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Stabilizers of stationary actions of lattices
in semisimple groups

Darren Creutz

Abstract. Every stationary action of a strongly irreducible lattice or commensurator of such a lat-
tice in a general semisimple group, with at least one higher-rank connected factor, either has finite
stabilizers almost surely or finite index stabilizers almost surely. Consequently, every minimal action
of such a lattice on an infinite compact metric space is topologically free.

1. Introduction

Nevo, Stuck and Zimmer [17,18,20] proved that every ergodic measure-preserving action
of a lattice in a connected semisimple Lie group, all of whose simple factors are higher-
rank, either has finite stabilizers almost everywhere or finite index stabilizers almost every-
where.

The author and Peterson [6] extended this to lattices in general semisimple groups,
and the author [5] relaxed the higher-rank requirement to a single factor.

However, for nonamenable groups such as lattices, measure-preserving actions is not
the correct context as actions on compact metric spaces will not, in general, admit invariant
measures.

The natural setting for the study of actions of lattices is that of stationary actions
(as stationary measures do always exist). There is a natural measure on a lattice (related to
the Poisson boundary of the ambient group), and we say an action of a lattice is stationary
when it is stationary with respect to that measure (see Definition 2.2). Corollary 7.5 states
the following.

Theorem. Let � < G be a strongly irreducible lattice in a semisimple group with finite
center and no compact factors, at least one simple factor of higher-rank. (Strong irre-
ducibility meaning the projection of the lattice is dense in every proper subproduct of G.)
Every ergodic stationary action of � has finite stabilizers almost everywhere or finite index
stabilizers almost everywhere.

We also obtain the same dichotomy for dense commensurators of lattices (Corol-
lary 7.4).
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As every action on a compact metric space admits a stationary measure, we obtain that
every action of � on a minimal compact metric space is either topologically free or the
space is finite. Consequently, every ergodic uniformly recurrent subgroup is finite (see [11]
for the notion of uniformly recurrent subgroups), answering the generalized form of the
question posed in [11, Problem 5.4].

Omitting the requirement of a higher-rank factor but requiring at least two factors,
every stationary action either has finite stabilizers or is orbit equivalent to an action of Z.

Stationary intermediate factor theorems and induced actions. We establish an inter-
mediate factor theorem along the lines of those of Stuck and Zimmer [20] for station-
ary actions (Theorem 3.3): every intermediate factor between the stationary space and
the stationary join of the space with the Poisson boundary (which is the product space
in the measure-preserving case) must have certain structure. We generalize the induced
action [20] to the stationary setting (Definition 4.1) to apply the factor theorem to actions
of lattices.

Projecting actions to the ambient group. The other main tool we introduce is a tech-
nique for projecting the action of a lattice or commensurator to the ambient group: Theo-
rems 5.3 and 5.1. These techniques give a very general method for relating the stabilizers
of the action of a lattice or commensurator to the stabilizers of an action of the ambient
group (on some other space). The technique is summarized as: if ƒ is a dense commen-
surator of a lattice in a locally compact second countable group G and � is a stationary
random subgroup of ƒ, then there exists a stationary random subgroup of G via the clo-
sure map on subgroups, see Corollary 5.2.

Related work. Boutonnet and Houdayer [3] proved an operator-algebraic statement that
all stationary characters on a lattice in a connected semisimple group, all simple factors
of higher-rank, are trivial or arise from finite-index subrepresentations; in particular, their
result implies that stationary actions of such lattices have finite stabilizers or finite index
stabilizers. Our result covers a much larger class of lattices, including those where only
one simple factor is higher-rank and those with p-adic components.

Extremely recently, Bader, Boutonnet, Houdayer and Peterson [1] independently ob-
tained the result on stationary actions of general lattices as a consequence of an incredibly
strong operator-algebraic rigidity statement for lattices. Our result on stationary actions of
lattices in products of groups, announced prior to their work,1 relies on dynamical methods
very different from their algebraic methods.

1See, for example, D. Creutz, Essential freeness of stationary actions of lattices. Talk at Vanderbilt
Subfactor Seminar, 2018.
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2. Lattices, commensurators and stationary actions

Let G be a locally compact second countable group and � 2 P.G/ an admissible prob-
ability measure (nonsingular with respect to Haar measure and with support generating
the group). The notation .G; �/ Õ .X; �/ means a quasi-invariant action on a probability
space with � � � D �.

2.1. Stationary actions of lattices

Definition 2.1. Let � < G D G1 � � � � � Gk be a lattice in a product of locally compact
second countable groups.

The lattice � is strongly irreducible when for every proper subproduct G0, the projec-
tion map projG0 WG ! G0 has the properties that the image of � is dense and the map is
faithful on � .

Definition 2.2. Let � < G D G1 � � � � � Gk be a lattice in a product of locally compact
second countable groups.

Let � D �1 � � � � � �k be an admissible probability measure on G. When G is a semi-
simple group, we take �j to be Kj -invariant, where Kj is a maximal compact subgroup
if Gj is connected, and Kj is a compact open subgroup if Gj is totally disconnected.

Let � be the admissible probability measure on � such that the � action on the .G; �/-
Poisson boundary is �-stationary [16].

A stationary action of � is an action which is �-stationary for some � coming from
a product measure � on G.

2.2. Stationary actions of commensurators

Definition 2.3. Let � < G be a lattice in a locally compact second countable group.
A countable group ƒ < G is a commensurator of � when � � ƒ and for all � 2 ƒ, the
group � \ ����1 has finite index in both � and ����1.

We first establish that dense commensurators are, in a suitable sense, lattices in their
own right.

Theorem 2.4. Let � < G be a strongly irreducible lattice in a semisimple group G with
trivial center of higher-rank (meaning G is either a simple higher-rank connected Lie
group or G is a product of at least two simple factors). Let ƒ be a dense commensurator
of � . Then there exists a locally compact totally disconnected nondiscrete group H such
that ƒ can be embedded as a strongly irreducible lattice in G �H .

Proof. The group H will be the relative profinite completion ƒ==� (see, e.g., [6, Sec-
tion 6] for details, we indicate here the facts needed for the proof). Define the map
� Wƒ! Symm.ƒ=�/ sending � to its action on ƒ=� as a symmetry of ƒ=� . In [6, The-
orem 6.3], it states that H D �.ƒ/ is a locally compact totally disconnected group and
K D �.�/ is a compact open subgroup.
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LetN D ker.�/ be the kernel of � . ThenN \ � G � andN G ƒ. By Margulis’ normal
subgroup theorem, N \ � is either finite or has finite index in � . Since G is center-free,
if N is finite, it is trivial. Suppose it has finite index. As N G ƒ, then xN G xƒ D G. The
only normal subgroups ofG are finite or are proper subproducts. SinceN contains a finite
index subgroup of � , it is infinite, but then N must be contained in a proper subproduct,
so a finite index subgroup of � would be contained in a proper subproduct, contradicting
that � is strongly irreducible. So the kernel of � is trivial.

In [6, Proposition 6.1.2], it states that H will be discrete if and only if ƒ normalizes
a finite index subgroup of � . If �0 is finite index in � and �0 G ƒ, then �0 G G as �0 is
discrete and ƒ is dense, but this is impossible. So H is nondiscrete.

Clearly, we can embed ƒ! G �H diagonally and faithfully (as the kernel of � is
trivial). Likewise, we can embed � diagonally, and we can identify both with their images.

Let U be an open neighborhood of the identity in G such that � \ U D ¹eº. Then
ƒ \ U � K D � \ U � K D ¹eº. So ƒ is discrete in G �H . Let F be a fundamental
domain for � in G, that is, HaarG.F / <1 and F� D G. Then .F � K/ƒ D G �H
(as the projection to H of ƒ is dense) and HaarG�H .F �K/ <1 since K is compact.
Hence ƒ is a lattice in G �H .

By construction,ƒ projects densely toH . Asƒ is dense inG by hypothesis, it projects
densely to G from G �H . For any proper subproduct G0 of G, ƒ projects densely to G0
since � does. Since � projects densely to G0 � K, we have that ƒ projects densely to
G0 �H . Thus ƒ is strongly irreducible.

This allows us to define the following.

Definition 2.5. Let � < G be a lattice and ƒ < G a dense commensurator. Let � D
�G � �H be an admissible probability measure on G � H . Then there is a probability
measure � onƒ so that theƒ action on the .G �H;�/-Poisson boundary is �-stationary.

An action of ƒ is stationary when it is stationary for some � coming from such a �
(i.e., when it is a stationary action if we treat ƒ as a lattice).

We also need the converse of the above theorem; lattices can be treated as commensu-
rators.

Proposition 2.6. Let ƒ < G � H be a strongly irreducible lattice, G and H locally
compact second countable groups with H totally disconnected and K < H a compact
open subgroup. Let ƒ Õ .X; �/ be a stationary action. Set � D projG.ƒ \ G � K/.
Then � is a strongly irreducible lattice in G and � Õ .X; �/ is a stationary action.

Proof. Let L D ƒ \ G � K. Then L is discrete since K is open. As K is compact, L
has finite covolume in G � H . Since K is compact, � D projGL is discrete, hence is
a lattice in G.

Let �D �G � �H be the admissible measure onG �H and�ƒ the probability measure
onƒ such that the .G �H;�/-Poisson boundary is �ƒ-stationary under theƒ-action and
ƒ Õ .X; �/ is �ƒ-stationary.
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Since � is a product measure, PB.G �H; �G � �H / D .BG ; ˇG/ � .BH ; ˇH / is the
product of the .G;�G/- and .H;�H /-boundaries. The boundary map bWBG �BH !P.X/

has the property that bar b�.ˇG � ˇH / D �.
Define �� to be the probability measure on � so that .BG ; ˇG/ is �� -stationary under

the �-action. Treating � <ƒ<G �H , we have that projH� leaves ˇH invariant since �H
is chosen to be K-invariant. Since �� � ˇG D ˇG , this means that �� � ˇG � ˇH D
ˇG � ˇH .

Since the boundary map B is ƒ-equivariant, it is �-equivariant, and so we conclude
that

�� � � D �� � bar b�.ˇG � ˇH / D bar b�.�� � ˇG � ˇH / D bar b�.ˇG � ˇH / D �;
which means the action is stationary for � .

3. Stationary factor theorems

The intermediate factor theorems of Stuck–Zimmer [20] and Bader–Shalom [2], as well
as those of the author [5, 6], all make assertions about the structure of an intermediate
factor A between a measure-preserving G-space .X; �/ and the product of it with the
Poisson boundary .B �X; ˇ � �/. We now establish such a factor theorem for stationary
actions.

3.1. The stationary joining

For a stationary G-space .X; �/, the product space .B � X; ˇ � �/ will not in general
be stationary (and indeed will only be when X is measure-preserving). Our factor theo-
rem employs the stationary joining of Furstenberg–Glasner [9] in its place. The reader is
referred to Glasner [10] for a detailed exposition on joinings.

Definition 3.1 ([9]). LetG be a locally compact second countable group and � an admis-
sible measure on G. Let .X; �/ and .Y; �/ be .G; �/-spaces. Let �! and �! , for ! 2 GN ,
denote the conditional measures (see, e.g., [2, Theorem 2.10]) which exist �N-almost
surely. Define the probability measure on X � Y by � D R

GN �! � �! d�N.!/. Then
.X � Y; �/ is a joining of .X; �/ and .Y; �/ which is �-stationary.

This joining is called the �-stationary joining of the two systems and written
.X; �/ g .Y; �/.

3.2. The invariant products functor

To formulate the intermediate factor theorem for general stationary actions, we recall the
invariant products functor, introduced in [2].

Definition 3.2. LetG D G1 � � � � �Gk be a product of locally compact second countable
groups. For each j , write {Gj D

Q
i¤j Gi for the subproduct excluding Gj .
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For aG-space .Y; �/, write .Yj ; �j / for the {Gj -ergodic components. WhenG Õ .Y; �/

is ergodic, Gj Õ .Yj ; �j / is ergodic.
The G-map .Y; �/! .Y1; �1/ � � � � � .Yk ; �k/ is the invariant product functor.

3.3. The stationary intermediate factor theorem for product groups

Theorem 3.3. LetG DG1 � � � � �Gk be a product of at least two locally compact second
countable groups and � D �1 � � � � � �k be an admissible probability measure on G.
Let .X; �/ be an ergodic .G; �/-space. Let .B; ˇ/ be the Poisson boundary for .G; �/.
Let .A; ˛/ be an intermediate factor

.B; ˇ/ g .X; �/! .A; ˛/! .X; �/;

where the maps are G-maps that compose to the natural projection map. Then A is iso-
morphic to the relative independent joining of A1 � � � � � Ak and X over their common
factorX1 � � � � �Xk (where theA1 � � � � �Ak andX1 � � � � �Xk are the invariant product
functors on A and X , respectively).

Proof. The invariant product functor (see [5, Section 2.12]) mapping a G-space to the
product of the spaces of Gj -ergodic components is relatively measure-preserving for sta-
tionary actions ([5, Proposition 2.12.1]; see also [2, Proposition 1.10]).

The zGj ergodic components ofB gX areBj gXj (the reader may verify this straight-
forward fact). Thus we have the commuting diagram of G-maps

B gX - A - X

.B1 gX1/ � � � � � .Bk gXk/
?

- A1 � � � � � Ak
?

- X1 � � � � �Xk :
?

Since B is a contractive space, the map B gX ! X is relatively contractive, hence so
is the map A! X . As the downward maps are relatively measure-preserving, [5, Theo-
rem 2.41] implies thatA is isomorphic to the relative independent joining ofA1 � � � � �Ak
and X over X1 � � � � �Xk .

Corollary 3.4. Let G D G1 � � � � �Gk be a product of locally compact second countable
groups and � D �1 � � � � � �k be an admissible probability measure on G. Let .X; �/ be
an ergodic .G;�/-space such that projj stab.x/ is dense inGj for all j almost everywhere.
Then .X; �/ is measure-preserving and weakly amenable.

Proof. The map sj WX ! S.Gj / by x 7! projGj stab.x/ sending each x to a closed sub-
group of Gj gives rise to a random subgroup of Gj ; realizing that stationary random
subgroup, via [5, Theorem 3.3], as the stabilizers of an action Gj Õ .Zj ; �j / gives us the
.G;�/-stationary space Z D Z1 � � � � �Zk .

By construction, the stabilizers ofZ contain proj1stab.x/� � � � � projkstab.x/DG1 �
� � � �Gk . As Z is ergodic (since X is), this means Z is the trivial space.
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According to [5, Theorem 4.12], X ! Z is a relatively measure-preserving extension
(since X is stationary and Z D Z1 � � � � � Zk is the product random subgroup functor
of [5] applied to X ), hence we conclude that .X; �/ is in fact measure-preserving.

Now consider the factor theorem when A is an affine space over .X; �/ following the
approach pioneered by Stuck and Zimmer [20] and used in [2, 5, 6], etc. The reader is
referred to [5, Section 2] for details on affine spaces and their relation to strong and weak
amenability of actions.

For any affine space A over .X; �/, as the action of G on the Poisson boundary is
strongly amenable [23, Section 4.3], there are G-maps B gX ! A! X which compose
to the projection map. In particular, the pushforward of the stationary measure on B � X
endows A with the structure of a .G;�/-space.

We consider the case when A is orbital over X (has the same stabilizer subgroups).
Since the projections of the stabilizers are dense, the stabilizers ofXj areGj almost surely
meaning that eachXj is trivial. Therefore,A is isomorphic to the independent joining ofX
and A1 � � � � � Ak .

Let a 2 A. Since A is orbital over X , stab.a/ D stab.x/ for the x 2 X such that a
maps to x so almost every a has a stabilizer that projects densely to each Gj . As each Aj
is a Gj -space, this means that the stabilizers for Aj are Gj almost everywhere. So the Aj
are all trivial, which means that A is isomorphic to X .

As this holds for all affine orbital A, it follows that X is weakly amenable.

4. Inducing stationary actions

Let � be an irreducible lattice in a locally compact second countable group G. Let F
be a fundamental domain for G=� with associated cocycle ˛WG � F ! � given by
gf ˛.g; f / 2 F . Write m for the Haar measure on G restricted to F and normalized
to be a probability measure.

4.1. The classical induced action

The classical induced action, due to Zimmer (e.g., [20]), constructs a measure-preserving
G-action from a measure-preserving �-action as follows: define G Õ F �X by

g � .f; x/ D .gf ˛.g; f /; ˛.g; f /�1x/;

and then the measure m � � is preserved by the G-action.
Much of the issue in finding a generalization to stationary actions lies in the fact that

there is exactly one G-quasi-invariant measure on F � X which projects to � on X , and
this measure is not stationary (unless � is preserved by �), so our induced action will not
have the property that its projection to X is �. However, the projection will be in the same
measure class.



D. Creutz 558

4.2. The stationary induced action

Let � be an admissible probability measure on G, and let .B; ˇ/ be the Poisson boundary
for .G; �/. Write � for the probability measure on � so that .B; ˇ/ is �-stationary. Since
the action of � on .B; ˇ/ is strongly amenable (as the action of G is and � is closed
in G), there exists the boundary �-map � WB ! P.X/ (Zimmer [23]; see, e.g., [2, Theo-
rem 2.14]).

Let barWP.P.X//! P.X/ be the barycenter map, bar � D R
P.X/

� d�.�/ (see [8]).
Since ��WP.B/! P.P.X// is the pushforward map, we have a �-map z� D bar ı��W
P.B/! P.X/ such that z�.ˇ/ D �.

Let .X;�/ be a .�;�/-space. Define the pointwise actionGÕF �X as in the classical
case. Define the probability measure � on F �X by

� D
Z
F

ıf � z�.f �1ˇ/ dm.f /:

Observe that, since m is G-invariant,

� � � D
Z
G

Z
F

g � .ıf � z�.f �1ˇ// dm.f / d�.g/

D
Z
G

Z
F

ıgf˛.g;f / � ˛.g; f /�1z�.f �1ˇ/ dm.f / d�.g/

D
Z
G

Z
F

ıgf˛.g;f / � z�.˛.g; f /�1f �1g�1 gˇ/ dm.f / d�.g/

D
Z
G

Z
F

ıf0 � z�.f �10 gˇ/ dm.f0/ d�.g/

D
Z
F

ıf0 � z�.f �10 � � ˇ/ dm.f0/

D
Z
F

ıf0 � z�.f �10 ˇ/ dm.f0/ D �;

which means that .F �X; �/ is a .G; �/-space, i.e., � � � D �.

Definition 4.1. The .G; �/-space just defined is the induced stationary action from the
.�; �/-space .X; �/. We will write G �� X for this space.

4.3. Properties of the induced action

Proposition 4.2. The measure on the induced stationary space projects to F as m and
projects to X as a measure in the same class as � (when � is measure-preserving, it
projects to � itself).

Proof. Observe that projX � D R
F
z�.f �1ˇ/ dm.f / D z�. {m � ˇ/, where {m is the sym-

metric opposite of m. So projX � is in the same measure class as � since {m � ˇ is in the
same measure class as ˇ. That projF � D m is immediate.
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Proposition 4.3. The induced stationary action is weakly amenable if and only if the
action on .X; �/ is weakly amenable.

Proof. This is [5, Proposition 2.6.1]. While that proposition is stated as holding for mea-
sure-preserving actions, the result it relies on, stated as [5, Theorem 2.25], is actually
a result of Zimmer [22] which holds for quasi-invariant actions.

Proposition 4.4. If the induced stationary action is measure-preserving so is .X; �/.

Proof. Since g � � D R ıf0 � z�.f �10 gˇ/ dm.f0/, the induced action being measure-pre-
serving implies that z�.f �1ˇ/ D z�.f �1gˇ/ for all f 2 F and g 2 G meaning that z�.ˇ/
is �-invariant.

4.4. The stationary intermediate factor theorem for lattices

Corollary 4.5. Let � < G D G1 � � � � �Gk be a strongly irreducible lattice in a product
of at least two locally compact second countable groups. Let � Õ .X; �/ be an ergodic
stationary action such that projj stab.x/ is dense in Gj for all j almost everywhere. Then
.X; �/ is measure-preserving and weakly amenable.

Proof. Let .Y; �/ be the induced stationary action. Since stab.f; x/ D f stab.x/f �1, we
have that for almost every y and all j , projj stab.y/ D Gj . Then Y is measure-preserving
by Corollary 3.4, hence X is by Proposition 4.4.

5. Projecting actions to the ambient group

Theorem 5.1. Let � < G be a lattice in a locally compact second countable group and
ƒ < G a dense commensurator of � . LetƒÕ .X; �/ be an ergodic stationary action. Let
sWX ! S.G/ be a ƒ-equivariant map. Then there exists an ergodic stationary G-space
.Y; �/ such that stab�� D s��.

Proof. The measure-preserving case, used in [6], is an easy consequence of density. The
stationary case requires more care. Treat .X; �/ as a �-space, and let

� W .B; ˇ/! .P.X/; ��ˇ/

be the boundary �-map, where .B; ˇ/ is the G-Poisson boundary. Consider the �-map
s� ı � WB ! P.S.G// which has the property that bar s����.ˇ/ D s��.

Since ƒ acts on .B; ˇ/ and .P.S.G//; s���ˇ/, and since .B; ˇ/ is a contractive �-
space, [7, Theorem 2.8] states that s� ı � is in fact a ƒ-equivariant map and there is
a G-space .Z; �/ that is ƒ-isomorphic to .P.S.G//; s����ˇ/ via a ƒ-map '.

Sinceƒ is dense andG Õ P.S.G// continuously, then s����ˇ is in factG-stationary
as for every g 2 G, there exist �n 2 ƒ with �n! g, and so gs����ˇ D lim�ns����ˇ D
lim�n'�� D lim'�.�n�/ D '�.g�/.
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As the barycenter map isG-equivariant, then bar s����ˇ isG-stationary and in partic-
ular there is a quasi-invariant action of G on .S.G/; bar s����ˇ/. Then [5, Theorem 3.3]
gives an action G Õ .Y; �/ such that stab�� D bar s����ˇ D s�� which may be taken to
be ergodic since ƒ Õ .X; �/ is ergodic.

Corollary 5.2. Let � < G be a lattice in a locally compact second countable group and
ƒ < G a dense commensurator of � . Every stationary random subgroup of ƒ becomes
a stationary random subgroup of G under the closure map.

Theorem 5.3. LetG DQj Gj be a product of at least two simple locally compact second
countable groups, and let � < G be a strongly irreducible lattice. Let � Õ .X; �/ be an
ergodic stationary action. Let sWX ! S.G0/ be a �-equivariant map to the space of
closed subgroups of some proper subproduct G0 G G. Then there exists an ergodic G0-
space .Y; �/ such that stab�� D s��.

Lemma 5.4 ([19, Lemma 5.1]). Let � < G � H be an irreducible lattice, U � G an
open neighborhood of the identity, .BH ; ˇ/ the .H; �/-Poisson boundary, E � BH a pos-
itive measure set and " > 0. Then there exists  2 � such that projG 2 U�1U and
ˇ..projH/E/ > 1 � ".
Proof. Since � is irreducible, H acts ergodically on ..G � H/=�; m/, where m is the
unique invariant probability measure. Let K � H be compact with nonempty interior.
Thenm..U �K/�/ > 0. The random ergodic theorem [14] tells us form-almost every z 2
.G �H/=� and �N-almost every .!n/ 2 HN that 1

N

PN
nD1 1.U�K/�.!

�1
n � � �!�11 z/!

m..U �K/�/> 0. So there exists .u;k/2U �K such that !�1n � � �!�11 .u;k/2 .U �K/�
infinitely often for almost every .!n/.

The conditional measures ˇ.!n/ D lim!1 � � �!nˇ are point masses almost surely and
ˇ D R

ˇ.!n/ d�
N..!n// so, as ˇ.kE/ > 0 as ˇ.E/ > 0, there exists .!n/ 2 HN with

!�1n � � �!�11 .u; k/ 2 .U �K/� infinitely often and ˇ.!n/.kE/ D 1. So there exists ¹nj º
such that !�1nj � � �!�11 .u; k/ D .uj ; kj /j for some uj 2 U , kj 2 K, and j 2 � , and we
have ˇ.!�1nj � � �!�11 kE/! 1.

Since j D .uj ; kj /
�1!�1nj � � � !�11 .u; k/ D .u�1j u; k�1j !�1nj � � � !�11 k/, we have that

projGj 2 U�1U and ˇ.kj .projHj /E/! 1. Since K is compact, there is ¹j`º so that
kj` ! k1 2 K. We know the sets E` D kj`.projHj`/E have ˇ.E`/! 1 and since k1ˇ
is in the same measure class as ˇ, then ˇ.k�1j` E`/! 1. So there exists ` such that 1� " <
ˇ.k�1j` E`/ D ˇ..projHj`/E/.

Proof of Theorem 5.3. Let .B; ˇ/ be the Poisson boundary for G, and let � W .B; ˇ/ !
.P.X/; ��ˇ/ be the boundary map. Consider the �-map s� ı � WB ! P.S.G0//. Note
the barycenter is bar s����ˇ D s��.

Write G D G0 � zG, where zG is the simple factors of G not in G0. Then .B; ˇ/ D
.B0; ˇ0/ � . zB; ž/ is the product of the Poisson boundaries of G and G0 (we treat each as
a G-space by letting zG act trivially on B0 and G0 act trivially on zB).
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The intermediate factor theorem for products [2, Theorem 1.7] gives a �-isomorphism
from .P.S.G0//; s�����/ to a G-space .Z; �/ via a �-map ' and that there is a G-map
pW .B;ˇ/! .Z;�/ such that pD ' ı s�� . Moreover, .Z;�/D .Z0; �0/� . zZ;z�/, whereG0
acts trivially on zZ and p splits as p0W .B0; ˇ0/! .Z0; �0/ and zpW . zB; ž/! . zZ; z�/.

Write proj0W�!G0 for the (faithful) projection map. If n 2 � such that proj0n! e

inG0, then s.nx/! s.x/ asG0 acts continuously on S.G0/. Then nz�D '�ns����ˇ!
'�s����ˇ D z� whenever proj0n ! e in G0.

Let E be a positive measure subset of zZ. By Lemma 5.4, there exist n 2 � such that
proj0n ! e in G0 and ž.n zp�1.E// ! 1 (taking Un to be a decreasing sequence of
open neighborhoods of e and " to be 1=n). Then z�.nE/! 1 but also �1n z� ! z�, so we
conclude that z�.E/ D 1. So . zZ; z�/ is trivial, i.e., .P.S.G0//; s����ˇ/ is �-isomorphic to
the G0-space .Z0; �0/.

This means that if proj0n! g0 inG0, then n�! g0� which is in the same measure
class as �. So g0s����ˇ D g0'�1� � D lim n'�1� � D lim'�1� n� D '�g0� is in the same
class as s����ˇ.

As � projects densely to G0, this means g0s����ˇ is in the same measure class as
s����ˇ for every g0 2 G0, i.e., that s����ˇ, and therefore also s��, is G0-quasi-invariant
(and in fact stationary), so the result follows using [5, Theorem 3.3].

6. Stabilizers of lattices in connected groups

Theorem 6.1. LetGDG1 � � � � �Gk be a product of simple connected Lie groups, k � 2.
Let � < G be a strongly irreducible lattice. Let � Õ .X; �/ be an ergodic stationary
action. Then either stab�.x/ projects densely to each simple Gk almost everywhere or
stab�.x/ is finite almost everywhere.

The proof will occupy this section. We begin with an observation of Vershik [21].

Proposition 6.2. Let ƒ be a countable group and ƒ Õ .X; �/ a quasi-invariant action.
For � 2 ƒ and for a subgroup Q < ƒ, write

Fix� D ¹x W �x D xº; FixQ D ¹x W qx D x for all q 2 Qº:
For almost every x, the stabilizer stab.x/ satisfies stab.x/ � ¹� W �.Fix�/ > 0º. In partic-
ular, if �.Fix�/ D 0 for all � ¤ e then the action is essentially free.

Proof. Write L D ¹� W �.Fix�/ > 0º. Let Z DS�…L Fix�. Then Z is a countable union
of measure zero sets and hence is measure zero. For all x … Z, we then have stab.x/ � L
since x … Fix� for � … L meaning that �x ¤ x for � … L.

6.1. Howe–Moore groups

Recall that a group is Howe–Moore when for every unitary representation without invari-
ant vectors, the matrix coefficients vanish at infinity [13].
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Lemma 6.3. Let G be a locally compact second countable group with the Howe–Moore
property and G Õ .Y; �/ a quasi-invariant action on a probability space. If there exists
a subgroup Q with �.FixQ/ > 0 and xQ noncompact, then FixQ D FixG, i.e., almost
every point in FixQ is fixed by all of G.

Proof. First, observe that for any f 2 L2.Y; �/ and q 2 Q,Z
FixQ

f .qy/ d�.y/ D
Z

FixQ
f .y/ d�.y/;

and therefore dq�
d�
.y/ D 1 for y 2 FixQ and q 2 Q.

Let � be the unitary representation ofG onL2.Y;�/: �.g/f .y/D f .g�1y/
q
dg�
d�
.y/.

Let P be the orthogonal projection from L2.Y; �/ to the closed G-invariant subspace 	 of
�-invariant vectors. Then � restricted to L2.Y; �/	 	 has no invariant vectors.

Let f be the characteristic function of some positive measure subsetE � FixQ. Then
f � Pf 2 L2.Y; �/	 	 so, as G has the Howe–Moore property,

h�.g/.f � Pf /; .f � Pf /i ! 0 as g leaves compact sets.

For q 2 Q and y 2 E � FixQ, we have that �.q/f .y/ D f .q�1y/
q
dq�
d�
.y/ D

1 D f .y/. For y … E, we have that qy … E (since qy 2 E gives q�1qy D qy), there-
fore �.q/f .y/ D f .q�1y/

q
dq�
d�
.y/ D 0 D f .y/.

As Pf is �-invariant, then

h�.q/.f � Pf /; .f � Pf /i D kf � Pf k2:

As xQ is noncompact, this means that kf � Pf k D 0, i.e., f is in fact � invariant.
Suppose E is not a G-invariant set. Then there exists g 2 G with �.gE n E/ > 0.

Writing 1E for the characteristic function, we have

1E .y/ D .1E .y//2 D .f .y//2 D .�.g/f .y//2 D 1gE .y/
dg�

d�
.y/:

Therefore, for y 2 gE n E we have 0 D dg�
d�
.y/ contradicting that the G action is quasi-

invariant. Therefore, E is G-invariant as a set.
Since every subset of FixQ is a G-invariant set, G fixes almost every point in it.

6.2. Connected Lie groups

Lemma 6.4. LetG be a simple connected Lie group andG Õ .Z; �/ be a quasi-invariant
(not necessarily ergodic) action. Let C.z/ be the connected component of stab.z/. Let
d � 0 be a nonnegative integer. If dim C.z/ � d almost everywhere, then one of the
following holds:

• stab.z/ D G on a positive measure set;

• stab.z/ is compact almost everywhere;
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• stab.z/ is discrete almost everywhere;

• the diagonal action G Õ .Z �Z; � � �/ has dimC.z1; z2/ � d � 1 for almost every
z1; z2 2 Z which have noncompact and nondiscrete stabilizers.

Proof. Suppose � � �.¹.x; y/ 2 Z � Z W C.x/ D C.y/ are noncompactº/ > 0. Fubini’s
theorem tells us that for some x, there is a positive measure set of y so that �.¹x W C.x/D
C.y/º/ > 0. This means that Q D C.y/ is a noncompact closed subgroup of G with
�.FixQ/ > 0. Lemma 6.3 then says that FixQ D FixG, so in fact C.x/ D G on that
positive measure set, and we are in the first case.

Proceed now assuming we are not in the first case. Let

M D ¹z 2 Z W stab.z/ is not compact and not discreteº:

For almost every x;y 2M , we have thatC.x/¤C.y/ by the above and that dimC.x/ > 0
and dimC.y/ > 0 since they are nondiscrete. Then dimC.x/\C.y/ < dimC.x/� d .

Proposition 6.5. Let G be a connected simple Lie group. Let G Õ .Y; �/ be an ergodic
nontrivial G-space. Then there exists a positive integer m such that the diagonal action
G Õ .Y m; �m/ has the property that for almost every z 2 Y m, the stabilizer subgroup
stab.z/ is discrete or compact.

Proof. Write C.y/ for the connected component of stab.y/. Set d D sup dim C.y/ �
dimG.

Suppose �.¹y 2 Y W stab.y/ is not compact and not discreteº/ > 0. Apply Lemma 6.4
to conclude that either �.¹y 2 Y W stab.y/DGº/ > 0 or thatGÕ .Y 2;�2/ has the property
that for � � �-almost every y2 2 Y 2, it holds that stab.y2/ is at least one of compact, dis-
crete, all of G, or has dimension � d � 1. Repeating this process by applying Lemma 6.4
to .Y 2; �2/, since d is finite, we conclude that there is some finite number t of applications
so that for m D 2t , we have that the diagonal action G Õ .Y m; �m/ has the property that
almost every stabilizer is at least one of compact, discrete or all of G.

If �m.¹ym 2 Y m W stab.ym/ D Gº/ > 0, then, writing ym D .x1; : : : ; xm/ for xj 2 Y ,
we have

G D stab.ym/ D stab.x1/ \ stab.x2/ \ � � � \ stab.xm/;

so stab.x/DG for a positive �-measure set of x 2 Y . By ergodicity then this holds almost
everywhere but that contradicts that .Y; �/ is nontrivial.

Proposition 6.6. Let G be a semisimple connected Lie group with trivial center and
ƒ < G a countable subgroup andGÕ .Y;�/ a quasi-invariant action. If theG-stabilizers
are discrete almost everywhere, then ƒ Õ .Y; �/ is essentially free.

Proof. Suppose the ƒ-action is not essentially free. Then there exists � 2 ƒ, � ¤ e, with
�.Fix �/ > 0. Since G is connected and � … Z.G/, the centralizer subgroup of � does
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not contain an open neighborhood of the identity in G. So there exist gn ! e in G such
that gn�g�1n ¤ � for all n. Note that, writing E D Fix�, we have �.gnE4E/! 0. Take
a subsequence along which �.gnE4E/ < 2�n�1�.E/. Then

�
�
E \

\
n

gnE
�
D �.E/ � �

�
E4

\
n

gnE
�
� �.E/ �

1X
nD1

�.E4gnE/

>
1

2
�.E/ > 0:

For y 2E \ .TngnE/D Fix�\TnFixgn�g�1n , we have that �yD y and gn�g�1n yD y
for all n, hence gn�g�1n 2 stabG.y/ and � 2 stabG.y/. But gn�g�1n ¤ � and gn�g�1n ! �

contradicting that stabG.y/ is discrete almost everywhere.

6.3. Miscellany

Lemma 6.7. LetG be a locally compact second countable group andK a compact group.
Let Q < G �K be a closed discrete subgroup. Then the projection of Q to G is discrete
in G.

Proof. Let V be an open set inG with compact closure. ThenQ \ xV �K is finite since it
is closed, hence compact, and discrete. SoQ\V �K is finite meaning that .projGQ/\V
is finite. So for every q 2 projGQ, we can find an open U with U \ projGQ D ¹qº.
Lemma 6.8. Let H be a group and L < H a subgroup. If � is a random subgroup of H
that is supported on subgroups of L, then � is supported on subgroups of N for some
N G H with N � L.

Proof. Since � is supported on S.L/, for � -almost every Q 2 S.H/ in fact Q � L. As �
is H -quasi-invariant, for all h and � -almost every Q we have hQh�1 � L as well. Then
Q � Th h

�1Lh for almost every Q. Set N D T
h h
�1Lh which is normal in H and

contained in L. Then Q � N almost everywhere as claimed.

Recall that a group is locally finite when every finitely generated subgroup of it is
finite.

Proposition 6.9. Let � be a virtually torsion-free countable discrete group and � Õ
.X; �/ a quasi-invariant action with locally finite stabilizers almost everywhere. Then the
stabilizers are finite almost everywhere.

Proof. Since � is virtually torsion-free, there is a finite upper bound ` for the length of
every strictly increasing chain of finite subgroups.

As stab.x/ is locally finite, if it is infinite, then it contains an infinite abelian sub-
group A (Hall and Kulatilaka [12]). But A must be of the form

L1
nD1 Fn for some

nontrivial finite subgroups Fn, and then AN D
LN
nD1 Fn would be a strictly increasing

chain of finite subgroups of infinite length. Therefore, stab.x/ must in fact be finite.
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6.4. Lattices and projected actions

Proposition 6.10. Let G D G1 � � � � � Gk be a product of simple connected Lie groups,
k � 2. Let � <G be a strongly irreducible lattice. Let � Õ .X;�/ be an ergodic stationary
action. Then either stab�.x/ is locally finite almost everywhere or stab�.x/ has dense
projections to each simple Gj almost everywhere.

Proof. For each j 2 ¹1;2; : : : ;kº, the projection map projGj WG!Gj has the property that
the image of � is dense inGj and the map is faithful on � . Define the map sj WX! S.Gj /

by sj .x/ D projGj stab�.x/.
By Theorem 5.3, there is an ergodicGj -space .Yj ; �j / such that .stabGj /��j D .sj /��.
Define the sets

Jd D ¹j 2 ¹1; : : : ; kº W .Yj ; �j / is trivialº; Jc D ¹1; : : : ; kº n Jd :

Note that for j 2 Jd , we have that stab��j is a point mass ıQ for some Q 2 S.Gj /.
As stab��j is �-invariant, this means Q�1 D Q for all  . As � is dense in Gj , this
means Q is normal in G, so Q D G or Q D ¹eº. If Q D ¹eº, then � Õ .X; �/ is essen-
tially free since the projection map is faithful, in which case the proof is complete. So we
proceed with the premise that projGj stab.x/ is dense inGj almost everywhere for j 2 Jd .

From here on, we assume that Jc ¤ ; since if it is empty, then the proof is complete
as the projections of the stabilizers are dense to each Gj almost everywhere.

Define the groups

Gc D
Y
j2Jc

Gj and Gd D
Y
j2Jd

Gj

so that G D Gc �Gd (after appropriate rearrangement).
For j 2 Jc , Proposition 6.5 says there exists a positive integer mj so that for the

diagonal action,Gj Õ .Y
mj
j ; �

mj
j / has the property that almost every stabilizer is compact

or is discrete.
Set m D max¹mj W j 2 Jcº. Then almost every stabilizer of .Yj ; �j /m is discrete or

compact. Hence, for almost every .y1; : : : ; ym/ 2 Y mj , we have that
Tm
iD1 stab.yi / is

discrete or compact. Then
Tm
iD1 projGj stab�.xi / is discrete or compact for �m-almost

every .x1; : : : ; xm/ 2 Xm.
So for �m-almost every .x1; : : : ; xm/, we have projGj

Tm
iD1 stab�.xi / is discrete or

compact.

Discrete stabilizers. The set D D ¹z 2 Y mj W stab.z/ is discreteº is Gj -invariant, and if
it is positive measure, we may consider Gj Õ .D; .�m/�/, where .�m/� is �m restricted
toD and normalized to be a probability measure. Applying Proposition 6.6, we determine
that stab.z/\ projGj� D ¹eº for almost every z 2 D. Now if projGj stab�.x1; : : : ; xm/\
projGj� D ¹eº, then projGj stab�.x1; : : : ; xm/D ¹eº and, as the projection is faithful on � ,
then stab�.x1; : : : ; xm/ D ¹eº.
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Compact stabilizers. For z …D, the corresponding projGj stab�.x1; : : : ; xm/ is contained
in a compact subgroup. Therefore, projGj stab�.x1; : : : ; xm/ is contained in a compact
subgroup of Gj a.e. for all j 2 Jc .
The diagonal action � Õ .X; �/m. Since Jc ¤ ;, by Theorem 5.3 there is a Gd -space
.Z; �/ such that stab�� D s��, where

s.x1; : : : ; xm/ D projGd stab�.x1; : : : ; xm/:

Since stab�.x1; : : : ; xm/ is a discrete subgroup of Gc � Gd and is contained in K � Gd
for some compact subgroup K of Gc , Lemma 6.7 gives that projGd stab�.x1; : : : ; xm/ is
discrete in Gd .

The case when Jd ¤ ;. In this case, stab�� is a stationary random subgroup of Gd which
is supported on subgroups of projGd� . But this means stab�� D ı¹eº by Lemma 6.8 since
the only normal subgroup of Gd that is contained in � is the trivial group (as Gd is
nontrivial when Jd ¤ ;). So we have that � Õ .X; �/m is essentially free. For any  2 �
with �.Fix / > 0, also �m.FixXm / > 0. So we have that � Õ .X; �/ is essentially free
when Jd ¤ ;.
The case when Jd D;. In this case, stab�.x1; : : : ;xm/ is contained in a compact subgroup
ofG almost everywhere. Then for any  2 � with �.Fix/ > 0, since also �m.Fix/ > 0,
we have that the group generated by  is discrete in G but contained in a compact group
hence is torsion. If stab�.x/ contains a finitely generated infinite subgroup on a positive
measure set, then, as there only countably many finitely generated subgroups of � , there
is some infinite group A with A � stab�.x/ on a positive measure set. Then �.FixA/ > 0
and so .�1 � � � � � �k/m.FixA/ > 0 but then A must be contained in a compact group,
which, since A is discrete in G, contradicts that it is infinite. Therefore, when Jd D ;, the
�-stabilizers on X are locally finite.

Proof of Theorem 6.1. Proposition 6.10 tells us that either the stabilizers project densely
to every proper subproduct or else the stabilizers are locally finite. Selberg’s lemma states
that � , being a lattice in a semisimple Lie group, is virtually torsion-free, so there exists
a finite index �0 < � which is torsion-free. Proposition 6.9 then gives that the stabilizers
are finite.

7. Stationary actions of lattices and commensurators

7.1. Actions of lattices in connected groups

Theorem 7.1. Let � < G D G1 � � � � �Gk be a strongly irreducible lattice in a product
of at least two connected simple Lie groups. Let � Õ .X; �/ be an ergodic stationary
action. Then either stab�.x/ is finite almost everywhere or the action is weakly amenable
and measure-preserving.
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Proof. Theorem 6.1 tells us that either the stabilizers are finite or they project densely to
each simple factor. When the projections are dense, Corollary 4.5 tells us the action is
weakly amenable and measure-preserving.

Note that weak amenability equates to orbit equivalence to a Z-action (Connes–Feld-
man–Weiss [4]).

Theorem 7.2. Let � <G DG1 � � � � �Gk be a strongly irreducible lattice in a product of
connected simple Lie groups, at least two simple factors with one of higher-rank. Let � Õ
.X; �/ be an ergodic stationary action. Then either stab�.x/ is finite almost everywhere
or stab�.x/ is finite index almost everywhere.

Proof. By [5, Corollary 8.6], if the action weakly amenable and measure-preserving, then
the stabilizers are finite index almost everywhere.

7.2. Actions of dense commensurators

Theorem 7.3. Let � < G be a strongly irreducible lattice in a connected semisimple Lie
groups, at least one of higher-rank. Let ƒ < G be a dense commensurator of � such
that the relative profinite completion ƒ==� is a product of simple uncountable totally
disconnected locally compact groups with the Howe–Moore property. Let ƒ Õ .X; �/ be
an ergodic stationary action. Then either stabƒ.x/ is finite almost everywhere or stabƒ.x/
is finite index almost everywhere.

Proof. By Proposition 2.6, the restriction of the action to � is stationary. By Theorem 7.2,
the restriction of the action to � has stabilizers which are finite or finite index almost
everywhere (on each �-ergodic component one or the other must occur). For � 2 ƒ,
we know � \ ����1 is finite index in both � and ����1. If Œ� W stab�.x/� <1, then
Œ� W stab.x/\ �� <1 and so Œ����1 W �stab.x/��1 \ ����1� <1. Using the fact that
� \ ����1 is finite index, we have Œ� \ ����1 W �stab.x/��1 \ ����1 \ �� <1, and
so Œ� W �stab.x/��1 \ �� <1. But this just says Œ� W stab�.�x/� <1. So the set where
the �-stabilizers are finite index is ƒ-invariant, hence by ƒ-ergodicity the �-stabilizers
are either finite almost everywhere or finite index almost everywhere.

Finite �-stabilizers. LetH Dƒ==� be the relative profinite completion. Thenƒ<G �H
is a strongly irreducible lattice (Theorem 2.4).

When stab�.x/ is finite, since projH stabƒ.x/\K D projH stabƒ.x/\ projH� by [6,
Proposition 6.1.3],

projH stabƒ.x/ \K D projH .stabƒ.x/ \ �/ D projH stab�.x/

is finite. So projH stabƒ.x/ is discrete in H as K is open. In particular, projH stabƒ.x/ D
projH stabƒ.x/ � projHƒ almost everywhere.

Treating ƒ as an irreducible lattice in G � H , Theorem 5.3 states that there is an
ergodicH -space .Y; �/ such that stab��D s��, where sWX ! S.H/ is theƒ-map s.x/D
projH stabƒ.x/.
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Then stab�� is a random subgroup of H which is supported on subgroups of projHƒ.
Lemma 6.8 then says it is supported on subgroups of N for some N G H with N �
projHƒ.

Since H D QHj is a product of simple groups, N is a proper subproduct. But N �
projHƒ, so ifN is nontrivial, then there is some simpleHj which is contained in projHƒ,
meaning that Hj is countable, contradicting our hypothesis.

So N is trivial, meaning that projH stabƒ.x/ D ¹eº almost everywhere. The kernel
of projH is contained in � hence is finite (by Margulis’ normal subgroup theorem, if
it is infinite, then it is finite index; but that would make H discrete hence countable).
Therefore, stabƒ.x/ is finite almost everywhere.

Finite index �-stabilizers. If stab�.x/ is finite index in � , we have that projH stabƒ.x/
contains a finite index subgroup of projH� , and therefore projH stabƒ.x/ contains a finite
index subgroup of projH� D K.

As K is a compact open subgroup, then projH stabƒ.x/ contains a compact open sub-
group and hence is open almost everywhere.

WriteH DQHj , then projHj stabƒ.x/ is an open subgroup ofHj almost everywhere
for each j (as the projection maps are open maps). Since each Hj has the Howe–Moore
property, the only proper open subgroups are compact. Write

Jc D ¹j W projHj stab.x/ is compact a.e.º;
Jd D ¹j W j … Jcº D ¹j W projHj stab.x/ D Hj a.e.º

and define the groups
Hc D

Y
j2Jc

Hj ; Hd D
Y
j2Jd

Hj :

If Jc ¤ ;, then stabƒ.x/ < G �Hd �Hc is discrete and stabƒ.x/ < G �Hd �Kx
for some compact Kx , so Lemma 6.7 says that projG�Hd stabƒ.x/ is discrete in G �Hd .

Since ƒ is strongly irreducible as a lattice in G �H , and since Hd is a proper sub-
product of H , ƒ is a dense commensurator of a lattice in G �Hd (Proposition 2.6) so
Theorem 5.1 tells us there is an ergodic G � Hd -space .Y; �/ such that stab�� D s��,
where s.x/ D projG�Hd stabƒ.x/ is the ƒ-map sWX ! S.G �Hd /.

Then stab�� is a random subgroup ofG �Hd supported on subgroups of projG�Hd ƒ.
Lemma 6.8 then says it is supported on subgroups of N for some N G G with N �
projGƒ. But no proper subproduct ofG �Hd can be contained in a countable group, soN
is trivial. This means that projG�Hd stabƒ.x/D ¹eº contradicting that the �-stabilizers are
finite index.

So Jc D ; and Hd D H . Then stabƒ.x/ projects densely into each Hj almost every-
where. Since it also projects densely into each simple factor ofG (as the �-stabilizers do),
Corollary 4.5 then tells us that ƒ Õ .X; �/ is weakly amenable and measure-preserving,
so by [5, Corollary 8.6] (every simple Hj acts ergodically on the induced space as the
projections of the stabilizers are dense), it is essentially transitive meaning that stabƒ.x/
is finite index in ƒ a.e.
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Corollary 7.4. LetG be a semisimple connected Lie group with finite center, with at least
one simple factor of higher-rank, and � < G be a finitely generated, strongly irreducible
lattice. Letƒ be a dense commensurator of � . Then every stationary action ofƒ has finite
stabilizers almost everywhere or has finite index stabilizers almost everywhere.

Proof. By Margulis’ arithmeticity theorem [15], � is the Z-points of some semisimple
algebraic group G (up to finite index and finite kernels). The commensurator of G.Z/
is G.Q/. The relative profinite completion ƒ==� is therefore of the form

Q
G.Qp/ by [6,

Theorem 10.2]. Since simple p-adic groups are Howe–Moore, Theorem 7.3 gives the
conclusion.

7.3. Actions of lattices in general semisimple groups

Corollary 7.5. Let � < G be a strongly irreducible lattice in a semisimple group with
finite center and no compact factors, with at least one connected higher-rank simple factor.
Every stationary action of � either has finite stabilizers or finite index stabilizers.

Proof. Write G D G0 �H , where G0 is connected and H is totally disconnected. If H
is trivial, then Theorem 7.2 gives the conclusion; if not, then by Proposition 2.6 the pro-
jection of � to G is a dense commensurator of a strongly irreducible lattice �0 < G0 and
any stationary action of � is stationary for �0, so Corollary 7.4 then gives the result (the
case when G is a simple connected higher-rank group is covered by [3]).
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