 : : : vnw are reduced
expressions for uv D vw. In particular, we have u 6D v1. Set m WD mu;v1 . Now, since uv
and vw are equal and u 6D v1, we can as in [20, proof of Theorem 3.4.2 (ii)] find a reduced
expression y1 : : : ynC1 for uv with n � m� 1 so that y1 : : : ym D uv1uv1 : : : u whenever
m is odd, and y1 : : : ym D uv1 : : : uv1 whenever m is even. This is to say that if we let
i0; j0 2 ¹1; : : : ; jS jº be such that v1 D si0 and uD sj0 , then we have that ri0;j0 D y2 : : : ym
and ci0;j0 D sj0 D u. Note that by [20, proof of Theorem 3.4.2 (ii)], we have in particular
that m <1. Now moreover, since y1 D u, we have that y2 : : : ynC1w is an expression
for vw, and this expression is reduced since jvwj D nC 1.

Now suppose thatmD nC 1, then vD ri0;j0 and i0 6D j0 since u 6D v1. Now, we have
u D sj0 D ci0;j0 and furthermore, since ri0;j0di0;j0 D ci0;j0ri0;i0 D uv D vw D ri0;j0w,
also w D di0;j0 . Thus in this case, we can write v in the given form.

Now suppose m < nC 1 and define v0 D ymC1 : : : ynC1 and u0 D di0;j0 and w0 D w.
Note that since u D sj0 D ci0;j0 and u0 D di0;j0 , we have

ri0;j0u
0v0 D uri0;j0v0 D uv D vw D ri0;j0v0w0:

Therefore, u0v0 D v0w0. Moreover, ju0v0j D jv0w0j D jv0j C 1 since ymC1 : : : ynC1w is
a reduced expression for v0w. Now, since also jv0j � 1 and jv0j � n � 1, we have by
the induction hypothesis that there is a reduced expression v0 D ri1;j1 : : : rik ;jk for some
indices il ; jl 2 ¹1; : : : ; jS jº with il 6D jl so that u0 D ci1;j1 and w0 D dik ;jk and so
that for l D 1; : : : ; k � 1 we have that cilC1;jlC1 D dil ;jl and ailC1;jlC1 62 ¹sil ; sjl º and
bil ;jl 62 ¹silC1 ; sjlC1º. Hence we can write v D ri0;j0v0 D ri0;j0 : : : rik ;jk . We also have
u D sj0 D ci0;j0 and w D w0 D dik ;jk and di0;j0 D u

0 D ci1;j1 . Furthermore, since jvj D
nD .m � 1/C .n�mC 1/D jri0;j0 j C jv0j, and since the expression for v0 is reduced, we
thus have that the expression for v is also reduced. Now suppose that bi0;j0 2 ¹si1 ; sj1º. We
note that bi0;j0 6D di0;j0 D ci1;j1 6D ai1;j1 . Now as also ci1;j1 ; ai1;j1 2 ¹si1 ; sj1º, we obtain
that ai1;j1 D bi0;j0 . However, as ri0;j0 ends with bi0;j0 and as ri1;j1 starts with ai1;j1 , we
then obtain that ri0;j0ri1;j1 is not a reduced expression. This contradicts the fact that the
expression for v is reduced. Likewise, if ai1;j1 2 ¹si0 ; sj0º, we have because of the fact
that ai1;j1 6D ci1;j1 D di0;j0 6D bi0;j0 and di0;j0 ; bi0;j0 2 ¹si0 ; sj0º that ai1;j1 D bi0;j0 . This
then shows that ri0;j0ri1;j1 is not a reduced expression, which contradicts the fact that the
expression for v is reduced. This proves the lemma.

Proposition 5.4. Let u;w 2 S . Then we have z 2 supp. Su;w/ if and only if

z 2 ¹v; uv; vw; uvwº;

where v is a word as in Lemma 5.3.

Proof. It is clear that if z 2 ¹v; uv; vw; uvwº, where v is of the form of Lemma 5.3, that
we then have uzD zw, and hence by Lemma 5.2 that  Su;w.z/ 6D 0. For the other direction,
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we suppose that z 2 supp. Su;w/. Then we have that uz D zw holds by Lemma 5.2. Now
there is a v 2 ¹z; uz; zw; uzwº such that jvj � juvj; jvwj. This word v moreover satisfies
uv D vw as we had uz D zw. Now, this means that v can be written in an expression as
in Lemma 5.3. Last, we note that z 2 ¹v; uv; vw; uvwº, which finishes the proof.

5.4. Parity paths in Coxeter diagram

In Proposition 5.4, we showed precisely for what kind of words v 2 W we have v 2
supp. Su;w/. The question is now whether this support is finite or infinite. It follows from
the proposition that the support is finite if and only if there exist only finitely many
words v 2 W that can be written in the form v D ri1;j1 : : : rik ;jk with the condition from
Lemma 5.3. To answer the question on whether this is the case, we shall identify these
expressions with certain walks in a graph. The following defines essentially the Coxeter
diagram with the difference that in a Coxeter diagram the edges that are labelled with
mi;j D 2 are deleted and those labelled with mi;j D 1 are added. Recall that a graph is
simplicial if it contains no double edges and no edges from a point to itself.

Definition 5.5. We will let GraphS .W / D .V; E/ be the complete simplicial graph with
vertex set V D S and labels mi;j on the edges ¹si ; sj º 2 E.

Definition 5.6. Let k � 1 and il ; jl 2 ¹1; : : : ; jS jº for l D 1; : : : ; k. Let

P D .sj1 ; si1 ; sj2 ; : : : ; sjk ; sik /

be a walk in the GraphS .W /, which has even length. We will say that P is a parity path if
the edges of P have finite labels, and if

(1) il 6D jl for all l ;

(2) for l D 1; : : : ; k � 1, we have sjlC1 D dil ;jl ;

(3) ilC1 62 ¹il ; jlº.

We will moreover call the parity path P a cyclic parity path if the path

xP WD .sj1 ; si1 ; : : : ; sjk ; sik ; sj1 ; si1/

is a parity path.

The intuition for a parity path is that if you walk an edge with odd label, you have to
stay there for one turn and then continue your walk over a different edge than you came
from. Furthermore, when you walk an edge with an even label, you have to return directly
over the same edge, and then continue your walk using another edge. Note that in both
cases you may still use same edges as before at a later point in your walk. A cyclic parity
path is defined so that walking the same path any number of times in a row gives you
a parity path.

We state the following definition.
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Definition 5.7. An elementary M-operation on a word v1 : : : vk is one of the following
operations:

(1) Delete a subword of the form sisi .

(2) Replace an alternating subword of the form sisj sisj : : : of length mi;j by the
alternating word sj sisj si : : : of the same length.

A word is called M-reduced if it cannot be shortened by elementary M-operations.

We shall now show in the following two theorems that the gradient-�p property of the
semi-group .ˆt /t�0 on L.W / associated to the word length  S , is almost equivalent with
the non-existence of cyclic parity paths in GraphS .W /.

Theorem 5.8. LetW D hS jM i be a Coxeter system. Suppose there is a cyclic parity path

P D .sj1 ; si1 ; sj2 ; : : : ; sjk ; sik /

in GraphS .W / in which the labels mil ;jl , mil ;ilC1 , mjl ;ilC1 are all unequal to 2. Then
the semi-group .ˆt /t�0 associated to the word length  S is not gradient-�p for any
p 2 Œ1;1�.

Proof. Suppose the assumptions hold. Then we have that there exists a parity path of the
form xP D .sj1 ; si1 ; sj2 ; : : : ; sjk ; sik ; sjkC1 ; sikC1/, where si1 D sikC1 and sj1 D sjkC1 . We
will denote v1 D ri1;j1 : : : rik ;jk . We note that by the definition of a parity path, we have
dil ;jl D sjlC1 D cilC1;jlC1 for l D 1; : : : ; k � 1 and dik ;jk D sjkC1 D sj1 D ci1;j1 . We now
define u D ci1;j1 D dik ;jk . Now we thus have uv1 D v1u. This means by Lemma 5.2
that  Su;u.v1/ 6D 0. We show that  S .v1/ � k. To see this, note that ailC1;jlC1 D silC1 62
¹sil ; sjl º by the definition of the parity path. Furthermore, since bil ;jl 6D dil ;jl D cilC1;jlC1
and bil ;jl 6D ailC1;jlC1 (as ailC1;jlC1 62 ¹sil ; sjl º 3 bil ;jl ) and ailC1;jlC1 D silC1 6D sjlC1 D
cilC1;jlC1 , we have that bil ;jl 62 ¹ailC1;jlC1 ; cilC1;jlC1º D ¹silC1 ; sjlC1º. Now, since there are
no labels mil ;jl equal to 2, we have that the sub-words ril ;jl contain both elements sil
and sjl . This means, since ailC1;jlC1 62 ¹sil ; sjl º and bil ;jl 62 ¹silC1 ; sjlC1º, that the only
sub-words of v1 of the form sisj si : : : sisj or sisj si : : : sj si are the sub-words of ril ;jl for
some l D 1; : : : ; k, and the words bil ;jlailC1;jlC1 for l D 1; : : : ; k � 1. For an alternating
subword x of ri;j for some i , j , we have that x is an alternating sequence of si ’s and sj ’s
and further

jxj � jri;j j � mi;j � 1:

Furthermore, for a word sisj with si D bil ;jl and sj D ailC1;jlC1 for some l D 1; : : : ; k � 1
(in which case we have i 2 ¹il ; jlº and j D ilC1), we have that

jsisj j D 2 � min¹mil ;ilC1 ; mjl ;ilC1º � 1 � mi;j � 1:

Furthermore, there are no sub-words of v1 of the form sisi . This means that the expres-
sion for v1 is M -reduced, and therefore, by [20, Theorem 3.4.2], that the expression is
reduced. This means that  S .v1/ � k. Now, since we can create cyclic parity paths Pn
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by walking over P a n number of times, we can create vn 2 W with  S .vn/ � nk and

 S
u;u.vn/ 6D 0. Therefore,  Su;u is not finite rank, and hence the semi-group .ˆt /t�0 is not

gradient-�p for any p 2 Œ1;1�.

Theorem 5.9. Let W D hS jM i be a Coxeter group. If there does not exist a cyclic parity
path in GraphS .W /, then the semi-group .ˆt /t�0 associated to the word length  S is
gradient-�p for all p 2 Œ1;1�.

Proof. Suppose that .ˆt /t�0 is not gradient-�p for some p 2 Œ1;1�. We will show that
a cyclic parity path exists. Namely, since the semi-group is not gradient-�p , there exist by
Lemma 4.11 generators u;w 2 S for which  Su;w is not finite rank. SetmDmax¹mi;j W1�
i; j � jS jº n ¹1º. We can thus let z 2 supp. Su;w/ be with  S .z/ > mjS j2 C 2. Then
by Proposition 5.4, there is a v 2 ¹z; uz; zw; uzwº such that we can write v in reduced
form v D ri1;j1 : : : rik ;jk with the conditions as in Lemma 5.3. Now define the path P D
.sj1 ; si1 ; : : : ; sjk ; sik /. We show that this is a parity path. By the properties that we obtained
from Lemma 5.3, we have that il 6D jl and that mil ;jl <1 for all l . Moreover, sjlC1 D
cilC1;jlC1 D dil ;jl and sil D ail ;jl 62 ¹silC1 ; sjlC1º. This shows that P is a parity path. Note
furthermore that since S .v/� S .z/� 2>mjS j2, we have thatP has length jP j D 2k �
2 S .v/

m
> 2jS j2. Therefore, there must exist indices l < l 0 such that .sjl ; sil / D .sjl 0 ; sil 0 /.

The sub-path .sjl ;sil ; : : : ; sjl 0�1;jl 0�1/ then is a cyclic parity path.

5.5. Characterization of graphs that contain cyclic parity paths

In the previous subsection, in Theorems 5.8 and 5.9, we have shown that the gradient-�p
property is almost equivalent to the non-existence of a cyclic parity path. We shall now
characterize in Proposition 5.10 precisely when a graph possesses a cyclic parity path.
The content of this proposition is moreover visualized in Figure 1. Thereafter, we state
two corollaries that follow from this proposition and from Theorems 5.8 and 5.9. These
corollaries give an ‘almost’ complete characterization of the types of Coxeter systems for
which the semi-group associated to  S is gradient-�p .

The following proposition shows exactly when a cyclic parity path P in the graph
GraphS .W / exists. Recall that a forest is a union of trees. A connected graph is a tree if it
has no loops/cycles.

Proposition 5.10. Let us denote V DS ,E0D¹¹i;j ºWmi;j 2 2Nº andE1D¹¹i;j ºWmi;j 2
2N C 1º. Then there does not exist a cyclic parity path P in GraphS .W / if and only if
.V; E1/ is a forest, and for every connected component C of .V; E1/ there is at most one
edge ¹t; rº 2 E0 with t 2 C and r 62 C , and for every connected component C of .V;E1/
there is no edge ¹t; t 0º 2 E0 with t; t 0 2 C .

Proof. First suppose that .V;E1/ is not a forest. Then we can find a cycleQD .sj1 ; sj2 ; : : : ;
sjk ; sj1/ in .V;E1/. Now, since all edges are odd, this means that

P D .sj1 ; sj2 ; sj2 ; sj3 ; sj3 ; : : : ; sjk ; sjk ; sj1/
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Figure 1. Graphs with and without a cyclic parity path: (a) with no cyclic parity path; (b) with
a cyclic parity path; (c) with a cyclic parity path. The graph GraphS .W / is denoted for three different
Coxeter systems W D hS jM i with jS j D 6. In each of the graphs, the label mi;j is shown on the
edge ¹si ; sj º. We colored the edge orange when the label is even, we colored it blue when the label
is odd, and we colored it black when the label is infinity. The relations we imposed on the generators
are almost the same in the three cases. They only differ on the edges ¹s4; s5º and ¹s5; s6º. The graph
in (a) satisfies the assumptions of Proposition 5.10 and hence does not contain a cyclic parity path.
The graph in (b) does not satisfy the assumptions of the proposition as for the connected component
C D ¹s3; s4º of .V; E1/ there are two distinct edges ¹s2; s3º and ¹s4; s5º with even label and with
(at least) one endpoint in C . Therefore, the graph contains a cyclic parity path. One is given by
P D .s3; s2; s3; s4; s4; s5; s4; s3/ (another cyclic parity path uses the node s1). The graph in (c)
does also not satisfy the assumptions of the proposition as it contains a cycle with odd labels. Here
a cyclic parity path is given by P D .s1; s5; s5; s6; s6; s1/ (another cyclic parity path is obtained by
walking in reverse order).

is a cyclic parity path. Indeed, if we denote jkC1 WD j1 and jkC2 WD j2, then for l D
1; : : : ; k, we have jl 6D jlC1, sjlC1 D djlC1;jl and jlC2 62 ¹jlC1; jlº, which shows all
conditions hold.

Now suppose that there is a connected component C of .V; E1/ for which there are
two distinct edges ¹t1; r1º; ¹t2; r2º 2 E0 with t1; t2 2 C and r1; r2 62 C . If t1 D t2, then
r1 6D r2 and a cyclic parity path is given by P D .t1; r1; t1; r2/. In the case that t1 and t2 are
distinct, there is a simple path Q D .t1; sj1 ; : : : ; sjk ; t2/ in .V;E1/ from t1 to t2. The path

P D .t1; sj1 ; sj1 ; sj2 ; sj2 ; : : : ; sjk ; sjk ; t2; t2; r2; t2; sjk ; sjk ; sjk�1 ; sjk�1 ; : : : ; sj1 ; sj1 ; t1; t1; r1/

then is a cyclic parity path. Indeed, just as the previous case, we have that the paths

P1 WD .t1; sj1 ; sj1 ; sj2 ; sj2 ; : : : ; sjk ; sjk ; t2/;

P2 WD .t2; sjk ; sjk ; sjk�1 ; sjk�1 ; : : : ; sj1 ; sj1 ; t1/

are parity paths since they are obtained from a simple path in .V; E1/. We then only have
to check that in the middle and at the start/end of the path P the conditions are satis-
fied. For the middle, we see that indeed r2 62 ¹sjk ; t2º as the label of the edge between t2
and r2 is even. Furthermore, since P1 is a parity path, we have that sjk 6D t2. Thus also
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sjk 62 ¹t2; r2º. Furthermore, if we let i , j be such that t2 D sj , r2 D si , then since mjk ;j
is odd, we have that t2 D dj;jk and since mi;j is even, we have t2 D di;j . This shows all
conditions in the middle. The conditions at the start/end hold by symmetry. Thus P is
a cyclic parity path.

Now, suppose that there is a connected component C of .V;E1/ for which there exists
an edge ¹t; t 0º 2E0 with t; t 0 2C . Then we can, similar to what we just did, obtain a cyclic
parity path by taking t1 D t , t2 D t 0 and r1 D t 0, r2 D t .

We now prove the other direction. Thus, suppose that .V; E1/ is a forest and that
for every connected component C , there is at most one edge ¹t; rº 2 E0 with t 2 C and
r 2 V , and that for every connected component, there is no edge ¹t; t 0º 2E0 with t; t 0 2 C .
Suppose there exists a cyclic parity path P D .sj1 ; si1 ; : : : ; sjk ; sik / in .V;E0 [E1/, we
show that this gives a contradiction. Namely, first suppose that P only has odd edges.
Then we have sjlC1 D dil ;jl D sil for l D 1; : : : ; k � 1 and sj1 D dik ;jk D sik , and thus
P D .sik ; si1 ; si1 ; si2 ; si2 ; : : : ; sik�1 ; sik /. However, since also ilC1 62 ¹il ; jlº D ¹il ; il�1º,
this means that Q D .si1 ; si2 ; : : : ; sik ; si1/ is a cycle in .V; E1/. But this is not possible
since .V; E1/ is a forest, which gives the contradiction. We thus assume that there is an
index l such that the label mil ;jl is even. By choosing the starting point of P as jl instead
of j1, we can assume that mi1;j1 is even. Now in that case, we have sj2 D di1;j1 D sj1 .
We must moreover have i2 62 ¹i1; j1º as P is a parity path. Now as the edges ¹i1; j1º
and ¹i2; j2º are thus distinct, and share an endpoint, we obtain that mi2;j2 is odd. This
means that j3 D di2;j2 D i2 6D j2. Now the sub-path .sj2 ; si2 ; : : : ; sjk ; sik ; sj1 ; si1/ is
also a parity path. Denote jkC1 D j1 and ikC1 D i1 and let 3 < k0 � k C 1 be the
smallest index such that sjk0 D sj2 . Note that such k0 exists since sjkC1 D sj1 D sj2 .
Then the sub-path P 0 WD .sj2 ; si2 ; : : : ; sjk0 ; sik0 / is a parity path, and the labels mil ;jl for
l D 2; : : : ; k0 � 1 are odd since sj2 is the only vertex in its connected component in .V;E1/
that is connected by an edge inE0. Thus, just like in the previous case, we have that P 0 WD
.sik0 ; si2 ; si2 ; si3 ; : : : ; sik0�1 ; sik0 /. Now this means that the path Q D .sik0 ; si2 ; si3 ; : : : ; sik0 /
contains a cycle, which is a contradiction with the fact that .V;E1/ is a forest. This proves
the lemma.

We now state two corollaries that directly follow from Theorems 5.8, 5.9 and 5.10.

Corollary 5.11. Let W D hS jM i be a Coxeter system and fix p 2 Œ1;1�. Let us denote
E0D ¹.i; j /Wmi;j 2 2Nº andE1D ¹.i; j /Wmi;j 2 2N C 1º. Then the semi-group .ˆt /t�0
on L.W / associated to the word length  S is gradient-�p if .S;E1/ is a forest, and if for
every connected component C of .S;E1/ there is at most one edge ¹t; rº 2 E0 with t 2 C
and r 62 C and no edge ¹t; t 0º 2 E0 with t; t 0 2 C .

Corollary 5.12. LetW D hS jM i be a Coxeter system satisfyingmi;j 6D 2 for all i , j . Fix
p 2 Œ1;1�. Let us denote E0 D ¹.i; j /Wmi;j 2 2Nº and E1 D ¹.i; j /Wmi;j 2 2N C 1º.
Then the semi-group .ˆt /t�0 on L.W / associated to the word length  S is gradient-�p
if and only if .S;E1/ is a forest, and for every connected component C of .S;E1/ there is
at most one edge ¹t; rº 2 E0 with t 2 C and r 62 C and no edge ¹t; t 0º 2 E0 with t; t 0 2 C .
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We would also like to point out the following result from [8, Example 5.1]. It follows
that the Coxeter groups are in some cases actually equal. In such cases, we have obtained
the gradient-�p property for multiple quantum Markov semi-groups.

Proposition 5.13. LetWiDhSi jMi i be Coxeter systems for iD 1;2 such that GraphSi .W /
has no edges of even label, and such that the edges of odd label form a tree. Then if
GraphS1.W2/ has the same set of labels as GraphS2.W2/ (counting multiplicities), then the
Coxeter groups are equal, that is W1 D W2.

5.6. Smallness at infinity

We recall the construction of a natural compactification and boundary associated with
a finite rank Coxeter group. We base ourselves mostly on the very general construction
from [33] but in the case of Coxeter groups this boundary was also considered in [11,34].
In [33] then smallness at infinity was studied as well as its connection to the Gromov
boundary, which generally is different from the construction below.

LetW D hS jM i be a finite rank Coxeter system, and let G be its Cayley graph which
has vertex set W , and w; v 2 W are connected by an edge if and only if w D vs for some
s 2 S . We see G as a rooted graph with e 2 W the root. We say that w � v if there exists
a geodesic (D shortest path) from e to v passing through w. An infinite geodesic path is
a sequence ˛ D .˛i /i2N such that

(1) ˛i 2 W ,

(2) ˛i and ˛iC1 have distance 1 in the Cayley graph,

(3) .˛i /iD0;:::;n is the shortest path (geodesic) from ˛0 to ˛n for every n.

For every w 2 W , we have either w � ˛i for all large enough i or w 6� ˛i for all large
enough i . We write w � ˛ in the former case and w 6� ˛ in the latter case. We define an
equivalence relation� by saying that for two infinite geodesics ˛ and ˇ, we have ˛ � ˇ if
for all w 2 W both implications w � ˛, w � ˇ hold. Let @.W; S/ be the set of infinite
geodesics modulo �. Define .W; S/ D W [ @.W;S/. We equip .W; S/ with the topology
generated by the subbase consisting of

Uw WD ¹˛ 2 .W; S/Ww � ˛º; Uc
w WD ¹˛ 2 .W; S/Ww 6� ˛º

with w 2 W . Then .W; S/ contains W as an open dense subset and the left translation
action of W on W extends to a continuous action on .W; S/ (see [33]). This means that
.W; S/ is a compactification of W in the sense of [10, Definition 5.3.15] and @.W; S/ is
the boundary. We now recall the following definition from [10, Definition 5.3.15].

Definition 5.14. We will say that a finite rank Coxeter system .W; S/ is small at infinity
if the compactification .W; S/ is small at infinity. This means that for every sequence
.xi /i2N 2 W converging to a boundary point z 2 @.W; S/ and for every w 2 W , we have
that xiw! z.
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The following is the main theorem of this subsection. The authors are indebted to
Mario Klisse for noting the connections in this theorem as well as its proof.

Theorem 5.15. Let W D hS jM i be a Coxeter system. Fix p 2 Œ1;1�. The following are
equivalent:

(1) The QMS .ˆt /t�0 associated with the word length  S is gradient-�p on L.W /.

(2) For all u;w 2 S , the set ¹v 2 W Wuv D vwº is finite.

(3) For all s 2 S , the set ¹v 2 W W sv D vsº is finite.

(4) The Coxeter system W D hS jM i is small at infinity.

Proof. (1) is equivalent to saying that for all u; v 2 S we have that  Su;v has compact sup-
port by Lemma 4.11. By Lemma 5.2, this is equivalent to (2). The equivalence between (3)
and (4) was proven in [33, Theorem 0.3]. The implication .2/) .3/ is immediate.

Now assume (4). We shall prove that (2) holds by contradiction. So suppose that
#¹vWuv D vwº D 1 for some u;w 2 S . Choose a sequence .vi /i in ¹vWuv D vwº which
has increasing word length. By the compactness of the compactification .W; S/ [33, Pro-
position 2.8], this implies that (by possibly passing over to a subsequence) the sequence
.vi /i converges to a boundary point z. Now, by the smallness at infinity and the assump-
tion that uvi D viw, we have that z D limi viw D limi uvi D u � z. We have either u � z
or u 6� z but not both in the partial order from [33, Lemma 2.2]. Further, u 6� z if and only
if u � u � z D z which yields a contradiction.

Remark 5.16. We refer to [33, Theorem 0.3] for yet another statement that is equivalent
to the statements in Theorem 5.15. A consequence of [33, Theorem 0.3] is that Coxeter
groups that are small at infinity are word hyperbolic. Conversely, not every word hyper-
bolic Coxeter group is small at infinity. The simplest example is probably the Coxeter
group generated by S D ¹s1; s2; s3; s4º, wheremi;j D 2 if ji � j j D 1 andmi;j D1 oth-
erwise. We thus see that not for every hyperbolic Coxeter group we have the gradient-�p
property for the QMS associated with the word length. However, in Section 7 we show
that using tensoring we may still use our methods for such Coxeter groups.

Remark 5.17. It is known that every discrete hyperbolic group is strongly solid by com-
bining results in [28] (to get AOC using amenable actions on the Gromov boundary),
[38] (for weak amenability, see [25, 30] for general Coxeter groups) and [44] (for Theo-
rem 3.13). Condition AOC may also be obtained by Theorem 4.14 for the Coxeter groups
that admit a QMS with gradient-�p . However, Remark 5.16 shows that this covers a smal-
ler class than [28] and so our methods – for now at least – do not improve on existing
methods concerning strong solidity questions.

There are still two large benefits of the results in this section. Firstly, given a Coxeter
system W D hS jM i, it is not directly clear whether it is small at infinity. A combination
of Theorem 5.15 and Corollaries 5.11 and 5.12 gives in many cases an easy way to see
whether a Coxeter group is small at infinity. Secondly, for now we may not improve on
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current strong solidity results but in Section 7, we show that using the tensor methods of
Section 3 we may prove strong solidity for all hyperbolic right-angled Coxeter groups.
This gives an alternative path to the method of [28] (still not outweighing known results).
In Section 8, this alternative path also gives strong solidity results for Hecke von Neumann
algebras. Here we really improve on existing results as the methods of [28] can only be
applied in a limited way, see [33, Theorem 3.15 and Corollary 3.17].

Remark 5.18. By Theorem 5.15 (see [33, Theorem 0.3]), smallness at infinity or gradi-
ent-�p can be characterized in terms of the finiteness of the centralizers of the generators.
Such centralizers can be analyzed using the methods from [1, 9].

6. Gradient-�p semi-groups associated to weighted word lengths on
Coxeter groups

In this section, we will consider proper length functions on Coxeter groups that are con-
ditionally of negative type and are different from the standard word length. We can then
consider the quantum Markov semi-groups associated to these other functions and study
the gradient-�p property of these semi-groups. We show that these other semi-groups may
have the gradient-�p properties in the cases where the semi-group associated to the word
length  S fails to be gradient-�p . For p 2 Œ1;1�, this gives us new examples of Coxeter
groups W for which there exist a gradient-�p quantum Markov semi-group on L.W /.
These results will turn out to be crucial in Section 7.

6.1. Weighted word lengths

For non-negative weights x D .x1; : : : ; xjS j/, we consider, if existent, the function  xW

W ! R by taking the word length with respect to the weights x on the generators (see
below). These functions are conditionally of negative definite type as follows for instance
as a special case of [7, Theorem 1.1]. Here we give another purely group theoretical proof.

Fix again a (finite rank) Coxeter groupW D hS jM i. Recall that the graph GraphS .W /
was defined in Definition 5.5. Let Graph0S .W / be the subgraph of GraphS .W / that has
vertex set S and edge set

E D ¹.si ; sj /W 3 � mi;j WD msi ;sj <1º:

Then let Ci be the connected component in Graph0S .W / that contains si .

Lemma 6.1. Let W D hS jM i be a Coxeter group. Then if x 2 Œ0;1/jS j is such that
xi D xj whenever Ci D Cj , then the function

 xW W ! Œ0;1/;

given for a word wD w1 : : :wk in reduced expression by  x.w/D
PjS j
iD1 xi j¹l Wwl D siºj

is well defined and is conditionally of negative type.
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Proof. Let n D .n1; : : : ; njS j/ 2 N jS j be such that ni D nj whenever Ci D Cj . We will
construct a new Coxeter group eW n D hSnjMni as follows. We denote Sn D ¹si;k W 1 �

i � jS j; 1 � k � niº for the set of letters. We then define MnWSn ! N [ ¹1º as

mn;si;k ;sj;l D

8̂̂<̂
:̂
msi ;sj ; Ci D Cj and k D l;

2; Ci D Cj and k 6D l;

msi ;sj ; Ci 6D Cj :

We set the Coxeter group eW n D hSnjMni. We now define a homomorphism 'nWW ! eW n

given for generators by 'n.si / D si;1si;2 : : : si;ni . We note that

'n.si /
2
D si;1 : : : si;ni si;1 : : : si;ni D s

2
i;1 : : : s

2
i;ni
D e:

Furthermore, when Ci D Cj , we have that ni D nj and

.'n.si /'n.sj //
m
D .si;1 : : : si;ni sj;1 : : : sj;nj /

m
D .si;1sj;1/

m.si;2; sj;2/
m : : : .si;ni sj;nj /

m:

This means that in this case, .'n.si /'n.sj //
msi ;sj D e. If Ci 6D Cj , then either msi ;sj D 2

or msi ;sj D1. If msi ;sj D 2, then also

'n.si /'n.sj / D si;1 : : : si;ni sj;1 : : : sj;nj D sj;1 : : : sj;nj si;1 : : : si;ni D 'n.si /'n.sj /

holds. Therefore, we can extend 'n to words w D w1 : : : wk 2 W by defining 'n.w/ D
'n.w1/ : : : 'n.wk/. By what we just showed, this map is well defined. Furthermore, from
the definition it follows that this map is a homomorphism. Moreover, we note that if w D
w1 : : :wk 2W is a reduced expression, then 'n.w/D 'n.w1/ : : : 'n.wk/ is also a reduced
expression. This means in particular that 'n is injective. Furthermore, if we denote z n

for the word length on eW n, then we have that for a word w D w1 : : : wk 2 W written in
a reduced expression that

z n ı 'n.w/ D
kX
lD1

z n.'n.wl // D

jS jX
iD1

z n.'n.si //j¹l Wwl D siºj D

jS jX
iD1

ni j¹l Wwl D siºj:

Now fix x 2 Œ0;1/jS j with xi D xj whenever Ci D Cj . For m 2 N define nm 2 N jS j

by .nm/i D dmxie C 1 2 N. Now, for w 2 W with reduced expression w D w1 : : : wk ,
we haveˇ̌̌̌

1

m
z nm ı 'nm.w/ �

jS jX
iD1

xi j¹l Wwl D siºj

ˇ̌̌̌
�

jS jX
iD1

ˇ̌̌ .nm/i
m
� xi

ˇ̌̌
� j¹l Wwl D siºj

D

jS jX
iD1

jdmxie C 1 �mxi j

m
j¹l Wwl D siºj

�

jS jX
iD1

2

m
j¹l Wwl D siºj �

2jwj
m

;
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and hence 1
m
z nm ı 'nm.w/!

PjS j
iD1 xi j¹l Wwl D siºj asm!1. This shows in particular

that  x is well defined. Since 1
m
z nm ı 'nm is conditionally of negative type, and since

1
m
z nm ı 'nm !  x point-wise, we have by [5, Proposition C.2.4 (ii)] that  x is condition-

ally of negative type.

Remark 6.2. By Lemma 6.1 in the case of a right-angled Coxeter group W D hS jM i,
we have that every weight x 2 Œ0;1/jS j defines a function that is conditionally of negative
type.

Remark 6.3. For a general Coxeter groupW DhS jM i and arbitrary non-negative weights
x 2 Œ0;1/jS j, the weighted word length is not well defined. Indeed, if si ; sj 2 S are such
that msi ;sj is odd, then for ki;j WD b12msi ;sj c, we have that .sisj /ki;j si and sj .sisj /ki;j

are two reduced expressions for the same word, but the values of j¹l W wl D siºj and
j¹l Wwl D sj ºj depend on the choice of the reduced expressions.

We shall now turn to examine when a weighted word length is proper. Fix again
a Coxeter system W D hS jM i. Let 	 � S be a subset of the generators such that for
i D 1; : : : ; jS j either Ci � 	 or Ci \ 	 D ;. We set

 	 D  x with x 2 Œ0;1/jS j defined by x.i/ D �	.i/;

where �	 is the indicator function on 	. Then by Lemma 6.1, we have that  	WW ! R
is a well-defined function that is conditionally of negative type. We give the following
characterization on when the function  	 is proper.

Proposition 6.4. The function  	 is proper if and only if the elements S n 	 generate
a finite subgroup.

Proof. Indeed, if the generated group H is infinite, then  	 is not proper as  	jH D 0.
On the other hand, if the generated groupH containsN <1 elements, then for a reduced
expression wDw1 : : :wk 2W , we cannot have thatwl ;wlC1; : : : ;wlCN 2S n	 for some
1 � l � k � N as the expressions wl ; wlwlC1; wlwlC1wlC2; : : : would all be distinct
elements in H . This thus implies that  	.w/ > jwj

NC1
� 1 which shows that  	 is proper

in this case.

6.2. Gradient-�p property with respect to weighted word lengths on right-angled
Coxeter groups

In this subsection, we shall consider a right-angled Coxeter group W D hS jM i. Recall
that right-angled means that ms;t 2 ¹2;1º for all s; t 2 S , s 6D t so either s, t are free
or they commute. By Remark 6.2, it follows that for any x 2 Œ0;1/jS j, we have that
 xWW ! R is well defined and conditionally of negative definite type. We note also that
 x.w/D x.w1/C � � � C x.wk/when wDw1 : : :wk is a reduced expression. Therefore,
by Lemma 5.2 we have that  x

u;w.v/ 6D 0 for u;w 2 S and v 2 W if and only if uv D vw
and  x.u/ > 0.
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Theorem 6.5. Let W D hS jM i be a right-angled Coxeter group. Let x 2 Œ0;1/jS j and
p 2 Œ1;1�. Suppose the function  x is proper. Then, the semi-group .ˆt /t�0 induced
by  x is gradient-�p if and only if there do not exist generators r; s; t 2 S with mr;s D
mr;t D 2, ms;t D1 and  x.r/ > 0.

Proof. Suppose that .ˆt /t�0 is not gradient-�p for some p 2 Œ1;1�. We will show the
generators with the given properties exist. Namely, there are generators u, w for which

 x
u;w is not finite rank. We can thus let v 2W with jvj > jS j C 1 be such that  x

u;w.v/ 6D 0.
Then uv D vw and  x.u/;  x.w/ > 0 by Lemma 5.2. We note moreover that by [20,
Lemma 3.3.3], we have that u D w because these elements are conjugate and the Coxeter
group is right-angled. We can now let z 2 ¹v; uv; vw; uvwº be such that jzj � juzj; jzwj.
Then the equality uz D zw also holds. Therefore, we can write z in reduced form z D
ri1;j1 : : : rik ;jk with the conditions as in Lemma 5.3. Now, as mil ;jl WD msil ;sjl <1, we
must have msil ;sjl D 2 for l D 1; : : : ; k. Hence z D si1si2 : : : sik . Furthermore, sjlC1 D sjl
for l D 1; : : : ; k � 1 since msil ;sjl is even. We define r D sj1 . Then r D ci1;j1 D u so that
 x.r/ > 0. Furthermore, since k D jzj � jvj � 1 > jS j, there exist indices l < l 0 such that
msil ;sil 0

D 1. We then set s D sil and t D sil 0 . Then ms;r D msil ;sjl
D 2 and likewise

mt;r D 2. This shows that all stated properties hold for r , s and t .
For the other direction, suppose that there exist r; s; t 2 S with mr;s D mr;t D 2 and

ms;t D 1 and  x.r/ > 0. Define the words vn D .st/n. Then we have jvnj D 2n and
hence ¹vnºn�1 are all distinct. Moreover, we have rvn D vnr and  x.r/ > 0. This means
by Lemma 5.2 that  x

r;r .vn/ D  x.r/ > 0 for n � 1. Thus the semi-group .ˆt /t�0 is not
gradient-�p .

7. Strong solidity for hyperbolic right-angled Coxeter groups

We conclude this paper with two applications that combines all the techniques that we have
developed so far. This section contains the first application. We prove that any right-angled
hyperbolic Coxeter group has a strongly solid group von Neumann algebra. This result
was surely known before; it follows, for instance, from [44]. Nevertheless, we present
our alternative proof to demonstrate the techniques that we have established in this paper.
For the rest of this section, fix a (finite rank) right-angled Coxeter system W D hS jM i.
We shall use the following characterisation of word hyperbolicity.

Theorem 7.1 (See [20]). Let W D hS jM i be a right-angled Coxeter system. The follow-
ing are equivalent:

(1) W D hS jM i is word hyperbolic.

(2) There do not exist four distinct elements s; t; u; v 2 S such thatms;t D mu;v D1
and ms;u D ms;v D mt;u D mt;v D 2.

Our aim is to prove the following. The proof is based on Proposition 7.3 and Lem-
ma 7.4 which we prove at the end.
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Theorem 7.2. Let W D hS jM i be a word hyperbolic right-angled Coxeter group. Then
L.W / satisfies AOC and is strongly solid.

Proof. Let Cliq.S jM/ be the set of subsets 	 � S that generate a finite Coxeter sub-
group W	 of W D hS jM i. These are precisely the subsets 	 � S such that for every
s; t 2 	, we have ms;t D 2. We call Cliq.S jM/ the set of cliques. They could also be
seen as the cliques in a natural graph that is associated with the graph product decompos-
ition of a right-angled Coxeter group, where a clique is defined as a complete subgraph,
see [15, 26]. We shall not need this graph product decomposition here except for the fact
that it explains the terminology.

For 	 2 Cliq.S jM/, the function  Sn	 is proper (see Proposition 6.4) and condi-
tionally of negative type (see Lemma 6.1). We may therefore consider the QMS ˆ	

associated with  Sn	 , the associated gradient CŒW � bimodule H	 and the Riesz trans-
form R	W `2.�/! H	 . The Riesz transform R	 is then a partial isometry with a finite-
dimensional kernel spanned by ıu, u 2 W	 . Here R	 is almost bimodular by Corol-
lary 4.13. We now consider the ˝� tensor product of bimodules with � D W over all
	 2 Cliq.S jM/ as was defined in Section 3.2,

HW D
O

	2Cliq.S jM/;�

H	:

We note that the order in which the tensor products are taken is not relevant for our ana-
lysis. Consider the convolution product of Riesz transforms

RW D �	2Cliq.S jM/R	W `2.�/! HW :

By Lemmas 3.8 and 3.9, we see that RW is an almost bimodular partial isometry whose
kernel is spanned by all vectors ıu, where u 2 W	 for some 	 2 Cliq.S jM/. In particular,
the kernel of RW is finite-dimensional. Let L � HW be the smallest CŒW � subbimodule
containing the image of RW . Then RW W `2.W /! L is still an almost bimodular partial
isometry with finite-dimensional kernel.

Recall that C �r .W / is locally reflexive and L.W / has the weak-� completely boun-
ded approximation property as W is weakly amenable (see [25, 30]). It then follows from
Theorem 3.11 that if L is quasi-contained in the coarse bimodule of W , then L.W / satis-
fies AOC. Consequently, L.W / is strongly solid by Theorem 3.13. The proof that HW is
quasi-contained in the coarse bimodule of W is given in Proposition 7.3.

Proposition 7.3. The CŒW � bimodule L defined in the proof of Theorem 7.2 is quasi-
contained in the coarse bimodule of the word hyperbolic right-angled Coxeter group W .

Proof. We shall prove that a cyclic set of coefficients is in �2 so that the proposition
follows from Lemma 3.4. Let us denote H00 � L for the sets of all the vectors

�v WD .�	2Cliq.S jM/R	/.ıv/ D
O

	2Cliq.S jM/

�v ˝r	
ıe; v 2 W:
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Here we used the symbol ˝r	
to denote elements in the gradient bimodule constructed

from 	. By construction of L, we have thatH00 is cyclic for L. For �u; �w 2H00, we now
inspect the coefficient T�u;�w . We have for u; v;w 2 W , y 2 CŒW �,

�.T�w;�u.�v/y/ D h�v � �w � y; �ui

D

Y
	2Cliq.S jM/

h�v � .�w ˝	 ıe/ � y; �u ˝	 ıei	

D

Y
	2Cliq.S jM/

h‰
�u�1 ;�w
	

.�v/ıey; ıei

D

Y
	2Cliq.S jM/


 Sn	

u�1;w.v/h�u�1vwıey; ıei:

Define the function

zu;w.v/ D
Y

	2Cliq.S jM/


 Sn	
u;w .v/: (7.1)

Then, if zu�1;w.v/D 0, we have that �.T�w;�u.�v/y/D 0 for all y 2CŒW � and consequently
T�w;�u.�v/ D 0. We thus have that T�w;�u is finite rank whenever zu�1;w has finite support.
In Lemma 7.4, we shall show that the function zu;w has finite rank for all u;w 2W so that
we conclude the proof.

In order to prove Lemma 7.4 rigorously, we shall introduce some notation here. A tuple
.w1; : : : ;wk/ withwi 2 S will be call reduced if the expressionw1 : : :wk is reduced. Fur-
thermore, we will call the tuple semi-reduced whenever jw1 : : : wkj C j¹l Wwl D eºj D k.
We will say that a pair .i; j / with i < j collapses for a tuple .w1; : : : ; wk/ whenever
wi D wj 6D e and the elements ¹wl W i � l � j º pair-wise commute. In that case, we will
call the tuple .w1; : : : ;wi�1; e;wiC1; : : : ;wj�1; e;wjC1; : : : ;wk/ the tuple obtained from
.w1; : : : ;wk/ by collapsing on the pair .i; j /. We note that the wordw1 : : :wk correspond-
ing to .w1; : : : ;wk/ is in fact the same as the wordw1 : : :wi�1ewiC1 : : :wj�1ewjC1 : : :wk
corresponding to the collapsed tuple. The notation that we introduced here is convenient
because it keeps indices aligned correctly. We also note that a tuple .w1; : : : ; wk/ is semi-
reduced if and only if we cannot collapse on any pair .i; j /. Hence, for a general tuple, we
can obtain a semi-reduced tuple by subsequently collapsing on pairs .i1; j1/; : : : ; .iq; jq/.

Lemma 7.4. For a right-angled word hyperbolic Coxeter group W , we have that for
u;w 2 W the function zu;wWW ! R defined in (7.1) has finite support.

Proof. Let uD u1 : : : un1 , vD v1 : : : vn2 , wD w1 : : :wn3 2W written in reduced expres-
sion. We will moreover assume that jvj > juj C jwj C jS j C 2. We will show that for such
words we have zu;w.v/ D 0. This then shows that zu;w has finite support.

Let .u01; : : : ; u
0
n1
; v01; : : : ; v

0
n2
/ be the semi-reduced tuple obtained by subsequently

collapsing the tuple .u1; : : : ; un1 ; v1; : : : ; vn2/ on pairs .i 01; j
0
1/; : : : ; .i

0
q1
; j 0q1/. Then we
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must have i 0
l
� n1 and j 0

l
> n1 since the expressions for u and v were reduced. Also

juvj D juj C jvj � 2q1 and, more generally, for a weight x 2 Œ0;1/jS j we have

 x.uv/ D  x.u/C  x.v/ � 2
q1X
lD1

 x.ui 0
l
/:

Likewise, let .v001 ; : : : ; v
00
n2
; w001 ; : : : ; w

00
n3
/ be the semi-reduced tuple obtained by sub-

sequently collapsing the tuple .v1; : : : ; vn2 ; w1; : : : ; wn3/ on pairs .i 001 ; j
00
1 /; : : : ; .i

00
q2
; j 00q2/.

Then we must have i 00
l
� n2 and j 00

l
> n2 since the expressions for v and w were reduced.

Also jvwj D jvj C jwj � 2q2 and, more generally, for a weight x 2 Œ0;1/jS j we have

 x.vw/ D  x.v/C  x.w/ � 2
q2X
lD1

 x.wj 00
l
�n2/:

Let us denote

J D ¹vj W j 2 ¹1; : : : ; n2º n .¹j
0
1 � n1; : : : ; j

0
q1
� n1º [ ¹i

00
1 ; : : : ; i

00
q2
º/º:

Now since n2 D jvj > juj C jwj C jS j C 2 � q1 C q2 C jS j C 2, we have that jJj �
jS j C 2. Hence, there are two elements g1; g2 2 J that do not mutually commute. Now, if
s1; s2 2 S commute with all elements in J , then s1, s2 commute with both g1 and g2 so
that by the word hyperbolicity of W (see (2) of Theorem 7.1), we must have that also s1
commutes with s2. We now let 	0 � S be the set of all generators that commute with all
elements in J. Then by what we just mentioned, we have that the elements in 	0 pair-wise
commute, i.e., 	0 2 Cliq.S jM/.

Now, for i D 1; : : : ; n1 let us set eui D u0i and for i D 1; : : : ; n3 set fwi D w00i . Further-
more, for i D 1; : : : ; n2 set evi D e whenever either v0i D e or v00i D e but not both, and setevi D vi otherwise. Let us also denote zu D eu1 : : :eun2 , zv D ev1 : : :fvn2 and zw Dfw1 : : :ewn3 .

We claim that then we have zuzvzw D uvw. Indeed, we have that

uvw D uv001 : : : v
00
n2
w001 : : : w

00
n3
:

Now we can collapse .u1; : : : ; un1 ; v
00
1 ; : : : ; v

00
n2
; w001 ; : : : ; w

00
n3
/ subsequently on the pairs

.i 0
l
; j 0
l
/ for l D 1; : : : ; q1 except when v00

j 0
l
�n1
6D vj 0

l
�n1 for some 1 � l � q1, in which

case v00
j 0
l
�n1
D e. If this is the case, then j 0

l
� n1 D i

00
kl

for some kl 2 ¹1; : : : ; q2º. In par-
ticular, it follows that in this case ui 0

l
D vj 0

l
�n1 D vi 00kl

D wj 00
kl
�n2 and that this element

commutes with all elements in J. Therefore, ui 0
l
2 	0. We can then simply interchange

the elements at index i 0
l

(which is ui 0
l
) and the element at index j 0

l
(which is v00

j 0
l
�n1
D e).

This manipulation does not change the word, and allows us to continue collapsing on the
remaining pairs. Once we are done collapsing on all pairs we have obtained the tuple
.eu1; : : : ;eun1 ; ev1; : : : ; fvn2 ;fw1; : : : ; ewn3/. This thus shows us that uvw D zuzvzw. It also
shows us that Avj 0

l
�n1 2 ¹eº [ 	0 for l D 1; : : : ; q2. Note that also by definition fui 0

l
D e for

l D 1; : : : ; q1 and Bwj 00
l
�n2 D e for l D 1; : : : ; q2. Therefore, we also have that Sn	0.fui 0l /D
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 Sn	0.e/ D 0 for l D 1; : : : ; q1 and likewise  Sn	0.Bwj 00l �n2/ D 0 for l D 1; : : : ; q2. Fur-
thermore,  Sn	0.Avj 0l�n1/ D 0 for l D 1; : : : ; q1 and  Sn	0.fvi 00l / D 0 for l D 1; : : : ; q2.

Also, if we can collapse .eu1; : : : ;eun1 ; ev1; : : : ; fvn2 ;fw1; : : : ;ewn3/ on some pair .i; j /,
then we must have i � n1 and j > n1C n2. Indeed otherwise, we have that either .u01; : : : ;
u0n1 ; v

0
1; : : : ; v

0
n2
/ or .v001 ; : : : ; v

00
n2
; w01; : : : ; w

00
n3
/ is not semi-reduced, which is a contradic-

tion. Now let .i1; j1/; : : : ; .iq; jq/ be the pairs on which we can subsequently collapse
.eu1; : : : ;eun1 ; ev1; : : : ; fvn2 ;fw1; : : : ;ewn3/ to obtain a semi-reduced tuple. Then we thus
must have il � n1 and jl > n1 C n2. This thus implies that for l D 1; : : : ; q, we have thatfuil D fwjl commutes with the elements from J. Therefore, we have ¹fuil W l D 1; : : : ; qº D
¹fwjl W l D 1; : : : ; qº � 	0.

Now, we have that

 Sn	0.uvw/ D  Sn	0.u/C  Sn	0.v/C  Sn	0.w/

� 2

� q1X
lD1

 Sn	0.ui 0l
/C

q2X
lD1

 Sn	0.wi 00l �n2
/C

qX
lD1

 Sn	0.fuil /�
D  Sn	0.uv/C  Sn	0.vw/ �  Sn	0.v/C 2

qX
lD1

 Sn	0.fuil /
D  Sn	0.uv/C  Sn	0.vw/ �  Sn	0.v/:

This shows that 
 Sn	0
u;w .v/D 0. Therefore, as 	0 2 Cliq.S jM/, we obtain that zu;w.v/D 0.

Now as this holds for every v 2W with jvj > juj C jwj C jS j C 2, we obtain that zu;w has
finite support.

8. Application B: Strong solidity of Hecke von Neumann algebras

In this final section, we obtain strong solidity results for Hecke von Neumann algeb-
ras. These are q-deformations of the group (von Neumann) algebra of a Coxeter group.
If q D 1, we retrieve the classical case of a group (von Neumann) algebra of a Coxeter
group.

For the Hecke deformations, our methods turn out to improve on existing strong solid-
ity results. In [33, Theorem 0.7], it was shown that for Coxeter groups that are small at
infinity, their Hecke von Neumann algebras satisfy the condition AOC. If such Hecke von
Neumann algebras have the weak-� completely bounded approximation property, then
they are strongly solid by [29, Theorem A] (this is a generalisation of Theorem 3.13
from [44]). The weak-� completely bounded approximation property was proved in [12]
for Hecke von Neumann algebras of right-angled Coxeter groups; outside the right-angled
case this is an open problem. Therefore, right-angled Coxeter groups that are small at
infinity have strongly solid Hecke von Neumann algebras. It was proved in [33] that such
Coxeter groups are in fact free products of abelian Coxeter groups; hence this result is
somewhat more limited than one would hope for.
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It is natural to ask whether these strong solidity results for Hecke von Neumann algeb-
ras apply to more general word hyperbolic Coxeter groups. In the group case (q D 1),
this is exactly Theorem 7.2. However, the results from [33] and in particular [33, Corol-
lary 3.17] show that it is hard to extend current methods beyond free products of abelian
Coxeter groups. A typical right-angled word hyperbolic Coxeter group, which was not
covered before this paper, is given by

h¹s1; s2; s3; s4ºjM D .mi;j /i;j i with mi;j D 2 if ji � j j D 2 and mi;j D1 otherwise:

In this section, we prove that also the Hecke deformations of this Coxeter group satisfy
AOC and are strongly solid. The precise statement is contained in Theorem 8.4.

8.1. Definition of Hecke algebras

Fix a (not necessarily right-angled, finite rank) Coxeter system W D hS jM i. Let q D
.qs/s2S with qs > 0 for s 2 S and such that qs D qt whenever s; t 2 S are conjugate
in W . In this text, we shall call such tuples Hecke tuples. Moreover, we will denote
ps.q/ D

qs�1p
qs

. We can as in [20, Theorem 19.1.1] define for s 2 S the operators T .q/s W

`2.W /! `2.W / given by

T .q/s .ıw/ D

´
ısw; jswj > jwj;
ısw C ps.q/ıw; jswj < jwj:

For these operators, we have

hT .q/s .ıw/; ızi D hısw; ızi C hps.q/ıw; ızi1.jswj < jwj/
D hıw; ıszi C hıw; ps.q/ızi1.jszj < jzj/

D hıw; T
.q/
s .ız/i

that is .T .q/s /� D T
.q/
s .

Now, for a word w 2 W with a reduced expression w D w1 : : : wk , we can set

T .q/w D T .q/w1
: : : T .q/wk

;

which is well defined by [20, Theorem 19.1.1]. We note that we have .T .q/w /� D T
.q/

w�1 and

T
.q/

w .ıe/ D ıw. Furthermore, for s 2 S and w 2 W they satisfy the equations

T .q/s T .q/w D T .q/sw C ps.q/T
.q/

w 1.jswj < jwj/;

T .q/w T .q/s D T .q/ws C ps.q/T
.q/

w 1.jwsj < jwj/:

Note that the first equation holds by the proof of [20, Theorem 19.1.1], and the second
equation follows by taking the adjoint on both sides.

We will denote CqŒW � for the �-algebra spanned by the linear basis ¹T .q/w Ww2W º. We
furthermore denote C �r;q.W / � B.`2.W // for the reduced C�-algebra obtained by taking
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the norm closure of CqŒW �. Finally, we define the Hecke von Neumann algebra Nq.W /

(or simply Nq) as the strong closure of C �r;q.W /. We equip the von Neumann algebra
with the faithful finite trace �.x/ D hxıe; ıei. We note here that when q D .qs/s2S is
taken as qs D 1 for s 2 S , then .Nq; �/ is simply the group von Neumann algebra L.W /

with canonical trace � . The group von Neumann algebra is thus a special case of a Hecke
algebra.

8.2. Coefficients for gradient bimodules of Hecke algebras

We freely use the notation of Section 8.1. In particular, we fix the tuple q D .qs/s2S .
We will simply write Tw instead of T .q/w and ps instead of ps.q/. We let  WW ! R be
proper and conditionally of negative type. Define

� WD �
.q/
 W CqŒW �! CqŒW �W Tw 7!  .w/Tw;

and for t � 0,

ˆt WD ˆ
.q/
t W CqŒW �! CqŒW �W Tw 7! exp.�t .w//Tw: (8.1)

We will now work under the following assumption.

Assumption 8.1. For t � 0 the map ˆt extends to a normal unital completely positive
map Nq.W /! Nq.W /.

The main point of the assumption is the complete positivity ofˆt ; the unitality is auto-
matic since  .e/ D e and also the existence of a normal extension can usually be proved
using a standard argument once one knows that ˆt is bounded (see the final paragraph of
the proof of [12, Theorem 4.13]).

The assumption holds in case q D 1 by Schönberg’s theorem and in case W is right-
angled by combining [12, Corollary 3.4, Proposition 3.7] and [15, Proposition 2.30]. Note
that if the assumption holds, then Nq.W / satisfies the Haagerup property since  is
proper. In general, we do not know whether Assumption 8.1 holds. In fact, it is not even
known whether Nq.W / has the Haagerup property unlessW is right-angled (see [12, Sec-
tion 3]) or q D 1 (see [6]).

It is standard to check that if Assumption 8.1 holds, then ˆ D .ˆt /t�0 is a symmetric
quantum Markov semi-group. For the continuity property note that ˆt is a contractive
semi-group on L2.Nq; �/ and then use that on the unit ball of Nq the strong topology
equals the L2.Nq; �/-topology.

We shall now investigate the gradient-�p , p 2 Œ1;1�, property forˆwith respect to the
� -weak dense subalgebra A WDCqŒW � of Nq.W /. The set A0 WD ¹Ts W s 2 Sº forms a self-
adjoint set that generates the �-algebra A. Therefore, by Lemma 4.5 in order to check the
gradient-�p property for ˆ, we only have to check that ‰Tu;Tw given in Definition 4.3
is in �p D �p.L2.Nq.W /// for generators u; w 2 S . To check this, we shall make some
calculations to obtain a simplified expression for ‰Tu;Tw .
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Fix u;w 2 S and let v 2 W . We have by the multiplication rules that

Tu.TvTw/ D TuTvw C TuTvpw1.jvwj < jvj/
D Tuvw C puTvw1.juvwj < jvwj/
C .Tuv C puTv1.juvj < jvj//pw1.jvwj < jvj/:

We can now make the following calculations:

� .TuTvTw/ D  .uvw/Tuvw C  .vw/puTvw1.juvwj < jvwj/

C  .uv/Tuvpw1.jvwj < jvj/

C  .v/puTvpw1.juvj < jvj/1.jvwj < jvj/;

Tu� .Tv/Tw D  .v/.Tuvw C puTvw1.juvwj < jvwj//

C  .v/.Tuv C puTv1.juvj < jvj//pw1.jvwj < jvj/;

Tu� .TvTw/ D  .vw/TuTvw C  .v/TuTvpw1.jvwj < jvj/

D  .vw/.Tuvw C puTvw1.juvwj < jvwj//

C  .v/.Tuv C puTv1.juvj < jvj//pw1.jvwj < jvj/;

� .TuTv/Tw D  .uv/TuvTw C  .v/puTvTw1.juvj < jvj/

D  .uv/.Tuvw C Tuvpw1.juvwj < juvj//

C  .v/pu.Tvw C Tvpw1.jvwj < jvj//1.juvj < jvj/:

Let  S be again the word length function on W . Now by collecting all previous terms,
we get

‰Tu;Tw .Tv/ D � .TuTvTw/C Tu� .Tv/Tw � Tu� .TvTw/ �� .TuTv/Tw

D . .uvw/C  .v/ �  .vw/ �  .uv//Tuvw

C Œ. .uv/C  .v/�  .v//1.jvwj< jvj/�  .uv/1.juvwj< juvj/�Tuvpw

CŒ. .vw/C .v/�  .vw//1.juvwj< jvwj/�  .v/1.juvj< jvj/�puTvw

C. .v/C  .v/ �  .v/ �  .v//1.juvj < jvj/1.jvwj < jvj/puTvpw

D  u;w.v/Tuvw C  .uv/.1.jvwj < jvj/ � 1.juvwj < juvj//Tuvpw

C .v/.1.juvwj < jvwj/ � 1.juvj < jvj//puTvw

D  u;w.v/Tuvw C  .uv/
�
jvj � jvwj C 1

2
�
juvj � juvwj C 1

2

�
Tuvpw

C  .v/
�
jvwj � juvwj C 1

2
�
jvj � juvj C 1

2

�
puTvw

D  u;w.v/TuvwC
1

2
.juvwjC jvj� jvwj� juvj/. .uv/Tuvpw�  .v/puTvw/

D  u;w.v/Tuvw C
1

2
 Su;w.v/. .uv/Tuvpw �  .v/puTvw/:
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Now when uv 6D vw, we have by Lemma 5.2 that  Su;w.v/ D 0. When uv D vw, we
have j1

2

 S
u;w.v/j D  S .u/ D 1. In this case, the elements u and w are also conjugate and

therefore pu D pw . Combining these facts, we obtain the simplified formula

‰Tu;Tw .Tv/ D 
 
u;w.v/Tuvw C

1

2
 Su;w.v/. .uv/ �  .v//Tuvpw :

We will proceed under the further assumption that  is a length function.

Assumption 8.2. We shall assume from this point that the proper, conditionally of negat-
ive type function  WW ! R is also a length function.

Using the fact that ¹Tvºv2W is an orthonormal basis for L2.Nq.W /; �/, we obtain that
for the �2-norm of ‰Tu;Tw we have the following bound

k‰Tu;Twk2�2 D
X
v2W

h‰Tu;Tw .Tv/; ‰
Tu;Tw .Tv/i

D

X
v2W

h
j u;w.v/j

2
C
1

4
j Su;w.v/j

2
j .uv/ �  .v/j2jpuj2

i
� k u;wk

2
`2.W /

C
1

4
j .u/j2p2uk

 S
u;wk

2
`2.W /

: (8.2)

We are then thus interested in functions  for which this bound is finite for all u;w 2 S .

Theorem 8.3. LetW D hS jM i be a right-angled Coxeter group and let q D .qs/s2S with
qs > 0. Assume that the elements in

	 WD ¹r 2 S W 9s; t 2 S such that mr;s D mr;t D 2 and ms;t D1º (8.3)

commute, i.e., 	 2 Cliq.S j M/. Suppose that  WD  Sn	 satisfies Assumption 8.1. Then
the QMS on Nq.W / determined by (8.1) associated with  Sn	 is gradient-�2.

Proof. We have shown already in Theorem 6.5 that for u; w 2 S we have that 
 Sn	
u;w 2

`2.�/. Now if u 2 	, then  Sn	.u/ D 0 and hence by (8.2),

k‰Tu;Twk2�2 � k
 Sn	
u;w k

2
`2.W /

<1:

If u 2 S n 	, then  Sn	.u/ D 1 and therefore by Lemma 5.2 we have

j
 Sn	
u;w .v/j D 2 Sn	.u/1.uv D vw/ D 2 S .u/1.uv D vw/ D j Su;w.v/j:

This means that in this case 
 Sn	
u;w D 

 S
u;w 2 `2.�/. We conclude from (8.2) that

k‰Tu;Twk2�2 � k
 Sn	
u;w k

2
`2.�/

C
1

4
p2u � k

 S
u;wk

2
`2.�/

<1:

Theorem 8.4. Let W D hS jM i be a right-angled Coxeter group, and let q D .qs/s2S
with qs > 0. Assume that (8.3) is contained in Cliq.S j M/. Then Nq.W / satisfies AOC

and is strongly solid.
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Proof. Theorem 8.3 shows that the QMS ˆ on Nq.W / associated with the length func-
tion Sn	 is gradient-�2 . Therefore, by Theorem 4.9 we see that a dense set of coefficients
of the associated gradient bimodule L2.Nq.W /; �/r is in �2. Note that Theorem 4.9 is
stated only for groups, but a straightforward adaptation of the computations in the proof
yields the same result for Hecke algebras. Hence the gradient bimodule is quasi-contained
in the coarse bimodule of Nq.W / by [16, Theorem 3.9] (see also Proposition 3.3). The
Riesz transform is then an isometry RˆWL2.Nq.W /; �/! L2.Nq.W /; �/r . The kernel
of Rˆ is given by the space spanned by the vectors Tw with w in the (finite) group gener-
ated by 	. Essentially, in the same way as in the group case (q D 1) one checks that ˆ is
filtered with subexponential growth. Therefore, by Theorem 4.7 we see that Rˆ is almost
bimodular. By [17, Theorem 6.1], C �r;q.W / is exact and hence locally reflexive [10].
We may now invoke Theorem [16, Proposition 5.2] (see also Theorem 3.11) to conclude
that Nq.W / satisfies AOC. By [12, Theorem A], Nq.W / satisfies the weak-� completely
bounded approximation property. Hence [29, Theorem A] (see also Theorem 3.13) shows
that Nq.W / is strongly solid.

Remark 8.5. The strong solidity result of Theorem 8.4 can also be proved by combining
the results in this paper with the methods of [13, 40, 41] without using condition AOC.

Remark 8.6. The set (8.3) can be understood as all elements in S that belong to exactly
one maximal clique.

9. Open problems

We list two natural problems which we believe are open.

Problem 9.1. Consider a Coxeter system W D hS jM i and q D .qs/s2S with qs > 0,
s 2 S such that qs D qt whenever s; t 2 S are conjugate in W . Does the Hecke von
Neumann algebra Nq.W / have the Haagerup property and/or the weak-� completely
bounded approximation property? An affirmative answer for both properties is known
in case qs D 1 for all s 2 S [6,25,30] or in case W D hS jM i is right-angled [12]. For all
other cases, these problems are open. In particular, we do not know in which generality
Assumption 8.1 holds for  D  S the (unweighted) word length function.

Problem 9.2. For a right-angled, word hyperbolic Coxeter system W D hS jM i, and for
q D .qs/s2S with qs > 0 for s 2 S , is the von Neumann algebra Nq.W / strongly solid?
The cases obtained in Theorem 8.4 are word hyperbolic but do not exhaust all word hyper-
bolic right-angled Coxeter groups. In case qs D 1, s 2 S , the tensor product techniques
from Section 7 allows one to improve the results of Section 8 to all word hyperbolic
right-angled Coxeter groups. However, such tensor products of bimodules are unavailable
unless qs D 1, s 2 S by the absence of a suitable comultiplication for Hecke algebras.
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