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Graphs of curves and arcs quasi-isometric to big mapping
class groups

Anschel Schaffer-Cohen

Abstract. Following the works of Rosendal and Mann and Rafi, we try to answer the following
question: when is the mapping class group of an infinite-type surface quasi-isometric to a graph
whose vertices are curves on that surface? With the assumption of tameness as defined by Mann
and Rafi, we describe a necessary and sufficient condition, called translatability, for a geometrically
non-trivial big mapping class group to admit such a quasi-isometry. In addition, we show that the
mapping class group of the plane minus a Cantor set is quasi-isometric to the loop graph defined by
Bavard, which we believe represents the first known example of a hyperbolic mapping class group
that is not virtually free.

1. Introduction

For our purposes, a surface is a connected, oriented 2-manifold without boundary. A sur-
face is said to have finite type if it is homeomorphic to a compact surface minus a finite set
of points, or equivalently if its fundamental group is finitely generated. All other surfaces
are said to have infinite type. The mapping class group of a surface †, which we write as
MCG.†/, is the group of orientation-preserving homeomorphisms of † considered up to
isotopy, sometimes written HomeoC.†/=Homeo0.†/ or �0.HomeoC.†//. When † has
infinite type, we call MCG.†/ big to distinguish it from the better-studied mapping class
groups of finite-type surfaces.

One of the primary goals of geometric group theory is to study a group via its actions
on metric spaces. In the case of a finitely generated group, the word metric on the group
gives a coarse upper bound on the displacement of a point under any action of the group
on a metric space. If in addition the action is geometric, the word metric on the group also
gives a coarse lower bound on the displacement, making the orbit map a quasi-isometric
embedding; the addition of coarse transitivity makes the orbit map a true quasi-isometry.

Even without a quasi-isometry, it is often possible to extract data about the geometry
of the group from the geometry of the space on which it acts. Most famously in the case
of mapping class groups, Masur and Minsky [11] gave estimates for the word length of
a mapping class based on its action on a sequence of curve graphs.
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In the case of big mapping class groups, this classical approach cannot be directly
applied, because they are not finitely generated—indeed, they are uncountable. Big map-
ping class groups do, however, have a non-trivial topology inherited from HomeoC.†/,
so if we restrict our attention to continuous actions on metric spaces some of the old tools
become available in a new light. Rosendal [14] provides the framework for this viewpoint
in the context of general topological groups, using the notion of coarse boundedness,
which generalizes the concept of finiteness from the discrete case—see Definition 2.1.
For instance, instead of studying discrete groups that admit a finite generating set, we can
study groups that admit a coarsely bounded neighborhood of the identity and a coarsely
bounded generating set. Crucially, Fact 2.3 below gives us a well-defined quasi-isometry
class for such a group.

A recent paper of Mann and Rafi [10] provides a thorough application of this idea to
the area of big mapping class groups. In particular, the paper provides (under the technical
condition of tameness—see Definition 2.15) a classification of which infinite-type surfaces
admit coarsely bounded identity neighborhoods and generating sets; these generating sets
are given explicitly. A natural question then follows: given such a big mapping class group,
which thus has a well-defined quasi-isometry type, is there a “nice” metric space to which
it is quasi-isometric?

There is one obvious candidate: the Cayley graph of the group, with respect to the
generating set found by Mann and Rafi. This graph is simplicial, and is by construction
quasi-isometric to the group, but it has two significant drawbacks. First, it has uncountably
many vertices, which might limit the application of some combinatorial methods. Second,
its a posteriori definition makes it unlikely to produce insights not available by direct
examination of the group itself.

Instead, we turn to the wealth of already-defined simplicial graphs that admit a con-
tinuous action of a big mapping class group. Examples include Bavard’s loop graph [3],
Rasmussen’s nonseparating curve graph [12], the graphs of separating curves defined by
Durham, Fanoni, and Vlamis [6], and the general curve and arc graphs defined by Ara-
mayona, Fossas, and Parlier [2].1 It should be noted that each of these graphs has as its
vertices isotopy classes of some of the arcs or curves of the surface, and that actions on
such a graph are always continuous. This lets us narrow our focus still further: given a big
mapping class group with a well-defined quasi-isometry type, is there a simplicial graph
whose vertices are arcs or curves on the underlying surface, such that the action of the
group on the graph induces a quasi-isometry?

For graphs of curves, we come to a very satisfying conclusion: we define a class of
translatable surfaces—essentially, surfaces admitting a map that acts with north-south
dynamics with respect to two distinct ends (see Definition 3.2)—and an associated trans-
latable curve graph, and show that the mapping class group of a translatable surface is

1Fanoni, Ghaswala, and McLeay [7] give an interesting action of a big mapping class group on the
graph of omnipresent arcs, but this action is not continuous when the graph is given the topology of a sim-
plicial complex.
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quasi-isometric to its translatable curve graph. What is more, we show that non-trans-
latable surfaces do not admit such a graph of curves, except when that graph has finite
diameter.

Definition 1.1. A graph whose vertices are curves on a surface † is a simplicial graph
whose vertex set V is a subset of the set of isotopy classes of simple closed curves on †.
If MCG.†/ preserves both the set V and the edge relation on the graph, we call the
resulting group action the action of MCG.†/ on the graph. Note that such an action is
always continuous.

In this paper, we prove the following.

Theorem 5.3. Let † be an infinite-type surface with tame end space such that MCG.†/
admits a coarsely bounded neighborhood of the identity and a coarsely bounded gen-
erating set—and thus has a well-defined quasi-isometry type—but is not itself coarsely
bounded. Then the following are equivalent:

(1) There exists a graph � whose vertices are curves, with the action of MCG.†/
on � defined and inducing a quasi-isometry.

(2) † is translatable.

(3) † has no nondisplaceable finite-type surfaces, making it an avenue surface in the
sense of Horbez, Qing, and Rafi [9].

We do not attempt in this paper to study the geometry of the translatable curve graph,
although we hope this will be a fruitful avenue for further research. One property is
however immediate: by the results of Horbez, Qing, and Rafi [9], the translatable curve
graph—and thus the mapping class group of a translatable surface—cannot be non-ele-
mentary ı-hyperbolic.

In the case of graphs of arcs, we have not found such a general classification, but we
exhibit one particularly striking quasi-isometry. Note that this surface is not translatable.

Theorem 6.5. Let†D R2 n C be the plane minus a Cantor set. Then MCG.†/ is quasi-
isometric to the loop graph L.†/.

Though less general than the previous result, this quasi-isometry is of interest because
the loop graph is already well studied; for instance, the hyperbolicity of the loop graph
was demonstrated by Bavard [3], and thus MCG.†/ is also hyperbolic; see Corollary 6.6.
The Gromov boundary of this graph was also described by Bavard and Walker [4].

This is, to our knowledge, the first case of a big mapping class group being shown to
be non-elementary ı-hyperbolic. By extension, it is also the first case in which two big
mapping class groups have been shown to have distinct, non-trivial quasi-isometry types;
see Corollary 6.7. Finally, it follows from Corollary 6.6 and work of Cornulier and de la
Harpe that MCG.†/ has a coarsely bounded presentation; see Corollary 6.10.

Before getting to the meat of the paper, we introduce an important motivating example
and preview some of the techniques that will be used.
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Figure 1. Jacob’s ladder surface.

Figure 2. The bi-infinite flute.

Durham, Fanoni, and Vlamis [6], studying Jacob’s ladder surface (which has two ends,
both accumulated by genus—see Figure 1), present the following subgraph of the curve
graph of that surface: its vertices are curves separating the two ends, with an edge between
two such curves if they cobound a genus-one subsurface. The main immediate application
of this graph results from the fact that, unlike the full curve graph of an infinite-type sur-
face, it has infinite diameter. In particular, a translation acts on this graph with unbounded
orbits, which provides an easy proof that the mapping class group of this surface is not
coarsely bounded.

An early version of Vlamis’s notes on the topology of big mapping class groups [15]
claimed that this graph is quasi-isometric to the mapping class group of Jacob’s ladder
surface. Vlamis’s proof was incomplete—it showed only that the vertex stabilizers are
coarsely bounded, which is not sufficient to conclude quasi-isometry—but it provided
significant inspiration for the results which eventually became Theorem 4.9.

First, this graph could in fact be shown to be quasi-isometric to the mapping class
group, although it would take some additional effort. Second, the class of surfaces for
which such a graph might be built could be expanded significantly beyond Jacob’s ladder
surface. The properties of Durham, Fanoni, and Vlamis’s graph depended largely on the
translatable nature of Jacob’s ladder surface, rather than the details of the translation itself.
Other surfaces admitting a similar kind of translation include the bi-infinite flute (see
Figure 2) and more complicated surfaces that might be built by joining many copies of
a single surface as in Figure 3. By modifying the construction of Durham, Fanoni, and
Vlamis [6], we are able to produce a general translatable curve graph T C.†/ which is
quasi-isometric to the mapping class group MCG.†/; this is Theorem 4.9.

One obvious follow-up question, given this quasi-isometry, is whether other such
graphs can be produced. For instance, are there other cases where a big mapping class
group is quasi-isometric to a graph whose vertices are curves? What if the vertices are
arcs? Theorem 5.3 answers the first question; Theorem 6.5 is a partial answer to the
second.
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Figure 3. On the left, a surface S with two boundary components (in this case, the connected sum
of an annulus, a Loch Ness Monster, and a Cantor tree). On the right, the translatable surface S\Z.

The structure of the rest of this paper is as follows. In Section 2, we recall relevant
results from previous papers [10, 13, 14] that are used in this work, with the goal of
making our work accessible to anyone with some knowledge of geometric group theory
and low-dimensional topology, but who may not have worked previously with infinite-
type surfaces or with the concept of coarse boundedness. Section 2 also presents and
proves Lemma 2.5, which is a limited version of the Schwarz–Milnor lemma for the
case of groups with coarsely bounded neighborhoods of the identity acting transitively
on graphs.

In Section 3, we define translatable surfaces and prove some of their properties, most
notably Proposition 3.5, which shows that every translatable surface can be written as an
infinite connected sum of copies of some subsurface S as in Figure 3.

In Section 4, we define the translatable curve graph itself and prove the quasi-isometry
to the mapping class group in Theorem 4.9. The main tools are a study of the maximal
ends of the subsurface S found in Proposition 3.5, and Lemma 3.8, which allows us to
embed the set of all mapping classes that fix half of our translatable surface in a conjugate
of any neighborhood of the identity.

In Section 5, we show that translatable surfaces are in fact the only surfaces with non-
coarsely-bounded mapping class groups quasi-isometric to a graph of curves, proving
Theorem 5.3. The main tools here are, on one hand, a demonstration that under some
reasonable conditions any surface with two equivalent maximal ends and zero or infinite
genus is translatable; and on the other hand, that all other surfaces have mapping class
groups that are either themselves coarsely bounded or have no coarsely bounded curve
stabilizers, making such a quasi-isometry impossible.

Finally, Section 6 uses methods parallel to those in Sections 3 and 4 to prove that the
mapping class group of the plane minus a Cantor set is quasi-isometric to the loop graph
of that surface.
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2. Preliminaries

Before we begin, we recall several results from the works of Rosendal [14] and Mann and
Rafi [10], as well as the classification of infinite-type surfaces due to von Kerékjártó [16]
and Richards [13].

2.1. Coarse boundedness

Definition 2.1. A subset A of a topological group G is coarsely bounded if it has finite
diameter in every left-invariant compatible pseudo-metric on G.

Definition 2.2. We call a group locally coarsely bounded if it has a coarsely bounded
neighborhood of the identity.

For our purposes, the value of this definition lies precisely in the following result.

Fact 2.3 ([14]). IfA andB are two coarsely bounded generating sets for a locally coarsely
bounded group G, then the word metrics with respect to the generating sets A and B are
quasi-isometric.

We make heavy use of the following alternate characterization of coarse boundedness.

Fact 2.4 ([14]). GivenG a Polish group, and a subsetA�G. ThenA is coarsely bounded
if and only if for every identity neighborhood V � G, there are some k 2 N and a finite
set F � G such that A � .F V /k .

In light of this definition, we will want to talk about specific identity neighborhoods
in the mapping class group of a surface †: if S is a subsurface of †, let VS be the set of
mapping classes with representatives that restrict to the identity on S . Note that the set
¹VS j S � † of finite typeº forms a neighborhood basis of the identity in MCG.†/.

We are looking to prove quasi-isometries between groups and graphs, so we want
something reminiscent of the Schwarz–Milnor lemma. Fact 2.3 makes our work much
easier.

Lemma 2.5. Let G be a locally coarsely bounded group acting transitively by isometries
on a connected graph � equipped with the edge metric. Suppose that for some vertex
v0 2 � , the set A D ¹g 2 G j d.v0; gv0/ � 1º is coarsely bounded. Then the orbit map
g 7! gv0 is a quasi-isometry.

Proof. Coarse surjectivity follows directly from the transitivity of the action.
Fix some g 2G. Since � is connected, there is a minimal-length path v0; v1; : : : ; vn D

gv0 from v0 to gv0 with d.vi ; viC1/ D 1. Since d.v0; v1/ D 1 and the action of G
is transitive, there is some g0 2 A such that g0v0 D v1. Likewise, there is some g01 2
g0Ag

�1
0 such that g01v1 D v2. Writing g01 D g0g1g

�1
0 with g1 2 A and v1 D g0v0, we

see that g0g1v0 D v2. Continuing in this way, we can find g0; g1; : : : ; gn�1 2 A such
that g0g1 � � �gn�1v0 D vn. Let gn D g�1g0g1 � � �gn�1. Then gnv0 D v0, so gn 2 A, and
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g0g1 � � � gn�1gn D g. Thus A is a generating set for G, and the word-metric length of g
in A is at most n D d.v0; gv0/C 1.

On the other hand, suppose g0g1 � � � gk D g with each gi 2 A and k minimal. By the
definition of A, d.g0g1 � � � giv0; g0g1 � � � giC1v0/ D d.v0; giC1v0/ � 1, so the distance
d.v0; gv0/ � k C 1. Thus the map g 7! gv0 coarsely preserves the word metric with the
generating set A, and thus by Fact 2.3, the orbit map is a quasi-isometry for any choice of
coarsely bounded generating set for G.

Before we can apply this lemma, we need to know a bit more about infinite-type
surfaces.

2.2. Infinite-type surfaces

The classification of infinite-type surfaces was first given by von Kerékjártó [16], whose
proof was corrected by Richards [13]. It is based on the following notion of ends.

Definition 2.6. Given a surface †, an end of † is a nested sequence of subsurfaces S1 �
S2 � � � � of †, each with compact boundary and with the property that for any compact
subsurface K � †, K \ Sn D ; for high enough n. Two such sequences S1 � S2 � � � �
and T1 � T2 � � � � are considered to be the same end if for every n 2N there existsm 2N
such that Tm � Sn, and for every n 2 N there exists an m 2 N such that Sm � Tn.

An end x given by a sequence S1 � S2 � � � � is said to be accumulated by genus if
every Sn has positive genus. Otherwise, x is said to be planar.

The space of ends of†, writtenE.†/, is a topological space whose points are the ends
of† and whose basic open sets correspond to subsurfaces S �† with compact boundary.
An end S1 � S2 � � � � of† is contained in the basic open set corresponding to S if Sn � S
for high enough n, and this basic open set is a neighborhood of this end.

The topological space E.†/ is compact, second-countable, and totally separated; this
last condition means that for every pair of ends x; y 2 E, there is a clopen subset U � E
containing x but not y. In fact, every separating curve on † divides E into two clopen
subsets—one of which may be empty—and the sets so defined form a countable basis
of E. The set of ends accumulated by genus is written EG and is a closed subset of E.

Fact 2.7 (The principal result of [13]). An orientable surface without boundary is clas-
sified by its genus, which may be infinite, its space of ends E, and the subset EG � E
of ends accumulated by genus. What is more, any homeomorphism of the pair .E; EG/
extends to a homeomorphism of the underlying surface.

Following the example of Mann and Rafi, we will mostly avoid referencingEG explic-
itly, and implicitly assume it is preserved. For instance, when we say that two subsets
U; V � E are homeomorphic, we mean that there is a homeomorphism f WU ! V such
that f .U \EG/ D V \EG .

Mann and Rafi introduced the following partial pre-order onE, which provides a valu-
able for tool for studying its topology.
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Definition 2.8. Given x; y 2 E, we say x < y if for every clopen neighborhood U of x,
there exists a clopen neighborhood V of y homeomorphic to a clopen subset of U .

As might be expected, we write y � x when y 4 x but x 64 y, and y � x when y 4 x

and x 4 y. We use the notation E.x/ D ¹y 2 E j x � yº for the equivalence class of
x 2 E under the relation �.

Crucially, this order plays well with the topology of the space of ends and has maximal
elements, which have a fairly rigid structure.

Fact 2.9 ([10, Lemma 4.6]). For every y 2 E, the set ¹x 2 E j x < yº is closed.

Fact 2.10 ([10, Proposition 4.7]). The partial pre-order 4 has maximal elements. Fur-
thermore, for every maximal element x 2 E, the equivalence class E.x/ is either finite or
a Cantor set.

The following lemma is a slight generalization of the first part of Fact 2.10, following
precisely the same proof.

Lemma 2.11. Every nonempty closed subset F � E has maximal elements.

Proof. Suppose C is a totally ordered subset (a chain) in F . For each y 2 C , the set
¹x 2 F j x < yº is closed by Fact 2.9 and thus compact because E itself is compact, and
is nonempty by construction. Since C is totally ordered, these sets are nested, and so their
intersection

T
y2C¹x 2 F j x < yº is nonempty and contains a maximal element of the

chain C . Thus by Zorn’s lemma, the set F has a maximal element.

Mann and Rafi also define the following self-similarity condition, and prove some
useful properties of it.

Definition 2.12. A clopen neighborhood U of an end x 2 E is stable if for every clopen
neighborhood U 0 of x contained in U , there is a clopen subset of U 0 homeomorphic to U .

Fact 2.13 ([10, Lemma 4.17]). If x � y 2 E and x has a stable neighborhood U , then
all sufficiently small neighborhoods of y are homeomorphic to U via a homeomorphism
taking x to y.

Fact 2.14 ([10, Lemma 4.18]). Let x; y 2 E and assume x has a stable neighborhood Vx ,
and that x is an accumulation point ofE.y/. Then for any sufficiently small clopen neigh-
borhood U of y, U [ Vx is homeomorphic to Vx .

Many of the results in later sections will assume the existence of certain stable neigh-
borhoods, in the form of what Mann and Rafi call tameness.

Definition 2.15. An end space E is said to be tame if any x 2 E that is either maximal or
an immediate predecessor to a maximal end has a stable neighborhood.

It is an open question [10, Problem 6.15] whether there exists any surface with non-
tame end space whose mapping class group is not coarsely bounded but has a well-defined
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quasi-isometry type. For this reason, we consider tameness to be an acceptable condition
to impose in some of our results.

To achieve the negative results of Section 5.3, we will need to consider the properties
of mapping class groups that are locally coarsely bounded and admit a coarsely bounded
generating set. Here M.X/ denotes the set of maximal ends of some subspace X � E.

Fact 2.16 ([10, Theorem 1.4]). MCG.†/ is locally coarsely bounded if and only if either
MCG.†/ is itself coarsely bounded or there is a finite-type surface K � † such that
the complementary regions of K each have infinite type and zero or infinite genus, and
partition E into finitely many clopen sets

E D
� G
A2A

A
�
t

� G
P2P

P
�

such that

(1) each A 2 A is self-similar, with M.A/ �M.E/ and M.E/ �
F
A2A M.A/,

(2) each P 2 P is homeomorphic to a clopen subset of some A 2 A,

(3) for any xA 2M.A/, and any neighborhood V of the end xA in †, there is fV 2
MCG.†/ so that fV .V / contains the complementary component to K with end
space A.

Moreover, in this case VK—the set of mapping classes restricting to the identity onK—is
a coarsely bounded neighborhood of the identity.

We will also make use of the following necessary condition for MCG.†/ to have
a coarsely bounded generating set.

Definition 2.17 ([10, Definition 6.2]). We say that an end space E has limit type if there
are a finite-index subgroup G of MCG.†/, a G-invariant set X � E, points zn 2 E
indexed by n 2 N which are pairwise inequivalent, and a nested family of clopen sets Un
with

T
n2N Un D X such that

E.zn/ \ Un ¤ ;; E.zn/ \ U
c
0 ¤ ;; and E.zn/ � .Un [ U

c
0 /;

where U c0 D E n U0.

This definition is somewhat daunting, so we present the following example of a surface
whose end space has limit type. Let z1 be a puncture, and for each n > 1, let zn be an end
accumulated by countably many points locally homeomorphic to zn�1. Then let z! be an
end accumulated by ¹znºn2N . Let F be the set of ends just defined, and let † be a surface
with zero genus and end space homeomorphic to the disjoint union of n copies of F for
any n > 1. It can be verified that the end space of † has limit type.

Fact 2.18 ([10, Lemma 6.4]). IfE has limit type, then MCG.†/ does not admit a coarsely
bounded generating set.
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3. Translations on surfaces

We first define a useful notion of convergence.

Definition 3.1. Given a surface †, an end e of †, and a sequence ˛1; ˛2; : : : of curves
on †, we say that limn!1 ˛n D e if, for every neighborhood V of the end e in the sur-
face †, all but finitely many of the ˛i are (after some isotopy) contained in V .

A translation, then, will be a map that moves all curves toward one end and away from
another.

Definition 3.2. Given a surface †, a map h 2MCG.†/ is called a translation if there are
two distinct ends eC and e� of † such that for any curve ˛ on †, limn!1 h

n.˛/ D eC
and limn!1 h

�n.˛/ D e�. If such a translation exists, we call the surface † translatable.

Remark 3.3. This definition brings to mind several other classes of infinite-type surfaces
with two special ends that have recently been defined for various reasons.

• The telescoping surfaces of Mann and Rafi [10] form a strict subset of the translatable
surfaces: though every telescoping surface can be shown to be translatable, Jacob’s
ladder surface is translatable but not telescoping.

• The doubly pointed surfaces of Aougab, Patel, and Vlamis [1] are a strict superset of
the translatable surfaces whose mapping class groups are not coarsely bounded: every
such translatable surface is doubly pointed, but the surface with zero genus and end
space homeomorphic to 2!! C 1 is doubly pointed but not translatable.2

• The avenue surfaces of Horbez, Qing, and Rafi [9] turn out to be precisely those trans-
latable surfaces that have tame end space and whose mapping class groups are not
coarsely bounded. This result is part of Theorem 5.3.

It follows directly from the definition that a translatable surface † cannot contain any
finite-type nondisplaceable surfaces, and so in particular † cannot have finite type, finite
positive genus, or any ends with a finite MCG.†/-orbit of size more than 2. This gives us
lots of non-examples, but there are also plenty of translatable surfaces if we go looking
for them.

Jacob’s ladder surface and the bi-infinite flute, in Figures 1 and 2, are clearly translat-
able; we can think of the flute as being derived from the ladder by replacing each handle
by a puncture. More generally, we might replace each handle in the ladder by some other
surface, as follows. Let S be any surface, not necessarily of finite type, with two compact
boundary components, and let † D S \Z be the gluing along their boundaries3 of count-

2There are easier counterexamples, e.g., a surface with two inequivalent maximal ends (see Lem-
ma 5.16). This example demonstrates however that a doubly pointed surface may not be translatable even
if it has exactly two equivalent maximal ends.

3The use of \ here is intended to invoke the standard use of # for connected sum, and was suggested to
me on Facebook by Rylee Lyman.
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ably many copies of S , arranged like Z as in Figure 3. Then the map that takes each copy
of S to the next one over is a translation, and so † is translatable.

A natural question to ask is whether this last example includes all translatable surfaces,
and in fact it does. However, we may have to choose a different translation. For this and
future results, the following notation will be useful.

Definition 3.4. Suppose † is a translatable surface and ˛ a curve in † separating eC
and e�. Then we denote by ˛C (resp. ˛�) the component of † n ˛ containing the end eC
(resp. e�). If ˇ is a curve separating ˛ and eC, then we denote by .˛; ˇ/ the subsurface
˛C \ ˇ� of † bounded by ˛ and ˇ.

Proposition 3.5. Let † be a translatable surface with translation h and ˛ a curve sep-
arating the ends eC and e�. Then there is a surface S D .˛; hN .˛// for some N such
that † is homeomorphic to S \Z.

Proof. By the definition of translation, there is some N 2 N such that for all n � N ,
hn.˛/ � ˛C. Then hN is also a translation, so without loss of generality, we can replace h
by hN and assume that all hi .˛/ are disjoint.

Let S D .˛;h.˛//. If x 2† but not in any hi .˛/, then x is either in ˛C or ˛�. Suppos-
ing without loss of generality that x 2 ˛C, there must be some least i such that x 62 hi .˛/C,
otherwise hi .˛/ could not converge to eC. Then x 2 .hi�1.˛/; hi .˛// D hi�1.S/. On the
other hand, hi .S/ \ S D ; for all i ¤ 0 by construction, and so every point of † is in
exactly one hi .S/ or hi .˛/.

The resulting subsurface S has two boundary components, and the copies of S are
glued together exactly as desired.

This decomposition depended on the choice of a curve separating eC and e�. We might
ask how important that choice was, and it turns out the answer is “not much”.

Lemma 3.6. Let † be a translatable surface, and ˛ and ˇ two curves separating the
ends eC and e�. Then there is some f 2 MCG.†/ which fixes the ends eC and e�, and
such that f .˛/ D ˇ.

Proof. First, replace ˇ by some hn.ˇ/ so that ˇ � ˛C, and then replace h by some power
of h so that ˇ � .˛; h.˛//. By Proposition 3.5, we can write † D S \Z D T \Z, where
S D .˛; h.˛// and T D .ˇ; h.ˇ//.

If we letX D .˛;ˇ/, Y D .ˇ;h.˛//, andZ D .h.˛/;h.ˇ//, then .˛;h.˛//DX\Y and
.ˇ; h.ˇ// D Y \Z, where by A\B we mean the surface obtained by gluing the surfaces A
and B along a single boundary component. But X and Z are homeomorphic, and thus so
are S D .˛; h.˛// and T D .ˇ; h.ˇ//. It follows that we can map each copy of S to the
appropriate copy of T , giving us a homeomorphism of † that takes ˛ to ˇ and fixes the
ends eC and e�.

There is one more symmetry of a translatable surface worth discussing here.
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Figure 4. Within a tubular neighborhood of the blue curve ˛, the curve’s orientation can be reversed
via a rotation by � about its red diameter.

Lemma 3.7. Let † be a translatable surface, and ˛ a curve separating the ends eC
and e�. Then there is some r 2 MCG.†/ that transposes eC and e� and restricts to
an orientation-reversing homeomorphism on ˛.

Proof. In a tubular neighborhood of ˛, r is just a rotation by � about a diameter of the
circle ˛—see Figure 4. By Proposition 3.5, ˛C and ˛� are homeomorphic, so this r can
be extended to a homeomorphism on all of †.

The following lemma will be quite useful in light of Fact 2.4.

Lemma 3.8. Let† be a translatable surface with translation h, and ˛ a curve separating
the ends eC and e�. Then for any identity neighborhood V in MCG.†/, there is some
n 2 N such that V˛� � h

�nV hn and V˛C � h
nV h�n.

Proof. By the topology of MCG.†/, there is some finite-type subsurface T �† such that
VT � V . Let n 2 N so that T � hn.˛/�. Then we have

T � hn.˛/�; Vhn.˛/� � VT ; Vhn.˛/� � V; hnV˛�h
�n
� V; V˛� � h

�nV hn

and likewise V˛C � h
nV h�n.

Corollary 3.9. Let† be a translatable surface with translation h, and ˛ a curve separat-
ing the ends eC and e�. Then the set H D ¹f 2 MCG.†/ j f .˛/ is homotopic to ˛º of
mapping classes stabilizing ˛ is coarsely bounded.

Proof. Fix an identity neighborhood V and using Lemma 3.8, find n 2 N so that V˛� �
h�nV hn and V˛C � h

nV h�n. Let F D ¹r�1; hn; h�nº, where r is the map defined in
Lemma 3.7. We claim that H � .F V /5, which gives the result by Fact 2.4.

Pick f 2H . Up to homotopy, fj˛ is either the identity or a reflection map; in the latter
case, replace f by rf so that fj˛ is the identity. Then the actions of f on ˛C and ˛� do not
interact, and so f can be decomposed as f D f�fC, where f� 2 V˛� and fC 2 V˛C . It fol-
lows by our choice of n that f� 2 h�nV hn and fC 2 hnV h�n, so f 2 h�nV hnhnV h�n �
.F V /4. Since we may also have applied r�1, this gives f 2 .F V /5.
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Corollary 3.10. Suppose † is a translatable surface. Then MCG.†/ is locally coarsely
bounded.

Proof. The stabilizer H of a curve separating the ends eC and e� is an identity neighbor-
hood, and by Corollary 3.9 it is coarsely bounded.

Note that unlike in the following sections, here we have not assumed tameness.

4. The translatable curve graph

We are now ready to define a graph quasi-isometric to MCG.†/ when † is a translatable
surface.

Definition 4.1. Fix a collection � of subsurfaces of †. The translatable curve graph
T C.†; �/ of † with respect to the set of subsurfaces � is the graph whose vertices are
curves separating eC and e�, with an edge between two curves ˛ and ˇ if they have
disjoint representatives and .˛; ˇ/ or .ˇ; ˛/ is homeomorphic to some S 2 � .

We will eventually define a canonical and finite set � depending only on the surface†;
once this has been defined, we will omit � and write simply T C.†/.

Note that Corollary 3.9 implies that vertex stabilizers of T C.†;�/ are coarsely bound-
ed. Also, with † Jacob’s ladder surface and S a surface with genus 1 and two boundary
components, the graph T C.†; ¹Sº/ is precisely the motivating example (see Figure 1).

For an arbitrary translatable surface †, we might try taking a subsurface S such
that † D S \Z as in Proposition 3.5. But T C.†; ¹Sº/ will not in general be connected.
Instead, we will use the topology of S to construct a collection of subsurfaces � such that
T C.†; �/ satisfies the conditions of Lemma 2.5.

Consider the space of ends E.S/ of S ; we may ask how these relate to the order
structure on E.†/.

Lemma 4.2. The maximal ends of the subsurface S are either maximal ends of † or
immediate predecessors to maximal ends of †.

Proof. It follows from the decomposition given in Proposition 3.5 that eC and e� are
maximal ends of †, and that eC � e�. In fact, they are global maxima of the partial
preorder: for any end x of †, x 4 eC. If E.eC/ contains some point y distinct from eC
and e�, then y is in the end space of some copy of S . In particular, since it is still true that
for every end x of †, x 4 eC � y, E.eC/ contains all the maximal ends of S .4

If, on the other hand, E.eC/ D ¹eC; e�º, then let x be maximal in S . We know that
x � eC. Suppose we have an end y such that x 4 y 4 eC. If y is an end of some copy of S ,

4This implies, by [10, Proposition 4.8], that the end space of † is self-similar and thus MCG.†/ is
coarsely bounded, and we will in fact see that T C.†;�/ has finite diameter under these circumstances.
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then by maximality y� x. But if y is not an end of any copy of S , the only other possibility
is that y D e˙, in which case y � eC. Thus x is an immediate predecessor to eC.

Corollary 4.3. If the end space of † is tame, then every maximal end of S has a stable
neighborhood.

In general, a surface might have infinitely many equivalence classes of maximal ends.
With tameness, however, the possibilities are much more limited.

Lemma 4.4. If every maximal end of T � † has a stable neighborhood, then the end
space E.T / has finitely many equivalence classes of maximal ends.

Proof. For each maximal end x of T , let Vx be a stable neighborhood of x. For every
end y, pick a clopen neighborhood Uy of y such that Uy is homeomorphic to a clopen
subset of Vx for some maximal end x.

Since the neighborhoods Uy cover the end space E.T /, and E.T / is compact, there is
a finite set U1; : : : ;Un covering E.T /, where each Ui is homeomorphic to a clopen subset
of Vxi .

Now for each y 2E.T /, y 2Ui for some i . Let V be an arbitrary clopen neighborhood
of xi ; by stability, V contains a homeomorphic copy of Vxi , which in turn contains a home-
omorphic copy of Ui by construction. Thus y 4 xi . It follows that the set ¹x1; : : : ; xnº
contains a representative of every equivalence class of maximal ends, so there are at most n
such equivalence classes.

While there are finitely many equivalence classes of maximal ends, a priori the non-
maximal ends might contribute meaningfully to the topology of a subsurface. However,
this is not the case.

Lemma 4.5. Given a subsurface T � † with end space E.T / and such that every max-
imal end of T has a stable neighborhood, E.T / can be written as the disjoint unionFk
iD1 Vi , where each Vi is a stable neighborhood of a maximal end of T .

Proof. Let M.T / be the set of maximal ends of E.T /. We start by constructing a subset
M �M.T / such thatM contains every x 2M.T /, where M.T /\E.x/ is finite, and one
representative of M.T / \ E.x/ when this intersection is infinite. By Lemma 4.4, M is
finite and thus discrete, so we can pick disjoint stable neighborhoods Vx � E.T / for each
x 2M . Let V D

F
x2M Vx .

For each y 2E.T / n V , there is by maximality some x 2M such that y 4 x. If y � x,
then x is an accumulation point of E.y/; and if y � x, then since y 62 V , the set E.x/ \
E.T / must be infinite, and thus it is a Cantor set by Fact 2.10, and so again x is an
accumulation point of E.y/ D E.x/. Thus in either case we can apply Fact 2.14 to find
some clopen set Uy 3 y such that Uy � E.T / n V and Uy [ Vx is homeomorphic to Vx .
The setE.T / n V is clopen and thus compact, and is covered by the neighborhoods Uy , so
there is a finite set of these neighborhoods covering E.T / n V ; since they are all clopen,
we can ensure they are disjoint.
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Figure 5. From the proof of Lemma 4.5: on the left, the end spaceE.T / is divided into finitely many
disjoint regions by compactness. Each shaded region is a stable neighborhood of a maximal point,
shown as a black dot. Each unshaded region satisfies Fact 2.14 with respect to one of the shaded
regions. On the right, the shaded regions have been expanded by repeated application of Fact 2.14
so that they now cover the whole surface. Note that each shaded region is still a stable neighborhood
of the maximal point shown as a dot; in fact, each large shaded region on the right is homeomorphic
to the similarly-colored small region on the left.

For each Uy in this finite set, pick Vx so that Vx tUy is homeomorphic to Vx , and then
replace Vx by Vx t Uy . After finitely many steps, the entire end space E.T / is contained
in the disjoint union

F
x2M Vx . See Figure 5 for an example.

We are now ready to define the canonical collection � of subsurfaces that will be used
in the definition of the graph T C.†; �/. The following construction assumes † is tame.
Let ¹f1; : : : ; fn; c1; : : : ; cmº be representatives of the equivalence classes of maximal ends
of S , with each E.fi / intersecting the end space of S finitely many times, and each E.ci /
intersecting the end space of S in a Cantor set. Pick disjoint stable neighborhoods Vfi
and Vci of each representative.

For each 1 � i � n, let Ti be a surface with two boundary components and end space
homeomorphic to Vfi t

Fm
jD1 Vcj . If fi or any of the cj is accumulated by genus, then

by construction Ti will have infinite genus; if none of them are, we further specify that Ti
have genus zero. If none of the fi or ci are accumulated by genus, but the surface † has
positive genus—in other words, if S has finite positive genus—then let TnC1 be the surface
with two boundary components, genus 1, and end space homeomorphic to

Fm
jD1 Vcj . Let

� D ¹T1; : : : ; Tn; .TnC1/º, including TnC1 if it has been defined.
We need to handle an edge case: if n D 0 and S has 0 or infinite genus, the above

construction will give � D;, which is not desirable; so in this case, we let � D ¹Sº, noting
that S is in fact a surface with two boundary components and end space homeomorphic
to
Fm
jD1 Vcj by Lemma 4.5. It can be seen without too much trouble that in this case

T C.†; �/ has diameter 2; this is consistent with the fact that under these conditions
the end space of † is either self-similar (if the maximal ends are all equivalent to eC
and e�) or telescoping with respect to eC and e� (if they are predecessors), and so by [10,
Proposition 3.5], the mapping class group MCG.†/ is coarsely bounded.
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�

Figure 6. If V is the union of finitely many sets bounded by blue curves, we can find a single red
curve � bounding V . Each squiggle represents a possibly complicated clopen set of ends.

From here on, we assume � is the set of subsurfaces just constructed, and write T C.†/

to mean T C.†; �/.
Before proving connectedness, we introduce the following construction, which allows

us to produce subsurfaces of † with nearly arbitrary genus and end space.

Lemma 4.6. Let † be a translatable surface with a curve ˛ separating eC and e�. Then
for any clopen subset V � E.˛C/, there is a curve ˇ also separating eC and e�, and such
thatE..˛;ˇ//D V . Furthermore, if no end of V is accumulated by genus, but eC is, there
is for every n 2 N a choice of ˇ such that .˛; ˇ/ has genus n.

Proof. Recall that for any separating curve 
 on †, the end sets of the two components
of † n 
 are both clopen subsets of E.†/, and that these clopen subsets form a basis for
the topology of E.†/.

By picking clopen neighborhoods of this kind for each end in V and applying com-
pactness, we can describe V as a disjoint union of clopen sets, each of which is bounded
by a curve. These can then be combined so that V is bounded by a single curve, as in
Figure 6. Call this curve �. Draw an arc � connecting the curves ˛ and �, and let ˇ be the
curve following along ˛, �, and � as in Figure 7. By construction, ˇ separates eC and e�,
and E..˛; ˇ// D V .

If no end of V is accumulated by genus but eC is, then .˛; ˇ/ must have finite genus
and ˇC must have infinite genus. By picking a curve � separating a single handle from
the rest of † and then applying the construction of Figure 7 with ˇ replacing ˛ and �
replacing �, we get a new curve ˇ0 such that .˛; ˇ/ and .˛; ˇ0/ have the same end space
but genus differing by 1. Doing this finitely many times lets us achieve arbitrary genus for
.˛; ˇ/ in this case.
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��
˛

ˇ

Figure 7. Given ˛ in blue, � in red, and � in gray, we draw ˇ in magenta. Again, each squiggle
represents a possibly complicated clopen set of ends.

Now that we can construct appropriate subsets, we will be able to build paths between
curves in T C.†/.

Lemma 4.7. If† is a translatable surface with tame end space, then T C.†/ is connected.

Proof. Given ˛;ˇ 2 T C.†/, let 
 be a curve in ˛C \ ˇC such that the subsurfaces .˛; 
/
and .ˇ;
/ both have end spaces containing representatives of eachE.fi / andE.ci /, using
the representatives ¹f1; : : : ; fn; c1; : : : ; cmº defined above; such a curve 
 can always be
found by looking in a small enough neighborhood of eC. We will show that ˛ is connected
to 
 ; by symmetry, this will imply that ˇ is connected to 
 and so ˛ is connected to ˇ.

Let g be equal to the genus of the subsurface .˛; 
/ if it has finite genus, and 0 if it
has infinite genus. By Lemma 4.5, the end space of .˛; 
/ can be written as

Fk
iD1 Ui ,

where each Ui is a stable neighborhood of a maximal end. Some of the Ui are stable
neighborhoods of an end equivalent to some fj . Let us write these as ¹Xj º`jD1, where `
is a positive integer less than or equal to k. The rest of the Ui are stable neighborhoods of
some cj . Note in particular that, since 
 was chosen so that .˛;
/ contains a representative
of each E.ci /, there is at least one Uj that is a stable neighborhood of each cj . Since the
disjoint union of two stable neighborhoods of an end equivalent to cj is itself a stable
neighborhood of an end equivalent to cj , we can combine the remaining Ui to get ¹ViºmiD1,
where for each i , Vi is a stable neighborhood of an end equivalent to ci . Then

Fk
iD1Ui D

.
Fm
iD1 Vi / t .

F`
jD1Xj /.

For each 1 � i � m, E.ci / \ Vi is a Cantor set, so we can identify `C g elements
of E.ci / inside Vi and split Vi into

F`Cg
jD1 Vi;j , where each Vi;j is a stable neighborhood

of an end in E.ci / \ Vi and is thus homeomorphic to Vi . Then for each 1 � j � `, let
Wj D Xj t

Fm
iD1 Vi;j , and for `C 1 � j � `C g, letWj D

Fm
iD1 Vi;j . By construction,

the end space of .˛; 
/ is
F`Cg
jD1 Wj .

Finally, define ¹˛0 D ˛;˛1; : : : ; ˛`Cg D 
º such that the end space of . j̨�1; j̨ / isWj
and such that the genus of . j̨�1; j̨ / is 0 or infinite for j � ` and 1 for j � `, which is
possible by Lemma 4.6. Then each . j̨�1; j̨ / is homeomorphic to one of the subsurfaces
Ti 2 � , and so j̨�1 and j̨ are adjacent in T C.†/.

This leaves us quite close to fulfilling all the hypotheses of Lemma 2.5. We need one
more ingredient.
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Lemma 4.8. Let † be a translatable surface with tame end space. Then for any vertex ˛
of T C.†/, the set H D ¹f 2 MCG.†/ j d.f .˛/; ˛/ � 1º is coarsely bounded.

Proof. We will start by defining some helpful mapping classes. Using Proposition 3.5,
let † D S \Z D \j2Z Sj , where all the Sj are homeomorphic and S0 D .˛; hN .˛// for
some N . As above, let ¹f1; : : : ; fn; c1; : : : ; cmº be representatives of the equivalence
classes of maximal ends of S0. We may choose these so that each fi and ci is actually an
end of S0 itself. Let ¹Vf1 ; : : : ; Vfn ; Vc1 ; : : : ; Vcmº be a set of disjoint stable neighborhoods
of these ends, also contained in the end space of S0. For each x equal to some fi or ci and
each j 2 Z, let Vx;j be a homeomorphic copy of Vx in the end space of the subsurface Sj ;
for instance, we can let Vx;j D hjNVx .

Note that the sequence of sets Vfi ;j converges to e˙ as j goes to ˙1, and likewise
for Vci ;j . That means that for each maximal end x equal to some fi or ci there is a home-
omorphism of the end space of† taking each Vx;j to Vx;jC1 and fixing the rest of the end
space pointwise. This homeomorphism of the end space extends to a homeomorphism hx
of†; if the end x is not accumulated by genus, we may also construct hx so that .˛;hx.˛//
has genus 0. For each 1 � i � n let hi D hfi ı

Qm
kD1 hck . If S0 has finite positive genus,

let hgenus be a map that moves a single handle from each Sj to SjC1 and fixes the end
space of †, and then let hnC1 D hgenus ı

Qm
kD1 hck .

Observe that, for 1 � i � n, the end space of the surface .˛; hi .˛// is homeomorphic
to Vfi t

Fm
iD1 Vcm , and has either 0 or infinite genus depending on whether fi or any

of the ci is accumulated by genus. Thus .˛; hi .˛// is homeomorphic to the subsurface
Ti 2 � , where � is the canonical set of subsurfaces used to define T C.†/ D T C.†; �/.
The same is true for .h�1i .˛/; ˛/. If S0 has finite positive genus, then .˛; hnC1.˛// has
genus 1 and end space homeomorphic to

Fm
iD1 Vcm , so .˛; hnC1.˛// is homeomorphic to

TnC1 2 � . Again, the same is true of .h�1nC1.˛/; ˛/.
We are now ready to prove that H is coarsely bounded using Fact 2.4. Let V be

an identity neighborhood in MCG.†/, and find n 2 N as in Lemma 3.8 so that V˛� �
h�nV hn and V˛C � h

nV h�n. Let F D ¹r�1; h˙n; h˙11 ; : : : ; h˙1n ; h˙1nC1º, where r is the
mapping class defined in Lemma 3.7 and including the maps h˙1nC1 if they are defined.
We claim that H � .F V /8.

Let f 2 H . If d.˛; f .˛// D 0, then f 2 .F V /5 as shown in Corollary 3.9. If not,
then d.˛; f .˛// D 1 and so ˛ and f .˛/ have disjoint representatives. Assume f .˛/ �
˛C—if not, we will merely have to reverse some signs. By the definition of adjacency in
T C.†/ D T C.†; �/, we know that .˛; f .˛// is homeomorphic to some Ti 2 � . Since
.˛; f .˛// is homeomorphic to .˛; hi .˛// by construction, and f .˛/C is homeomorphic
to hi .˛/C by Lemma 3.6, there is a map g taking hi .˛/ to f .˛/ and restricting to the
identity on ˛�—that is, g.hi .˛// D f .˛/ and g 2 V˛� � .F V /

2.
Let f0 D h�1i g

�1f . By construction, f0.˛/ D ˛, so by Corollary 3.9 f0 2 .F V /5.
Then we have f D ghif0, where g 2 .F V /2, hi 2F , and f0 2 .F V /5, so f 2 .F V /8.

Putting this all together gives us the following assertion.
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Theorem 4.9. If † is a translatable surface with tame end space, then T C.†/ equipped
with the edge metric is quasi-isometric to MCG.†/.

Proof. The group MCG.†/ is locally coarsely bounded by Corollary 3.10. The graph
T C.†/ is connected by Lemma 4.7. The action of MCG.†/ on it is transitive by Lem-
ma 3.6. Finally, the set of mapping classes that move a vertex a distance at most 1
is coarsely bounded by Lemma 4.8. Thus by Lemma 2.5, the action induces a quasi-
isometry.

5. Equivalent definitions of translatability

We have just seen that a translatable surface † with tame end space is quasi-isometric
to the translatable curve graph T C.†/, which is a graph whose vertices are curves. This
section establishes that the existence of such a graph is nearly unique to translatable sur-
faces.

We say “nearly unique” because there is one other example: if MCG.†/ is coarsely
bounded, then it is quasi-isometric to any finite-diameter graph. In particular, the curve
graph C.†/ of an infinite-type surface always has diameter 2, giving a trivial quasi-
isometry. For this reason, coarsely bounded mapping class groups are excluded in the
hypothesis of Theorem 5.3.

Another condition which we show to be equivalent to translatability is the following,
due to Horbez, Qing, and Rafi [9].

Definition 5.1 ([10, Definition 1.8]). A connected, finite-type subsurface S of a surface†
is called nondisplaceable if f .S/ \ S ¤ ; for each f 2 MCG.†/. A non-connected
surface is nondisplaceable if, for every f 2MCG.†/ and every connected component Si
of S , there is a connected component Sj of S such that f .Si / \ Sj ¤ ;.

Definition 5.2 ([9, Definition 4.4]). An avenue surface is a connected, orientable sur-
face † which does not contain any nondisplaceable finite-type subsurfaces, whose end
space is tame, and whose mapping class group MCG.†/ admits a coarsely bounded gen-
erating set but is not itself coarsely bounded.

Theorem 5.3. Let † be an infinite-type surface with tame end space such that MCG.†/
is locally coarsely bounded and admits a coarsely bounded generating set—and thus has
a well-defined quasi-isometry type—but is not itself coarsely bounded. Then the following
are equivalent:

(1) There exists a connected graph � whose vertices are curves, such that the action
of MCG.†/ on � is defined and induces a quasi-isometry.

(2) † is translatable.

(3) † is an avenue surface.
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Proof. 2) 1: This is Theorem 4.9.
2) 3: We are already assuming that † has tame end space and that MCG.†/ admits

a coarsely bounded generating set but is not itself coarsely bounded. By the definition
of a translation map, a translatable surface cannot have any finite-type nondisplaceable
surfaces, and so † is an avenue surface.

3) 2: [9, Lemma 4.5] says that an avenue surface has zero or infinite genus and
exactly two maximal ends, while [9, Lemma 4.6] says that every non-maximal end of an
avenue surface precedes both maximal ends under the standard ordering. It follows by
Lemma 5.9 that † is translatable.

1) 2: We divide our work into three cases, depending on the genus and maximal
ends of †:

(1) If† has zero or infinite genus and one or a Cantor set of equivalent maximal ends,
then by Corollary 5.6, the group MCG.†/ is coarsely bounded, which is excluded
by the hypothesis of the theorem.

(2) If † has zero or infinite genus and two equivalent maximal ends, then by Propo-
sition 5.7 it is translatable.

(3) If † has finite positive genus or any other structure of maximal ends, then by
Proposition 5.17 there is no graph whose vertices are curves and on which the
action of MCG.†/ induces a quasi-isometry, contradicting our assumption.

Thus the only remaining possibility is that † is translatable.

The following three subsections correspond to the three cases in the last step of the
proof of Theorem 5.3.

5.1. Coarsely bounded mapping class groups

The first case is essentially a rehash of the following facts. Recall that M.†/ is the set of
maximal ends of †.

Fact 5.4 ([10, Proposition 3.1]). If† has zero or infinite genus and self-similar end space,
then MCG.†/ is coarsely bounded.

Fact 5.5 ([10, Proposition 4.8]). If † has no nondisplaceable finite-type subsurfaces and
M.†/ consists of either a singleton or a Cantor set of equivalent ends, then its end space
is self-similar.

To link these two facts together, we need to add the assumption of tameness.

Corollary 5.6. If † has zero or infinite genus and tame end space, and M.†/ consists of
either a singleton or a Cantor set of equivalent ends, then MCG.†/ is coarsely bounded.

Proof. Given the previous facts, we need only show that † has no nondisplaceable finite-
type subsurfaces. Let S be a finite-type subsurface of†. By expanding S , we may assume
that S is connected with all its boundary curves essential and separating. Let E1; : : : ; En



Graphs of curves and arcs quasi-isometric to big mapping class groups 725

be the end spaces of the complementary components of S , and E0 the end space of S
itself, which may be empty or contain a finite set of punctures. Since E0 t � � � tEn D E,
there is a maximal end x in some Ei ; without loss of generality we may assume x 2 En.
Let ˛ be the boundary component of S corresponding to En.

Since † has tame end space, En contains a stable neighborhood U of x. For every
end y 2 E n En, x is an accumulation point of E.y/, so by Fact 2.14 there is a clopen
neighborhood Vy � E n En of y such that U is homeomorphic to U t Vy . By com-
pactness, E n En can be covered by finitely many such clopen neighborhoods, meaning
that there is a clopen subset F � En homeomorphic to E n En. Let ˇ be a separating
curve whose complementary components have end spaces F and E n F , and such that
the component of † n ˇ with end space F has the same genus as the component of † n ˛
containing S .

The complementary components of the curves ˛ and ˇ have the same genus and end
space by construction, so we can find some f 2MCG.†/ exchanging ˛ and ˇ. Then f .S/
and S are in distinct components of† n ˛, and so the subsurface S is not nondisplaceable;
thus † has no nondisplaceable finite-type subsurfaces. It follows that the end space of †
is self-similar, and so MCG.†/ is coarsely bounded.

5.2. Translatable surfaces

Proposition 5.7. Suppose † has tame end space, zero or infinite genus, and exactly two
equivalent maximal ends, eC and e�. If MCG.†/ is locally coarsely bounded and has
a coarsely bounded generating set, then † is translatable with respect to the ends eC
and e�.

Our first step towards proving Proposition 5.7 will be to find the immediate predeces-
sors of the maximal ends of †.

Lemma 5.8. Let † be a surface with tame end space and two maximal ends, eC and e�.
If MCG.†/ is locally coarsely bounded and admits a coarsely bounded generating set,
then there is a finite set of ends x1; : : : ; xn such that each xi is an immediate predecessor
of eC, and every end y � eC satisfies y 4 xi for some i .

Proof. Find K as in Fact 2.16, with complementary region A containing the end eC, and
let U0 be the end space ofA. Fix y � eC; by possibly replacing y by an equivalent end, we
may assume y 2 U0. Let U1 be a clopen subset of U0 n ¹yº containing eC, and construct
a neighborhood basis U0 � U1 � U2 � � � � of clopen sets such that

T
n2N Un D ¹eCº.

The set ¹x 2 U0 n U1 j y 4 xº is nonempty, and is closed by Fact 2.9, and so by
Lemma 2.11 it has a (not necessarily unique) maximal element which we will call z0.
To continue this construction, we would like to let zn be a maximal element of the set
¹x 2 Un nUnC1 j zn�1 4 xº for each n > 0, but this set may be empty. Instead, we pass to
a subsequence, letting k0 D 0 and knC1 be the least natural number greater than kn such
that .Ukn n UknC1/ \ E.zn�1/ is nonempty. Then we can set zn to be a maximal element
of ¹x 2 Ukn n UknC1 j zn�1 4 xº.
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We claim there is some z such that zn � z for all sufficiently high n. If not, then
up to taking a subsequence, we may assume the zn are pairwise inequivalent. By con-
struction, each zn 2 Ukn , so E.zn/ \ Ukn ¤ ;. For any m < n, we have zm � zn but
zm is maximal in Ukm n UkmC1 , so E.zn/ \ .Ukm n UkmC1/ D ;, and thus in general,
E.zn/ \ .U0 n Ukn/ D ;, or in other words E.zn/ � .Ukn [ U

c
0 /. Finally, let B be a sub-

surface of A with end space UknC1 . By Fact 2.16, there is a mapping class f 2 MCG.†/
so that A � f .B/. Then f .zn/ 2 U c0 \E.zn/, so this set is not empty.

Let G D ¹f 2MCG.†/ j f .eC/D eCº. Since the only end of† that might be equiv-
alent to eC is e�, G has index at most two in MCG.†/, and the set ¹eCº is G-invariant.
Thus we have fulfilled the definition of limit type, and so by Fact 2.18, MCG.†/ cannot
admit a coarsely bounded generating set. Since we assumed otherwise, this is a contra-
diction. This proves our claim that zn � z for all sufficiently high n. This z must be an
immediate predecessor of eC (otherwise, it would not be maximal in some Ukn n UknC1 )
and by construction y 4 z.

We now claim that there is a clopen subset F � U0 such that eC 62 F but for every
immediate predecessor z of eC, F \E.z/¤;. Suppose not. Then we can pick a sequence
of immediate predecessors ¹znºn2N of eC and clopen sets U0 � U1 � U2 � � � � withT
n2N Un D ¹eCº such that each zn 2 Un but E.zn/ \ .U0 n Un/ D ;. As above, we can

use Fact 2.16 to find an element ofE.zn/ in U c0 , so this would again show thatE has limit
type, a contradiction by Fact 2.18. This proves our claim.

For each end y 2 F , let xy 2 E be an immediate predecessor of eC with y 4 xy .
That means that for a stable neighborhood Vxy of xy—which must exist because E is
tame—there is some clopen neighborhood Uy of y such that Uy is homeomorphic to
a clopen subset of Vxy . The sets ¹Uyºy2F cover the compact set F , so we can pick a finite
collection U1; : : : ; Un with corresponding x1; : : : ; xn predecessors to eC so that the Ui
cover F and each Ui is homeomorphic to a clopen subset of Vxi . In particular, by stability,
z 4 xi for every z 2 Ui , and so every end in F is bounded above by one of the xi . If z is
an immediate predecessor of eC, then by construction there is some z0 � z in F , and so
z � z0 4 xi for some i . Since z is an immediate predecessor of eC, it follows that z � xi ,
so there are only finitely many equivalence classes of immediate predecessors.

The following lemma is nearly identical to Proposition 5.7; we list it separately so that
it can be used in other parts of this section.

Lemma 5.9. Let † be a surface of zero or infinite genus with tame end space and two
maximal ends, eC and e�, with the property that for every end y 2 E n ¹eC; e�º, y 4 eC
and y 4 e�. If MCG.†/ is locally coarsely bounded and admits a coarsely bounded
generating set, then † is translatable.

Proof. First, note that eC is accumulated by genus if and only if e� is, by the follow-
ing argument: suppose eC is accumulated by genus but e� is not. If some y � eC were
accumulated by genus, then e� would have to be as well since it is an accumulation
point of E.y/. So eC is the only end of † accumulated by genus. Since MCG.†/ is
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locally coarsely bounded, we can find a surface K as in Fact 2.16. Let A be the compo-
nent of † n K containing eC, and note that A is the only such component with nonzero
genus. Pick a subsurface V � A containing eC and such that A n V has positive genus.
By Fact 2.16, there is some f 2MCG.†/ such thatA� f .V /. But that would mean† nV
has positive genus while † n f .V / has zero genus, a contradiction. Thus eC is accumu-
lated by genus if and only if e� is.

Let x1; : : : ; xk be the immediate predecessors to eC found via Lemma 5.8. Fix a
curve ˛0 separating eC and e�. Pick a sequence of pairwise disjoint curves ˛1; ˛2; : : :
such that limn!1 ˛n D eC—this is possible by definition for any end—and likewise
˛�1; ˛�2; : : : such that limn!�1 ˛n D e�. By moving to a subsequence, we may assume
that for each n2Z the subsurface .˛n;˛nC1/ has positive (possibly infinite) genus if† has
infinite genus, and furthermore that the end space of this subsurface includes an element
of each E.xi /.

By Lemma 4.5, write the end space of .˛n; ˛nC1/ as
Fp
jD1 Vn;j , where each Vn;j is

a stable neighborhood of an immediate predecessor of eC. Note that each Vn;j is homeo-
morphic to some Ui , a stable neighborhood of the immediate predecessor xi .

Thus we can describe the end space of † as follows: for each i 2 ¹1; : : : ; kº, there
is a countable collection ¹Ui;nºn2Z of disjoint homeomorphic copies of Ui , whose limit
points are eC and e� as n approachesC1 and �1, respectively. That is,

E D ¹e�; eCº t

kG
iD1

� G
n2Z

Ui;n

�
D ¹e�; eCº t

G
n2Z

� kG
iD1

Ui;n

�
;

where each Ui;n is a copy of Ui , and the only additional topology is given by the limits

lim
n!˙1

Ui;n D e˙

for each 1 � i � k.
Let S be a surface with end space

Fk
iD1Ui and genus defined as follows: if some xi is

accumulated by genus, S will have infinite genus by definition. If † has zero genus, let S
also have zero genus. If † has infinite genus but no xi is accumulated by genus—which
implies that only eC and e� are accumulated by genus—then let S have genus 1. Then the
surface S \Z, which is translatable by construction, has genus and end space matching that
of †, and so they are homeomorphic. Thus † is translatable.

The proof of Proposition 5.7 follows directly.

Proof of Proposition 5.7. Since eC and e� are the only maximal ends of†, and eC � e�,
every end y 2 E has y 4 eC and y 4 e�. Then we can apply Lemma 5.9.

5.3. All other surfaces

Remark 5.10. Many of the proofs in this subsection are inspired by and to some extent
duplicate the work in Mann and Rafi’s proof of Fact 2.16. They are included for com-
pleteness.
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We have covered the cases where † has zero or infinite genus and either one max-
imal end, two equivalent maximal ends, or a Cantor set of equivalent maximal ends.
We now show that if the maximal ends of † have any other structure, or if † has finite
positive genus, there is no graph whose vertices are curves onto which the action of
MCG.†/ induces a quasi-isometry. Our main tool will be the following observation of
Mann and Rafi.

Fact 5.11 ([10, Lemma 5.2]). Let K � † be a finite-type subsurface. If there exists
a finite-type, nondisplaceable (possibly disconnected) subsurface S � † n K, then VK
is not coarsely bounded.

Corollary 5.12. Let† be a surface. If for every curve ˛ on†,† n ˛ contains a finite-type
nondisplaceable surface, then there is no graph � whose vertices are curves on † such
that the orbit map MCG.†/! � is a quasi-isometry.

Proof. For the orbit map to be a quasi-isometry, the preimage of every bounded set in �
must be coarsely bounded in MCG.†/. In particular, the stabilizer of a curve is the preim-
age of a single vertex, so it must be coarsely bounded.

Mann and Rafi give three basic examples [10, Examples 2.4 and 2.5] of nondisplace-
able surfaces, all of which we will use:

(1) If † has finite positive genus, then any subsurface of † with the same genus as †
is nondisplaceable.

(2) If X is a MCG.†/-invariant, finite set of ends of † of cardinality at least 3, then
any surface that separates the elements of X into different complementary com-
ponents is nondisplaceable.

(3) IfX and Y are disjoint, closed MCG.†/-invariant sets of ends of†withX home-
omorphic to a Cantor set, then a subsurface homeomorphic to a pair of pants
containing elements of X in two complementary components, and all of Y in the
third, is nondisplaceable.

The easiest place to apply Corollary 5.12 is in the case of finite-genus surfaces.

Lemma 5.13. If † has finite positive genus, then for any graph � whose vertices are
curves on †, the orbit map MCG.†/! � is not a quasi-isometry.

Proof. Fix a curve ˛, and let S be a connected, finite-type subsurface of † containing ˛
and with the same genus as †. If ˛ is nonseparating in S , S n ˛ is still connected and
nondisplaceable. If ˛ separates S into two components, one of which has the same genus
as †, then that component is connected and nondisplaceable.

Finally, if ˛ separates S into two components, both of which have positive genus,
consider the surface S n ˛. For any f 2 MCG.†/, both components of f .S n ˛/ contain
nonseparating curves, and every nonseparating curve on † intersects S n ˛. Therefore,
both components of f .S n ˛/ intersect S n ˛, making it a nondisplaceable surface. The
result follows by Corollary 5.12.
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Next consider the case where † has at least three—but finitely many—maximal ends.

Lemma 5.14. If † has at least 3 but finitely many maximal ends, then for any graph �
whose vertices are curves on †, the orbit map MCG.†/! � is not a quasi-isometry.

Proof. Fix a curve ˛, and let S be a finite-type surface containing ˛ and separating the
maximal ends of † into distinct complementary components. If ˛ is nonseparating in S ,
then S n ˛ is still connected and nondisplaceable. If ˛ separates S into two components,
one of which still separates the maximal ends of † into distinct complementary compo-
nents, then that component is connected and nondisplaceable.

Otherwise, there are at least two maximal ends of † in both components of † n ˛.
Fix f 2 MCG.†/. Since there are at least two maximal ends of † in both components of
† n f .˛/, either f .˛/D ˛ or f .˛/ intersects S n ˛. Since f .˛/ is a boundary component
of both components of S n ˛, it follows that S n ˛ is nondisplaceable. The result follows
by Corollary 5.12.

Now we move to the case of infinitely many maximal ends.

Lemma 5.15. If † has infinitely many maximal ends, not all equivalent, then for any
graph � whose vertices are curves on †, the orbit map MCG.†/! � is not a quasi-
isometry.

Proof. Fix a curve ˛. By Fact 2.10, the equivalence class of every maximal end is either
finite or a Cantor set. If every such equivalence class is finite, then there are infinitely
many of them; in particular, let x, y, z be three nonequivalent maximal ends with E.x/,
E.y/, and E.z/ all finite. Then let X D E.x/, Y D E.y/, and Z D E.z/. If, on the other
hand, there is some maximal end x such that E.x/ is a Cantor set, pick a maximal end z
not equivalent to x, and let X t Y be nonempty sets partitioning E.x/, and letZ D E.z/.

In either case above, let S be a finite-type surface containing ˛ and with X , Y , and Z
in distinct complementary components. One component of S n ˛ still has X , Y , and Z in
distinct complementary components, so this component is connected and nondisplaceable.
The result follows by Corollary 5.12.

There is only one more case, which requires a bit more subtlety as well as the condition
of tameness.

Lemma 5.16. If † has tame end space and two non-equivalent maximal ends eC and e�,
and if MCG.†/ has a well-defined quasi-isometry type, then for any graph � whose ver-
tices are curves on †, the orbit map MCG.†/! � is not a quasi-isometry.

Proof. Since MCG.†/ has a well-defined quasi-isometry type, we can apply Lemma 5.8
to find immediate predecessors to eC and e�. If eC and e� had the same predecessors,
† would be translatable by Lemma 5.9, which would imply eC � e�, a contradiction.
Thus without loss of generality, we may assume there is some immediate predecessor x
of eC such that x 64 e�.
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Let V be a stable neighborhood of x. Since x is maximal in V , E.x/ \ V is either
a singleton or a Cantor set. We claim it is in fact a Cantor set. Suppose by contradiction that
E.x/ \ V is discrete; since x is an immediate predecessor of eC and x 64 e�, this means
that E.x/ is countable, with a unique accumulation point at eC. Find a subsurface K as
in Fact 2.16, with complementary components AC and A� containing eC and e�, respec-
tively. Note that all but finitely many elements of E.x/ are in the end set of AC. Let B be
a subsurface ofAC containing eC, and such that the end space ofAC n V contains a single
element of E.x/. Then there is some f 2 MCG.†/ such that AC � f .B/. But † n AC
and † n B have a different number of elements of E.x/. This contradiction proves our
claim.

Since E.x/ \ V is a Cantor set, x is an immediate predecessor of eC, and x 64 e�,
E.x/must be a countable sequence of disjoint Cantor sets converging to eC. LetX t Y be
a partition ofE.x/[ ¹eCº into nonempty clopen sets, and letZD ¹e�º. Then a finite-type
surface S that has X , Y , and Z in distinct complementary components will be nondis-
placeable. As in the proof of Lemma 5.15, we can construct such an S so that it avoids
a fixed curve ˛, and so the result follows by Corollary 5.12.

These lemmas together give the main result of this subsection.

Proposition 5.17. If † has tame end space and MCG.†/ has a well-defined quasi-
isometry type, and if † has either finite positive genus, two or infinitely many maximal
ends that are not all equivalent, or at least three but finitely many maximal ends, then
for any graph � whose vertices are curves on †, the orbit map MCG.†/ ! � is not
a quasi-isometry.

Proof. If † has finite positive genus, this is Lemma 5.13. If it has two maximal ends, this
is Lemma 5.16. If it has at least three but finitely many maximal ends, this is Lemma 5.14.
If it has infinitely many maximal ends, this is Lemma 5.15.

6. The plane minus a Cantor set

We now turn from the general case of translatable surfaces, of which there are uncount-
ably many examples only a few of which have received specific notice, to a much more
specific but more well-studied case. In this section, we focus exclusively on the surface
† D R2 n C , where C is a Cantor set embedded in the plane. In this instance, we will not
have to go looking for a suitable graph, as one has been provided for us in the form of
the loop graph defined by Bavard [3]. We will show in this section that the mapping class
group of this surface is quasi-isometric to its loop graph.

Note that the surface † has a unique isolated end, usually called1 because it is the
“point at infinity” of R2.

Definition 6.1. A loop in † is an embedded line in † with both ends approaching 1,
considered up to isotopy and orientation reversal. The loop graph L.†/ of † is the graph
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whose vertices are loops in †, with two loops connected by an edge if they have disjoint
representatives.

It was shown by Bavard [3] that the loop graph5 is connected and Gromov-hyperbolic.
A subsequent paper of Bavard and Walker [4] characterized the Gromov boundary
of L.†/. The high degree of symmetry possessed by † also makes the following tran-
sitivity lemma possible.

Lemma 6.2. If ˛, ˇ, and 
 are loops in †, with ˇ and 
 both in the same component
of † n ˛, then there is a mapping class f 2 MCG.†/ such that f .˛/ D ˛, f .ˇ/ D 
 ,
and f restricts to the identity on the component of † n ˛ not containing ˇ and 
 .

Proof. Observe that every loop on † is separating. If we cut † along ˛ and ˇ, we get
three subsurfaces: one whose only boundary component is ˛, one whose only boundary
component is ˇ, and one with both boundary components. The end space of each of these
subsurfaces is a nonempty clopen subset of a Cantor set, which must be itself a Cantor set.
Since the surface † has no genus, this is a complete description of the subsurfaces. The
same argument applies when cutting the surface along ˛ and 
 , so we can fix the surface
bounded by ˛, map the surface bounded by ˇ to that bounded by 
 , and map the surface
bounded by both ˛ and ˇ to that bounded by ˛ and 
 .

The following lemmas are analogs of Lemmas 3.7 and 3.8 in the setting of †.

Lemma 6.3. Let ˛ be a loop on † and ˛� and ˛C the two components of † n ˛. Then
there is a mapping class r 2MCG.†/ such that after an isotopy r.˛C/D ˛�, r.˛�/D ˛C,
and rj˛ is orientation-reversing.

Proof. In a tubular neighborhood of ˛, which is a punctured annulus, r is just a rotation
by � about the line running down the middle of that punctured annulus, as in Figure 4.
Since ˛ separates the end space of† into two nonempty clopen sets, the end spaces of ˛�
and ˛C are homeomorphic and so this r can be extended to all of †.

Lemma 6.4. Let ˛ be a loop on † and V an identity neighborhood in MCG.†/. Let ˛�
and ˛C be the two components of † n ˛. Then there are mapping classes hC; h� 2
MCG.†/ such that V˛� � h

�1
C V hC and V˛C � h

�1
� V h�. In addition, hC.˛/ � ˛C and

h�.˛/ � ˛�.

Proof. Since the sets ¹VS j S � † has finite typeº form a neighborhood basis of the iden-
tity in MCG.†/, there is some finite-type S � † such that VS � V . By growing S—and
thus shrinking VS—we can ensure that the loop ˛ and its basepoint are included in S .

5Many papers deal interchangeably with the loop graph as defined here and the ray graph, whose ver-
tices are embedded lines with one end at1 and the other in the Cantor set. These are shown by Bavard [3]
to be quasi-isometric.
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˛

ˇ




Figure 8. A finite-type subsurface (shaded), with the loop ˛ in blue, the loop ˇ in red, and the loop 

in magenta.

The subsurface S is a finite-type surface of genus zero, with n boundary components
for some n. In particular, it must have at least one boundary component in ˛� and at least
one boundary component in ˛C. Pick two new arcs ˇ � ˛� and 
 � ˛C and such that both
ˇ� \ S and 
C \ S are disks, as in Figure 8. Using Lemma 6.2, let hC; h� 2 MCG.†/
such that hC fixes ˇ and maps ˛ to 
 , while h� fixes 
 and maps ˛ to ˇ.

It is not quite true that S � hC.˛/� D 
� as in the proof of Lemma 3.8. However,
the intersection S \ 
C is a disk, and so any homeomorphism that restricts to the identity
on 
� can be homotoped to one restricting to the identity on S , and thus V.hC.˛//� D
V
� � VS � V . It follows that V˛� � h

�1
C V hC and likewise V˛C � h

�1
� V h�.

These are enough ingredients to prove our main theorem for this section.

Theorem 6.5. Let†D R2 n C be the plane minus a Cantor set. Then MCG.†/ is quasi-
isometric to L.†/.

Proof. The loop graph is known to be connected by work of Bavard [3], and the action of
MCG.†/ on it is transitive by Lemma 6.2. To apply Lemma 2.5, it remains to show that
for ˛ a loop on†, the set AD ¹f 2MCG.†/ j d.˛; f .˛// � 1º is coarsely bounded. Fix
such an ˛, and refer to the components of † n ˛ as ˛C and ˛�.

We will of course be using Fact 2.4. Fix an identity neighborhood V in MCG.†/, and
let r and h be as in Lemmas 6.3 and 6.4. Let F D ¹r�1; hC; h�; h�1C ; h

�1
� º. We will show

that A � .F V /8.
Fix f 2 A. First consider the case where d.˛; f .˛// D 0. After possibly replacing f

by rf , we may assume f restricts to the identity on ˛, and so it decomposes as f D
f�fC, where f� 2 V˛� and fC 2 V˛C . Then f D f�fC 2 V˛�V˛C � h

�1
C V hCh

�1
� V h� �

.F V /4. Since we may have replaced f by rf , this gives f 2 .F V /5 in general when
d.˛; f .˛// D 0.
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Now suppose d.˛; f .˛// D 1. That means ˛ and f .˛/ are disjoint. Without loss of
generality, we assume that f .˛/ � ˛C; if not, then we need merely replace hC by h�
below. By Lemma 6.2, there is some g 2 V˛� such that g.˛/ D ˛ and g.hC.˛// D f .˛/.
Let f0 D h�1C g

�1f . By construction, f0.˛/ D ˛, so by the previous paragraph, f0 2
.F V /5. Then f D ghCf0 2 V˛�hC.F V /

5 � h�1C V hChC.F V /
5 � .F V /8.

Thus A � .F V /8, so A is coarsely bounded, and then by Lemma 2.5, the action of
MCG.†/ on L.†/ induces a quasi-isometry.

6.1. Some consequences of this quasi-isometry

Theorem 6.5 has some interesting immediate consequences. The first is hyperbolicity;
as mentioned in the introduction, L.†/ is known to be ı-hyperbolic.

Corollary 6.6. Let † D R2 n C . Then MCG.†/ is non-elementary ı-hyperbolic.

Proof. The mapping class group is quasi-isometric to the loop graph, which was shown
by Bavard [3] to be non-elementary ı-hyperbolic.

As the translatable surfaces are known to have non-hyperbolic mapping class groups,
this proves that the mapping class groups are not quasi-isometric.

Corollary 6.7. The mapping class group of R2 n C is not quasi-isometric to that of any
translatable surface.

Proof. The translatable curve graph is never non-elementary hyperbolic by the results of
Horbez, Qing, and Rafi [9], and thus neither is the mapping class group of any translatable
surface. Thus by Corollary 6.6, the mapping class group of a translatable surface is not
quasi-isometric to that of R2 n C .

For the final interesting consequence, we introduce some concepts from the world of
locally compact groups. A generating set S for a groupG can be thought of as a homomor-
phism 'WFS ! G from the free group on the set S to G. A collection of words R � FS
that normally generates the kernel of this map is called a set of relators and we often
write G as a group presentation G D hS j Ri. When the sets S and R are both finite, we
say the groupG is finitely presented. Cornulier and de la Harpe [5] introduce the following
generalization of this notion.

Definition 6.8. A group presentation G D hS j Ri is a bounded presentation if the words
in R have bounded length. In this case we say G is boundedly presented over the set S .

Note that a finite presentation is simply a bounded presentation over a finite generat-
ing set. Cornulier and de la Harpe call a group compactly presented if it has a bounded
presentation over a compact generating set, and by analogy we might call a group coarse-
boundedly presented if it has a bounded presentation over a coarsely bounded generating
set. Crucially, Cornulier and de la Harpe show the following close relationship between
bounded presentations and word metrics.
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Fact 6.9 ([5, Proposition 7.B.1]). Let G be a group endowed with a generating set S .
Then G is boundedly presented over S if and only if the Rips complex Ripsc.G; dS / is
simply connected for some c.

It follows directly that the mapping class group of the plane minus a Cantor set has
a coarsely bounded presentation.

Corollary 6.10. Let † D R2 n C be the plane minus a Cantor set. Then MCG.†/ has
a coarsely bounded presentation.

Proof. By Corollary 6.6, the mapping class group MCG.†/ is ı-hyperbolic with respect
to (any) coarsely bounded generating set S . Then by a result credited to Rips by Gromov
[8, Theorem 1.7.A], when c > 4ı the Rips complex Ripsc.G; dS / is contractible, and so
by Fact 6.9, the mapping class group MCG.†/ has a bounded presentation over S .
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