
Groups Geom. Dyn. 18 (2024), 635–648
DOI 10.4171/GGD/773

© 2024 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

A local-global conjugacy question arising
from arithmetic dynamics

Vefa Goksel

Abstract. In his earlier work, the author introduced a group theory question that arises in the study
of iterated Galois groups of post-critically finite quadratic polynomials. In this paper, we prove the
first non-trivial results on this question.

1. Introduction

Let K be a field, and f 2 KŒx� a quadratic polynomial. We define the n-th iterate of f
inductively by setting f n.x/ D f .f n�1.x// for n � 1, where we make the convention
that f 0.x/D x. Suppose that all iterates of f are separable overK. Then f n-pre-images
of 0 form a complete binary rooted tree as follows: For each root of ˛ of f n�1, we draw
edges from ˛ to two roots ˇ1, ˇ2 of f n, where f .ˇ1/ D f .ˇ2/ D ˛. We will denote this
pre-image tree of f by T . We also let Tn be the subtree of the first n levels of T . The
absolute Galois group naturally acts on T , which gives a continuous homomorphism

�W Gal.Ksep=K/! Aut.T /:

This action on the binary rooted tree is the dynamical analog of the Galois action on the
`-power torsion points on an elliptic curve. For this reason, � is called an arboreal Galois
representation, which is a terminology introduced by Boston and Jones in 2007 [4].

If we letGn.f / be the Galois group of f n overK, these Galois groups give an inverse
system via the natural surjections GnC1.f /� Gn.f /. Letting G.f / WD lim

 �
Gn.f /,

we have im.�/ D G.f /. The question of describing this image as a subgroup of Aut.T /
is one major open question in arithmetic dynamics. There has been a lot of recent work on
this topic, see, for instance, [1, 3–6, 8–19, 22–26] for a limited list. Based on the existent
results, it is believed that G.f / should have finite index in Aut.T / for most quadratic
polynomials f . See [18, Conjecture 3.11] for a precise conjecture in this direction. How-
ever, similar to the fact that elliptic curves with complex multiplication are excluded in
Serre’s celebrated open image theorem, there are some well-known exceptional families
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of f for which G.f / has infinite index in Aut.T /. One such exceptional case is when f
is post-critically finite (see below for a definition).

A polynomial f is called post-critically finite (or PCF in short) if all its critical points
have finite orbits under iteration by f . The exact description of the profinite group G.f /
as a subgroup of Aut.T / when f is PCF is still mysterious in general, and partial results
are known only in some special cases. See, for instance, [1,2,4,5] on this topic. In [10], for
certain PCF quadratic polynomials f , the author used a Markov model to construct special
profinite subgroups M.f / of Aut.T / which conjecturally contain G.f /. If this contain-
ment can be established, the author believes that the groupsM.f / can be a good candidate
for a dynamical analog of Mumford–Tate groups in the classical theory of Galois represen-
tations for elliptic curves. The author gave some evidence indicating that a positive answer
to certain special cases of a purely group theoretic question will imply this containment.
In this paper, we will prove the first non-trivial results on this question.

Before we introduce the aforementioned group theory question, we first briefly give
some notation and definitions: The groups Aut.Tn/ form an inverse system via the natural
surjections �nWAut.Tn/� Aut.Tn�1/. We set Kn D Ker.�n/. It is well known that Kn
is an elementary abelian 2-group with rank 2n�1, i.e., we have Kn Š .Z=2Z/2

n�1
.

Definition 1.1. Let H; G � Aut.Tn/ be two subgroups of Aut.Tn/. We say that H is
elementwise Kn-conjugate into G if each element of H can be conjugated into G by an
element of Kn. We say that H is globally Kn-conjugate into G if H can be conjugated
into G by an element of Kn.

Definition 1.2. LetH;G � Aut.Tn/ be two subgroups of Aut.Tn/. We say that P .H;G/

holds if we have

H is elementwise Kn-conjugate into G , H is globally Kn-conjugate into G:

Definition 1.2 naturally raises the question that we will study.

Question 1.3. Let n � 1. For which subgroups H;G � Aut.Tn/ does P .H;G/ hold?

Question 1.3 seems difficult in general. It would also be perhaps interesting to note
that similar questions in the context of Lie groups already exist in the literature, which also
have applications to number theory, particularly to Langland’s global functoriality conjec-
ture. See, for instance, [7, 20, 21, 27–29]. Specifically, compare the question in [7, p. 99]
with Question 1.3.

Note that P .H;G/ trivially holds when H is a cyclic subgroup of Aut.Tn/. We now
state the first non-trivial result regarding Question 1.3.

Theorem 1.4. Let n� 1 andH;G�Aut.Tn/. Suppose that jH j D jGj andH\KnD¹idº.
Then P .H;G/ holds.

The proof of Theorem 1.4 requires one to use the iterated wreath product structure
of Aut.Tn/.
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The structure of the paper will be as follows. In Section 2, we will give some back-
ground and motivation for Question 1.3. In Section 3, we will present some preliminaries
from group theory. In Section 4, we will prove some auxiliary lemmas that will be crucial
in the proof of Theorem 1.4. We will prove Theorem 1.4 in Section 5. We will finish the
paper by stating a conjecture in Section 6.

2. Background and motivation

Let f 2 ZŒx� be a monic PCF quadratic polynomial. It is well known (and easy to prove)
that all such polynomials are conjugates of x2, x2 � 1 or x2 � 2 by the linear map
x ! x C a for a 2 Z. Let Gn.f / denote the Galois group of the n-th iterate of Q.i/,
where we choose the base field as Q.i/ for a technical reason, as explained in [10, Sec-
tion 2]. In [10], the author used the factorization data of iterates of f over finite fields
together with a Markov process to construct the Markov groups Mn.f /, and conjectured
that Gn.f / is contained in Mn.f / for n � 1. Moreover, the author made a connection
between Question 1.3 and this conjecture. Namely, the author gave an argument indicat-
ing that Gn.f / is elementwise Kn-conjugate into Mn.f / for all n. If this is true, then
establishing that P .Gn.f /;Mn.f // holds for all n will prove the conjecture above. Note
that groups Mn.f / are explicitly known, so this is a quite special case of Question 1.3.

To give an example of groups Mn.f /, let f WD .x C a/2 � a � 1 for some a 2 Z.
This family is particularly interesting because it does not come from endomorphisms of
algebraic groups. Recall that for n � 1, the permutations a1 D .1; 2/, a2 D .1; 3/.2; 4/,
. . ., an D .1; 2n�1C 1/.2; 2n�1C 2/ � � � .2n�1; 2n/ are the standard generators of Aut.Tn/.
Then, xn WD a1a2 � � �an 2 Aut.Tn/ acts transitively on the n-th level of the tree [10, Lem-
ma 3.3]. One can also think of xi for i < n as an element of Aut.Tn/, by using the
natural inclusion Aut.Ti / ,! Aut.Tn/. Finally, define m1 WD id 2 Aut.T1/, and mnC1 WD
x2nmnx

�1
n for n � 1. Then, if a ¤ ˙b2 for any b 2 Z, we have M1.f / D h.1; 2/i,

M2.f / D h.1; 3; 2; 4/; .1; 2/i, and Mn.f / is given by

Mn.f / D hxn; mn; x
2
n�1; x

2
n�2; : : : ; x

2
2i (1)

for n � 3. If a D ˙b2 for some b 2 Z, then Mn.f / is an explicit index-2 subgroup
of the group given in (1) (see [10, Corollary 6.28]). For n � 1, the author constructed
the groups Mn.f / inductively, by introducing the so-called Markov map, which can be
applied to above generators of Mn.f / to obtain generators of MnC1.f /. See [10, Sec-
tion 6] for more details.

It also follows from the work of the author in [10] that the parameters a used above
can be taken in Q, and the main results of [10] will still hold. The author conjectures that
the groups Mn.f /, the so-called Markov groups, exist for any PCF quadratic polynomial
over any number field, and that Gn.f / is always contained in Mn.f / for every n. This
conjecture is based on extensive MAGMA computations combined with the theoretic evi-
dence given in [10], and is an ongoing project of the author. The author believes that there
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is potentially a rich theory behind these Markov groups, which may eventually lead to
a dynamical analog of Mumford–Tate groups, as alluded to in the previous section.

3. Preliminaries

In this section, we will recall some standard facts from group theory that will be nec-
essary in the proof of Theorem 1.4. We set Wn D Aut.Tn/ for simplicity, which is the
notation that we will be using throughout the paper. It is well known that Wn is iso-
morphic to the n-fold wreath product of C2 (the cyclic group of order 2), which can be
inductively given by W1 Š C2 and Wn Š Wn�1 o C2 for n � 2. By definition, this allows
us to identify Wn with the semi-direct product F2

n�1

2 Ì Wn�1, where F2
n�1

2 stands for
the 2n�1-dimensional vector space defined over F2, the finite field with 2 elements. In this
semi-direct product,Wn�1 acts on F2

n�1

2 simply by permuting the coordinates. Concretely,
for v D .v1; : : : ; v2n�1/ 2 F2

n�1

2 and � 2 Wn�1, we have

�.v/ D .v��1.1/; : : : ; v��1.2n�1//:

Hence, throughout the article, we will think of the elements ofWn as pairs .v; s/, v2F2
n�1

2 ,
s 2 Wn�1. With this notation, if �1 D .v; s/; �2 D .w; t/ 2 Wn are two elements in Wn,
their product is given by

�1�2 D .v C s.w/; st/: (2)

If G WD ¹g1; : : : ; gkº � Wn, where gi D .vi ; si / for i D 1; : : : ; k, we will also often use
the identification

�n.G/ D ¹s1; : : : ; skº � Wn�1: (3)

By the iterated wreath product definition of Wn, it immediately follows that each Wn is
a 2-group for all n � 1, thus are all its subgroups. In fact, it is well known that Wn is
isomorphic to the Sylow 2-subgroup of Sym.2n/ for all n � 1, where Sym.2n/ stands for
the full symmetric group of degree 2n.

Recall that for a group X , the Frattini subgroup of X , denoted by ˆ.X/, is defined
as the intersection of all maximal subgroups of X . It is well known that for a 2-group X ,
ˆ.X/ is generated by squares and commutators, i.e., we have

ˆ.X/ D X2ŒX;X�: (4)

Finally, we introduce the following notation, which will be very convenient in calculations
throughout the paper.

Definition 3.1. Let � 2 Wn for some n � 1. We define the set Fix.�/ by

Fix.�/ D ¹v 2 F2
n

2 j �.v/ D vº:

Similarly, for G � Wn, we define the set Fix.G/ by

Fix.G/ D ¹v 2 F2
n�1

2 j �.v/ D v for all � 2 Gº:
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4. Auxiliary lemmas

In this section, we will prove several auxiliary lemmas that will be used in the proof of
Theorem 1.4.

Lemma 4.1. For n � 1, let H;G � Wn be two subgroups of Wn. Suppose that H is ele-
mentwise Kn-conjugate into G, jH j D jGj and H \Kn D ¹idº. Then G \Kn D ¹idº.

Proof. Let jH j D jGj D k. If H is `-generated, set H D hx1; x2; : : : ; x`i. Then we
can write H D ¹h1; h2; : : : ; hkº, where hi D wi .x1; x2; : : : ; x`/ for some word wi in
x1;x2; : : : ;x` for i D 1; : : : ;k. SinceH is elementwiseKn-conjugate intoG, xa11 ;x

a2
2 ; : : : ;

x
a`
`
2 G for some a1; a2; : : : ; a` 2 Kn. Note that

�n.wi .x1; x2; : : : ; x`// D �n.wi .x
a1
1 ; x

a2
2 ; : : : ; x

a`
`
//

since a1; : : : ; a` 2 Kn D Ker.�n/, hence

�n.wi .x
a1
1 ; x

a2
2 ; : : : ; x

a`
`
// ¤ �n.wj .x

a1
1 ; x

a2
2 ; : : : ; x

a`
`
//

for i ¤ j sinceH\KnD¹idº. This gives jGj � j�n.G/j � kD jGj, hence j�n.G/j D jGj,
which proves G \Kn D ¹idº, as desired.

Lemma 4.2. For n � 1, let H;G � Wn be two subgroups of Wn. Suppose that H is ele-
mentwise Kn-conjugate into G, jH j D jGj and H \Kn D ¹idº. Then for any H1 � H ,
there exists G1 � G such that jH1j D jG1j andH1 is elementwiseKn-conjugate into G1.

Proof. Let H1 D ¹h1; : : : ; hkº � H . Since H is elementwise Kn-conjugate into G, there
exist a1; : : : ; ak 2 Kn such that haii 2 G for i D 1; : : : ; k. We set G1 D hh

a1
1 ; : : : ; h

ak
k
i.

Clearly,H1 isKn-conjugate intoG1. We also claim that jH1j D jG1j. To see this, note that
by Lemma 4.1, G \Kn D ¹idº, hence G1 \Kn D ¹idº. Since a1; : : : ; ak 2 Kn, we have
�n.H1/D �n.G1/. Since we haveH1 \Kn DG1 \Kn D ¹idº, this immediately implies
jH1j D jG1j, as desired.

Lemma 4.3. For n � 1, let H; G � Wn be two non-cyclic subgroups of Wn such that
H \Kn D ¹idº, jH j D jGj, andH is elementwiseKn-conjugate into G. For two distinct
maximal subgroups H1; H2 E H , suppose that H a

1 ; H
b
2 � G for some a; b 2 Kn. Then

G D hH a
1 ;H

b
2 i.

Proof. Since H1 and H2 are distinct maximal subgroups of H , we clearly have H D
hH1;H2i. Note that since a;b 2Kn, we have �n.H/D�n.hH1;H2i/D�n.hH a

1 ;H
b
2 i/�

�n.G/. Since H \Kn D ¹idº and G \Kn D ¹idº (by Lemma 4.1), this gives

jH j D j�n.H/j D j�n.hH1;H2i/j D j�n.hH
a
1 ;H

b
2 i/j � j�n.G/j D jGj;

which, since jH j D jGj, implies that all quantities must be equal, and in particular

j�n.hH
a
1 ;H

b
2 i/j D j�n.G/j:
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Recalling that G \Kn D ¹idº (thus hH a
1 ;H

b
2 i \Kn D ¹idº), this gives hH a

1 ;H
b
2 i D G,

as desired.

In the following lemma and throughout the rest of the article, for any subgroupH �Wn
of Wn, CKn.H/ denotes the group of elements of Kn which commute with each ele-
ment of H . Similarly, for any x 2 Wn, CKn.x/ denotes the set of elements of Kn which
commute with x.

Lemma 4.4. For n � 1, let H; G � Wn be two non-cyclic subgroups of Wn such that
H \Kn D ¹idº, jH j D jGj, andH is elementwiseKn-conjugate into G. For two distinct
maximal subgroupsH1;H2 EH , suppose thatG D hH1;H a

2 i for some a 2Kn. ThenH
is globallyKn-conjugate intoG if and only if a 2CKn.H1/CKn.x/ for some x 2H2 nH1.

Proof. We first assume that a 2 CKn.H1/CKn.x/ for some x 2 H2 nH1. Write a D bc
for b 2 CKn.H1/, c 2 CKn.x/. Since H1 has index 2 in H , we have H D hH1; xi. Since
�n.x

a/ D �n.x/, this gives �n.H/ D �n.hH1; xai/. Since H \ Kn D G \ Kn D ¹idº
(by Lemma 4.1), this immediately implies that G D hH1; xai. We have

H b
D hH b

1 ; x
b
i D hH1; x

ac
i D hH1; x

a
i D G;

where we used the fact that Kn is an elementary abelian 2-group in second and third
equalities. This finishes the proof of one direction.

We now assume that H is globally Kn-conjugate into G, i.e., there exists b 2 Kn
such that H b D G (since jH j D jGj). Consider an arbitrary element x 2 H2 nH1. Note
thatH D hH1;H2i. Since G \Kn D ¹idº by Lemma 4.1, we immediately getH b

1 D H1
and H b

2 D H
a
2 , which, since H1 \ Kn D H2 \ Kn D ¹idº and a; b 2 Kn, implies that

b 2 CKn.H1/ and ab 2 CKn.H2/. This gives

a D b.ab/ 2 CKn.H1/CKn.H2/ � CKn.H1/CKn.x/;

as desired.

Lemma 4.5. For n � 1, let H; G � Wn be two non-cyclic subgroups of Wn such that
H \Kn D ¹idº, jH j D jGj, andH is elementwiseKn-conjugate into G. For two distinct
maximal subgroups H1; H2 E H , suppose that G D hH1; H a

2 i for some a 2 Kn. Then
a 2 CKn.ˆ.H//.

Proof. Take ˛ 2ˆ.H/. Since ˛ 2H1 \H2, we must have ˛;˛a 2 G. Note that �n.˛/D
�n.˛

a/. Since G \Kn D ¹idº by Lemma 4.1, this gives ˛ D ˛a, as desired.

Lemma 4.6. Let n � 1. For a 2 Kn, x 2 Wn, write a D .u; 1/, x D .v; s/ for some
u; v 2 F2

n�1

2 , s 2 Wn�1. Then a 2 CKn.x/, u 2 Fix.s/.

Proof. If we rewrite the equality xa D x using (2), we obtain

.u; 1/.v; s/.u; 1/ D .v; s/ , .uC v C s.u/; s/ D .v; s/:

This immediately gives s.u/ D u, as desired.
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Lemma 4.7. For n � 1, let H � Wn be a subgroup ofWn. Suppose that H \Kn D ¹idº.
Then �n.ˆ.H// D ˆ.�n.H//.

Proof. For any finite group G, let m.G/ denote the size of the minimal set of genera-
tors of G. Note that m.H/ D m.�n.H// because H and �n.H/ are isomorphic by the
assumption H \Kn D ¹idº.

For any finite 2-group G, by Burnside’s basis theorem, we haveˇ̌̌ G

ˆ.G/

ˇ̌̌
D
jGj

jˆ.G/j
D 2m.G/:

Therefore, from above, we have

jH j

jˆ.H/j
D
j�n.H/j

jˆ.�n.H//j
:

Since jH j D j�n.H/j by the assumption H \Kn D ¹idº, this gives

jˆ.�n.H//j D jˆ.H/j D j�n.ˆ.H//j; (5)

where we used the fact that ˆ.H/ \ Kn D ¹idº in the last equality. On the other hand,
considering the surjection �nWH � �n.H/, it is a well-known (and easy) exercise to
show that

�n.ˆ.H// � ˆ.�n.H//: (6)

We can now combine (5) and (6) to conclude that �n.ˆ.H//Dˆ.�n.H//, as desired.

Lemma 4.8. Let x; y 2 Wn, a; b 2 Kn. Suppose that x, y, a, b satisfy the equality

xya D .xy/b :

Setting x D .v; s/, y D .w; t/, a D .u; 1/ and b D .z; 1/, we have

s.u/C st.u/ D z C st.z/:

Proof. By direct computation using (2), we get

xya D .v; s/.uC w C t .u/; t/ D .v C s.u/C s.w/C st.u/; st/:

Similarly, we have
.xy/b D .z C v C s.w/C st.z/; st/:

If we set the expressions for xya and .xy/b equal to each other, we immediately get

s.u/C st.u/ D z C st.z/;

as desired.
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5. Proof of Theorem 1.4

We will start with the following proposition, which will be the key ingredient in the induc-
tive step in the proof of Theorem 1.4.

Proposition 5.1. Let X � Wn be a subgroup of Wn. Take ˛ 2 Wn n X and also set Y D
hX; ˛i � Wn. Suppose that a vector v D .v1; : : : ; v2n/ 2 F2

n

2 satisfies the following three
properties:

(a) vi C v˛.i/ D vˇ.i/ C vˇ˛.i/ for any ˇ 2 X and i 2 ¹1; : : : ; 2nº.

(b) vi D vj if Orb˛.i/ D Orb˛.j / and Orbˇ .i/ D Orbˇ .j / for some ˇ 2 X and
i; j 2 ¹1; : : : ; 2nº.

(c) v 2 Fix.ˆ.Y //.

Then v 2 Fix.˛/C Fix.X/.

Proof. We start by noting that, since v 2 Fix.ˆ.Y //, throughout the proof, we will feel
free to use v�.i/ instead of v��1.i/ for any � 2 Y because �.��1/�1 D �2 2 ˆ.Y / by (4).

If Y is cyclic, then we must have Y D h˛i since ˛ 62 X . In this case, since X � h˛i,
condition (b) becomes “vi D vj if Orb˛.i/ D Orb˛.j /” and we also get

Fix.˛/C Fix.X/ D Fix.X/:

Since any v satisfying (b) clearly lies in Fix.˛/ � Fix.X/, we are done.
We can now assume that Y is non-cyclic. Take a vector v 2 F2

n

2 that satisfies all three
conditions. Consider an arbitrary i 2 ¹1; : : : ; 2nº, and its orbit O.i/ WD OY .i/ under the
action of Y . By definition, for any j; j 0 2 O.i/, there exist �; � 0 2 Y such that

j D �.i/; j 0 D � 0.i/:

For any y 2 Y , let xy denote the image of y under the quotient map Y � Y=ˆ.Y /. Since v
satisfies condition (c), vj D vj 0 if x� D x� 0. Suppose that the group Y is .`C 1/-generated
for some ` � 1. Since ˛ 62 X , we can write Y D hˇ1; : : : ; ˇ`; ˛i for some ˇ1; : : : ; ˇ` 2 X
with X D hˇ1; : : : ; ˇ`i. By Burnside’s basis theorem, Y is a union of 2`C1 distinct cosets
of ˆ.Y /. More concretely, we can write Y as a disjoint union

Y D

� 2`[
iD1

Ai

�
[

� 2`[
iD1

˛Ai

�
;

where each Ai (hence ˛Ai ) is a coset ofˆ.Y /, and X D
S2`

iD1Ai . Fix the representatives
i1; : : : ; ik of distinct orbits of ¹1; : : : ; 2nº under the action of Y , i.e.,

k[
jD1

O.ij / D ¹1; : : : ; 2
n
º:
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Definition 5.2. Let v 2 F2
n

2 . We say PY .v/ holds if v satisfies the following condition:

• For any �; � 0 2 Y and j 2 ¹1; : : : ; kº, v�.ij / D v� 0.ij / D a
.t/
ij

for some a.t/ij 2 ¹0; 1º if

� 2 At , � 0 2 ˛At for some 1 � t � 2`.

We define the subspace VY � F2
n

2 by

VY D ¹u 2 F2
n

2 j PY .u/ holdsº:

The proof of Proposition 5.1 will now follow from the next claim.

Claim 5.3. There exists v0 2 VY such that v0 2 Fix.˛/ and v � v0 2 Fix.X/.

Proof. Any vector in VY already lies in Fix.˛/ by definition. Thus, to finish the proof,
we need to find v0 2 VY such that v � v0 2 Fix.X/.

For any �1; �2 2 Y , we have

�1�
�1
2 2 ˆ.Y / , �1; �2 2 At or �1; �2 2 ˛At for some t 2 ¹1; : : : ; 2`º:

Therefore, by definition, any v0 2 VY lies in Fix.ˆ.Y //. Since v 2 Fix.ˆ.Y // by assump-
tion, we conclude that v � v0 2 Fix.ˆ.Y //.

Also note that since X D
S2`

iD1Ai , for any �1; �2 2 Y , we have

�1�2
�1
2 X , �1 2 At ; �2 2 At 0 or �1 2 ˛At ; �2 2 ˛At 0 for some t; t 0 2 ¹1; : : : ; 2`º:

Thus, it follows that for any v0 2 VY , we have v � v0 2 Fix.X/ if and only if the following
two conditions are satisfied for j D 1; : : : ; k:

(1) .v � v0/�1.ij / D .v � v
0/�2.ij / if �1 2 Ai ; �2 2 Ai 0 for some i; i 0 2 ¹1; : : : ; 2`º.

(2) .v � v0/�3.ij / D .v � v
0/�4.ij / if �3 2 ˛Ai ; �4 2 ˛Ai 0 for some i; i 0 2 ¹1; : : : ; 2`º.

We will now show that a vector v0 2 VY that satisfies both conditions indeed exists.

Condition .1/: With the notation in Definition 5.2, condition (1) is equivalent to the
equality

v�1.ij / C v�2.ij / D a
.i/
ij
C a

.i 0/
ij

(7)

for some a.i/ij ; a
.i 0/
ij
2 ¹0; 1º. Note that if the variables a.i/ij ; a

.i 0/
ij
2 ¹0; 1º are independent,

then we can choose them so that (7) holds. If they are not independent, this gives us four
different cases.

Case 1. �1.ij / D �2.ij / for some �1 2 Ai , �2 2 Ai 0 . In this case, a.i/ij C a
.i 0/
ij
D 0 by

Definition 5.2. Recalling that v 2 Fix.ˆ.Y //, the left-hand side of (7) also vanishes since
v�1.ij / D v�1.ij / D v�2.ij / D v�2.ij /, where we used Definition 5.2 in the first and the third
equalities. Hence, (7) holds.

Case 2. �1.ij / D ˛�2.ij / for some �1 2 Ai and �2 2 Ai 0 . In this case, we have that
Orb˛.�1.ij // D Orb˛.�2.ij // and Orb�1.�2/�1.�1.ij // D Orb�1.�2/�1.�2.ij //. Thus, as
�1�

�1
2 2 X , condition (b) in Proposition 5.1 implies that v�1.ij / D v�2.ij /. Recalling that
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v 2 Fix.ˆ.Y //, and that �1��11 ; �2�
�1
2 2 ˆ.Y /, this immediately gives v�1.ij / D v�2.ij /

since v�1.ij / D v�1.ij / and v�2.ij / D v�2.ij /. Therefore, to show that (7) holds, it remains to
see that a.i/ij C a

.i 0/
ij

vanishes. But, this is immediate by Definition 5.2 and the condition
�1.ij / D ˛�2.ij /, hence we are done.

Case 3. ˛�1.ij / D ˛�2.ij / for some �1 2 Ai , �2 2 Ai 0 . Applying ˛�1 to both sides of
˛�1.ij / D ˛�2.ij /, we obtain case 1, hence the result follows from case 1.

Case 4. ˛�1.ij / D �2.ij / for some �1 2 Ai , �2 2 Ai 0 . Applying ˛�1 to both sides of
˛�1.ij /D �2.ij /, we obtain �1.ij /D ˛�1�2.ij /. By definition of Ai 0 , since ˛.˛�1/�1 D
˛2 2 ˆ.Y / by (4), there exists �3 2 Ai 0 such that ˛�1�2.ij / D ˛�3.ij /. This yields
�1.ij / D ˛�3.ij /, and the result now follows from case 2.

Condition .2/: This condition is clearly equivalent to the condition

.v � v0/˛�1.ij / D .v � v
0/˛�2.ij / if �1 2 Ai ; �2 2 Ai 0 for some i; i 0 2 ¹1; : : : ; 2`º: (8)

Applying ˛ to both sides of the equality in (8), we obtain

.v � v0/�1.ij / D .v � v
0/�2.ij /;

which is the same as condition (1). Hence, the proof follows from the first part. We have
covered all possible cases, hence we are done.

The proof of Proposition 5.1 now follows from Claim 5.3.

The following will be crucial in showing that certain vectors that will appear in the
proof of Theorem 1.4 do indeed satisfy the conditions given in Proposition 5.1, hence the
conclusion of Proposition 5.1.

Proposition 5.4. Let X � Wn be a subgroup of Wn. Take ˛ 2 Wn n X and also set Y D
hX; ˛i � Wn. Suppose that a vector v 2 F2

n

2 satisfies the following conditions:

(1) For any ˇ 2 X , there exists u.ˇ/ 2 Fix.ˆ.Y // such that

˛.v/C ˛ˇ.v/ D u.ˇ/ C ˛ˇ.u.ˇ//:

(2) v 2 Fix.ˆ.Y //.

Then we have v 2 Fix.˛/C Fix.X/.

Proof. To prove the proposition, it suffices to show that the vector v satisfies the condi-
tions (a) and (b) in Proposition 5.1. Note that we have the equality

˛.v/C ˛ˇ.v/ D u.ˇ/ C ˛ˇ.u.ˇ//: (9)

If we apply ˛ˇ to both sides of (9), since v; u.ˇ/ 2 Fix.ˆ.Y // and .˛ˇ/2; .˛ˇ˛/.ˇ/�1 2
ˆ.Y /, we obtain

v C ˇ.v/ D u.ˇ/ C ˛ˇ.u.ˇ//: (10)
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Adding (9) and (10) yields

v C ˇ.v/ D ˛.v/C ˛ˇ.v/: (11)

Comparing the coordinates of both sides in (11), we obtain

vi C vˇ�1.i/ D v˛�1.i/ C v.˛ˇ/�1.i/

for any i 2 ¹1; : : : ; 2nº. Recalling that v 2 Fix.ˆ.Y //, this can be rewritten as

vi C vˇ.i/ D v˛.i/ C v˛ˇ.i/

for any i 2 ¹1; : : : ; 2nº. Since this can be done for any ˇ 2 X , it follows that v satisfies
the condition (a) of Proposition 5.1.

It now remains to show that the vector v satisfies condition (b) of Proposition 5.1.
To that end, suppose that for some ˇ 2 X , Orb˛.i/ D Orb˛.j / and Orbˇ .i/ D Orbˇ .j /
for some i; j 2 ¹1; : : : ; 2nº. Write ˛a.i/ D ˇb.i/ D j for some a; b 2 N. If at least one
of a or b is even, then at least one of ˛a or ˇb lies in ˆ.Y / by (4), which immediately
gives that vi D vj since v 2 Fix.ˆ.Y //. Thus, we can assume without loss of generality
that a and b are both odd. By comparing coordinates of both sides in (10) and using the
fact that v; u.ˇ/ 2 Fix.ˆ.Y //, we have

vi C vˇ.i/ D u
.ˇ/
i C u

.ˇ/

˛ˇ.i/
: (12)

Since v 2 Fix.ˆ.Y //, and ˇb�1 2 ˆ.Y / by (4) (recall that b was odd), we have vˇ.i/ D
vˇb.i/ D vj , which, using (12), yields

vi C vj D u
.ˇ/
i C u

.ˇ/

˛ˇ.i/
: (13)

We also have ˛ˇ.i/ D ˛ˇ1�bˇb.i/ D ˛ˇ1�b.j /. Recalling that u.ˇ/ 2 Fix.ˆ.Y // and
that 1 � a and 1 � b are even, this gives

u
.ˇ/

˛ˇ.i/
D u

.ˇ/

˛ˇ1�b.j /
D u

.ˇ/

˛.j /
D u

.ˇ/

˛�a.j /
D u

.ˇ/
i :

Finally, putting this in (13), we obtain vi C vj D u
.ˇ/
i C u

.ˇ/
i D 0, hence vi D vj , as

desired.

We are finally ready to prove Theorem 1.4.

Proof of Theorem 1.4. We will use induction on jH j. Note that the statement trivially
holds for jH j D 1 and jH j D 2 since in those cases H is cyclic. We now assume that
the statement holds for jH j D 2k for some k � 1, and to finish the inductive step, we will
prove the statement for jH j D 2kC1. By the induction assumption and Lemma 4.2, if we
take any maximal ideal H1 E H , there exist G1 E G and a 2 Kn such that H a

1 D G1.
Thus, conjugating G by a if necessary, we can assume without loss of generality that
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H1 E G. Note that this also implies ˆ.H/ � G since ˆ.H/ is contained in H1. The
statement already holds if H is cyclic, so we can assume without loss of generality
that H is non-cyclic, which gives two distinct maximal subgroups H1; H2 of H with
H D hH1; H2i. By the induction assumption and Lemma 4.2, there exists b 2 Kn such
thatH b

2 E G. By Lemma 4.3, this yields G D hH1;H b
2 i. By Lemma 4.5, then, we obtain

b 2 CKn.ˆ.H//. To prove thatH andG are conjugate underKn, by Lemma 4.4, we need
to show that b 2 CKn.H1/CKn.x/ for some x 2 H2 nH1. Setting b D .u; 1/, x D .v; s/
for u; v 2 F2

n�1

2 , s 2 Wn�1, by Lemma 4.6, this is equivalent to showing that

u 2 Fix.�n.H1//C Fix.s/; (14)

where we used the identification given in (3) when writing Fix.�n.H//.
Fix some x2H2 nH1. For each hi2H1, if we consider a maximal subgroupH .i/EH

ofH that contains hix, by the induction assumption and Lemma 4.2, there exists ci 2 Kn
such that .H .i//ci is a maximal subgroup of G. Since G \ Kn D ¹idº (by Lemma 4.1),
ˆ.H/ �H1 � G andˆ.H/ci � .H .i//ci � G, this immediately givesˆ.H/D ˆ.H/ci ,
i.e., ci 2 CKn.ˆ.H//. Recall that H b

2 � G, thus xb 2 G. Since both .hix/ci and hixb lie
in G, �n.hixb/ D �n..hix/ci /, and G \Kn D ¹idº, we obtain

hix
b
D .hix/

ci (15)

for i D 1; : : : ; jH1j D 2k . Setting hi D .wi ; ti /, ci D .zi ; 1/ (and recalling x D .v; s/,
b D .u; 1/), using Lemma 4.8, (15) yields

ti .u/C tis.u/ D zi C tis.zi / (16)

for i D 1; : : : ; 2k . Recall from above that ci 2 CKn.ˆ.H//, i.e., by Lemma 4.6,

zi 2 Fix.�n.ˆ.H/// D Fix.ˆ.�n.H///;

where we used Lemma 4.7 in the last equality. Also recall from the first part of the
proof that b 2 CKn.ˆ.H//, i.e., by Lemma 4.6, u 2 Fix.ˆ.�n.H///. If we now take
X D ht1; : : : ; t2k i, Y D �n.H/, ˛ D s, v D u in Proposition 5.4, recalling (16), the vec-
tor u satisfies both conditions in Proposition 5.4. It immediately follows that

u 2 Fix.ht1; : : : ; t2k i/C Fix.s/ D Fix.�n.H1//C Fix.s/;

which completes the proof of Theorem 1.4 by (14).

6. A conjecture

We close the paper by a conjecture based on extensive MAGMA computations.

Conjecture 6.1. For n � 1, let H � Wn be a subgroup of Wn. Suppose that H contains
a permutation � 2 Wn that acts transitively on ¹1; : : : ; 2nº. Then P .H;G/ holds for any
subgroup G � Wn.
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The author’s interest in Conjecture 6.1 comes from the following: It has the poten-
tial of being particularly useful for the number theory application mentioned in Section 2,
because for most polynomials f , for n� 1, the groupGn.f / does contain an element that
acts transitively on ¹1; : : : ; 2nº. Thus, in such cases, Conjecture 6.1 will imply that a con-
jugate of Gn.f / is contained in Mn.f / as long as Gn.f / is elementwise Kn-conjugate
into Mn.f /.
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