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The mapping class group of a nonorientable surface is
quasi-isometrically embedded in the mapping class group

of the orientation double cover

Takuya Katayama and Erika Kuno

Abstract. Let N be a connected nonorientable surface with or without boundary and punctures,
and j W S ! N be the orientation double covering. It has previously been proved that j induces
an embedding �WMod.N / ,! Mod.S/ with one exception. In this paper, we prove that the injec-
tive homomorphism � is a quasi-isometric embedding. The proof is based on the semihyperbolicity
of Mod.S/, which has already been established. We also prove that the embedding Mod.F 0/ ,!
Mod.F / induced by an inclusion of a pair of possibly nonorientable surfaces F 0 � F is a quasi-
isometric embedding.

1. Introduction

Let S D Sbg;p be the connected orientable surface of genus g with b boundary components
and p punctures, and let N D N b

g;p be the connected nonorientable surface of genus g
with b boundary components and p punctures. In the case where b D 0 (resp. p D 0), we
drop the subscript b (resp. p) from Sbg;p and N b

g;p . For example, N 0
g;0 is simply denoted

by Ng . If we are not interested in whether a given surface is orientable or not, we denote
the surface by F . The mapping class group Mod.F / of F is the group of isotopy classes
of homeomorphisms of F which are orientation-preserving if F is orientable and pre-
serve @F pointwise. Recall that if H � G is a pair of finitely generated groups with word
metrics dH and dG (induced by finite generating sets), then the distortion of H in G is
defined as

ıGH .n/ WD max¹dH .1; h/ j h 2 H with dG.1; h/ � nº:

This function is independent of the choice of word metrics dH and dG up to Lipschitz
equivalence. In addition, there exists a constantK such that ıGH .n/�Kn if and only if the
inclusion H � G is a quasi-isometric embedding. The subgroup H is said to be undis-
torted (or quasi-isometrically embedded) in G if this condition is satisfied; otherwise, we
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say that H is distorted. The distortions of various subgroups in the mapping class groups
of orientable surfaces have been extensively investigated. For example, the mapping class
groups of subsurfaces are undistorted according to Masur–Minsky [15, Theorem 6.12] and
Hamenstädt [9, Proposition 4.1]. Farb–Lubotzky–Minsky [7] proved that groups gener-
ated by Dehn twists along disjoint curves are undistorted. Moreover, Rafi–Schleimer [18]
proved that an orbifold covering map of orientable surfaces induces a quasi-isometric
embedding between the mapping class groups. For examples of distorted subgroups of
mapping class groups, see Broaddus–Farb–Putman [4], Cohen [5], and Kuno–Omori [12],
where it is proved that the Torelli group 	bg is distorted in Mod.Sbg /. Moreover, it has been
proved by Hamenstädt–Hensel [10] that the handlebody group is exponentially distorted
in the mapping class group of the boundary surface.

The mapping class group of a nonorientable surface N b
g;p embeds in the mapping

class group of the orientation double cover S2bg�1;2p as the subgroup consisting of mapping
classes that commute with the action of the deck group (see Lemma 2.7). In this paper,
we prove Theorems 1.1 and 1.2 below by using the semihyperbolicity of the mapping class
group of orientable surfaces, independently established by Durham–Minsky–Sisto [6,
Corollary D] and Haettel–Hoda–Petyt [8, Corollary 3.11].

Theorem 1.1. For all but .g; p; b/D .2; 0; 0/, the embedding of the mapping class group
Mod.N b

g;p/ into the mapping class group of its orientation double cover Mod.S2bg�1;2p/ is
undistorted.

Theorem 1.2. The mapping class group of a connected nonorientable surface is semihy-
perbolic.

Let F be a connected (orientable or nonorientable) surface. We say that a subsurface
F 0 � F is admissible if F 0 is a closed subset of F . For an admissible subsurface F 0 � F ,
we have a natural homomorphism

Mod.F 0/! Mod.F /:

As is well known, Paris–Rolfsen in [17, Corollary 4.2] and Stukow in [19, Corollary 3.8]
proved that, if every connected component ofF � Int.F 0/ has a negative Euler characteris-
tic, then the homomorphism Mod.F 0/!Mod.F / is injective. Here, Int.F 0/ is the interior
of F 0. From the work of Masur–Minsky [15] and Hamenstädt’s unpublished paper [9], it
follows that the above injective homomorphism is undistorted when the underlying sur-
faces are orientable. We generalize this result as follows.

Theorem 1.3. LetF be a connected (orientable or nonorientable) surface andF 0 � F be
an admissible connected subsurface such that every connected component of F � Int.F 0/
has a negative Euler characteristic. Then, the embedding Mod.F 0/ ,! Mod.F / is undis-
torted.
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2. Preliminaries

In this section, we show that the centralizer of every element in the (extended) mapping
class group of an orientable surface is quasi-convex in the (extended) mapping class group
and introduce the result that orientation double covers induce embeddings of mapping
class groups. A quasi-geodesic, bounded, and equivariant bicombing � for a finitely gen-
erated groupG is called a semihyperbolic structure. We write �.1;g/ for the combing line
(discrete path) from the identity to the element g 2 G. For definitions of quasi-geodesic,
bounded and equivariant bicombing, see Alonso–Bridson [1] or the textbook [3] due to
Bridson–Haefliger. A finitely generated group is said to be semihyperbolic if it admits
a semihyperbolic structure.

Definition 2.1. Let G be a group with a semihyperbolic structure � . Then, a subgroup
H � G is said to be � -quasi-convex if there exists a constant k � 0 such that �.1; h/ is
contained in k-neighborhood of H for all h 2 H .

Note that a finite index subgroup of a group with a semihyperbolic structure � is � -
quasi-convex. This fact will be frequently used throughout this paper.

In a semihyperbolic group, every � -quasi-convex subgroup is undistorted and inherits
semihyperbolicity from the ambient group.

Lemma 2.2 ([1, Lemma 7.2 and Theorem 7.3]). Let G be a finitely generated group with
a semihyperbolic structure � and let H be a � -quasi-convex subgroup of G. Then, H is
finitely generated, semihyperbolic and undistorted in G.

Lemma 2.3 ([1, Corollary 7.6]). Let G be a finitely generated group with a semihyper-
bolic structure � . Then, the centralizer of any finite subset of G is � -quasi-convex.

A key ingredient of our proof for Theorem 1.1 is that the (extended) mapping class
groups of orientable hyperbolic surfaces are semihyperbolic.

Lemma 2.4 ([6, Corollary D], [8, Corollary 3.11]). For any orientable hyperbolic sur-
face S of finite type, the mapping class group Mod.S/ and the extended mapping class
group Mod˙.S/ of S are semihyperbolic. Here, Mod˙.S/ is the group consisting of the
isotopy classes of homeomorphisms on S that preserve @S pointwise.

Remark 2.5. We note that the mapping class groups of the orientable surfaces of non-
negative Euler characteristic are also semihyperbolic. There are seven orientable surfaces
of non-negative Euler characteristic, S0, S0;1, S10 , S0;2, S20 , S10;1, and S1. The mapping
class groups of these surfaces are virtually free, and so they are semihyperbolic. In these
cases, Mod˙.S/ is also virtually free, and thus semihyperbolic.

In conclusion, we have the following lemma.

Lemma 2.6. Let S be an orientable surface of finite type. The centralizer of any finite
subset of the (extended) mapping class group of S is undistorted and semihyperbolic.
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Let j WSg�1;2p ! Ng;p be the orientation double covering of a nonorientable surface
and J WSg�1;2p ! Sg�1;2p the deck transformation.

Lemma 2.7 ([2, Theorem 1], [23, Lemma 3], [13, Theorem 1.1]). For all but .g; p; b/ D
.1; 0; 0/; .2; 0; 0/, the orientation double covering j induces an injective homomorphism
�WMod.N b

g;p/ ,!Mod.S2bg�1;2p/. Moreover, the image of Mod.N b
g;p/ given by � consists of

the isotopy classes of orientation-preserving homeomorphisms of S2bg�1;2p that commute
with J .

Remark 2.8. Note that Mod.N2/ŠZ2˚Z2 is never embedded in Mod.S1/D SL.2;Z/,
because every finite subgroup of SL.2;Z/ is cyclic.

3. Quasi-isometrically embedded subsurface mapping class groups

In this section, we prove Theorems 1.1, 1.2 and 1.3. Theorem 1.3 can be reduced to the
following lemma.

Lemma 3.1. Let F be a connected orientable or nonorientable surface and F 0 � F be
an admissible connected subsurface. Suppose that every connected component of F �
Int.F 0/ has a negative Euler characteristic. Then, there exists a finite-index subgroup H
of Mod.F / such that the natural injection Mod.F 0/ \H ,! H is undistorted.

To prove Lemma 3.1, we prepare the following lemmas.

Lemma 3.2. Let F be a connected orientable or nonorientable surface of genus g with
b � 1 boundary components and p punctures. We assume that bCp � 4 if F is orientable
and g D 0. We also assume that g C b C p � 4 if F is nonorientable. Then, there exists
a pair ¹˛1; ˛2º of essential simple closed curves satisfying the following properties:

(1) If F is nonorientable, then the closed curves ˛1, ˛2 are two-sided.

(2) F � .Int.U.˛1// [ Int.U.˛2/// is a disjoint union of some copies of N 1
1 , S10 ,

S10;1, and S20 . Here, we denote the regular neighborhood of ˛i by U.˛i /, i D 1; 2.
Moreover, for every component A in F � .Int.U.˛1// [ Int.U.˛2/// which is
homeomorphic to S20 , it holds that @A \ @F ¤ ;.

Proof. Suppose that F is orientable. Then, the curve complex of F has infinite diame-
ter (see Masur–Minsky [14, Theorem 1.1]). In particular, it has diameter at least 3. This
implies that F has a pair ¹˛1; ˛2º of essential simple closed curves such that every com-
ponent of F � .Int.U.˛1// [ Int.U.˛2/// has no simple closed curve which is essential
in F . The pair satisfies condition (2) in Lemma 3.2. We can reduce the case where F is
nonorientable to the case where F is orientable by replacing punctures with crosscaps.
Then, the pair of closed curves satisfies condition (1).

Let F be a surface. A closed curve ˇ on F is called peripheral if ˇ is isotopic to a com-
ponent of @F . A two-sided closed curve ˛ on F is called generic if ˛ bounds neither a disk
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nor a Möbius strip and is not peripheral. Let T .F / denote the subgroup of Mod.F /, called
the twist subgroup, generated by Dehn twists along two-sided closed curves which are
either peripheral or generic on F . Note that T .F / is a finite-index subgroup of Mod.F /
(see Appendix A).

Lemma 3.3. We have the following:

(1) T .N 1
1;1/ Š Z, and its generator is a Dehn twist along a unique peripheral closed

curve.

(2) T .N 2
1 / Š Z2, and its generators are Dehn twists along peripheral closed curves.

(3) T .N 1
2 / Š Z2, and its generators are a Dehn twist along a unique peripheral

closed curve and a Dehn twist along a unique generic closed curve on N 1
2 .

Proof. According to [16, Proposition 17], Mod.N 1
1;1/ŠZ and is generated by a boundary

slide s. As the square of s is isotopic to a Dehn twist along a unique peripheral closed
curve on N 1

1;1, the twist subgroup T .N 1
1;1/ is generated by a Dehn twist. To obtain an

isomorphism Z2! T .N 2
1 /, we use the capping homomorphism Mod.N 2

1 /!Mod.N 1
1;1/

induced by gluingN 2
1 with a punctured disk along a boundary component C ofN 2

1 . Then,
the kernel of the capping homomorphism is generated by a Dehn twist along a closed curve
isotopic to C . Additionally, the image of a Dehn twist along a peripheral closed curve
onN 2

1 which is not isotopic to C is s2. Hence, T .N 2
1;0/ is freely generated by Dehn twists

along those peripheral closed curves. By [16, Propositions 22], we have Mod.N 1
2 / Š

Z Ì Z. In addition, the first copy of Z is generated by a Dehn twist along a unique generic
closed curve onN 1

2 , and the second copy is generated by a crosscap slide y. As the square
of y is isotopic to a Dehn twist along a peripheral closed curve on N 1

2;0, T .N 1
2 / is freely

generated by those Dehn twists.

The next lemma asserts that the mapping class group of any “essential" subsurface,
excepting a few examples, is virtually isomorphic to a direct factor of a � -quasi-convex
subgroup of the ambient mapping class group.

Lemma 3.4. Let F be a connected orientable or nonorientable surface and F 0 � F be
an admissible connected subsurface which is not an annulus. Suppose that Mod.F 0/ ¤ 1
and that every connected component of F � Int.F 0/ has a negative Euler characteristic.
Then, there exist mapping classes '1; : : : ; 'l 2 T .F / such that a finite-index subgroup ofTl
iD1ZT .F /.'i / is isomorphic to .Mod.F 0/ \ T .F // � Zr .

Here, ZT .F /.'i / is the centralizer of 'i in T .F /, and the free abelian rank r given in
Lemma 3.4 is equal to the sum of the number of boundary components of F which are
not contained in F 0 and the number of connected components of F � Int.F 0/ which are
homeomorphic to a one-holed Klein bottle.

Proof of Lemma 3.4. Let F1; : : : ; Fn be the connected components of F � IntF 0. We de-
note the genus of Fi , the number of boundary components of Fi , and the number of
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punctures of Fi by g.Fi /, b.Fi /, and p.Fi /, respectively. As the Euler characteristic of Fi
is negative, Fi satisfies exactly one of the following conditions:

(a) Fi is orientable and either g.Fi / � 1 or b.Fi /C p.Fi / � 4.

(b) Fi is orientable, g.Fi / D 0, and b.Fi /C p.Fi / D 3.

(c) Fi is nonorientable and g.Fi /C b.Fi /C p.Fi / � 4.

(d) Fi is nonorientable and g.Fi /C b.Fi /C p.Fi / D 3.

If Fi satisfies condition (a) or (c), we have a pair Pi of essential closed curves which
fills Fi in the sense of Lemma 3.2. We define a set of closed curves Ai to be a union of Pi
and the set of closed curves of Fi which are parallel to @F 0. In the case where Fi satisfies
condition (b) or (d), the set Ai is defined to be the set of closed curves of Fi which are
parallel to @F 0.

Set '˛ WD ŒT˛� for each ˛ 2 A WD
Sn
iD1Ai , and set

Bi WD

´
hŒTˇ � j ˇ 2 @F \ @Fi i if Fi 6Š N 1

2 ;

hŒT
 � j 
 is a two-sided generic closed curvei if Fi Š N 1
2 :

Note that Bi Š Z when Fi Š N 1
2 . Consider the subgroup .Mod.F 0/B1 � � �Bn/ \ T .F /

of T .F /. We first show that .Mod.F 0/B1 � � �Bn/ \ T .F / splits as a direct product. Pick
a component C of @Fi \ @F 0. As F 0 is not an annulus and Mod.F 0/ ¤ 1, F 0 has an
essential proper arc whose endpoints are contained in C . In addition, as the Euler charac-
teristic of Fi is negative, F 0i also has an essential proper arc whose endpoints are contained
in C . These facts imply that there exists a two-sided essential closed curve 
C in F such
that 
C intersects C non-trivially in minimal position and is disjoint from @Fi � ¹C º.
Moreover, when Fi Š N 1

2 , we can choose 
C to be disjoint from a unique two-sided
generic closed curve on Fi (see Figure 1). As all elements in Bi commute with ŒT
C �,
we have Mod.F 0/ \ Bi D 1. Therefore, .Mod.F 0/B1 � � � Bn/ \ T .F / D .Mod.F 0/ \
T .F //B1 � � �Bn Š .Mod.F 0/\ T .F //�Zr , where r is the sum of the free abelian ranks
of B1; : : : ; Bn and is equal to the sum of the number of boundary components of F which

C1 C2

Figure 1. This picture illustrates an example of an admissible embedding of F 0 DN 21 into F DN 15
in Lemma 3.4. The exterior of F 0 is a disjoint union of F1 D N 12 and F2 D S21 . The red curve is
a unique generic closed curve in F1, and the pair of blue curves is a surface filling pair of F2 in the
sense of Lemma 3.2. The green curves show 
Ci , where Ci is a component of @Fi \ @F 0.
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are not contained in F 0 and the number of connected components of F � IntF 0 which are
homeomorphic to N 1

2 . In addition, it is clear that

.Mod.F 0/B1 � � �Bn/ \ T .F / � \˛2AZT .F /.'˛/:

To simplify the notation, we denote
T
˛2AZT .F /.'˛/ (resp. .Mod.F 0/B1 � � �Bn/\ T .F /)

by Z (resp. L).
We now claim that L is a finite-index subgroup of Z. To see this, consider a subset �

ofZ realizing all possible reversing patterns on orientations of closed curves in A. If there
is no element of Z which reverses an orientation of a closed curve in A, we set � D ¹1º.
As A is finite, we can choose � to be finite. Pick an element f in Z. Then, f preserves
each closed curve in A, and so there exists an element s 2 � such that sf fixes an orienta-
tion of each closed curve in A. In the following, we prove that sf 2 L. This immediately
implies that L has finite index in Z. As sf fixes an orientation of each closed curve in A,
sf can be decomposed as a product of mapping classes of the regular neighborhood U.A/
of A and F � Int.U.A//. By Lemma 3.2, F � Int.U.A// is a disjoint union of F 0, outer
surfaces Fi satisfying condition (b) or (d), and some copies of S10 , S10;1, S20 , N 1

1 . Obvi-
ously, sf jF 0 is contained in Mod.F 0/. Additionally, if Fi satisfies condition (b) or (d),
we have that sf jFi is contained in Mod.F 0/Bi by Lemma 3.3 and the fact that Mod.Fi /
is an abelian group freely generated by Dehn twists along peripheral closed curves if Fi
satisfies condition (b). Note that the copies of S20 are in one-to-one correspondence with
the components of

Sn
iD1 @Fi . Hence, the restriction of sf to the copies of S10 , S10;1, S20 ,

and N 1
1 in F � Int.U.A// is contained in Mod.U.

Sn
iD1 @Fi // � Mod.F 0/B1 � � �Bn by

Alexander’s theorem and Epstein’s theorem [16, Proposition 5]. Therefore, we have that
sf jF�IntU.A/ 2 Mod.F 0/B1 � � �Bn. Furthermore, we can verify that sf jU.A/ is contained
in Mod.F 0/. To see this, we use the fact that sf and sf jF�IntU.A/ commute with all
of '˛ , ˛ 2 A. As sf jN.A/ D sf � .sf jF�IntU.A//

�1, the restriction sf jU.A/ also com-
mutes with all of '˛ , ˛ 2 A. If Fi satisfies condition (b) or (d), the restriction of sf jU.A/
to Fi is contained in Mod.F 0/, because Ai � F 0. If Fi satisfies condition (a) or (c), the
restriction of sf jU.A/ to Fi is contained in Mod.F 0/, because sf jU.A/ should be trivial
on the regular neighborhood of the filling pair Pi . Therefore, sf jU.A/ 2 Mod.F 0/, and so
sf 2 Mod.F 0/B1 � � �Bn. Since sf 2 T .F /, we have that sf 2 L, as desired.

Remark 3.5. Assume that F D S0;pC2 and F 0 D S10;p in Lemma 3.4. If p � 3, we
can conclude that the braid group on p-strands coincides with Z.ŒTˇ �/ in Mod.S0;pC2/
because � D ¹1º. Here, ˇ is a peripheral closed curve parallel to @F 0.

Let us prove Theorem 1.2.

Proof of Theorem 1.2. First, we treat the case where N has no boundary. The mapping
class groups Mod.N1/ D 1 and Mod.N2/ Š Z2 ˚ Z2 are obviously semihyperbolic.
If N 6D N1;N2, semihyperbolicity of Mod.N / comes from the fact that it is a finite-index
subgroup of the centralizer of ŒJ � in Mod˙.S/ (Lemma 2.6).
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Next, we treat the case where N has a boundary. We obtain the nonorientable sur-
face F without a boundary from N by attaching twice-punctured disks to the bound-
ary components of N . Then, Mod.F / admits a semihyperbolic structure � . According
to Lemma 3.4, there exist mapping classes '1; : : : ; 'l 2 T .F / such that a finite-index
subgroup of

Tl
iD1 ZT .F /.'i / is isomorphic to Mod.N / \ T .F /. Hence, we have the

sequence of subgroups

Mod.N / \ T .F / �

l\
iD1

ZT .F /.'i / � T .F / � Mod.F /:

Each term of the sequence is quasi-convex in the latter term with respect to any semihy-
perbolic structure for the latter term by Lemma 2.3, and therefore Mod.N / \ T .F / is
� -quasi-convex. As Mod.N / \ T .F / is a finite-index subgroup of Mod.N /, Mod.N / is
also � -quasi-convex. By Lemma 2.2 (2), Mod.N / is semihyperbolic.

Let us prove Lemma 3.1 by using Theorem 1.2.

Proof of Lemma 3.1. First, we consider the case where Mod.F 0/ D 1. In this case, Lem-
ma 3.1 is trivial.

Next, we consider the case where F 0 is an annulus. Then, Lemma 3.1 can be obtained
by using semihyperbolicity of Mod.F /, because any finitely generated abelian subgroup
is undistorted in a semihyperbolic group (see Bridson–Haefliger [3, Chapter III.� , Theo-
rem 4.10]).

We now consider the case where Mod.F 0/ ¤ 1 and F 0 is not an annulus. By Lem-
ma 3.4, there exist mapping classes '1; : : : ; 'l 2 T .F / and a non-negative number r
such that .Mod.F 0/\ T .F // �Zr is naturally embedded in

Tl
iD1ZT .F /.'i / as a finite-

index subgroup. Let � be a semihyperbolic structure of T .F /. As each direct factor is
quasi-convex in a given direct product, the subgroup Mod.F 0/\ T .F / is quasi-convex inTl
iD1 ZT .F /.'i /. Hence, Mod.F 0/ \ T .F / is � -quasi-convex. Thus, Mod.F 0/ \ T .F /

is undistorted in T .F /.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. First, we treat the case where N has no boundary. Assume that
N D Ng;p and .g; p/ is neither .1; 0/ nor .2; 0/. Set S D Sg�1;2p . Let �WMod.N / ,!
Mod.S/ be the injective homomorphism obtained in Lemma 2.7 and J WS ! S the deck
transformation. As J is orientation-reversing and has order 2, the centralizer Z.ŒJ �/ of
the mapping class in Mod˙.S/ splits as

Z.ŒJ �/ D I � hŒJ �i;

where I D Z.ŒJ �/ \Mod.S/ and hŒJ �i is cyclic of order 2. By Lemma 2.6, I � hŒJ �i
is undistorted in Mod˙.S/, and I is therefore undistorted in Mod.S/. From Lemma 2.7,
we have I D �.Mod.N //.
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Next, we treat the case where N has a boundary. We obtain the nonorientable sur-
face F without a boundary from N by attaching twice-punctured disks to the boundary
components ofN . Let S (resp. zF ) be the orientation double cover ofN (resp. F ). We have
the following commutative diagram whose homomorphisms are all injective:

Mod.S/ //

˚

Mod. zF /

Mod.N /

OO

// Mod.F /:

OO

By Theorem 1.3, Mod.N / is undistorted in Mod.F /. As F has no boundary, Mod.F / is
undistorted in Mod. zF /. Thus, Mod.N / is undistorted in Mod.S/.

Finally, we remark that for closed surfaces, hyperelliptic mapping class groups are also
undistorted subgroups because they are centralizers of certain elements in the mapping
class groups (see Stukow [21] for the definition of hyperelliptic mapping class groups of
closed nonorientable surfaces).

A. Appendix

In this appendix, we show that the twist subgroup of the mapping class group of a surface
has finite index. The twist subgroup coincides with the pure mapping class group (the
subgroup consisting of the elements fixing the punctures) when the underlying surface is
orientable. So we only have to show that the twist subgroup has finite index when the
underlying surface is nonorientable.

Proposition A.1. Let N be a connected nonorientable surface. Then T .N / is a finite
index subgroup of Mod.N /.

Proof. Our notation is based on [11, Section 4].
First, we assume thatN has no boundary. Let p1; : : : ;pn be the punctures ofN . T .F /

is obviously a normal subgroup of PMod.N /, because any conjugate of a Dehn twist is
a Dehn twist. So, it is enough to show that the quotient group PMod.N /=T .N / is a finite
group. Here, PMod.N / is the pure mapping class group of F .

Case where the genus of N is one. Let vi be a boundary slide of pi along a one-sided
simple closed curve ˇi given in [11, Section 4.1]. According to [11, Theorem 4.1], the pure
mapping class group PMod.N / is generated by v1; : : : ; vn. As v2i is a Dehn twist along
the boundary of the regular neighborhood of ˇi , we have v2i 2 T .N /. Besides, .vivj /2

is a Dehn twist along a generic closed curve bounding a one-holed Möbius strip M with
punctures pi and pj (see [11, Lemma 4.2]). Hence, we have vivjT .N / D v�1j v�1i T .N /,
and this set is in turn identical with vj viT .N /. Thus the quotient group PMod.N /=T .N /
is a finite abelian group.
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Case where the genus of N is two. Let y be a crosscap slide of N , vi be a boundary
slide of pi along ˇi and wi be a boundary slide of pi along 
i given in [11, Section 4.2].
By [11, Theorem 4.9], the quotient group PMod.N /=T .N / is generated by the equivalent
classes yT .N /, viT .N / and wiT .N /. Then y2 is a Dehn twist along a generic closed
curve c bounding a one-holed Klein bottle in N , and therefore y2 2 T .N /. Besides,
as in the case where the genus of N is one, v2i and w2i are both contained in T .N /.
It is easy to show that viwi is the product of Dehn twists along a pair of closed curves
separating an annulus with the puncture pi (see [16, Lemma 18]), and hence we have
viT .N / D wiT .N /. Moreover, as in the case where the genus of N is one, we have
vivjT .N / D vj viT .N /. So we only have to see that yT .N / commutes with viT .N /.
Korkmaz proved in [11, Figure 6] that the diffeomorphism t�1c yviyvi induces a diffeo-
morphism of a three-holed sphere which fixes the boundary of the sphere pointwise.
The mapping class group of a three-holed sphere is generated by Dehn twists, and so
yviyvi 2 T .N /. Thus, yT .N / commutes with viT .N / and PMod.N /=T .N / is finite
abelian.

Case where the genus of N is more than two can be treated similarly. The precise
index is given in [20, Corollary 6.4]. Hence, T .N / is a finite index subgroup of Mod.N /
if N has no boundary.

Next, we assume that N has a boundary. We obtain the nonorientable surface F with-
out a boundary from N by capping the boundary components of N with once-punctured
disks. Let p1; : : : ; pn be the punctures of F which are not contained in N . Then we have
the following exact sequence [22, (7.3)]:

1! Zn ! PMod.N /! PMod.F; ¹p1; : : : ; pnº/! 1;

where PMod.F; ¹p1; : : : ; pnº/ is the index 2n subgroup of PMod.F / preserving the local
orientation around the punctures p1; : : : ; pn. By restricting the above exact sequence to
the twist subgroup, we can see that the sequence

1! Zn ! T .N /! T .F /! 1

is also exact. As PMod.F /=T .F / is finite, so is PMod.F; ¹p1; : : : ; pnº/=T .F /. Thus,
PMod.N /=T .N / is a finite group.
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