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Zeta functions and topology of Heisenberg cycles
for linear ergodic flows

Nathaniel Butler, Heath Emerson, and Tyler Schulz

Abstract. Placing a Dirac–Schrödinger operator along the orbit of a flow on a compact manifoldM
defines an R-equivariant spectral triple over the algebra of smooth functions on M . We study some
of the properties of these triples, with special attention to their zeta functions. These zeta functions
are defined for Re.s/ > 1 by Trace.fpH�s/, where fp is the uniformly continuous function on
the real line obtained by restricting the continuous or smooth function f on M to the orbit of
a point p 2 M , and H D � @2

@x2
C x2 is the harmonic oscillator. The meromorphic continuation

property and pole structure of these zeta functions are related to ergodic time averages in dynamics.
In the case of the periodic flow on the circle, one obtains a spectral triple over the smooth irrational
torus A1

¯
� A¯ already studied by Lesch and Moscovici. We strengthen a result of these authors,

showing that the zeta function Trace.aH�s/ extends meromorphically to C for any element a of
the C�-algebra A¯. Another variant of our construction yields a spectral cycle for A¯ ˝ A1=¯ and
a spectral triple over a suitable subalgebra with the meromorphic continuation property if ¯ satisfies
a Diophantine condition. The class of this cycle defines a fundamental class in the sense that it
determines a KK-duality between A¯ and A1=¯. We employ the local index theorem of Connes
and Moscovici in order to elaborate an index theorem of Connes for certain classes of differential
operators on the line and compute the intersection form on K-theory induced by the fundamental
class.

1. Introduction

The irrational rotation algebra A¯ WD C.T / Ì¯ Z, the crossed product of the C �-algebra
C.T /DC.R=Z/ by the action of Z by translation by ¯ 2R nQ mod Z on T , is one of the
key motivating examples in noncommutative geometry. Early results of Connes and Rief-
fel classified finitely generated projective modules over A¯, or over its natural Schwartz
subalgebraA1

¯
, by an analogue of the first Chern number of a line bundle over T2, defined

for e 2 A1
¯
� A¯, by

c1.e/ WD
1

2�i
� �.eŒı1.e/; ı2.e/�/;

where ı1, ı2 are the derivations of A1
¯

generating the natural R2-action, and � is the trace.
In fact, these numbers are integers, a fact related to the quantum Hall effect in solid state
physics (see [1]).
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The reason for the integrality lies in the following. The densely defined operators
@
@x

, @
@y

on L2.T2/ assemble to the operator

x@ WD

"
0 @

@x
� i @

@y
@
@x
C i @

@y
0

#
on L2.T2/ ˚ L2.T2/, and the representation of C.T2/ on L2.T2/ by multiplication
operators can be adjusted by introducing phase factors to give a representation �¯WA¯ !
B.L2.T2// which makes the triple .L2.T2/ ˚ L2.T2/; �¯; x@/ a 2-summable spectral
triple over A1

¯
whose Chern character may be computed using the local index formula of

Connes and Moscovici to be the class of the cyclic cocycle

�2.a
0; a1; a2/ D �.a0ı1.a

1/ı2.a
2/ � a0ı2.a

1/ı1.a
2//; a0; a1; a2 2 A1

¯
: (1.1)

The integrality of the Chern numbers �2.e;e;e/ follows from the Connes–Moscovici index
theorem which implies that for any idempotent e 2 A1

¯
,

c1.e/ D �2.e; e; e/ D hŒe�; Œx@�i 2 Z;

where the right-hand side is the pairing between K-theory and K-homology. But it is
a result going back to early direct computations of Connes [5] involving in particular
a calculation of the cyclic cohomology of A1

¯
.

In this article, we study a slightly different method of constructing spectral triples,
using the operators x˙ d

dx
, the annihilation and creation operators of quantum mechanics.

They assemble to form a spectral triple over a suitable smooth subalgebra of Cu.R/Ì Rd ,
where Cu.R/ is the C �-algebra of uniformly continuous, bounded functions on R and Rd
is the group of real numbers with the discrete topology. The operator of the triple is

D D

"
0 x � d

dx

x C d
dx

0

#
:

The closure of D is self-adjoint, and D2 is essentially the direct sum of two copies of the
harmonic oscillator

H D �
d2

dx2
C x2

on R, which has discrete spectrum consisting of the odd positive integers. We define a rep-
resentation � WCu.R/ Ì Rd ! B.L2.R// by letting f 2 Cu.R/ act by the corresponding
multiplication operator .f �/.x/ D f .x/�.x/, and a group element t 2 Rd by the group
translation unitary operator .ut�/.x/ D �.x � t /.

The triple just described gives a spectral (unbounded) cycle for KK0.Cu.R/Ì Rd ;C/.
We call it the Heisenberg cycle.

The Heisenberg cycle pulls back to any C �-subalgebra of Cu.R/ Ì Rd , and in this
article, we are most interested in subalgebras arising from ergodic flows. If ˛ is a smooth
flow on a compact manifold M and p 2M , then the function

fp.t/ WD f .˛t .p//
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is bounded and uniformly continuous on R if f is continuous. We obtain an embedding

B˛ WD C.M/ Ì˛ Rd � Cu.R/ Ì Rd :

So one can associate a Heisenberg cycle to any smooth flow and corresponding class
ŒB˛� 2 KK0.C.M/ Ì Rd ;C/ or, in KK0.C.M/ Ìƒ;C/, if one has a subgroup ƒ � Rd
of particular interest for the context. For example, ifƒ WD ¹0º is the trivial subgroup, then
the corresponding class in KK0.C.M/;C/ is equal to the class in K-homology of the
point p 2 M , and so contains no interesting topological information (this follows from
constructing a certain homotopy in KK, see [8]). However, simple examples show that for
certain natural (non-trivial) choices of subgroup, the Heisenberg classes are non-trivial.

In the case of the periodic flow on T , the C �-algebra B˛ is C.T / Ì Rd which con-
tains the irrational rotation algebra A¯ D C.T / Ì ¯Z for any ¯ 2 R nQ, by restricting to
the subgroup ƒ WD ¯Z � Rd . The Heisenberg cycle for this algebra has been studied by
Connes [3,5], and Moscovici and Lesch [18]. The latter authors refer to Heisenberg mod-
ules. One can build a Heisenberg module by twisting the Dirac–Dolbeault cycle of Connes
by a Morita bimodule; such bimodules come from compact transversals to the Kronecker
flow. One obtains thus a family of such cycles (for A¯) all having a somewhat similar
form, and involving the Dirac–Schrödinger operators x˙ d

dx
on L2.R/, or a finite sum of

copies of L2.R/. But as observed above, our Heisenberg cycles are defined over a much
larger algebra Cu.R/ Ì Rd than A¯. One gets cycles for C.M/ Ì Rd or C.M/ Ì ƒ for
flows on manifolds M and arbitrary subgroups ƒ � R, and such cycles may be a source
of topological invariants of flows. We restrict ourselves in this note to examining linear
flows, e.g., Kronecker flows on T2, with Diophantine periods. For the subgroup ƒ � Rd
generated by 1, ¯, the crossed-product B¯ WD C.T2/ Ì ƒ is isomorphic to A¯ ˝ A1=¯.
In the second part of the paper, we compute some topological invariants of these Heisen-
berg cycles, using the local index theorem of Connes and Moscovici (and the exposition of
it in [14]). The Heisenberg cycle for A¯ ˝ A1=¯ D B¯ induces a KK-duality between A¯
and A1=¯ and we compute the index pairing K0.A¯/ � K0.A1=¯/! Z and show that it
has matrix �

1 �b
1
¯
c

�b¯c 1

�
with respect to the bases consisting of the unit and the respective Rieffel projections. This
strengthens an index calculation of Connes in [5] for classes of differential operators on
the real line. This is based on our computation of the Chern character of the Heisenberg
cycle over A¯, which we show is given by the mixed degree cyclic cochain

� � ¯�2;

where �2 is as in (1.1).
The main technical contribution of this note concerns the meromorphic extension

problem of the zeta functions

�.a; s/ WD Trace.aH�s/
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for a 2 Cu.R/ Ì Rd . Establishing such meromorphic extensions is necessary to apply the
local index theorem, at least in the presentation [14], as the cyclic cocycles involved in the
local Chern character formula are obtained as poles of such zeta functions.

If �M is the Laplacian on a compact Riemannian manifold, and f 2 C1.M/, then
Trace.f��sM / extends meromorphically to C, with certain poles. This fact is proved by
the theory of asymptotic expansions, specifically of the kernel of fe�t�M , because the
Mellin transform transforms the meromorphic extension problem into a problem about the
asymptotics of the heat kernel as t ! 0. Such asymptotic expansions are also available
in the situation of the Schwartz algebra of the irrational rotation algebra A¯, as noted
by Lesch and Moscovici [18], who used them to deduce the meromorphic extendibility of
Trace.aH�s/ for a 2 A1

¯
in the smooth irrational torus, with H the harmonic oscillator.

Using a different technique, we prove here that Trace.aH�s/ meromorphically extends
for a in the C �-algebra A¯. Actually, there is a connection between the zeta functions
Trace.fpH�s/ for f 2 C.M/, fp.t/ WD f .˛t .p// for a smooth flow ˛ onM , and ergodic
time averages in dynamics. For example, we show that if the flow is ergodic, then

lim
s!1C

.s � 1/ � Trace.fpH�s/ D
1

2

Z
M

fd�

for a.e. p 2M , f 2 C.M/, and � any ˛-invariant measure. Therefore, the residue trace,
defined spectrally as the pole at s D 1 of Trace.fpH�s/, recovers the invariant meas-
ure �. The proof is based on an integral formula for Trace.fH�s/ following a fairly
well-established route using the heat equation. In fact, as we show more generally that if
f 2 Cu.R/ and if limT!˙1

1
T

R T
0
f .t/dt exists, then the limit equals lims!1C.s � 1/ �

Trace.fH�s/. The statement above regarding ergodic flows follows from these observa-
tions and the Birkhoff ergodic theorem.

The meromorphic extension property from this point of view, for a given smooth flow,
requires a strengthening of the Birkhoff ergodic theorem for that situation which gives
a finer estimate for the deviation

R T
0
f .t/d� � T

R
M
fd�. From our integral formula for

the zeta function, it is apparent that the meromorphic extension property of Trace.fpH�s/
would follow, for example, for any f 2C1.M/, if one was guaranteed smooth solvability
of the cohomological equation Xu D f for a smooth flow with generating vector field X
(see, e.g., [9, 11, 16, 17].) The condition

R
M
fd� D 0 of f is an obvious obstruction to

XuD f being continuously solvable for any ˛-invariant �. For the standard periodic flow
on the circle, this is the only obstruction. This is because if f is continuous and �-periodic
and

R �
0
fd� D 0, then the anti-derivative F.T / WD

R T
0
f .t/dt is also �-periodic, so F

solves the equation continuously. As we show, then the zeta function can be meromorph-
ically extended to Re.s/ > 1� n

2
by solving the equation n times, and so meromorphically

extended to C. For the Kronecker flow on T2, the cohomological equation Xu D f is
smoothly solvable for smooth f of zero Lebesgue mean if ˛ satisfies a Diophantine con-
dition, and it follows that Trace.fH�s/ extends meromorphically to C with a simple pole
at s D 1 in this case as well, if f is smooth.
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Our methods thus prove that any smooth cohomology free vector field on a compact
manifold M (in the sense of [10]) determines a zeta function Trace.fpH�s/ (p 2 M ,
f 2 C1.M/) with the meromorphic continuation property, and hence a spectral triple
over C1.M/ Ìalg Rd with the meromorphic continuation property. (For the class of
hypoelliptic fields, it is apparently an open conjecture that a hypoelliptic vector field is
cohomology free.) Another current conjecture is to the effect that any globally hypoel-
liptic field is smoothly conjugate to a linear Diophantine flow on a torus. So there appears
to be not much more generality achieved here than that of linear Diophantine flows on
tori. It would be interesting to see more complicated examples of (parabolic) flows with
zeta functions with the meromorphic continuation property, and, perhaps, a richer pole
structure, involving invariant distributions on M which are not invariant measures.

The noncommutative geometry of the irrational torus A1
¯

and various interesting vari-
ations of it involving changing the metric, has been intensely studied recently. See, e.g.,
[7, 13]. The problem of constructing spectral triples in connection with crossed products
and other C �-algebras from dynamics remains an important one in noncommutative geo-
metry, after the seminal work of Connes and Moscovici [6] on ‘diffeomorphism invariant’
geometry. Some recent examples of spectral triples from dynamics are [12,15,23]. Dirac–
Schrödinger operators as giving non-standard spectral cycles for C.T2/ and connections
with KK-duality and Baum–Connes are studied in [21]. See [13] for information about the
noncommutative torus A1

¯
and its noncommutative pseudodifferential calculus. The short

article [22] is a very good source for the local index theorem (although we have used [14]
as our main source for the index theorem in this article).

2. Spectral cycles from the canonical anti-commutation relations

The Heisenberg group

H D

8<:
241 x z

0 1 y

0 0 1

35 ˇ̌̌ x; y; z 2 R

9=;
has Lie algebra h the 3-by-3 strictly upper triangular matrices under matrix commutator.
Let X , Y be the elements

X D

240 1 0

0 0 0

0 0 0

35 ; Y D

240 0 0

0 0 1

0 0 0

35
of h. Then

ŒX; Y � D Z WD

240 0 1

0 0 0

0 0 0

35 ;



N. Butler, H. Emerson, and T. Schulz 468

whileZ is central in h. It follows that if � is any irreducible representation ofH , �.Z/D
�.ŒX; Y �/ D Œ�.X/; �.Y /� is a multiple of the identity operator Œ�.X/; �.Y /� D ¯ for
some ¯ 2 R, a ‘Planck constant’.

The name Heisenberg group originates in these relations, which have the same form
as the canonical commutation relations in quantum mechanics, where x and d

dx
model

position and momentum operators.
From the above remarks, we obtain a classification of irreducible representations ofH .

Either ¯D 0, in which case �.Z/D 0 and hence �.X/ and �.Y / commute, which implies
the representation is 1-dimensional, and is completely determined by the ordered pair of
real numbers .�.X/; �.Y //, or ¯ 6D 0, in which case one can show that the representation
is isomorphic to the following interesting representation �¯ of h by unbounded operators
on L2.R/. Let

�¯.X/ D x and �¯.Y / D ¯
d

dx
:

Then Œx; ¯ d
dx
� D ¯ as required.

Application of functional calculus to the operators x and d
dx

produces the operators

u D e2�ix ; v¯ WD e
�¯d=dx ;

where u is multiplication by the periodic function e2�ix and

.v¯/�.x/ D �.x � ¯/:

We have
uv� D e

�2�i¯v�u:

If ¯ 2 R nQ, then the irrational rotation algebra is the C �-algebra

A¯ WD C.T / Ì¯ Z;

where Z acts on the circle T WD R=Z with generator the automorphism induced by trans-
lation by ¯ mod Z. If U 2 C.T / Ìh Z is the generator U.t/ D e2�it of C.T / and V the
generator of the Z-action in the crossed-product, then a quick computation shows that

UV D e�2�i¯V U 2 A¯; (2.1)

and it follows that we obtain, for each ¯, a representation

�¯W A¯ ! B.L2.R// (2.2)

of A¯ on L2.R/. Note that �¯ depends on ¯ as a real number while A¯ only depends on
the class of ¯ mod Z.

We are going to fit these representations into a spectral cycle for KK0.A¯;C/, using
the properties of the harmonic oscillator

H WD �
d2

dx2
C x2; (2.3)
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a second-order elliptic operator on R, whose domain we will take initially to be the
Schwartz space �.R/. Actually, the construction is more general, and produces a spec-
tral cycle for the C �-algebra crossed product Cu.R/ Ì Rd , with Rd denoting R with the
discrete topology.

Let A D x C d
dx

, initial domain the Schwartz space �.R/, and A� D x � d
dx

. The
relations

AA� D H C 1; A�A D H � 1;

ŒA;A�� D 2; ŒH;A� D �2A; ŒH;A�� D 2A�:
(2.4)

hold as operators on � . (See [24].)
Now set  0 WD ��1=4 � e�x

2=2 2 L2.R/. In quantum mechanics,  0 is called the
ground state, and the states inductively defined by  k WD .2k/�1=2 � A� k�1 the ‘excited
states’. Observe that due toHA� D A�H C 2A�, from (2.4), we see by induction that  k
is a unit-length eigenvector of H with eigenvalue 2k C 1,

H k D .2k/
�1=2
�HA� k�1 D .2k/

�1=2
� .A�H C 2A�/�k�1

D .2k/�1=2 � ..2k � 1/ � A� k�1 C 2A
� k�1/ D .2k C 1/ �  k :

It follows from ŒH;A� D �2A that

A k D
p
2k �  k�1; A� k D

p
2k C 2 �  kC1:

The eigenvectors of H are given by �k D Hk.x/e�x
2=2, where Hk is the kth Hermite

polynomial. This follows from induction using the recurrence

Hk.x/ D .2k/
�1=2
� .2xHk�1.x/ �H

0
k�1.x//

to define the polynomials.
See [24] for the proof of the following statement(s).

Lemma 2.1. In the above notation,

(a) The vectors ¹ kº form an orthonormal basis for L2.R/, and each  k is in the
Schwartz class �.R/.

(b) The harmonic oscillatorH has a canonical extension to a self-adjoint unbounded
operator onL2.R/. Moreover,H is invertible, andH�1 is compact, equivalently,
f .H/ is a compact operator for all f 2 C0.R/.

(c) With respect to the basis ¹ kº of (a), H is diagonal with eigenvalues the odd
positive integers

H D

2666664
1 0 0 � � � 0

0 3 0 � � � 0

0 0 5 � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � 2k � 1

3777775 :
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(d) Given f 2 L2.R/, let . yf .n// denote the l2 sequence of its Fourier coefficients
with respect to the spectral decomposition of L2.R/ into the eigenspaces
ker.H � .2nC 1//, nD 0;1; : : : Then f 2 �.R/ if and only if . yf .n// is a rapidly
decreasing sequence of integers.

Let D be the unbounded operator

D D

�
0 A�

A 0

�
on L2.R/˚ L2.R/, defined initially on Schwartz functions; it admits a canonical exten-
sion to a densely defined self-adjoint operator on L2.R/. Since D2 D

�
H�1 0
0 HC1

�
,

1CD2 D
�
H 0
0 HC2

�
, which is now diagonal with respect to the basis described above,

and invertible as an unbounded operator.
If f 2 C1

b
.R/ is a smooth bounded function with bounded first derivative, acting by

a multiplication operator on L2.R/, then the commutator Œf;D� D
�
0 �f 0

f 0 0

�
is a bounded

operator. Let
Cu.R/ WD ¹f 2 Cb.R/ j f is uniformly continuousº

be the (non-separable) C �-algebra of bounded uniformly continuous functions on R. The
group Rd of real numbers with the discrete topology, acts by translation on R and then by
automorphisms of Cu.R/. Let � WCu.R/Ì Rd ! B.L2.R// be the representation determ-
ined by letting Cu.R/ act by multiplication operators and Rd by translation unitaries.
We will refer to the �-subalgebra Cu.R/ŒRd �, or C1u .R/ŒRd �, meaning the correspond-
ing (twisted) group algebra of finite sums

P
t2R ftut in Cu.R/ Ì Rd .

Proposition 2.2. The triple�
L2.R/˚ L2.R/; � ˚ �; D D

�
0 A�

A 0

��
is a spectral triple over C1u .R/ŒR

d � � Cu.R/ Ì Rd ; it is 2-dimensional in the sense that
jDj�2 2 L.1;1/.

We refer to the cycle of Proposition 2.2 as the Heisenberg cycle.
As C1u .R/ŒRd � is dense in Cu.R/ Ì Rd , the proposition implies that the associated

Fredholm module�
L2.R/˚ L2.R/; � ˚ �; F WD �.D/ D

�
0 A�.H C 2/�1=2

AH�1=2 0

��
obtained by applying a normalizing function �, here chosen to be �.x/D x.1C x2/�1=2,
defines a cycle for KK0.Cu.R/ Ì Rd ;C/.

The corresponding class in KK0.Cu.R/ Ì Rd ;C/ is non-zero: the unital inclusion
C ! Cu.R/ Ì Rd pulls it back to the class 1 2 KK0.C;C/ because D has indexC1.
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Since the spectrum of H grows linearly, �.a/H�s is trace-class for Re.s/ > 1 and
the zeta function Trace.�.a/H�s/ is analytic for Re.s/ > 1 and a 2 Cu.R/ Ì Rd . One
of our main interests is in the possible meromorphic continuation properties of such zeta
functions.

The irrational rotation algebra A¯ is a subalgebra of Cu.R/ Ì Rd and the restriction
of the representation � above to A¯ lets f 2 C.T / D C.R=Z/ act by multiplication
on L2.R/ by the corresponding periodic function, and the group Z by n 7! un¯, with,
recall, ut�.x/ D �.x � t /. However, Cu.R/ Ì Rd contains numerous other subalgebras
of related interest. We first point out a generic example of such a subalgebra, arising from
dynamics.

Lemma 2.3. If M is a compact manifold, ¹˛tºt2R is a smooth flow on M , and if p 2M ,
then mapping f 2 C.M/ to the bounded, uniformly continuous function fp.t/ WD f .˛tp/
on R, and mapping t 2 Rd to ut , determine a C �-algebra homomorphism

�W C.M/ Ì˛ Rd ! Cu.R/ Ì Rd ;

where Rd is the group of real numbers with the discrete topology. It is injective if the flow
is minimal, and restricts to a *-algebra homomorphism C1.M/ŒRd �! C1u .R/ŒRd �.

The proof is the observation that if the vector field X generates the flow, then f 2
C1.M/ implies X.f / 2 C1.M/, and hence that f 0p is bounded, so fp is Lipschitz and
hence uniformly continuous (and bounded) on R.

In particular, the Heisenberg cycle pulls back to a cycle for C.M/Ì Rd , and a spectral
triple over the subalgebra C1.M/ŒRd �.

Returning to irrational rotation, fix ¯ 2 R, so that we have the representation �¯
(see (2.2)) of A¯ determined by C.T / D C.R=Z/ acting by multiplication operators by
Z-periodic functions, and the subgroup ¯Z � R.

Lemma 2.4. Let �¯WA1=¯ ! B.L2.R// be the representation obtained by letting f 2
C.T /D C.R=Z/ act by multiplication by x 7! f .x

¯
/ and n 2 Z by translation by n. Then

�¯.A¯/ and �¯.A1=¯/ commute. Hence the tensor product

�¯.a˝ b/ WD �¯.a/�
¯.b/

defines a representation of B¯ on L2.R/, which is injective if ¯ 2 R nQ.

We may consider the C �-algebra A¯ ˝ A1=¯ DW B¯ as the crossed product of C.T2/

by the group Z2 with action

.n;m/ � .x; y/ D
�
x C n¯; y C

m

¯

�
;

and the homomorphism �¯ embeds B¯ into Cu.R/ Ì Rd by letting

f 2 C.T2/ D C.R2=Z2/
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map to fp.t/ WD f .t; t¯ /, and embedding Z2 isomorphically to the dense subgroup

ƒ WD ¹n¯ Cm j n;m 2 Zº � R:

We can consider the Z2-action on T2 as factoring through the translation action of the
subgroup Z2 Š ƒ � R acting through the Kronecker flow

˛t .x; y/ D
�
x C t; y C

t

¯

�
along lines of slope 1

¯
, because

˛n¯Cm.x; y/ D
�
x C n¯; y C

m

¯

�
:

The restriction of �¯ to C.T2/ is thus a special case of the construction of Lemma 2.3,
as the following lemma shows.

Proposition 2.5. Let 
 WR! T2 be the group homomorphism 
.t/ D .¯t; t /, let U be its
image. Then

(a) U is dense if ¯ … Q.

(b) An element .x; y/ 2 R2 projects to an element of U if and only if ¯y D x C

nCm¯ for some integers n, m if and only if ¯y D x mod ƒ � R.

(c) The subgroup ƒ is contained in U for all integers n, m.

(d) If U 0 WD 
 0.R/ with 
 0.t/ D .t; ¯t /, then ƒ D U \ U 0.

Proof. (a)–(c) are routine. The (dense) subgroup ƒ � T2 is obtained as follows. The
line of slope 1

¯
in R2 through the origin intersects the vertical lines x D n, for n 2 Z, in

the points Z2-congruent to .n¯; 0/, and through the horizontal lines y D m, in the points
congruent to .0; m

¯
/. Summing all of these points in T2 gives ƒ, which is contained in U

by (c). The flip R2 ! R2 interchanges lines of slope ¯ and of 1
¯

and leaves Z2 invariant
interchanging vertical and horizontal lines. The last statement follows from symmetry.

The subgroup ƒ consists therefore of all points of T2 in the intersection of the two
dense subgroupsU andU 0, projections of lines of slope ¯ and 1

¯
. We callƒ the homoclinic

subgroup.

Definition 2.6. The Heisenberg bi-cycle is the spectral triple over C1.T2/Œƒ� � A¯ ˝

A1=¯ given by the triple�
L2.R/˚ L2.R/; �¯ ˚ �¯; D D

�
0 A�

A 0

��
;

where �¯ is as in Lemma 2.4.
The class of the Heisenberg cycle is denoted �¯ 2 KK0.A¯ ˝ A1=¯;C/.
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In the next section, we will show that the zeta functions Trace.�¯.a/H�s/ extend
meromorphically to C for a 2 C1.T2/Œƒ�, provided that ¯ satisfies a Diophantine con-
dition.

The inclusion A¯! A¯ ˝A1=¯ pulls the Heisenberg bi-cycle back to a spectral cycle
for KK0.A¯;C/, which is a spectral triple over the smooth subalgebra A1

¯
. As it is of

special interest to us, we single it out in a definition.

Definition 2.7. The Heisenberg cycle is the even, 2-dimensional spectral cycle�
L2.R/˚ L2.R/; �¯ ˚ �¯; D D

�
0 A�

A 0

��
;

for KK0.A¯;C/, defining a spectral triple over the Schwartz subalgebraA1
¯

of the rotation
algebra A¯ WD C.T / Ì¯ Z.

The class in KK0.C.T / Ì¯ Z;C/ of the Heisenberg cycle is denoted by ŒD¯�.

Remark 2.8. The injection A1=¯ into A¯ ˝ A1=¯ pulls the Heisenberg bi-cycle back to
a cycle and class ŒD¯� for KK0.A1=¯;C/. But the unitary U WL2.R/! L2.R/, U�.x/ D
p
¯�.¯x/ conjugates the representation �1=¯ to the representation �¯ (in notation of Lem-

ma 2.4). This effects the operator by a homotopically trivial re-scaling, and hence ŒD¯� D
ŒD1=¯� 2 KK0.A1=¯;C/.

If 0 < h < 1, then the spectral triple describing ŒD¯� is studied in [18]. It is related
in an exact way to Connes’ Dolbeault class (for any ¯) as we now establish, although the
result is already proved in [18] (for 0 < ¯ < 1, and in slightly different language). Let
L2.A¯/ denote the GNS (Gelfand–Naimark–Segal) Hilbert space associated to the trace
� WA¯ ! C. In the notation of the discussion around (2.1), U and V are the standard
generators of A¯, with U.x/D e2�ix and V UV � D e�2�i¯U . On L2.A¯/ the derivations
ı1, ı2 are defined ı1.U / D 2�iU , ı1.V / D 0, ı2.U / D 0, ı2.V / D 2�iV . Then the
derivations assemble to give

x@ WD

�
0 ı1 � iı2

ı1 C iı2 0

�
:

The GNS representation �W A¯ ! B.L2.A¯// then fits into a spectral triple over A1
¯

with Hilbert space L2.A¯/˚ L2.A¯/ and representation �˚ �, because, as one verifies
without difficulty, that the commutators Œ�.a/; x@� are bounded for a 2 A1

¯
.

We let Œx@� 2 KK0.A¯;C/ be its class. Since � is not just a state, but a trace, the right
multiplication operation of A¯ on itself determines another, commuting representation
�opWA

op
¯
! B.L2.A¯//. AsA¯ is isomorphic to its opposite algebra by the map sending U

to U and V to V �, we obtain a pair of commuting representations of A¯ on L2.A¯/ and
on L2.A¯/˚ L2.A¯/. These observations determine a cycle and class

�x@ 2 KK0.A¯ ˝ A¯;C/:
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Connes proves (see [5]) that cup-cap product

PDx@W KK�.D1; A¯ ˝D2/! KK�.A¯ ˝D1;D2/ (2.5)

(for any Di ) with �x@ induces an isomorphism, that is, yields a self KK-duality for A¯.
The result is refined in [8].

The most important basic example of Morita equivalence of groupoids involves two
commuting proper, free locally compact group actions on a locally compact space. This
determines a Morita equivalence between a suitable pair of crossed products, see [20]. The
lemma below presents a special case.

Lemma 2.9. Define on Cc.R/ the inner products

C.R=¯Z/ÌZh�; �i.x;m/ D
X
n2Z

�.x � n¯/ � �.x � n¯ �m/; x 2 R=¯Z; m 2 Z;

and

h�; �iC.R=Z/Ì¯Z.x;m/ D
X
n2Z

�.x � n/�.x � n �m¯/; x 2 R=Z; m 2 Z:

Give Cc.R/ the C.R=¯Z/ Ì Z- C.R=Z/ Ì¯ Z bimodule structure with

.n�/.x/ D �.x � n/; .f �/.x/ D f .x/�.x/;

.�n/.x/ D �.x C n¯/; .�f /.x/ D f .x/�.x/:

Then Cc.R/ completes to a Morita equivalence C.R=¯Z/ Ì Z- C.R=Z/ Ì¯ Z bimod-
ule E¯, that is, to a Morita equivalence A1=¯-A¯-bimodule.

The relation between Connes’ Dolbeault class Œx@� and the Heisenberg ŒD¯� is that D¯
is, roughly speaking, obtained by twisting x@ by E¯.

Lemma 2.10. The tensor product of Hilbert modules E¯ ˝A¯ L
2.A¯/ over the represent-

ation �WA¯ ! B.L2.A¯//, is naturally isomorphic to L2.R/ as a Hilbert space.
Under this identification,

(a) The representation � of A1=¯ on E¯ ˝A¯ L
2.A¯/ induced by its representation

on E¯ corresponds to the representation �¯ on L2.R/ of Lemma 2.4.

(b) The representation �op of A¯ on L2.A¯/ commutes with the representation �
involved in the tensor product. Hence A¯ is also represented on E¯ ˝A¯ L

2.A¯/

by 1˝ �op. This representation identifies with �¯ on L2.R/ of Lemma 2.4.

Proof. If f1; f2 2 Cc.R/, then their A¯ D C.R=Z/ Ì¯ Z-valued inner product is given in
the above lemma. Let ı0 2 L2.A¯/ the vector corresponding to 1 2 A¯ and consider the
elements fi ˝ ı0 2 E¯ ˝A¯ L

2.A¯/. Their inner product is given by

hf1 ˝ ı0; f2 ˝ ı0i D hı0; hf1; f2iA¯ı0i D �.hf1; f2i/

D

Z 1

0

hf1; f2iA¯.x; 0/dx D hf1; f2iL2.R/;



Zeta functions and topology of Heisenberg cycles for linear ergodic flows 475

where � WA¯ ! C is the trace. It follows that f 7! f ˝ ı0 induces a Hilbert space iso-
metry L2.R/! E¯ ˝A¯ L

2.A¯/. Since elements of the form � ˝ ı0, � 2 E¯, are dense
in the tensor product (because the GNS representation is cyclic), this isometry is actually
a unitary. The other statements are easy to check.

Corollary 2.11. Let ŒE¯� 2 KK0.A1=¯;A¯/ be the class of the Morita equivalence bimod-
ule E¯, �¯ be the class of the Heisenberg bi-cycle (Definition 2.6) and PDx@ be Connes’
Poincaré duality (2.5). Then

(a) PDx@.ŒE¯�/ D Œ�¯� 2 KK0.A¯ ˝ A1=¯;C/.

(b) The class �¯ 2 KK0.A¯ ˝ A1=¯; C/ determines a KK-duality between A¯
and A1=¯.

(c) If Œp¯� 2 K0.A¯/ denotes the class of the Rieffel projection, then PDx@.Œp¯�/ D
ŒDh�.

Proof. We have PDx@.ŒE¯�/ D .1A¯ ˝ ŒE¯�/˝A¯˝A¯ �x@ 2 KK0.A¯ ˝A1=¯;C/ by defini-
tion. The module composition involved in the Kasparov product results in (two copies of)
L2.R/ with (two copies of) the Heisenberg representation �¯ of Theorem 2.4, by Lem-
ma 2.10. The operator D satisfies the connection condition for the axiomatic approach to
the product by [18].

Let PD¯ denote the analogue of (2.5) using�¯ in place of�x@. Then for x 2K�.A1=¯/,
y 2 K�.A¯/,

hPD¯.x/; yi D hy ˝C x;�¯i D hy ˝C x; .1A¯ ˝ ŒE¯�/˝A¯˝A¯ �x@i

D hy ˝C E�
¯
.x/;�x@i:

Since ŒE¯� is an equivalence in KK, the intersection form for�¯ is obtained by twisting
the form for �x@ by an isomorphism, and hence is non-degenerate, since Connes’ is.

By definition,

PDx@.Œp¯�/ D .Œp¯�˝ 1A¯/˝A¯˝A¯ �x@ D .u˝ 1A¯/
�.E¯ ˝ 1A¯/˝A¯˝A¯ �x@

D .u˝ 1A¯/
�.�¯/ D ŒD¯�;

where uWC! A1=¯ is the unital inclusion, where the non-trivial step was the penultimate
one, which used (c).

We are going to show using cyclic cohomology calculations that hŒp¯�; ŒD¯�i D �b¯c.
This is enough to describe the intersection form induced by�¯. We note the result for

the record here.

Proposition 2.12. For any ¯, give K0.A¯/ the ordered free abelian group basis ¹Œ1�; Œp¯�º.
Then the matrix of the intersection form induced by �¯ is�

1 �b
1
¯
c

�b¯c 1

�
:
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Proof. By the definitions, hPD¯.Œp¯�/; Œp1=¯�i D hŒp¯�˝C Œp1=¯�; �¯i. As noted above,

�¯ D PDx@.ŒE¯�/ WD .1A¯ ˝ ŒE¯�/˝A¯˝A¯ �x@;

so this may be written

hŒp¯�˝C Œp1=¯�; .1A¯ ˝C ŒE¯�/
�.�x@/i:

Moving ŒE¯� to the other side and noting that Œp1=¯�˝A1=¯ ŒE¯� D Œ1� 2 K0.A¯/ gives that

hPD¯.Œp¯�/; Œp1=¯�i D hŒp¯�˝C Œp¯�; �x@i D hPDx@.Œp¯�/; Œ1�i

D hŒD¯�; Œ1�i D 1:

We end this section by noting that Heisenberg cycles, over Cu.R/ Ì Rd , are only
topologically interesting if G is non-trivial. Lück and Rosenberg construct a homotopy
in KK-theory by considering the operators �x C d

dx
for � 2 Œ1;1/. This field can be

continuously extended to Œ1;1� by adding a copy of C to L2.R/ at infinity, and extending
the operator by the direct sum of the multiplication operator x

jxj
on L2.R/, and 0 on the

1-dimensional summand. Their argument implies the following.

Proposition 2.13. The class in KK0.Cu.R/; C/ of the Heisenberg cycle over Cu.R/
is equal to the class Œev0� 2 KK0.Cu.R/; C/ of the point-evaluation homomorphism
Cu.R/! C, f 7! f .0/.

In particular, if ŒD˛� is the Heisenberg class for an ergodic flow onM , a point p 2M ,
and the trivial group acting, then ŒD˛�/ D Œevp� 2 KK0.C.M/;C/.

This shows that it is essential to consider the crossed products Cu.R/Ì � , for suitable
non-trivial groups G � R, in order to see interesting topological phenomena.

However, the geometry of the Heisenberg cycles is by contrast interesting, even with-
out taking into account a group action, as we discuss in the next section.

3. Zeta functions and ergodic flows

Let f 2 Cu.R/ be a bounded, uniformly continuous function.
We are going to be studying the zeta functions Trace.fH�s/, where H is the har-

monic oscillator (2.3) and f 2 Cu.R/. This function is analytic for Re.s/ > 1. The goal
of this section is to establish classes of functions for which Trace.fH�s/ meromorphic-
ally extends to C.

Theorem 3.1. If f 2 Cu.R/, then

�.s/ �Trace.fH�s/D
1

2
p
�
�

Z 1

0

Z
R
t s�1 csch t � f .x

p
coth t / � e�x

2

dxdt C �.s/ (3.1)

holds for Re.s/ > 1, where � is entire.
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Remark 3.2. (1) If f D 1 is constant, (3.1) gives that

�.s/ � Trace.H�s/ D
1

2

Z 1

0

t s�1 csch tdt;

and considering the Laurent series expansion csch t � 1
t
C � � � at t D 0, we see that the

1

2

Z 1

0

t s�1 csch tdt �
1

2

� 1

s � 1

�
CR.s/;

where R.s/ extends analytically to Re.s/ > 0.
Hence

RessD1�.s/ � Trace.H�s/ D �.1/ � RessD1.H�s/ D
1

2
:

(2) A change of variables in the expression in (3.1) results in

�.s/ � Trace.fH�s/ D
1
p
2�

Z 1

0

t s�1
p

csch t
Z

R
f .x/e� tanh tx2dxdt:

If f .x/ D e�i˛x for ˛ 2 R, ˛ 6D 0, then, using the Gaussian integral formulaZ
R
e�ax

2=2Cibxdx D

r
2�

a
� e�b

2=.2a/;

we obtain

�.s/ � Trace.fH�s/ D
Z 1

0

t s�1
p

sech t � e�
˛2

tanh t dt;

and e�˛
2=tanh t ! 0 exponentially fast as t ! 0. This implies that �.s/ � Trace.fH�s/

extends to an entire function if f .x/ D ei˛x with ˛ 6D 0. This argument is used in [25] to
establish the meromorphic extension property for smooth periodic functions.

We defer the proof of Theorem 3.1 and first use it. If f 2Cu.R/, suppose that F.T /DR T
0
f .t/dt . Then F is uniformly continuous, not necessarily bounded, but jF.T /j DO.T /

as T !1.

Lemma 3.3. If f 2 Cu.R/ admits n successive bounded anti-derivatives, 1f; 2f; : : : ; nf ,
then Trace.fH�s/ extends analytically to Re.s/ > 1 � n

2
.

Proof. By Theorem 3.1,

�.s/ � Trace.fH�s/ �
1

2
p
�
�

Z 1

0

Z
R
t s�1 csch t �

Z
R
f .x
p

coth t / � e�x
2

dxdt; (3.2)

where � means up to an entire function. Let F D 1f , then integration by parts gives

r.h.s. of (3.2) D
1
p
�
�

Z 1

0

Z
R
t s�1 csch t

p
tanh t � F.x

p
coth t /xe�x

2

dxdt

D
1
p
�

Z 1

0

t s�1 csch t
p

tanh t � �.t/dt
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with �.t/ D
R

R F.x
p

coth t /xe�x
2
dx. The function t s�1 csch t

p
tanh t � �.t/ is equival-

ent to t s�3=2 � �.t/ as t ! 0, and is integrable over Œ0; 1� for Re.s/ > 1
2

if � is continuous
and bounded as t ! 0. In particular, this holds if F is bounded on R. So we have verified
analyticity for Re.s/ > 1

2
. Similarly, if 2f D 1F is the second anti-derivative, then the

previous expression can be written

1
p
�
�

Z 1

0

t s�1 csch t tanh t �
Z

R

2f .x
p

coth t /.1 � 2x/e�x
2

dxdt

which is analytic now for Re.s/ > 0 if 2f is also bounded. One repeats this argument
n times and the statement follows.

The cohomological equation in dynamics refers to the differential equation

Xu D f;

where X is a generating vector field for a smooth flow ˛ on a compact manifold M . Let
p 2M , f 2 C.M/ and

fp.t/ D f .˛t .p//:

Then fp 2 Cu.R/. If f 2 C1.M/, then fp 2 C1u .R/.
An obstruction to solving the cohomological equation for given f is the mean of f

with respect to any ˛-invariant probability measure �. This follows from differentiat-
ing the equation

R
M
u ı ˛t d� D

R
M
ud�, which gives that

R
M
Xu d� D 0, that is,R

M
fd� D 0 if Xu D f has a smooth solution.
Conversely, if one can solve Xu D f for given f , then up.t/ WD u.˛t .p// supplies

a bounded anti-derivative of fp . Hence Lemma 3.3 and Remark 3.2 give the following.

Proposition 3.4. Let ˛ be a smooth flow on M with generator X and � any ˛-invariant
measure. If f 2 C1.M/ and

R
M
fd� D 0 implies that Xu D f for some u 2 C1.M/,

then for any p 2M , Trace.fpH�s/ extends meromorphically to C and

RessD1 Trace.fpH�s/ D
1

2

Z
M

fd�

for any p 2M .

In some simple situations of elliptic dynamics, e.g., the periodic flow on the circle, hav-
ing mean zero is the only obstruction to solving the cohomological equation for f : indeed,
in this case one can make an extremely strong statement not even requiring smoothness.

Lemma 3.5. Let f be continuous and �-periodic on R with zero mean:
R �
0
f .t/dt D 0.

Then F.T / is also continuous, �-periodic, with zero mean.

Corollary 3.6. If f is continuous and �-periodic on R, then Trace.fH�s/ meromorph-
ically extends to C with a simple pole at s D 1 and

RessD1 Trace.fH�s/ D
1

2�

Z �

0

f .t/dt:
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Proof. The function xf WD f � �.f / has zero mean. Applying the previous lemma gives
that f has bounded anti-derivatives of all orders; the result follows from Lemma 3.3. and
Remark 3.2.

Definition 3.7. Let ˛ be a smooth, ergodic Riemannian flow on a compact Riemannian
manifold M (˛t WM ! M is a Riemannian isometry for all t ). Let � be the Laplacian
on M , 0 D �0 < �1 < � � � its eigenvalues, � normalized volume measure on M and
L2.M/ D

L1
nD0Hn the �-spectral decomposition of L2.M/, Hn D ker.�n ��/.

The vector field X commutes with � as an operator on C1.M/ and so leaves each
Hilbert subspaceHn invariant. For n> 0, let �n WD kX jHnk (the operator norm). Since ˛ is
ergodic, the kernel of X consists of constant functions, so equals the zero eigenspace H0
of �.

A Riemannian flow ˛ satisfies a Diophantine condition if there exist C � 0 and 
 > 0
such that �n � Cn�
 .

Corollary 3.8. If ˛ is a smooth, Riemannian, ergodic flow onM satisfying a Diophantine
condition, and f 2 C1.M/, then Trace.fpH�s/ extends meromorphically to C with
a simple pole at s D 1, and

RessD1 Trace.fpH�s/ D
1

2

Z
M

fd�

for any ˛-invariant measure � and any p 2M .

Proof. Proceeding as in the discussion above, let f be smooth on M , then f 2 L2.M/

and f D
P1
nD0fnsn, where sn are �n- eigenvectors for�. The linear operators enDX jHn

have no kernel for n > 0 because the flow is ergodic, and e0 D 0. Note that f0 D
R
M
fd�.

Assuming that this is zero, we can set

u WD

1X
nD1

e�1n fnsn:

If f is smooth, the sequence ¹kfnkº has rapid decay. The Diophantine assumption implies
that ¹e�1n fnº also has rapid decay, and hence defines a smooth function on M .

This shows that the only obstruction to solving the cohomological equation Xu D f
for f smooth, is

R
M
fd� D 0. The result follows from Lemma 3.4.

The hypothesis holds if ¯ 2 R nQ is an irrational number satisfying a Diophantine
condition, and f 2 C1.T2/, fp.t/D f .˛tp/with ˛t .x;y/D .xC t; yC¯t /Kronecker
flow. Then X D @

@x
C ¯

@
@y

acts on the eigenfunctions znzm for � on T2 by the constant
nC ¯m. The usual Diophantine condition on an irrational number gives 
 such that

jnC ¯mj � C.n2 Cm2/�
=2;

and this implies the flow is Diophantine in the sense above.
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Corollary 3.9. Let ! D .!1; : : : ; !n/ 2 Rn, where !1; : : : ; !n are rationally independ-
ent. Assume the following Diophantine condition: there exist C > 0 and 
 > 0 such that
j
Pn
iD1 ki!i j � C jkj

�
 , with jkj the word length of k D .k1; : : : ; kn/ in Zn. Then if
˛t .x/ D x C t! is the corresponding linear flow on Tn, f 2 C1.Tn/, p 2 Tn, and
fp.t/ WD f .x C t!/, then Trace.fpH�s/ extends meromorphically to C with a simple
pole at s D 1 and

RessD1 Trace.fH�s/ D
1

2

Z
Tn

fd�;

� (normalized) Lebesgue measure on Tn.

We now proceed to the proof of Theorem 3.1. A computation of the heat kernel of e�tH

follows from solving a differential equation: the heat kernel kt satisfies . @
@t
CH/ � �t D 0,

where �t .x/ D
R

R kt .x; y/�.y/dy, for � 2 �.R/, and t � 0, together with the initial
condition limt!0 �t D �. Consider the ansatz

kt .x; y/ D exp
�at
2
x2 C btxy C

at

2
y2 C ct

�
:

Setting this equal to 0 and solving for coefficients gives the ordinary differential equations

Pat

2
D a2t � 1 D b

2
t ; Pc2t D at :

Solving these gives

at D � coth.2t C C/; bt D csch.2t C C/; ct D �
1

2
log sinh.2t C C/CD:

Using the initial conditions, we get C D 0 and D D log.2�/�1=2. See [2].
We obtain the following, called Mehler’s formula [19].

Lemma 3.10. We have

kt .x; y/ D
1

p
2� sinh 2t

exp
�
� tanh t �

.x C y/2

4
� coth t �

.x � y/2

4

�
: (3.3)

Proof of Theorem 3.1. The operator H�s is trace-class for Re.s/ > 1, and the operator-
valued integral

R1
0
t s�1e�tHdt converges in norm to �.s/ �H�s . Hence if a 2 B.L2R/,

�.s/ � aH�s D

Z 1
0

t s�1ae�tHdt;

and taking traces gives

�.s/ � Trace.aH�s/ D
Z 1
0

t s�1 Trace.ae�tH /dt:

Furthermore, if a is any bounded operator, thenZ 1
1

t s�1 Trace.ae�tH /dt
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clearly extends to an analytic function on C. Hence

�.s/ � Trace.aH�s/ �
Z 1

0

t s�1 Trace.ae�tH /dt

extends analytically to C .
Now let f 2 Cu.R/, set a D f . Then fe�tH is an integral operator with kernel

f .x/kt .x; y/, and hence Trace.fe�tH / D
R

R f .x/kt .x; x/dx. Applying Mehler’s for-
mula, Lemma 3.10 gives

�.s/ � Trace.aH�s/ D
Z 1
0

t s�1
1

p
2� sinh 2t

Z
R
f .x/e�x

2 tanh tdxdt:

Making the change of variables x 7! xp
tanh.t/

gives

�.s/ � Trace.aH�s/ D
Z 1
0

t s�1
p

coth t
p
2� sinh 2t

Z
R
f .x
p

coth t /e�x
2

dxdt:

The result follows from the identity coth t
sinh2t D csch2 t .

4. The residue trace

If Trace.fH�s/ meromorphically extends past Re.s/ D 1, then (up to the factor of 1
2

) the
residue of the pole at s D 1 defines kind of asymptotic mean of f 2 Cu.R/. In certain
examples of flows where f D gp for p 2M , and gp.t/ WD g.˛t .p//, we have noted (Pro-
position 3.4) that this spectrally defined mean agrees with the geometric mean

R
M
fd�

over the manifold.
The spectrally defined mean, which we will denote by Res Trace.f /, does not neces-

sarily require meromorphic continuation to define it, but only existence of the limit
lims!1C.s � 1/Trace.fH�s/, which is a weaker condition.

Definition 4.1. Let D � Cu.R/ be the closed linear subspace of all f such that

Res Trace.f / WD 2 lim
s!1C

.s � 1/ � Trace.fH�s/

exists.

The residue trace Res Trace defines a positive linear functional of norm 1 on D . This
follows from the following geometric description of Res Trace.

Theorem 4.2. If f 2 Cu.R/, then f 2 D if and only if

�u.f / WD lim
�!1

1

2
p
�

Z 1

0

Z
R
f .xt��/e�x

2

dxdt (4.1)

exists, and if this holds, then Res Trace.f / D �u.f /.
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Proof. Choose � > 0. Since �.1/ D 1, by Theorem 3.1 we have for Re.s/ > 1,

lim
s!1C

.s � 1/Trace.fH�s/

D lim
s!1C

s � 1

2
p
�

Z 1

0

Z
R
t s�1 csch tf .x

p
coth t /e�x

2

dxdt: (4.2)

The part of the integral corresponding to t � ı extends analytically to C. Hence it contrib-
utes zero to the limit, and we may choose ı > 0 small enough that jt csch t � 1j < � for
0 < t < ı, so that jcsch t � 1

t
j < �

t
for t < ı. Let �f .t/ D

R
R f .x

p
coth t / � e�x

2
dx, thenˇ̌̌̌ Z ı

0

t s�1
�

csch t �
1

t

�
�.t/dt

ˇ̌̌̌
<

�

s � 1
� kf k

by a brief computation. Letting �! 0, we see that the limit on the right-hand side of (4.2),
if it exists, equals the limit

lim
s!1C

s � 1

2
p
�
�

Z 1

0

Z
R
t s�2f .x

p
coth t / � e�x

2

dxdt:

Let � D 1
s�1

and substitute t ! t� in the above expression, and, noting ı1=� ! 1 as
�!1, we deduce that

�u.f / D lim
s!1C

.s � 1/Trace.fH�s/

D lim
�!1

1

2
p
�
�

Z 1

0

Z
R
f .x

p
coth t�/ � e�x

2

dxdt:

Since Lipschitz functions are dense in C1u .R/ and D is closed, we may assume f is
Lipschitz, and it follows thatˇ̌̌̌ Z 1

0

Z
R
.f .x
p

coth t˛/ � f .xt�˛=2//e�x
2

dxdt

ˇ̌̌̌
� const � lim

˛!1

Z 1

0

j
p

coth t˛ � t�˛=2jdt

which converges to zero as �!1. This proves the result.

The theorem can be expressed this way.

Theorem 4.3. Let�0D 1

2
p
�
e�x

2
dx, the Gaussian probability measure on R. For t 2R�C,

let �t WR! R, �t .x/ D tx, and �t WD .�t /��0. Then

lim
�!1

Z 1

0

�t�dt D Res Trace 2 D 0:

We deduce the following.
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Corollary 4.4. If f 2 Cu.R/ and �˙.f / WD limT!˙1
1
T

R T
0
f .t/dt each exists, then

f 2 D and

Res Trace.f / D
��.f /C �C.f /

2
: (4.3)

In particular, if ˛ is an ergodic flow on a compact smooth manifold M , � an ˛-invariant
probability measure, f 2 C.M/, fp.t/ WD f .˛t .p//, then fp 2 D and

Res Trace.fp/ D
Z
M

fd�

for a.e. p 2M .

Proof. Integration by parts, the change of variables u! ut�, and a slight re-arrangement
give Z 1

0

Z
R
f .xt��/e�x

2

dxdt D 2

Z 1

0

Z
R

Z x

0

f .ut��/xe�x
2

dudxdt

D 2

Z 1

0

Z
R
t�
Z xt��

0

f .u/xe�x
2

dudxdt

D 2

Z 1

0

Z
R

1

xt��

Z xt��

0

f .u/x2e�x
2

dudxdt:

Now letting �!1 and using the hypothesis that L WD limT!˙1
1
T

R T
0
f .t/dt exists,

we obtain

lim
�!1

Z 1

0

Z
R
f .xt��/e�x

2

dxdt D L
p
�:

By Theorem 4.2,

Res Trace.f / D lim
�!1

1

2
p
�

Z 1

0

Z
R
f .xt��/e�x

2

dxdt

giving (4.3).
The second statement follows from combining the first with the Birkhoff ergodic the-

orem.

Remark 4.5. By a slightly more elaborate argument, the assumption of Corollary 4.4 can
be weakened as follows: there exists 0 � ˇ < 1 such that

L WD lim
x!˙1

1R x
0
u�ˇ

Z x

0

f .u/u�ˇdu

exists. Then f 2 D and Res Trace.f / D L remains true.

We next produce some estimates related to group translation operators on L2.R/.
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Lemma 4.6. Let U˛ be the unitary induced by translation on the real line by ˛ 6D 0. Then
if f 2 Cu.R/ and a D f U˛ 2 Cu.R/ Ì Rd � B.L2.R//, then

�.s/ � Trace.f U˛H�s/ D
1

2
p
2�

Z 1
0

t s�1 csch t exp
�
�
˛2

4
coth t

�
� �˛;t .f /dt; (4.4)

where �˛;t .f / D
R

R f .x
p

coth t C ˛/e�x
2
dx.

Proof. The argument proceeds as in the proof of Lemma 3.10. The operator f U˛e�tH is
a compact integral operator with kernel

k0t .x; y/ D f .x/kt .x � ˛; y/;

where kt is the harmonic oscillator heat kernel (3.3). Hence for Re.s/ > 1,

�.s/ � Trace.f U˛H�s/

D

Z 1
0

Z
R
t s�1kt .x � ˛; x/dxdt

D

Z 1
0

Z
R
t s�1.2� sinh 2t/�1=2f .x/ exp

�
�
.2x � ˛/2

4
tanh t �

˛2

4
coth t

�
dxdt:

Basic manipulations yield (4.4).

Lemma 4.7. If f 2 Cu.R/, ˛ 2 R, ˛ 6D 0, then the function

�f;˛.s/ WD �.s/ � Trace.f U˛H�s/; Re.s/ > 1;

extends to an analytic function on C. There are constants C 0s and C 00s depending holo-
morphically on s such that

j�f;˛.s/j � .C
0
s˛
�2Re.s/

C C 00s /e
�˛2=4

� kf k for all s 2 C.

Proof. As shown above, for the family of states �˛;t on Cu.R/,

2
p
2��.s/ � Trace.f U˛H�s/ D

Z 1
0

t s�1 csch t exp
�
�
˛2

4
coth t

�
�˛;t .f /dt

D

Z 1

0

t s�1 csch t exp
�
�
˛2

4
coth t

�
�˛;t .f /dt

C

Z 1
1

t s�1 csch t exp
�
�
˛2

4
coth t

�
�˛;t .f /dt

D �1.s/C �2.s/:

Consider first �1.s/. Since tanh t
t

and sinh t
t

are bounded on Œ0; 1�, we can bound the
integrand of �1.s/ by

t s�2e�ˇ=tkf k; ˇ D
˛2

4
:
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A change of variables givesZ 1

0

t s�2e�ˇ=tdt D

Z 1
1

t�se�ˇtdt:

If As D
R1
0
t�se��tdt , then As D e�ˇ

ˇ
C

1
ˇ
AsC1, by integration by parts, and it follows

that j
R 1
0
t s�2e�ˇtdt j � const � ˇ�Re.s/e�ˇ , where the constant does not depend on ˇ or s,

and hence that
j�1.s/j � C

0
s � kf k � ˛

�2Re.s/e�˛
2=4:

We can bound �2.s/ as follows:ˇ̌̌̌ Z 1
1

t s�1 csch te�.˛
2=4/ coth t�˛;t .f /dt

ˇ̌̌̌
� kf ke�˛

2=4
�

Z 1
1

t s�1 csch tdt

D C 00s e
�˛2=4

kf k: (4.5)

This completes the proof.

The significance of Lemma 4.7 is that it sheds light on when Trace.fH�s/ mero-
morphically extends, when a D

P
˛2� f˛U˛ is an element of Cu.R/ Ì Rd , and � � Rd

is a finitely generated subgroup.
The easiest case is that of a cyclic subgroup, and this produces a very strong result.
If f 2 Cu.R/ Ì � for a subgroup � � R, let f0 be the coefficient of f at the iden-

tity 0 2 � . Let D1 denote the subspace of D � Cu.R/ of f such that Trace.fH�s/
meromorphically extends to C with a simple pole at s D 1.

Theorem 4.8. Let f 2 Cu.R/ Ì¯ Z, where ¯ 2 R is non-zero. Then given f0 2 D1, we
have that Trace.fH�s/, Re.s/ > 1, meromorphically extends to C, with a simple pole at
s D 1, and

RessD1 Trace.fH�s/ D �u.f0/;

where �u is the uniform mean, see (4.1).

Proof. Suppose first that f has expansion f D
P
fnUn¯ with f0 D 0. Then

�.s/ � Trace.fH�s/ D
X
n

Trace.fnUn¯H�s/ D
X
n

�n.s/;

where �n.s/ abbreviates �fn;n¯.s/ of Lemma 4.7. The series converges absolutely and
uniformly on compact subsets of C because of the bound

j�n.s/j � .C
0
s¯
�2Re.s/n�2Re.s/

C C 00s /e
�.¯2=4/n2 ;

due to the lemma, shows that �n ! 0 exponentially fast as n!˙1.
In the general case, f D f � f0, Trace..f � f0/H�s/ extends to an entire function

for arbitrary f 2 Cu.R/, and Trace.f0H�s/ to a meromorphic function with the stated
pole structure if f0 2 D1 by definition.
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Corollary 4.9. If a 2 A¯ WD C.T / Ì¯ Z, then Trace.aH�s/ meromorphically extends
to C with a simple pole at sD 1, and RessD1Trace.aH�s/D �.a/, where � is the standard
trace on A¯.

In particular, the Heisenberg cycle Definition 2.7 over the irrational rotation algeb-
ra A¯ defines a spectral triple over A1

¯
with the meromorphic continuation property over

the whole C �-algebra A¯.

Definition 4.10. A finitely generated subgroup � � R with word length function j � j�
satisfies a Diophantine property if

j˛j � C j˛j
�

�

for some 
 > 0 and C > 0.

Definition 4.11. Let B� WD Cu.R/ Ì � , where � � R is a finitely generated subgroup.
Then B1� denotes the completion of the (twisted) group algebra C1u .R/Œ�� with respect
to the family of semi-norms ps;m.f / D

P
˛2�kf

.m/

 k � j
 js� .

Remark 4.12. Note that B1� consists of operators in Cu.R/ Ì � whose expansions f DP
˛2� f˛U˛ have rapid decay in the sense thatX

˛2�

kf .m/˛ k � j˛jn� <1 8m; n � 0: (4.6)

It is not difficult to prove that B1� is closed under holomorphic functional calculus.

Theorem 4.13. Suppose � � R has a Diophantine property, let f 2 B1� , and assume
f0 2D (Definition 4.1). Then Trace.fH�s/ meromorphically extends to C with a simple
pole at s D 1 and RessD1 Trace.fH�s/ D �u.f0/.

Proof. Write f D
P
˛2� f˛U˛ 2 B

1
� � B.L2.R// and assume f0 D 0. It suffices to

prove that Trace.fH�s/ extends to an analytic function on C. This equalsX
˛2�

Trace.f˛U˛H�s/ D
X
˛2�

�f˛ ;˛.s/;

where �f;˛ is notation as in Lemma 4.7, and it suffices to show that this is an absolutely
summable sequence of analytic functions, uniformly on compact subsets of C. Shorten
notation �˛ WD Trace.f˛U˛H�s/. By the same lemma,

j�˛.s/j � .C
0
s˛
�2Re.s/

C C 00s /e
�j˛j2=4

� kf˛k

for all s 2 C. Since there are potentially infinitely many ˛ with small absolute value, the
exponential term is no longer of any use, and we discard it, obtaining a polynomial bound
for �˛.s/ of order j˛j� for � D �2Re.s/ 2 R. Since � is finitely generated, there exists
a constant C� such that j˛j � C� � j˛j� for all ˛ 2 � . Combining with the Diophantine
assumption gives that

C j˛j
�

� � j˛j � C

0
j˛j� :
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If � � 0, we get
C 00j˛j

��

� � j˛j� � C 000j˛j

�
� :

Hence X
˛2�

kf˛k � j˛j
�
� C

X
˛2�

kf˛k � j˛j
�
� ;

and the last term is finite by (4.6).
If � < 0, then we use the bound

j˛j� � const � j˛j��
� :

Again,
P
˛2�kf˛k � j˛j

��

� is finite by assumption on f (4.6).

Remark 4.14. We make two comments about the proof.

(a) The Diophantine condition on � only seems relevant for the zone 0 < Re.s/ < 1.

(b) A weaker condition on f than (4.6) still seems to ensures the result. It suffices to
assume that X

˛2�

kf˛k � j˛j
s
� � e

�j˛j2=4 <1

for all real s > 0.

Let ˛ be a smooth flow on M compact. Let p 2 M , and let �pW C.M/ Ì Rd !
Cu.R/ Ì Rd � B.L2.R// be the *-homomorphism induced by restriction of functions
to the orbit of p. Pulling back the Heisenberg cycle for Cu.R/ Ì Rd , we obtain a cycle
for C.M/ Ì Rd , and for C.M/ Ì � for any � � R a subgroup.

From the results above, if both the flow and the group satisfy Diophantine conditions
(Definitions 3.7 and 4.10, respectively), then the pulled-back cycle determines a spectral
triple over a suitable smooth subalgebra of C.M/ Ì � .

Actually, we are mainly interested in the situation of Kronecker flow ˛¯ on T2, where
both Diophantine properties are implied by a Diophantine condition on the irrational num-
ber ¯.

Theorem 4.15. Let B¯ WD A¯ ˝ A1=¯ Š C.T2/ Ì � , with � � R the group generated
by 1, ¯. Let B1

¯
be the Schwartz subalgebra of B¯ of all

P
˛2� f˛U˛ withX

˛2�

kXnf k � j˛jm� <1;

where X generates the flow.
Then the Heisenberg bi-cycle of Definition 2.6 determines a spectral triple over B1

¯

with the meromorphic extension property.

This follows from Corollary 3.9, Theorem 4.13 (and see the discussion prior to Pro-
position 2.5).
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5. Topology of Heisenberg cycles

We now use cyclic cohomology to perform some K-theory and index-pairing calculations
with the Heisenberg cycles over A¯ and B¯ D A¯ ˝ A1=¯.

We will focus on A¯. Let ŒD¯� 2 KK0.A¯;C/ be the Heisenberg class of Defini-
tion 2.7, involving

(a) the unitary action of Z on L2.R/ with n acting by U n
¯

;

(b) the action of C.T / D C.R=Z/ D C.R/Z of Z-periodic functions by multiplica-
tion operators;

(c) the operator

D D

"
0 x � d

dx

x C d
dx

0

#
:

From (a) and (b), we get the representation �¯WA¯ ! B.L2.R//.
It is important to note thatA¯ only depends, of course, on the class of ¯ mod Z, but �¯

depends on ¯, not just its equivalence class. (This is a difference between our set-up and
that of [18], as they only allow 0 < ¯ < 1.)

In particular, fixing 0< ¯<1, then the ŒD¯Cb�, for b 2Z, define a Z-family of spectral
cycles over the single A¯.

In fact, due to the identity ŒE¯� ˝A¯ Œx@� D ŒD¯�, this is accounted for by a similar
fact about the Morita equivalences E¯ of Theorem 2.9. Namely, that for ¯ varying within
a Z-coset of R, we obtain a Z-parameterized family of Morita A1=¯-A¯-bimodules: note
that A1=¯ changes as an integer is added to ¯, and so does the bimodule, but the ring of
scalars A¯ in the right multiplication remains the same. Twisting x@ by these bimodules
and forgetting the left action gives a Z-parameterized family of spectral triples that are
exactly the ŒD¯Cb�.

Actually, there is a certain internal symmetry of A¯, which we call the ‘Heisenberg
twist’ (which appeared already in [8]) whose iterates act transitively on these sets of data
in both the K-theory and K-homology picture. The Heisenberg twist is a KK-morphism
determined by the bundle of cycles D¯, over R, as we explain below.

We are going to use the local index theorem of [6] in dimension 2 to compute the
pairing of the class ŒD¯� with K0.A¯/; the result, and its proof, effectively computes the
index theory of the class �¯ as well. We will use the development of the local index
formula by Higson in [14] and our results on the harmonic oscillator residue trace of the
previous section.

Remark 5.1. The index formula of Corollary 5.9 we arrive at is very similar to one due to
Connes (see [3, 5]), who discovered it using his computation of the cyclic theory of A1

¯
.

There are some minor differences, as Connes fixes 0 < ¯< 1 and computes the index map
K0.A1=¯/! Z induced by D¯, and we are allowing arbitrary ¯ and computing the index
pairing with K0.A¯/.



Zeta functions and topology of Heisenberg cycles for linear ergodic flows 489

In the paper [3], Connes described an invariant of a finitely generated projective mod-
ule over A¯, generalizing the first Chern number of a complex vector bundle over T2.
In a sense, this was the starting point of noncommutative geometry.

Connes’ construction was the following. Let A be any C �-algebra endowed with an
action of R2 by automorphisms with .s; t/ acting by ˛s ı ˇt .

Let ıi WA! A be the densely defined derivations

ı1.a/ WD lim
t!0

˛t .a/ � a

t
; ı2.a/ WD lim

t!0

ˇt .a/ � a

t
; a 2 A1;

where A1 D
T
n;m dom.ın/\ dom.ım/, the *-subalgebra of elements such that .s; t/ 7!

˛s.ˇt .a// is smooth.
In addition, let � WA ! C be an R2-invariant tracial state. Then Connes’ invariant

of a f.g.p. (finitely generated projective) module eA1, where e is a projection in A1, is
given by

c1.e/ WD
1

2�i
�.eŒı1.e/; ı2.e/�/:

We call c1.e/ the first Chern number of e. The number c1.e/ only depends on the equival-
ence class of e in K0.A1/ (see [4]).

Moreover, c1.E ˚ E 0/D c1.E/C c1.E
0/ and c1 thus determines a group homomorph-

ism K0.A/! R.
Let ¯ 2 R and A¯ D C.T / Ìh Z be the corresponding rotation algebra, with u 2 A¯

the generator of the Z-action. Then the R2-action with ˛t .f /D f .x � t /, ˛t .u/D u and
ˇt .u

n/ D e2�intun, ˇt .f / D f , gives rise to the derivations

ı1

�X
n

fnŒn�
�
D

X
n

f 0nŒn�; ı2

�X
n

fnŒn�
�
D

X
n

2�in � fnŒn�:

Recall the Rieffel modules described in Lemma 2.9. For any ¯, E¯ is the completion
of Cc.R/ with respect to the A¯-valued inner product

h�; �iA¯.x;m/ D
X
n2Z

�.x � n/�.x � n �m¯/; x 2 R=Z; m 2 Z:

Give Cc.R/ the right C.R=Z/ Ì¯ Z D A¯ module structure with

.�n/.x/ D �.x C n¯/; .�f /.x/ D f .x/�.x/:

This extends to a multiplication E¯ � A¯ ! E¯ giving a finitely generated and projective
Hilbert A¯-module. To find a projection p¯ such that p¯A¯ Š E¯, recall that the A1=¯-
valued inner product is given by

C.R=¯Z/ÌZh�; �i.x;m/ D
X
n2Z

�.x � n¯/ � �.x � n¯ �m/; x 2 R=¯Z; m 2 Z:
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If we can find � 2 E¯ such that C.R=¯Z/ÌZh�; �i D 1, then the map � 7! h�; �iA¯
embeds E¯ in the trivial rank-one A¯-module, and the required projection is h�; �iA¯ .
We thus seek � such that X

n2Z

�.x � n¯/ � �.x � n¯ �m/ D ı0m

in Kronecker notation. In particular, � should have support contained within an interval,
e.g., Œ0; 1�, of length 1, for the outcome to be zero if m 6D 0. But this means that if ¯ > 1,
the function

P
n2Z �.x � n¯/

2 will have zeros. A necessary condition therefore to find
such p¯ is that 0 < ¯ < 1. For larger ¯, one must find a finite set �1; : : : ; �m of vectors
in E¯, and use them to embed E¯ in Am

¯
. One obtains projections p¯ in matrix algebras

over A¯. This makes the computation of curvature more complicated.
If 0 < ¯ < 1, then the problem can be solved: the ensuing projection is of the form

p¯ D f C guC g
�¯u�;

where f and g are suitably chosen functions. For a 2 .0; 1/ and � > 0 small, f equals
zero on Œ0; a� and on ŒaC ¯C �; 2��, and f D 1 on ŒaC �; aC ¯�. We choose f so that
f .x/C f .x C ¯/ D 1. We set g D

p
f � f 2 on ŒaC ¯; aC ¯C �� and zero otherwise.

The following calculation from [4] is reproduced below for the benefit of the reader.

Lemma 5.2. Let p¯ 2 A¯ D C.T / Ì¯ Z be the Rieffel projection. Then c1.p¯/ D C1.

Proof. For brevity, for f 2 C.T / understood as a Z-periodic function on R, let f ¯.x/ WD
f .x � ¯/ denote the action.

The Rieffel projection is given by p¯ D f C guC g�¯u� as above. We then have to
compute c1.e/ D 1

2�i
�.Œı1.p¯/; ı2.p¯/�/. We first compute

1

2�i
Œı1.p¯/; ı2.p¯/� D u

�.gf 0 � gf 0¯/C 2..gg0/�¯ � gg0/C .gf 0 � gf 0¯/u:

Multiplying this on the left by p¯ produces a terrific mess, but we are only interested in
its trace, so the only part that is relevant is

g2.f 0 � f 0¯/C 2f ..gg0/�¯ � gg0/C .g2.f 0 � f 0¯//�¯

which we want to integrate over T .
Set w D g2, v D f � f ¯. The integral is given byZ

wv0 C f .w0�¯ � w0/C .wv0/�¯:

The middle term isZ
f w0�¯ �

Z
f w0 D

Z
f ¯w0 �

Z
f w0 D �

Z
vw0:
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Hence we are reduced to computingZ
wv0 � vw0 C .wv0/�h D

Z
2wv0 � vw0 D 3

Z
wv0

by integration by parts. Next, since f ¯ D 1 � f on supp.g/, we can replace f 0 � f 0¯

by �2f 0 and get

�6

Z
f 0.f � f 2/ D �6

Z
f 0f C 6

Z
f 0f 2 D �3

Z
.f 2/0 C 2

Z
.f 3/0 D 3 � 2 D 1;

where the integration is understood to be restricted to the support of g. This completes the
calculation.

The first Chern class of any projection inA1
¯

is an integer, a fact related to the quantum
Hall effect (see [5]). This is due to agreement of the first Chern number with the index
pairing (an integer) of the projection and the Dirac–Dolbeault spectral cycle. This a con-
sequence of the local index formula of Connes and Moscovici, which we are going to
work out in the case of the Heisenberg cycles, but first state in low dimensions.

Theorem 5.3 (Connes–Moscovici, [6]). Let .H;�;D/ be an even, 2-dimensional spectral
triple over A1 � A, for a C �-algebra A, regular and with the meromorphic continuation
property over A1. Let ŒD� 2 KK0.A;C/ be the class of the triple. Let� WDD2, and let �
be the grading operator on H .

Define functionals

(a)  0WA
1 ! C,

 0.a/ WD RessD0 �.s/ � Trace.�a.�C projkerD/
�s/;

(b)  2WA
1 ˝ A1 ˝ A1 ! C,

 2.a
0; a1; a2/ WD

1

2
RessD1 Trace.�a0ŒD; a1�ŒD; a2���s/:

Then if e 2 A1 is a projection, then

hŒe�; ŒD�i D ‰0.e/ �‰2

�
e �

1

2
; e; e

�
;

where hŒe�; ŒD�i 2 Z is the pairing between the K0.A/ class Œe� and the KK0.A; C/
class ŒD�.

We are going to apply the local index formula to some examples of Heisenberg cycles.

Lemma 5.4. Let a 2 Cu.R/ Ì Rd � B.L2.R//, and assume that Trace.aH�s/ mero-
morphically extends to C. Then the function‰0.a/s WD �.s/ � Trace.�a.�C projkerD/

�s/

of Theorem 5.3 meromorphically extends to C, has a simple pole at s D 0 and

‰0.a/ WD RessD0‰0.a/s D 2RessD1 Trace.aH�s/ DW Res Trace.a/:
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Proof. We refer to Theorem 5.3. The Hilbert space for the Heisenberg triple is the direct
sum of two copies of L2.R/, and

D D

"
0 x � d

dx

x C d
dx

0

#
:

The kernel of D is the same as the kernel of x C d
dx

, and is spanned by the ground state
 0.x/ D �

�1=4e�x
2=2, and

� D

�
H � 1 0

0 H C 1

�
;

where H is the harmonic oscillator. Hence

�C projkerD D

�
H � 1C prkerD 0

0 H C 1

�
:

The first copy of the Hilbert space L2.R/ is even in the grading, the second is odd. Hence
we need to compute the residue at s D 0 of the difference

�.s/ � Trace.a.H � 1C prkerD/
�s/ � �.s/ � Trace.a � .H C 1/�s/ (5.1)

for a 2 A¯ D C.T / Ì¯ Z. By the Mellin transform, (5.1) equalsZ 1
0

t s�1 Trace.a.e�t.H�1CprkerD/ � e�t.HC1///dt

D

Z 1
0

t s�1 Trace.ae�tH .et.1�prkerD/ � e�t //dt:

Using et.1�prkerD/ � e�t D 2 sinh t C .1 � et /prkerD , we get

�.s/ � Trace.a.H � 1C prkerD/
�s/ � �.s/ � Trace.a.H C 1/�s/:

D

Z 1
0

t s�12 sinh t Trace.ae�tH /dt C
Z 1
0

t s�1.1 � et /Trace.ae�tHprkerD/dt

D 2

Z 1
0

t s�1 sinh t Trace.ae�tH /dt C ha 0;  0i
Z 1
0

t s�1.e�t � 1/:

The second term extends analytically to Re.s/ > �1 and hence is irrelevant for the pole at
s D 0.

As sinh t D t C 1
6
t3 C � � �, we haveZ 1

0

t s�1 sinh t Trace.ae�tH /dt

D

Z 1
0

t s Trace.ae�tH /dt C
1

6

Z 1
0

t sC3 Trace.ae�tH /dt C � � � :
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As a consequence of our earlier work, Trace.ae�tH / D O.1
t
/ as t ! 0. It follows that

2

Z 1
0

t s�1 sinh t Trace.ae�tH /dt � 2
Z 1
0

t s Trace.ae�tH /dt

D 2�.s C 1/Trace.aH�.sC1//

extends analytically to Re.s/ > �2. In particular, if one knows that Trace.aH�s/ mero-
morphically extends to C, then so does this term, and putting everything together gives

�.s/ � Trace.a.H � 1C prkerD/
�s/ � �.s/ � Trace.a � .H C 1/�s/

D 2RessD0

Z 1
0

t s Trace.ae�tH /dt D 2RessD1 Trace.aH�s/ D Res Trace.a/;

as claimed.

Lemma 5.5. Let a 2 Cu.R/ Ì Rd � B.L2.R//, and assume that Trace.aH�s/ mero-
morphically extends to C. Then the function

‰2.a
0; a1; a21/s WD Trace.�a0ŒD; a1�ŒD; a2���s/

meromorphically extends to C and

‰2.a
0; a1; a2/ WD

1

2
RessD1‰2.a0; a1; a2/s

D
1

2�i
Res Trace.a0ı1.a1/ı2.a2/ � a0ı2.a1/ı1.a2//:

Proof. Expanding ŒD; a1�ŒD; a2� as a block matrix

ŒD; a1�ŒD; a2� D

"
Œx � d

dx
; a1�Œx C d

dx
; a2� 0

0 Œx C d
dx
; a1�Œx � d

dx
; a2�

#
gives

RessD0‰2.a0; a1; a2/s D
1

2
Res Trace.�a0ŒD; a1�ŒD; a2���1/

D Res Trace
�
a0Œx; a1�

h d
dx
; a2

i�
� Res Trace

�
a0
h d
dx
; a1

i
Œx; a2�

�
:

Now Œx; a� D � 1
2�i
� ı2.a/ and Œ d

dx
; a� D ı1.a/. Hence

Res Trace
�
a0Œx; a1�

h d
dx
; a2

i�
� Res Trace

�
a0
h d
dx
; a1

i�
D

1

2�i
Res Trace.a0ı1.a1/ı2.a2/ � a0ı2.a1/ı1.a2//:
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Let B D C.M/ Ìƒ for a flow ˛ on a smooth compact manifold M , and ƒ � R be
a Diophantine subgroup. Let � be an ˛-invariant measure, let the vector field X generate
the flow, and assume that Xu D f is smoothly solvable for any smooth f such thatR
M
fd� D 0. Fix p 2M and let

� W C.M/ Ìƒ! B.L2.R//

be the corresponding representation, with �.f / D fp as a multiplication operator, where
fp.t/ D f .˛t .p//.

We have shown that B1 � B has the property that Trace.�.b/H�s/ has the mero-
morphic extension property for all b 2 B1 and that

2RessD1 Trace.�.b/H�s/ WD Res Trace.b/ D ��.b/;

where ��WB ! C is the trace induced by �, and b 2 B1.
Let ı˛1 , ı˛2 be the derivations of B1 defined by

ı˛1 .f / D X.f /; ı˛1 .U˛/ D 0; ı˛2 .f / D 0; ı˛2 .U˛/ D ˛:

We obtain the following assertion.

Corollary 5.6. In the above notation, the functional ‰2 of Theorem 5.3 (b) is given
on B1 by

‰2.b
0; b1; b2/ D ��.a

0ı˛1 .a
1/ı˛2 .a

2/ � a0ı˛2 .a
1/ı˛1 .a

2//

for all b0; b1; b2 2 B1.

Corollary 5.7. Let B D C.M/ Ìƒ for a smooth flow ˛ on a compact manifold M . Let
ƒ � R a Diophantine subgroup. Let � be an ˛-invariant measure, X generates the flow,
and assume that Xu D f is smoothly solvable for any smooth f such that

R
M
fd� D 0.

Then the Chern character of the Heisenberg cycle determined by a point p 2M is given
by �� � �˛2 , where �� is the trace on B determined by �, and �˛2 is the cyclic 2-cocycle

�˛2 .b
0; b1; b2/ D ��.b

0ı˛1 .b
1/ı˛2 .b

2/ � b0ı˛2 .b
1/ı˛1 .b

2//

on B1.

Corollary 5.8. Let ¯ 2 R and A¯ WD C.T / Ì¯ Z the corresponding rotation algebra.
Let ŒD¯� be the class of the Heisenberg cycle (Definition 2.7) 

L2.R/˚ L2.R/; �¯; D WD

"
0 x � d

dx

x C d
dx

0

#!
:

Then the Chern character of ŒD¯� is given by � � ¯�2, where

�2.a
0; a1; a2/ D �.a0ı1.a

1/ı2.a
2/ � a0ı2.a

1/ı1.a
2//

is the curvature cocycle of Connes.
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Corollary 5.9. Let e 2 A1
¯

be a projection, Œe� 2 K0.A¯/ its class. Then

hŒe�; ŒD¯�i D �.e/ � ¯c1.e/;

where c1.e/ is the first Chern number of e. In particular, if p¯ is the Rieffel projection
for A¯, then

hŒp¯�; ŒDh�i D �b¯c;

where b¯c is the greatest integer < ¯.

The proof is immediate from the formula of Corollary 5.8, because c1.p¯/ D 1 and
�.p¯/ D ¯ � b¯c.

This yields the proof of Proposition 2.12.
We close with a remark. The integrality of Connes’ first Chern number is due to the

index result that
hŒx@�; Œe�i D c1.e/;

where c1.e/ is the first Chern number of e. If one combines this with our index compu-
tation for ŒD¯�, then we obtain the following ‘gap-labelling’ result. It is of course well
known; but the argument which we give does not depend on computation of K0.A¯/.

Corollary 5.10. Suppose ¯ 2 R is non-zero. Then if � WA¯ ! C is the trace,

��W K0.A¯/! R

the induced group homomorphism, then the range of ��.K0.A¯// is the subgroup Z C
¯Z � R.

Proof. If e 2 A1
¯

is a projection, then application of our results above gives that �.e/C
¯ � c1.e/ is an integer. On the other hand, c1.e/ is an integer. This implies �.e/ D mC n¯
for a pair of integersm, n. Finally, A1

¯
is dense and holomorphically closed in A¯, so any

projection in A¯ is represented by a projection in A1
¯

.

6. Transverse foliations

There is a well-known procedure for producing finitely generated projective (f.g.p.) mod-
ules over A¯, using Morita equivalence. Fixing one of the standard linear loops in T2

determines a Morita equivalence of A¯ with the C �-algebra B¯ D C.T2/ Ì¯ R of the
Kronecker foliation F¯ into lines of slope ¯. On the other hand, any linear loop in T2 is
transverse to F¯. These linear loops, parameterized by pairs of relatively prime integers,
determine therefore Morita equivalences betweenA¯ and what turn out to be other rotation
algebras, and in particular, unital algebras. Hence they determine f.g.p. modules over A¯;
these parameterize (the positive part of) the K-theory.
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In [8], we showed that there is an analogue of this procedure using non-compact trans-
versals: if ¯0 6D ¯, then the Kronecker foliations F¯ and F¯0 are transverse. Their product
foliates T2 � T2 and its restriction to the diagonal gives an equivalent étale groupoid.
This reasoning produces for every ¯0 6D ¯ a f.g.p. module L¯;¯0 over A¯ ˝ A¯0 and cor-
responding K-theory class ŒL¯;¯0 � 2 KK0.C; A¯;˝A¯0/. In particular, fixing „0 D „ C b
for any integer b 6D 0 gives a f.g.p. module over A¯ ˝ A¯. We denote it by Lb .

Let
PDW KK0.C; A¯ ˝ A¯/! KK0.A¯; Ah/

be Connes’ Poincaré duality map [5]. In [8], it is proved that

PD.ŒLb�/ D �b; (6.1)

where �b is the Kasparov morphism defined in terms of Dirac–Schrödinger operators as
follows. We take the standard right Hilbert A¯-module L2.R/˝ A¯. We let Z act on the
left by the following formula, where we designate a dense set of elements of our Hilbert
module in the form

P
n2Z �n � Œn�, with �n 2 L2.R/˝ C.T /:

k �
�X
n2Z

�n � Œn�
�
WD

X
n2Z

k.�n/ � Œk C n�;

where
k.�/.Œx�; t/ D �.Œx � k¯�; t � k/; � 2 L2.R/˝ C.T /:

Let f 2 C.T / act by

f �
�X
n2Z

�n � Œn�
�
WD

X
n2Z

f b � �n � Œn�;

where
fb.t; Œx�/ D f .Œx C tb�/:

These two assignments determine a covariant pair and representation

�¯W A¯ ! B.L2.R/˝ A¯/:

Definition 6.1. The Heisenberg twist �b 2 KK0.A¯; Ah/ is the class of the spectral cycle

.L2.R/˝ A¯ ˚ L
2.R/˝ A¯; �h ˚ �h; D ˝ 1A¯/

with

D WD

"
0 x � d

dx

x C d
dx

0

#
:

Equality (6.1) gives rise to an explicit geometric cycle representing the unit in Connes’
duality [8]. The relationship between the Heisenberg twist and the Heisenberg cycles is
implied by the following lemma.
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Lemma 6.2. Let ¯; � 2 R.

(a) The group multiplication mWT � T ! T intertwines the diagonal Z-action on
T � T by group addition of .¯; �/ and group addition on T of ¯ C �, and so
determines a *-homomorphism

�W A¯C� ! A¯ ˝ A�:

In this notation,
��.ŒD¯�˝C ŒD��/ D ŒD¯C��:

(b) If � D b 2 Z, then
�b D ��.ŒDb�˝ 1A¯/;

where �b is the Heisenberg twist.

(c) �b ˝A¯ ŒD¯� D ŒD¯Cb� for any ¯ 2 R, b 2 Z.

Proof. For (c), we have

�b ˝A¯ ŒD¯� D �
�.ŒDb�˝ 1A¯/˝A¯ ŒD¯� D �

�.ŒDb�˝C ŒDh�/ D ŒDbC¯�

using first part (b) and then part (a).
Item (b) follows from an inspection at the level of cycles: they differ only in the rep-

resentations, which are clearly homotopic.
We now prove (a).
Consider ��.ŒD¯� ˝C ŒD��/, a class in KK.A�C�;C/. By the standard method of

computing external products, it is represented by the following spectral cycle. The Hilbert
space is L2.R;C2/ ˝ L2.R;C2/ and operator D ˝ 1 C 1 ˝ D. With u; v 2 A¯ the
standard unitary generators, u D z, v D Œ1�, the representation is given by

.u � �/.x; y/ D e2�i.xCy/�.x; y/; .v � �/.x; y/ D �.x � �; y � �/:

We apply a homotopy to the representation with t 2 Œ0; 1
2
�,

.�t .v/ � �/.x; y/ D �.x � .1 � t /� � t�; y � t� � .1 � t /�/:

The resulting cycle is .L2.R;C2/ ˝ L2.R;C2/; �; D ˝ 1 C 1 ˝ D/, where � is the
‘diagonal’ representation of A�C� ,

.u�/.x; y/ D e2�i.xCy/�.x; y/; .v�/.x; y/ D �
�
x �

� C �

2
; y �

� C �

2

�
:

Next consider the class ŒD¯C��. The unit 1C 2 KK.C;C/ can be represented by the
cycle .L2.R;C2/;1;D/. Taking the intersection product of this with ŒD�C�� yields a cycle
which is equivalent to ŒD�C��, but more closely resembles the cycle described in the
previous paragraph: the Hilbert space is L2.R;C2/ ˝ L2.R;C2/, the operator is D ˝
1C 1˝D, and the representation is given by

.u � �/.x; y/ D e2�ix�.x; y/; .v � �/.x; y/ D �.x � � � �; y/:
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From here, we take a homotopy by rotating this representation around R2 to lie along the
diagonal (i.e., so that .a � �/.x; y/ depends only on x C y), and the result follows.

By (b), the equation �b ˝A¯ ŒD¯� D ŒD¯Cb� follows immediately.

Corollary 6.3. The Heisenberg twist acts by the identity on K1.A¯/. With respect to the
ordered basis ¹Œ1�; Œp¯�º for K0.A¯/, where p¯ is the Rieffel projection, the morphism �b
acts by matrix multiplication by

�
1 b
0 1

�
.

Proof. The first statement follows from [8].
Consider .�b/�.Œph�/ 2 K0.A¯/. Write

.�b/�.Œph�/ D xŒ1�C yŒp¯�:

Pairing both sides with ŒDh� and using Corollary 5.9 twice gives

x D .�b/�.Œph�/˝A¯ ŒD¯� D Œp¯�˝A¯ .�
b/�.ŒDh�/ D Œp¯�˝A¯ ŒDhCb� D b:

Pairing the same equation with ŒD¯C1� and computing give that y D 1.

It follows from similar simple arguments that in the classical case, where ¯ D b 2 Z,
the Heisenberg classes ŒDb� 2 KK0.C.T2/;C/ D K0.T2/ are given by

ŒDb� D Œpt�C b � Œx@� 2 K0.T2/:

For b D 1, we have noted that ŒD1� D Œx@ � P �. This corresponds to Œx@ � P � D Œpt�C Œx@�,
which of course follows from the Riemann–Roch formula. We have

hŒDn�; ŒE�i D dimE C n � c1.E/

for any complex vector bundle E over T2. Therefore, the classes ŒDn� taken together
determine both the dimension and first Chern number, the two basic invariants of a com-
plex vector bundle over T2.
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