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Cartan subalgebras in von Neumann algebras associated
with graph product groups

Ionuţ Chifan and Srivatsav Kunnawalkam Elayavalli

Abstract. We completely classify the Cartan subalgebras in all von Neumann algebras associated
with graph product groups and their free ergodic measure preserving actions on probability spaces.

1. Introduction

Murray and von Neumann found a natural way to associate a crossed-product von Neu-
mann algebra, denoted by L1.X/ Ì � , to any measure preserving action � Õ X of
a countable group � on a probability space X [14]. When X consists of a singleton this
amounts to the group von Neumann algebra L.�/ [15]. The most interesting cases for
study is when L1.X/ Ì � and L.�/ are II1 factors which correspond to the situations
when � Õ X is a free, ergodic action and � has infinite non-trivial conjugacy classes
(abbrev. icc), respectively.

An important open problem regarding the structure of these algebras is to classify their
Cartan subalgebras for various natural choices of groups/actions. (Recall that A �M is
a Cartan subalgebra if it is a maximal abelian von Neumann subalgebra (abbrev. masa)
and its normalizer NM.A/ D ¹u 2 U.M/WuAu� D Aº generates the entire M, as a von
Neumann algebra.) Specifically, the main interest is to identify situations when these
algebras have no Cartan subalgebras or have a unique Cartan subalgebra, up to unitary
conjugacy. The first progress on this problem was made in [18] where Popa showed
the (non-separable) factors arising from the free group with uncountably many genera-
tors do not have Cartan subalgebras. Using his influential free entropy dimension theory,
Voiculescu was able to show that the free group factors with countably many generators do
not have Cartan subalgebras [24]. Over the last 15 years, we have witnessed an unprece-
dented progress towards this problem through the emergence of Popa deformation/rigidity
theory. Using this powerful conceptual framework, Ozawa and Popa discovered that the
free group factors are strongly solid (in particular, have no Cartan subalgebras) and all
crossed products L1.X/ Ì Fn arising from free ergodic profinite actions Fn Õ X with
n� 2 have unique Cartan subalgebra [16]. The breakthrough technology developed in this
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work laid out the foundations for a plethora of subsequent results regarding the study of
Cartan subalgebras in II1 factors, [6, 7, 13, 17, 21–23]—just to name a few. In particular,
the developments from [21] due to Popa and Vaes had a profound impact in the study of
normalizers of amenable von Neumann algebras and the entire program of classification
of von Neumann algebras arising from groups and their actions on probability spaces.

In this paper, we will investigate the aforementioned problems when � is a graph
product of non-trivial groups. These are natural generalizations of free products and direct
products and were introduced by Green in her Ph.D. thesis [11]. Their study has became
a trendy subject over the last decades in topology and geometric group theory with many
important results emerging in recent years. Important and well studied examples of such
groups are the right-angled Artin and Coxeter groups. General graph product groups have
been considered in the von Neumann algebras setting for the first time in [3] and several
structural results have been established for some of them [2–4,9]. In [2], Caspers was able
to isolate fairly general conditions on a graph that are sufficient to insure the corresponding
Coxeter group � gives rise to a von Neumann algebra L.�/ with no Cartan subalgebras.
The scope of this note is to broaden this study by providing necessary/sufficient condi-
tions on the graph product data � D G ¹�vº that will allow the classification of the Cartan
subalgebras in L.�/ and L1.X/ Ì � .

To properly introduce our results, we briefly recall the graph product group con-
struction. Let G D .V; E/ be a finite, simple (no self-loops or multiple edges) graph,
where V and E denote its vertices and edges sets, respectively. Let ¹�vºv2V be a fam-
ily of groups called vertex groups. The graph product group associated with this data,
denoted by G¹�vº, is the group generated by �v , v 2 V subject to the relations of the
groups �v along with the relations Œ�u; �v� D 1, whenever .u; v/ 2 E. Developing an
approach that combines deep results in Popa’s deformation/rigidity theory with various
geometric/algebraic aspects of graph product groups we are able to classify the Cartan
subalgebras for large classes of von Neumann algebras associated with graph product
groups. Specifically, using the classification of normalizers of amenable subalgebras in
amalgamated free product von Neumann algebras due to Ioana [13] (see also [23]) in
cooperation with the transitivity of intertwining virtual Cartan subalgebras from [6, 12]
and the structure of the parabolic subgroups of a graph product groups [1], we have the
following.

Theorem 1.1. Let � D G¹�vº be an icc graph product of groups where G does not admit
a de Rham join decomposition of the form GD G1 ı G2 ı � � � ı Gk so that for all 2 � i � k,
we have Gi D .¹vi ; wiº;;/ and �vi D �wi Š Z2. Then L.�/ has no Cartan subalgebra.

In particular, when the graph product does not contain elements of order two (i.e., non-
Coxeter type), we get a result which complements the results from [2].

Corollary 1.2. Let G D .V; E/ be any finite simple graph such that there exist v; w 2 V

satisfying .v; w/ … E. Assume that � D G.�v/ is any icc graph product group where
j�vj � 3 for all v 2 V. Then L.�/ has no Cartan subalgebra.
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In their groundbreaking work [21], Popa and Vaes discovered the first examples of
groups � that are C -rigid. This means that any free ergodic probability measure-preserving
(pmp) action � ÕX gives rise to a von Neumann algebra L1.X/Ì � whose “functions”
subalgebraL1.X/ is the unique Cartan subalgebra, up to unitary conjugacy. Remarkably,
their examples include all direct products of free groups � D Fn1 � Fn2 � � � � � Fnk , for
all ni � 2 and k � 1 as well as other examples of right-angled Artin groups. In this paper,
we are able to provide additional examples of C -rigid general graph products groups thus
complementing these results.

Theorem 1.3. Let � D G¹�vº be a graph product of groups so that the graph G does
not admit a non-trivial join decomposition G D H ı K, where either H D .¹vº; ;/ or
H D .¹v;wº;;/ with �v Š �w Š Z2. Let � Õ X be any free ergodic pmp action, and let
MDL1.X/Ì� be the corresponding group measure space von Neumann algebra. Then
for any Cartan subalgebra A �M, there is a unitary u 2M so that A D uL1.X/u�.

While the graph product conditions highlighted in the statement appear little more
restrictive than the ones presented in Theorem 1.1, they are in fact optimal. The reader
may consult to the remarks at the end of the paper for several counterexamples in this
direction which build on [16]. Hence, the results of this paper offer a complete solution to
Question 1.11 raised by the second author and Ding in [9].

2. Preliminaries

2.1. Graph products of groups

In this subsection, we briefly recall the notion of graph product of groups introduced
by Green [11] also highlighting some of its features that are relevant to this note. Let
G D .V; E/ be a finite simple graph, where V and E denote its vertices and edges sets,
respectively. Let ¹�vºv2V be a family of groups called vertex groups. The graph product
group associated with this data, denoted by G¹�v; v 2 Vº or simply G¹�vº, is the group
generated by �v , v 2 V with the only relations that Œ�u; �v� D 1, whenever .u; v/ 2 E.
Given any subset U � V, the subgroup �U D h�uWu 2 Ui of G¹�v; v 2 Vº is called a full
subgroup. This can be identified with the graph product GU¹�u; u 2 Uº corresponding
to the subgraph GU of G, spanned by the vertices of U. For every v 2 V, we denote
by lk.v/ the subset of vertices w ¤ v so that .w; v/ 2 E. Similarly, for every U � V,
we denote by lk.U/ D

T
u2U lk.u/. Also we make the convention that lk.;/ D V. Notice

that U \ lk.U/ D ;.
Graph product groups admit many amalgamated free product decompositions. One

such decomposition which is essential on deriving our main results, involves full sub-
groups factors in [11, Lemma 3.20] as follows. For any w 2 V, we have

G¹�vº D �Vn¹wº ��lk.w/ �st.w/;
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where st.w/D¹wº [ lk.w/. Notice that always �lk.w/ ˆ�st.w/ but it could be the case that
�lk.w/ D �Vn¹wº, when VD st.w/. In this case, the amalgam decomposition is degenerate.

If a graph .V;E/D G has two proper subgraphs .W;F/DH; .U;D/D K � G whose
vertices form a partition VDWtU and .v;w/ 2 E for all v 2W and w 2 U, then we say
that G admits a non-trivial join product decomposition G D H ıK. A graph G D .V; E/

is called irreducible if it does not admit any non-trivial join product decomposition. It is
well known that any graph G admits a (de Rham) join product decomposition G D G0 ı

G1 ı � � � ı Gk for k � 0, where G0 is a clique (i.e., a complete graph) and Gi � G for all
i � 1 are irreducible subgraphs with at least two vertices.

2.2. Popa’s intertwining-by-bimodules techniques

We next recall from [20, Theorem 2.1, Corollary 2.3] Popa’s intertwining-by-bimodules
technique. Let Q �M be a von Neumann subalgebra. The basic construction hM; eQi is
defined as the von Neumann subalgebra of B.L2.M// generated by M and the orthogonal
projection eQ from L2.M/ onto L2.Q/. There is a semifinite faithful trace on hM; eQi

given by Tr.xeQy/D �.xy/ for every x;y 2M. We denote byL2.hM; eQi/ the associated
Hilbert space and endow it with the natural M-bimodule structure.

Theorem 2.1 ([20]). Let .M; �/ be a tracial von Neumann algebra and P � pMp,
Q �M be von Neumann subalgebras. Then the following are equivalent:

(1) There exist projections p0 2 P , q0 2Q, a �-homomorphism � Wp0Pp0! q0Qq0
and a non-zero partial isometry v 2 q0Mp0 such that �.x/v D vx for all x 2
p0Pp0.

(2) There exists a non-zero element a 2 P 0 \ phM; eQip such that a � 0 and
Tr.a/ <1.

(3) There is no sequence un 2 U.P / satisfying kEQ.x
�uny/k2 ! 0 for all x; y 2

pM.

If one of these equivalent conditions holds, we write P �M Q and say that a corner of P

embeds into Q inside M. Moreover, if Pp0 �M Q for all projections 0¤p0 2P 0 \pMp,
then we write P �s

M
Q.

Next we recall a few intertwining results that will be used in the main proofs. The first
is a straightforward generalization of [5, Lemma 2], its proof being left to the reader.

Lemma 2.2 ([5]). Let ƒ; † 6 � be groups, let � Õ P be a trace preserving action
on a von Neumann algebra, and let M D P Ì � be the corresponding crossed product
von Neumann algebra. Then P Ì ƒ �M P Ì † if and only if there is g 2 � such that
Œƒ W ƒ \ g†g�1� <1.

The second is Popa’s conjugacy criterion for Cartan subalgebras [19, Theorem A.1].

Theorem 2.3 ([19]). Let M be a II1 factor and P ;Q � M be Cartan subalgebras.
If P �M Q, then there is u 2 U.M/ such that uPu� D Q.
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2.3. Relative amenability

Recall that the tracial von Neumann algebra .M; �/ is called amenable if there exists
a sequence �n 2L2.M/˝L2.M/ such that hx�n; �ni ! �.x/ and kx�n � �nxk2! 0, for
every x 2M. By Connes’ celebrated classification of injective factors [8], M is amenable
if and only if it is approximately finite-dimensional.

Let P � pMp and Q � M be a von Neumann subalgebras. Following [16, Sec-
tion 2.2], we say that P is amenable relative to Q inside M if there exists a sequence �n 2
L2.hM; eQi/ such that hx�n; �ni ! �.x/, for every x 2 pMp, and ky�n � �nyk2 ! 0,
for every y 2 P . When P DM one simply says that M is co-amenable relative to Q,
paralleling Eymard’s notion of co-amenability in group theory—a subgroup H of G is
co-amenable if there exists a left G-invariant state on `1.G=H/.

The following lemma is well known, but for convenience of the reader, we include
a short proof below.

Lemma 2.4. Let � D �1 �† �2 be a non-degenerate amalgamated free product such that
� is co-amenable relative to †. Then Œ�i W †� D 2 for all i D 1; 2.

Proof. Suppose that Œ�1 W †� � 3, and suppose ' is a non-trivial left �-invariant state on
`1.�=†/. Let Si denote the subset of elements in �=† whose normal form decomposi-
tion begins with �i=†. Clearly, we have '.�S1 C �S2/D 1. Moreover, since Œ� W �1�� 3,
there exists g1 ¤ g2 2 �=�1. Let �2=† 3 h¤ 1. Hence '.g1�S2 C g2�S2/� '.h�S1/�
'.�S2/, giving '.�S2/ D 0. Similarly, '.�S1/ D 0 which is a contradiction.

3. Proofs of the main results

The main technical result of the paper is the following intertwining result for virtual
Cartan subalgebras in crossed products by graph product groups. All other results are
derived from it. Its proof relies on the classification of normalizers of amenable subal-
gebras in amalgamated free products due to Ioana [13] and its more general version by
Vaes [23] together with a technique on transitivity of intertwining virtual Cartan subalge-
bras from [6, 12].

Theorem 3.1. Let � D G¹�vº be a graph product of groups, and let G Õ P be a trace
preserving action on a von Neumann algebra. Denote by M D P Ì � the corresponding
crossed product von Neumann algebra and let p 2M be a projection. Assume that A �

pMp is a masa such that its normalizer NpMp.A/
00 � pMp has finite index. Thus one

can find a subgraph G0 � G whose de Rham join product decomposition G0 D G1 ı G2 ı

� � � ı Gk satisfies Gi D .¹vi ; wiº; ;/ with �vi D �wi Š Z2 for all 2 � i � k such that
A �M P Ì �G0 .

Proof. Let .V0;E0/ D G0 � G be a subgraph such that jV0j is minimal with the property
that A �M P Ì �G0 DW N . Let G0 D G1 ı G2 ı � � � ı Gk be its de Rham decomposition
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where G1 is a clique of G0. Next we show all Gi with i � 2 have the properties listed in
the statement.

Since A is a masa, using [6, Proposition 3.6] there are projections 0 ¤ a 2 A, 0 ¤
e 2 N , a masa B � eN e, a projection 0¤ e0 2B 0 \ eMe and a unitary u 2M such that

the inclusion Q WD NeN e.B/
00
� eN e has finite index,

the support satisfies s.EN .e
0// D e and uAau� D Be0:

(3.1)

Fix i � 2 and let v 2 Vi such that �G0 admits a non-canonical decomposition �G0 D

�G0n¹vº ��lk.v/ �st.v/; in particular, we have that jlk.v/j � jV0j � 2. Using [13, 23], one of
the following cases must hold:

(i) B �N P Ì �lk.v/;

(ii) Q �N P Ì �G0n¹vº or P Ì �st.v/;

(iii) Q is amenable relative to P Ì �lk.v/ inside N .

Assume (i). Thus one can find a partial isometry 0¤ w 2 N with w�w 2B such that
wB � .P Ì Glk.v//w. Now we argue that we0 ¤ 0. If 0D we0, then 0D w�we0 and since
w 2N , we get 0Dw�wEN .e

0/. This however further implies that 0Dw�ws.EN .e
0//D

w�we D w�w, which is contradiction. Hence we have we0B D wBe0 � .P Ì Glk.v//we
0

and using the second part in (3.1), we getwuaA� .P Ì Glk.v//we
0u. In particular, A�M

P Ì �lk.v/ and since jlk.v/j � jV0j � 1, this contradicts the minimality of jV0j. Thus (i)
cannot hold.

Now assume Q �N P Ì �G0n¹vº. Using [10, Lemma 2.4 (3)], there is a projection
0 ¤ q 2 Q0 \ eN e such that Qq �s

N
P Ì �G0n¹vº. Part one in (3.1) implies that Qq �

qN q has finite index. Then combining this with [6, Lemma 2.2] and [10, Lemma 2.4 (1)],
we conclude that P Ì�G0 �N P Ì�G0n¹vº. By Lemma 2.2, it follows that �G0n¹vº 6 �G0

has finite index, which is a contradiction. To see this, pick t 2V0 n ¹vº such that .t; v/ … E.
Now for any g 2 �t n ¹1º and h 2 �v n ¹1º, one can see that .gh/k�V0n¹vº for all k � 2
are distinct co-sets in �V0 . If Q �N P Ì �st.v/, then in a similar manner one gets that
�st.v/ 6 �G0 has finite index which is again contradiction. Altogether these show (ii) can-
not hold either.

Assume (iii). Since Q � eN e has finite index, we have eN e is amenable relative
to Q inside N and thus by [16, Proposition 2.3], we get that eN e is amenable relative
to L.�lk.v//. This implies that �G0 is co-amenable relative to �lk.v/. Thus by Lemma 2.4,
we have G0 n st.v/ D ¹tº, �t ; �v Š Z2 and also lk.v/ D lkG0.t/. Thus, a fortiori we have
Gi D .¹v; tº;;/ which gives the desired conclusion.

Theorem 3.2. Let � D G¹�vº be a graph product of groups, and let G Õ P be a trace
preserving action on a von Neumann algebra. Assume the corresponding crossed product
M D P Ì � is a II1 factor, and let p 2 M be a projection. Assume that A � pMp is
a Cartan subalgebra. Then one can find a join decomposition G D G0 ıK, where G0 has
de Rham join product decomposition G0 D G1 ı G2 ı � � � ı Gk so that for all 2 � i � k, we
have Gi D .¹vi ; wiº;;/ and �vi D �wi Š Z2 which satisfies A �M P Ì �G0 .
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Proof. Let G D H0 ıH1 ı � � � ıHl be the de Rham join product decomposition of G,
and let Hi D .Vi ; Ei /. From Theorem 3.1, there is a subgraph G0 � G with de Rham
join product decomposition G0 D G1 ı G2 ı � � � ı Gk so that for all i � 2, we have Gi D

.¹vi ; wiº; ;/ and �vi D �wi Š Z2 which satisfies A �M P Ì �G0 . Denote by Wi D

¹vi ; wiº. Using [10, Lemma 2.4 (3)], we have

A �sM P Ì �G0 : (3.2)

Moreover, we can assume G0 is a subgraph with all the properties listed above and a min-
imal number of vertices jV0j. In particular, this implies that G0 cannot be represented as
a link G0 D lk.w/ of a vertex such that �w is a finite group.

Next let I1 t I2 t � � � t Is D¹1; : : : ;kº be a partition, and let ¹i1; i2; : : : ; itº� ¹0; : : : ; lº
be a subset such that ıj2IrGj �Hir is a subgraph for 1 � r � t . Here we have s � k and
t � l C 1. Notice that if i1 D 0, then necessarily I1 D ¹1º.

Let ir ¤ 0 and assume
S
j2Ir

Wj ¨ Vir . Since Gir is irreducible, there is v 2 Vir nS
j2Ir

Wj such that lkGir .v/ \ ıj2IrGj ¨ ıj2IrGj . In particular, we also have lk.v/ \
G0 ¨G0. We note that �G admits a non-canonical decomposition �GD�Gn¹vº ��lk.v/ �st.v/.
Using [13, 23] and [10, Lemma 2.4 (3)], one of the following cases must hold:

(i) A �s
M

P Ì Glk.v/;

(ii) pMp �s
M

P Ì �Gn¹vº or P Ì �st.v/;

(iii) pMp is co-amenable relative to P Ì �lk.v/.

Assume (i) holds. Combining it with (3.2) and using [10, Lemma 2.6], there is h 2 �
such that A �s P Ì .�lk.v/ \ h�G0h

�1/. By [1, Proposition 3.4], there exists S � lk.v/\
G0 ¨ G0 such that k�Sk

�1 D �lk.v/ \ h�G0h
�1 for some k 2 � and hence A �s P Ì �S.

However, the graph S has all the properties of G0 but it has a smaller number of vertices
thus contradicting the minimality of jV0j. So (i) cannot hold.

Assume (ii) holds. Then by Lemma 2.2, we have either Œ� W �Gn¹vº� < 1 or Œ� W
�st.v/� <1 which are impossible.

Assume (iii) holds. Therefore, � is amenable relative to �lk.v/, and by Lemma 2.4, we
have G n st.v/D ¹tº 2 ıj2IrHj , �t ; �v Š Z2 and thus GD ¹v; tº ı lk¹v; tº. We also have
that ¹v; tº � Vir , and since Gir is irreducible, we conclude that Gir D .¹v; tº;;/. But this
implies in particular that .¹tº;;/D ıj2IrHj and since �t Š Z2, this again contradicts the
minimality of jV0j. So this case is impossible as well.

In conclusion, for all ir ¤ 0, we have ıj2IrHj D Gir which gives the desired conclu-
sion.

Proof of Theorem 1.1. Assume by contradiction A � M D L.�/ is a Cartan subalge-
bra. According to Theorem 3.2, there is a decomposition G D G0 ı lk.G0/ with de Rham
join product decomposition G0 D G1 ı G2 ı � � � ı Gk so that for all 2 � i � k, we have
Gi D .Vi D¹vi ;wiº;;/ and �vi D�wi ŠZ2 which satisfies A�M L.�G0/. Passing to the
relative commutants intertwining, we get L.�lk.G0// � L.�G0/

0 \M �M A0 \M D A.
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Thus a corner of L.�lk.G0// is amenable which implies that �lk.G0/ is amenable, a contra-
diction.

Proof of Corollary 1.2. As G is not complete and j�vj � 3 for all v 2 V, then G does not
have a de Rham join decomposition of the form G D G1 ı G2 ı � � � ı Gk so that for all
2 � i � k, we have Gi D .¹vi ; wiº; ;/ and �vi D �wi Š Z2. The result follows from
Corollary 1.1.

Proof of Theorem 1.3. By Theorem 3.2, A �M L1.X/ and the conclusion follows from
Theorem 2.3.

Remark. Both graph conditions presented in the previous Theorem 1.3 are optimal. In
other words, for these graphs there are choices of the vertex groups for which the result
does not hold as stated.

To see this, let first G D ¹wº ı lk.w/ be a star-shaped graph. Using a result from [16],
we show that there is a graph product group G D G¹�vº D �w � �lk.w/ and a pmp action
G Õ X such that M D L1.X/ Ì G has at least two unitary non-conjugate Cartan sub-
algebras. Indeed, let �w D Z2 Ì SL2.Z/, and let �w Õ Y D lim

 �
.Yn/ be the free ergodic

profinite action as in [17, Theorem D]. Also let �lk.w/ Õ Z be any free ergodic pmp
action. Then consider the product action G D �w � �lk.w/ Õ Y �Z DW X . Then clearly
L1.X/ and L.Z2/ x̋ L1.Z/ are two Cartan subalgebras of M which are not unitarily
conjugated.

For the second situation, let G D .¹w; vº; ;/ ı lk.w; v/ and assume Gv D Gw Š Z2.
Thus we have a product decomposition of graph product group

G D G¹�vº D .Z2 � Z2/ � �lk.w/:

Since the infinite dihedral group ƒ D Z2 � Z2 is residually finite, there is a free ergodic
profinite pmp action ƒ Õ Y . Let �lk.w/ Õ Z be any free ergodic pmp action, and con-
sider the product action G D �w � �lk.w/ Õ Y � Z DW X . Next we view the infinite
dihedral group as a semidirect product group ƒ D Z Ì Z2 D ha; s j s2 D 1; sas D a�1i.
Then one can check that L1.X/ and L.hai/ x̋ L1.Z/ are two Cartan subalgebras of M

that are not unitarily conjugated. The only non-canonical part of this statement is to show
that L.hai/ x̋ L1.Z/ � M is a Cartan subalgebra. To see this, it suffices to show that
L.hai/ � L1.Y / Ì ƒ DW N is a Cartan subalgebra. Throughout the remainder of the
proof, let � D hai and first we show L.�/ is a masa. Let x 2 L.�/0 \ N . Hence
xug D ugx for all g 2 � and using the Fourier decomposition x D

P
h2ƒ xhuh, where

xh 2 L
1.Y /, we get

xghg�1 D �g.xh/ for all g 2 �; h 2 ƒ: (3.3)

Fix ats D h 2 ƒ n �, where t 2 Z. Thus for every g D ar , using the presenta-
tion of ƒ, we have ghg�1 D arCtsa�r D arCt�1sa�r�1 D � � � D sa�2r�t . In particular,
this implies that ¹ghg�1 j g 2 �º is infinite. Using (3.3), we get that xh D 0 for all
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h 2 ƒ n�. Now fix h 2 hai. Since � is abelian, then (3.3) implies that xh D �g.xh/,
and since � is free, we conclude that xh 2 C1 for all h 2 �. Altogether, these shows that
x D

P
h xhuh 2 L.�/ which give that L.�/ � N is a masa. Now we briefly argue it is

a Cartan subalgebra. Since ƒ Õ Y WD lim
 �
.Yn/ is profinite, we have an increasing union

of finite-dimensional, abelian,ƒ-invariant von Neumann algebras � � � �Bn WDL
1.Yn/�

BnC1 WDL
1.YnC1/� � � � �L

1.Y /with
S
n Bn

sot
D L1.Y /. Let BnD

L
1�i�kn

Cbni
for some � -orthonormal family ¹bni º � Bn and observe that for every h 2 �, we have
�h.b

n
i / D

P
j �

n
i;j .h/b

n
j , where �ni;j .h/ D h�g.b

n
i /; b

n
j i 2 C with j�ni;j .h/j � 1. This

clearly implies that L.�/bni �
Pkn
jD1 b

n
j L.�/ and bni L.�/ �

Pkn
jD1 L.�/b

n
j for all i .

In particular, for all i and all n we have bni 2 QNN .L.�//, the quasinormalizer of L.�/
in N [19, Section 1.4.2]. Thus

S
nBn�QNN .L.�// and henceL1.Y /�QNN .L.�//

00.
Since � is normal in ƒ, we further get L1.Y / Ì ƒ � QNN .L.�//

00 and hence N D

QNN .L.�//
00. However, since L.�/ � N is masa, by [19, Proposition 1.4.2], we have

QNN .L.�//
00 D NN .L.�//

00 and hence L.�/ � N is a Cartan subalgebra as claimed.
If one considers the star-shaped graphs excluded in the statement of Theorem 1.3, one

can still get a uniqueness of Cartan subalgebra result if stronger conditions are imposed
on the vertex groups. To properly introduce the result, we recall the following definition.

Following [21], a group � is called C -superrigid if the following property holds.
Given any � Õ P trace-preserving action and any projection p 2 P Ì � DM, any masa
A� pMp with finite index normalizer ŒpMp WNpMp.A/

00� <1must satisfy A �M P .
From [21,22], it follows that all free groups with at least two generators and, more gener-
ally, any non-elementary hyperbolic groups are C -superrigid.

Corollary 3.3. Let � D G¹�vº be any graph product where the vertex groups �v are
non-amenable C -superrigid, for all v. Then � is a C -superrigid group.

Proof. Letting GD .V;E/, we proceed by induction on jVj. When jVj D 1, the conclusion
follows from the definition. Thus it only remains to show the inductive step. If G is not star-
shaped, the result already follows from Theorem 3.2. Therefore, since the vertex groups
are infinite, we only have to treat the case GD¹vº ı lk.v/. Let � Õ P be any trace preserv-
ing action, and let 0¤p 2P Ì�DWM be any projection. Let A�pMp be a masa so that
ŒpMp W NpMp.A/

00� <1. Since � D �v � �lk.v/, we can view M D .P Ì �lk.v// Ì �v ,
and since �v is C -superrigid, we further get that A �M P Ì �lk.v/ DW N . As A � pMp

is a masa, using [6, Proposition 3.6] there are projections 0 ¤ a 2 A, 0 ¤ e 2 N , a masa
B � eN e, a projection 0 ¤ e0 2 B 0 \ eMe and a unitary u 2 M such that the inclu-
sion Q WD NeN e.B/

00 � eN e has finite index, and the support satisfies s.EN .e
0// D e

and uAau� D Be0. As jlk.v/j D jVj � 1, the inductive hypothesis implies that �lk.v/ is
C -superrigid. Thus the prior relation further implies that B �N P . Hence one can find
a partial isometry 0 ¤ w 2 N with w�w 2 B such that wB � Pw. Same argument
from the proof of Theorem 3.1 shows that we0 ¤ 0. Hence we0B D wBe0 � Pwe0 and
combining this with the previous containment, it yields wuaA � Pwe0u. In particular,
A �M P which concludes the proof of the inductive step.
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