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Separation and relative quasiconvexity criteria
for relatively geometric actions

Eduard Einstein, Daniel Groves, and Thomas Ng

Abstract. Bowditch characterized relative hyperbolicity in terms of group actions on fine hyper-
bolic graphs with finitely many edge orbits and finite edge stabilizers. In this paper, we define
generalized fine actions on hyperbolic graphs, in which the peripheral subgroups are allowed to
stabilize finite subgraphs rather than stabilizing a point. Generalized fine actions are useful for
studying groups that act relatively geometrically on a CAT(0) cube complex, which were recently
defined by the first two authors. Specifically, we show that any group acting relatively geometrically
on a CAT(0) cube complex admits a generalized fine action on the one-skeleton of the cube com-
plex. For generalized fine actions, we prove a criterion for relative quasiconvexity of subgroups that
cocompactly stabilize quasiconvex subgraphs, generalizing a result of Martínez-Pedroza and Wise
in the setting of fine hyperbolic graphs. As an application, we obtain a characterization of boundary
separation in generalized fine graphs and use it to prove that Bowditch boundary points in relatively
geometric actions are always separated by a hyperplane stabilizer.

1. Introduction

There are many equivalent formulations of relatively hyperbolic groups, see, for exam-
ple, [4,7,11,13,14,16,18]. Bowditch describes relative hyperbolicity in terms of an action
on a fine hyperbolic graph with certain finiteness conditions (see Definition 2.1 for the
definition of ‘fine’) [4]. A natural example of such a graph is the coned-off Cayley graph
of a relatively hyperbolic pair, defined by Farb [11]. Unfortunately, fineness and other
important finiteness properties of the action of .G;P / on the coned-off Cayley graph are
not quasi-isometry invariants (see, for instance, Example 3.5). The first and second authors
introduced the notion of a relatively hyperbolic pair .G;P / acting relatively geometrically
on a CAT(0) cube complex zX [8]. In this situation, a result of Charney and Crisp [5, The-
orem 5.1] implies that both zX and its 1-skeleton zX .1/ are quasi-isometric to the coned-off
Cayley graph of .G;P /. However, the edge stabilizers of zX .1/ are often infinite.

In this paper, we develop tools to translate geometric features of a generalized fine
action on a hyperbolic graph to the Bowditch boundary of .G;P /, a compact boundary
for a relatively hyperbolic pair .G;P / first introduced in [4]. We also apply these tools
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to prove some fundamental results about relatively hyperbolic groups that act relatively
geometrically on CAT(0) cube complexes. One construction of this boundary is from
a fine hyperbolic graph � that witnesses the relative hyperbolicity of .G;P /. As a set,
the Bowditch boundary is the disjoint union of the visual boundary of � with the ver-
tices of � that have infinite stabilizer. Bowditch endows this set with the topology we
describe in Definition 4.6. In our study of relatively geometric actions, we would like
to take advantage of the correspondence between the CAT(0) cube complex zX and the
coned-off Cayley graph for .G;P / to use the geometry of zX to prove statements about
the Bowditch boundary of .G;P /.

Let .G;P / be a relatively hyperbolic group pair, where G acts combinatorially by
isometries on a CAT(0) cube complex zX . The action of G is relatively geometric if

(1) the quotient of Gn
zX is compact,

(2) every infinite cell stabilizer is a finite index subgroup of P g for some P 2 P and
g 2 G,

(3) every P 2 P acts elliptically.

Relatively geometric actions were defined recently by the first and second authors
in [8]. There is natural motivation for identifying and studying relatively hyperbolic groups
that act relatively geometrically: many of the desirable properties of hyperbolic groups
that act properly and cocompactly on CAT(0) cube complexes have relatively geomet-
ric analogs when the peripheral subgroups are residually finite. For example, there is
a relatively geometric version [9, Theorem 1.4] of Agol’s theorem for hyperbolic cubu-
lated groups [2, Theorem 1.1], full relatively quasiconvex subgroups are separable [9,
Corollary 1.7], and there is a relatively geometric characterization of Kleinian groups for
relatively hyperbolic groups with 2-sphere boundary which may provide a method for
attacking the (relative) Cannon conjecture [8].

If .G;P / acts relatively geometrically on zX , then zX (and also its 1-skeleton zX .1/)
is quasi-isometric to the coned-off Cayley graph of .G;P / by [5, Theorem 5.1]. How-
ever, in general the graph zX .1/ is not a fine graph. Thus, to help study actions similar to
relatively geometric actions, we introduce generalized fine actions on a hyperbolic graph.

Definition 1.1. Let G be a group that acts by isometries on a ı-hyperbolic graph � and
let P be a finite and almost malnormal collection of finitely generated subgroups of G.
For each P 2 P and g 2 G, let �P g be the subgraph of � whose cells have stabilizer
commensurable to P g . A circuit without peripheral backtracking is an embedded loop 

so that for all P 2 P and g 2 G, 
 \ �P g is connected. We say that � is generalized fine
with respect to the action of .G;P / if

(1) the quotient Gn� is compact,
(2) every cell with infinite stabilizer lies in �P g for some P 2 P and g 2 G,
(3) each subgraph �P g is compact and connected, and
(4) for every n 2 N, every edge with finite stabilizer lies in finitely many circuits

without peripheral backtracking of length n.
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It follows from the characterization of fineness [4, Proposition 2.1] that a cocompact
action on a fine graph with finite edge stabilizers is also generalized fine with respect
to a set of conjugacy representatives of the vertex stabilizers. Generalized fine actions
witness relative hyperbolicity. We prove in Proposition 3.4 that .G;P / in Definition 1.1
is a relatively hyperbolic pair when P 2 P fixes �P g . Relatively geometric actions give
rise to generalized fine actions: in Example 3.3 below we show that zX .1/ is generalized
fine with respect to the induced action of .G;P /.

We say that H � G has a (quasi)convex cocompact core if H stabilizes a (quasi)con-
vex H -cocompact connected subgraph (see Definition 4.1 for a precise definition). Our
first main result shows that the existence of a quasiconvex cocompact core that interacts
nicely with the subgraphs stabilized by peripheral conjugates implies relative quasicon-
vexity.

Theorem 1.2. Let .G;P / be a relatively hyperbolic pair and let � be a hyperbolic graph
with a G-action so that � is generalized fine with respect to the action of .G;P /. For any
P 2 P and g 2 G, let �P g be the subgraph of � whose cell stabilizer are commensurable
to P g . If H � G has a quasiconvex cocompact core �H and one of the following holds:

• � is fine or

• for all P 2 P and g 2 G, �H \ �P g ¤ ; implies jP g \H j D 1,

then H is relatively quasiconvex in .G;P /.

As with the definition of relative hyperbolicity, there are many equivalent characteri-
zations of relative quasiconvexity, see [16]. As a consequence of Theorem 1.2, we provide
an alternate proof of a theorem of Martínez-Pedroza and Wise [17] characterizing relative
quasiconvexity in terms of quasiconvex cores in fine hyperbolic graphs.

Corollary 1.3 ([17, Theorem 1.7]). Let .G;P / be a relatively hyperbolic pair acting
cocompactly on a fine hyperbolic graph so that every edge stabilizer is finite. A subgroup
H � G is relatively quasiconvex in .G;P / if and only ifH has a quasiconvex cocompact
core in � .

As an application, we see that if .G;P / acts relatively geometrically on a CAT(0)
cube complex zX , then hyperplane stabilizers are relatively quasiconvex in .G;P /. The
first and third authors also use Theorem 1.2 to construct new families of residually finite
groups using relatively geometric actions of C 0.1

6
/-small cancellation free products with

relatively geometrically cubulated factor groups [10].
Following the criterion in [3] for proper and cocompact cubulations of hyperbolic

groups, the first two authors show in [8, Theorem 2.6] that if any two points in the
Bowditch boundary @DK of a relatively hyperbolic pair .K;D/ lie in H -distinct com-
ponents of the limit set of a full relatively quasiconvex H � K, then K acts relatively
geometrically on a CAT(0) cube complex. Our other main result shows that any pair of
distinct points in the Bowditch boundary of a relatively geometrically cubulated group can
be separated by the limit set of a hyperplane stabilizer.



E. Einstein, D. Groves, and T. Ng 652

Theorem 1.4. Let .K;D/ act relatively geometrically on a CAT.0/ cube complex zX .
If x;y 2 @DK and x¤ y, then there exist a hyperplaneW of zX and a finite index subgroup
KW � StabK.W / so that x, y are in KW -distinct components of @DK nƒKW .

More generally, if a graph † is generalized fine with respect to the action of a rel-
atively hyperbolic pair .K;D/ as in Definition 1.1, we obtain a technical criterion for
deciding when a subgroup of K with a cocompact core in † separates two points in the
Bowditch boundary, see Theorem 5.7. Both Theorems 1.4 and 5.7 are essential tools in
the first and third authors’ work [10] on relative cubulations for small cancellation free
products.

The idea behind Theorem 1.4 is to take a hyperplane W that is dual to an edge of
a combinatorial geodesic between x and y. However, the Bowditch boundary is not the
visual boundary of zX . Moreover, zX .1/ is not proper, so it is not clear that such a com-
binatorial geodesic exists. In order to make statements about @DK, we need to coarsely
translate the geometric features ofW and zX to a fine hyperbolic graph†0 with aK-action
that witnesses the relative hyperbolicity of .K;D/. While the image of W in †0 will sep-
arate †0 into two components, we need to ensure that the limit set of StabG.W / actually
separates x and y into distinct complementary components of @DK, which is still not the
visual boundary †0.

1.1. Outline

We introduce some background on relatively hyperbolic groups and fine hyperbolic graphs
in Section 2. We also discuss a construction similar to that in [11] to relate paths in two
graphs †, †0, where †0 is formed by collapsing some of the edges of †. Then, we recall
some specific properties of relatively geometric actions in Section 2.3. In Section 3,
we explore the properties of generalized fine actions and show that relatively geomet-
ric actions on a cube complex give rise to generalized fine actions on the one-skeleton of
the cube complex. We then prove Theorem 1.2 and Corollary 1.3 in Section 4.

The main result of Section 5 is Theorem 5.7, a technical separation criterion for points
in the Bowditch boundary of a relatively hyperbolic group in terms of a generalized fine
action. Finally, in Section 6, we prove Theorem 1.4 using Theorem 5.7.

2. Obtaining fine hyperbolic graphs from relatively geometric actions

2.1. Fine hyperbolic graphs and relative hyperbolicity

First, we recall the definition of a fine graph.

Definition 2.1. Let � be a graph. A circuit is an embedded loop in � . The graph � is
fine if for each edge e of � and every n 2 N, there exist finitely many circuits of length n
containing e.
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Here is Bowditch’s definition of relative hyperbolicity in terms of fine hyperbolic
graphs.

Definition 2.2 ([4, Definition 2], written as stated in [16, Definition 3.4]). SupposeG acts
on a ı-hyperbolic graph � with finite edge stabilizers and finitely manyG-orbits of edges.
If � is fine, and P is a set of representatives of the conjugacy classes of infinite vertex
stabilizers, then .G;P / is a relatively hyperbolic pair.

In Section 4, we will also use a dynamical characterization of relative hyperbolicity
and relative quasiconvexity due to Yaman [22].

As noted by Bowditch [4, p. 3], fineness is not a quasi-isometry invariant. Here is an
example of quasi-isometric graphs, where one graph is fine and the other is not.

Example 2.3. Let � be a graph with 2 vertices and a single edge joining the two vertices.
Let † be a graph with 2 vertices and an infinite number of edges between the two ver-
tices. Then � and † are quasi-isometric. Any edge of † lies in infinitely many circuits of
length 2, so † is not fine.

2.2. Electrification and de-electrification

Farb first introduced the notion of electrifying a space in [11], where electrification of
the fundamental group of a finite volume hyperbolic 3-manifold is accomplished by col-
lapsing the cosets of cusp subgroups to points. This idea inspires the definitions in this
subsection. Similar constructions have also been performed in [1, 4, 6, 20].

LetG be a group and supposeG acts by isometries on a graph†. Let B be a collection
of pairwise disjoint and connected subgraphs of † so that

(1) if g 2 G and B 2 B, then gB 2 B,

(2) every cell of B 2 B has infinite stabilizer, and

(3) every cell with infinite stabilizer lies in some B 2 B.

Definition 2.4. The complete electrification of† (with respect to B) is the graph†0 that is
constructed by contracting each B 2B to a vertex vB of†0. There is a canonical quotient
map � W†! †0, which we call the electrification map.

The stable part of † under the electrification with respect to B is denoted by

†0 D † n
� [
B2B

B
�
:

The stable part†0 embeds naturally into both† and†0. When B is clear from context,
we refer to †0 as the stable part of †.

When the action on G induces an action on B (i.e., for all g 2 G and all B 2 B,
gB 2B/, then there is a natural induced action on the complete electrification†0, whereG
acts on the stable part as usual, and for each B 2 B, the action of g 2 G takes vB to vgB .
The electrification map � W†!†0 is thenG-equivariant. Note thatG†0�†0 because†0
consists precisely of the cells with finite stabilizers.
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We are interested in how paths behave under electrification.

Definition 2.5. Let 
 be a path in †. The path 
 is without peripheral backtracking if for
every B 2 B, 
 n .
 \ B/ is connected when 
 is a loop and has at most 2 components
otherwise.

Similarly, a path 
 0 in †0 is without peripheral backtracking if for all B 2 B, 
 0 n vB
is connected when 
 is a loop and has at most 2 components otherwise.

We will see that peripheral backtracking is an especially important property for cir-
cuits because it characterizes circuits whose images under the complete electrification are
still embedded. We can relate paths without peripheral backtracking in † and †0 as fol-
lows.

Definition 2.6. Let 
 be a path in † without peripheral backtracking. The electrifica-
tion 
 0 of 
 is the path in †0 constructed by collapsing sub-segments of the form 
 \ B

to vB .
Similarly, let �0 be a path in †0 without peripheral backtracking. Let x�0 be the closure

of �0 \†0 in †. If x�0 \ B fails to be connected, x�0 \ B is exactly two points because �0

is without peripheral backtracking. A complete de-electrification of �0 is a path � in †
constructed by joining any disconnected x�0 \ B by an embedded path in B .

Proposition 2.7. LetG act cocompactly and cellularly by isometries on a graph†. Let B

be a collection of pairwise disjoint compact connected subgraphs so that for each B 2B,
gB 2 B. If †0 is the complete electrification of † with respect to B, then there exist
a cocompact action of G on †0 and a G-equivariant quasi-isometry f W†0 ! †, whose
restriction f j†0 to the stable part of †0 � †0 is the identity.

Furthermore, the electrification map � W†! †0 is a quasi-isometry.

Proof. Recall that G has a natural induced action on the complete electrification †0 of †.
The quotient Gn†

0 differs from the quotient Gn† by collapsing finitely many edges
of a finite graph, so Gn†

0 is still compact.
For each B 2 B, fix a vertex xB 2 B . We define f W†0 ! † as follows:

f .x/ D

´
x; x 2 †0;

xB ; x D vB :

There are finitely manyG-orbits ofB and eachB is compact, so there exists s � 0 that
uniformly bounds the diameters of all B 2 B. It follows immediately that f is coarsely
surjective.

Let x, y be vertices of†0. Choose a geodesic path 
 0 connecting them in†0. LetD be
the length of 
 0 in†0. There exists a de-electrification 
 of 
 0 so that 
 0 has length at most
D CDs since 
 0 encounters at most D vertices of the form vP g in its interior. Extend 
 0

to a path 
 00 joining f .x/ to f .y/ by adding segments of length at most s to each end.
The distance in † between f .x/ and f .y/ is at most D CDs C 2s.
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On the other hand, any geodesic path between f .x/ and f .y/ in † can be electrified
to make a shorter path in †0 between x and y. Therefore,

d.x; y/ � d.f .x/; f .y// � .1C s/d.x; y/C 2s:

Hence f is a quasi-isometry.

2.3. Obtaining an action on a fine hyperbolic graph from a relatively geometric
action

For the following subsection, assume that the relatively hyperbolic pair .G;P / acts rela-
tively geometrically on a CAT(0) cube complex zX .

The main goal of this section is to show that subgroups with convex cores in zX have
quasiconvex cocompact cores in a fine hyperbolic graph that witnesses the relative hyper-
bolicity of .G;P /.

Proposition 2.8. Let H � G be a subgroup that stabilizes a convex subcomplex zY � zX .
Then .G;P / acts on a fine hyperbolic graph � so that

(1) every P 2 P fixes a vertex of � ,

(2) every edge stabilizer is finite,

(3) Gn� is compact, and

(4) there exists a quasiconvex H -invariant connected subgraph �H � � .

Additionally, if zY is H -cocompact, then �H is H -cocompact.

For each P 2 P and g 2 G, let zXP g denote the subgraph of zX .1/ consisting of cells
whose stabilizer is commensurable to P g . Since infinite stabilizers in zX are commensu-
rable with a unique P g , the following is immediate from the definitions.

Lemma 2.9. If P g11 ¤ P
g2
2 , then zX

P
g1
1
\ zX

P
g2
2
D ;.

Before proving Proposition 2.8, we investigate some of the properties of zX .1/ and its
complete electrification with respect to the collection of subgraphs of the form zXP g .

By [9, Proposition 3.5], the subgraph zXP g is the 1-skeleton of a compact and convex
subcomplex of a CAT(0) cube complex. Then we obtain the following fact about zXP g .

Proposition 2.10. The subgraph zXP g is connected, convex and compact.

For zX .1/, Proposition 2.7 implies the following.

Proposition 2.11. Let � be the complete electrification of zX .1/ with respect to

B D ¹ zXP g W P 2 P ; g 2 Gº

and let �0 be the stable part of zX .1/. There exist a cocompact action of G on � and
a G-equivariant quasi-isometry f W� ! zX .1/ so that f j�0 is the identity map.



E. Einstein, D. Groves, and T. Ng 656

Furthermore, the map cW zX .1/ ! � , that collapses XP g to vP g and fixes f .�0/, is
a G-equivariant quasi-isometry that fixes the image of the stable part of �0 in zX .1/.

Proposition 2.12. The complete electrification � in Proposition 2.11 is a fine hyperbolic
graph.

Proof. By [5, Theorem 5.1], zX .1/ is quasi-isometric to the coned-off Cayley graph for
.G;P /, so zX .1/ is a hyperbolic graph. By Proposition 2.11, � is hyperbolic.

Infinite vertex stabilizers in � are maximal parabolic, and each maximal parabolic
stabilizes exactly one point in � , so � has finite pair stabilizers. By cocompactness, Gn�
is finite, so by [4, Lemma 4.5], � is a fine graph.

We are ready to prove Proposition 2.8.

Proof of Proposition 2.8. By Proposition 2.11, the action of .G;P / provides a cocompact
action of G on � where each P g fixes vP g . Since H stabilizes a convex subcomplex
zY � zX , then zX .1/ \ zY D zY .1/ is a convex subgraph of zX .1/. When zY is H -cocompact,
zY .1/ is alsoH -cocompact. The collapse cW zX .1/! � takes zY .1/ to a subgraph of �H of � .
Since c is a quasi-isometry by Proposition 2.11, �H is quasiconvex in � .

3. Generalized fine actions

The behavior of the action ofG on zX .1/ in Section 2.3 is more general than relatively geo-
metric actions on CAT(0) cube complexes and is captured by the definition of generalized
fine graphs (Definition 1.1).

Hypotheses 3.1. Let .K;D/ be a relatively hyperbolic pair and let K act on a graph †.
For each D 2 D and k 2 K, let †Dk be the subgraph of † consisting of cells whose
stabilizer is commensurable to Dk .

The main goal of this section is to characterize generalized fine actions as follows:

(1) If electrifying † with respect to the †Dk results in a fine hyperbolic graph with
an appropriate action, the action of K on † is generalized fine (Proposition 3.2).

(2) If the action of .K;D/ on † is generalized fine, then electrifying the †Dk results
in a fine hyperbolic graph (Proposition 3.4).

Proposition 3.2. Assume Hypotheses 3.1. Suppose that

(1) K acts cocompactly on †,
(2) every cell with infinite stabilizer lies in some †Dk ,
(3) every maximal parabolic D 2 D stabilizes a vertex of †, and
(4) the subgraph †Dk is connected and compact.

If the complete electrification with respect to ¹†Dk W D 2 D ; k 2 Kº is a fine hyperbolic
graph, then † is generalized fine with respect to the action of .K;D/.
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Proof. The first three requirements for generalized fineness follow from hypothesis.
Fix n� 0 and let e be an edge of†with finite stabilizer. Let 
 be a length n-circuit in†

without peripheral backtracking. Let � be the complete electrification of†. Since each of
the †Dk is compact and there are finitely many K-orbits of †Dk , there is a constant L.n/
that bounds the number of length at most n embedded paths in †Dk from above.

The map � W†! � that collapses the subgraphs †Dk to points vDk is injective on e
because e has finite stabilizer. The electrification 
 0 of 
 is an embedded circuit of length
at most n in � containing �.e/. Since � is a fine graph, there exists some T � 0 so
that 
 0 is one of T circuits passing through �.e/. Since 
 intersects at most n of the vP g ,

 can be obtained as a de-electrification of 
 0 where each of the vP g that 
 intersects
is replaced by an embedded path in the corresponding †Dk . Hence there are at most
T .L.n//n possibilities for 
 . Thus every edge with finite stabilizer in † is contained in
only finitely many circuits.

Propositions 2.12 and 3.2 imply that a relatively geometric action gives rise to a gen-
eralized fine action.

Example 3.3. If .G; P / acts relatively geometrically on a CAT(0) cube complex zX ,
then zX .1/ is generalized fine with respect to the action of .G;P /.

Conversely to Proposition 3.2, generalized fine actions can always be used to electrify
the underlying space into a fine hyperbolic graph witnessing relative hyperbolicity.

Proposition 3.4. If † is generalized fine with respect to the action of .K;D/, then the
electrification†0 with respect to B D ¹†Dk WD 2D ; k 2Kº is a fine (hyperbolic) graph.
Therefore, .K;D0/ is a relatively hyperbolic pair, where D0 D ¹Stab.†D/ W D 2 Dº.

Proof. Let � W†! †0 be the complete electrification as in Proposition 2.7. Let e0 be an
edge in †0 with finite stabilizer and let 
 0 be a circuit of length n in †0. The circuit 

is without peripheral backtracking because it is embedded and peripheral subgroups are
only commensurable to stabilizers of vertices in †0. Let †0 be the stable part of †. Let e
be the unique edge of † whose interior is e0 D �.e/ � †0. The electrification of any
de-electrification of 
 0 returns 
 0.

Therefore, there exists a circuit 
 without peripheral backtracking containing e such
that 
 0 is a complete electrification of 
 . There are finitely manyK-orbits of†Dk , so there
is a uniform bound L � 0 on the diameters of the †Dk 2 B. Hence the length of 
 is at
most n C nL. Since † is generalized fine, and 
 contains e, an edge with finite stabi-
lizer, there are only finitely many possibilities for 
 . Thus there are only finitely many
possibilities for 
 0.

There is a natural action of K on †0 defined as follows: let x 2 †0 and k 2 K. When
x 2†0, then k � x is defined according to the action ofK on†0 �†. Otherwise, xD vDk0

for some D 2 D and some k0 2 K, so define k � x D vDkk0 . There are finitely many K-
orbits of edges because K acts cocompactly on †0, and every edge has a finite stabilizer
because electrification collapses every edge with infinite stabilizer. By Definition 2.2, the
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vi

Q

Q

Q

1

1

1

P

P

P

e

eP

v0

vi

Figure 1. The complex of G .P;Q/ is the complex of groups with indicated local groups and a por-
tion of the development around the edge stabilized by P . The blue circuits pass through e and vi for
i � 1, but all have peripheral backtracking because they are separated by the subcomplex†P D eP
with red endpoints.

hyperbolicity and fineness of †0 implies that K is hyperbolic relative to any finite set of
conjugacy class representatives of the infinite vertex stabilizers. The set D0 is a collection
of conjugacy representatives of infinite vertex stabilizers for the action of K on †.

Note that if each D fixes a point of †D , then D D D0.
We now exhibit an action that is generalized fine where the underlying graph is not

fine.

Example 3.5. Let P ,Q be groups and consider the complex of groups G .P;Q/ shown in
Figure 1. Let T be the Bass–Serre tree for the free product P �Q. The complex G .P;Q/

is the quotient of the natural action ofP �Q on T � Œ0;1�, and this action is relatively geo-
metric. However, the edge eP stabilized by P lies in infinitely many circuits of length 4.
Note also that even though the edge e joining vertices with stabilizers P andQ has trivial
stabilizer, it is contained in infinitely many circuits. However, only finitely many of these
circuits will not have peripheral backtracking.

4. Quasi-convex subgraphs of generalized fine graphs

In this section, we prove Theorem 1.2. We first formally state the definition of a quasicon-
vex cocompact core.

Definition 4.1. Let G act on a hyperbolic graph � by isometries and letH � G be a sub-
group of G. A (quasi)convex core of H in � is a connected subgraph �H so that

(1) the quotient Hn�H is compact, and

(2) �H is (quasi)convex in � .

Set the following hypotheses.



Separation and relative quasiconvexity criteria for relatively geometric actions 659

Hypotheses 4.2. Let .G;P / be a relatively hyperbolic pair and suppose that G acts on
a connected hyperbolic graph � so that � is generalized fine with respect to the action
of .G;P /. For P 2 P and g 2 G, let �P g be the subgraph stabilized by P g . Let H � G
and let �H be a quasiconvex cocompact core forH in � . If � is not fine (only generalized
fine), we make the following additional assumption:

If �H \ �P g ¤ ;, then jH \ P g j D 1.

Here is a rough outline of the proof of Theorem 1.2: we prove that the action of H
on �H implies that H is hyperbolic relative to a finite collection of vertex stabilizers D .
Then H admits a geometrically finite convergence group action on the Bowditch bound-
ary of .H;D/. We then show that the inclusion �H ! � induces an equivariant inclusion
on Bowditch boundaries whose image is the limit set of H so that the induced action
of H on its limit set in the Bowditch boundary of .G;P / is a geometrically finite conver-
gence group action. We now recall Yaman’s dynamical characterization [22] of relative
hyperbolicity.

Definition 4.3 (As stated in [16, Definition 3.1]). Suppose .G;P / has a geometrically
finite convergence group action on a compact metrizable space M . Then .G;P / is a rel-
atively hyperbolic pair.

Yaman also proves (see, for example, [16, Theorem 5.2]) that the space M from Defi-
nition 4.3 is equivariantly homeomorphic to the Bowditch boundary of the pair .G;P /.

For details about geometrically finite actions, see [16, Section 3.1]. If H � G, recall
that the limit set ofH inM , denoted byƒH , is the smallest non-empty closedH -invariant
subset ofM . We use Definition 4.3 in conjunction with the following definition for relative
quasiconvexity.

Definition 4.4 ([16, Definition 6.2]). Let .G;P / be a relatively hyperbolic group that acts
on a compact metrizable space as a geometrically finite convergence group. A subgroup
H � G is relatively quasiconvex if the induced convergence action of H on the limit set
ƒH �M is geometrically finite.

Proposition 4.5. Assume Hypotheses 4.2. Let D be a (finite) collection of H -conjugacy
representatives (up to commensurability) of infinite vertex stabilizers for the action of H
on �H . Then .H;D/ is a relatively hyperbolic pair.

Proof. If � is fine, then the core graph �H is fine, so by Definition 2.2, .H;D/ is a rela-
tively hyperbolic pair.

By assumption, the action of H on �H is cocompact. Since �H \ �P g ¤ ; implies
thatH \ P g is infinite, each infinite cell stabilizer for theH -action on �H is commensu-
rable to H \ P g for some P 2 P and g 2 G. Hence D is an almost malnormal family.
The technique from [9, Proposition 3.5] can be used to show that for each D 2 D , the
subgraph of �H consisting of cells whose stabilizers are commensurable to D is com-
pact and convex (and therefore connected) in �H . Since the edges of �H with finite
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stabilizer are precisely those which have finite stabilizer with respect to the G-action
on � , the generalized fineness of the action of .G;P / on � implies that every edge of �H
with finite H -stabilizer lies in finitely many circuits without peripheral backtracking of
length n.

Therefore, �H is generalized fine with respect to the H -action. By Proposition 3.4,
.H;D/ is a relatively hyperbolic pair.

For clarity and completeness, we repeat Bowditch’s construction of the Bowditch
boundary from a fine hyperbolic graph.

Definition 4.6 ([4, Section 9]). Let .G;P / be a relatively hyperbolic pair and suppose
that � is a graph that is generalized fine with respect to the action of .G;P /. Let � 0 be
a complete electrification of � with respect to the �P g and for all P 2 P and g 2 G,
let vP g be the vertex of � 0 stabilized by P g . Let 4� 0 D @� 0 t V.� 0/ be endowed with
the following topology: If A is any finite subset of the vertices of � 0 and a 2 4� 0, define
N.a;A/ to be the set of b 24� 0 so that every geodesic from a to b avoids A n a. A subset
U � 4� 0 is open if for every a 2 U , there exists a finite set of vertices A � V.� 0/ so that
N.a;A/ � U .

Define …� 0 D ¹vP g W P 2 P ; g 2 Gº, the peripheral points of the Bowditch bound-
ary.

Let @B� 0 D @� 0 […� 0 , where @� 0 is the visual boundary of the hyperbolic graph � 0.
We refer to the points of @� 0 as the conical limit points of the Bowditch boundary. The
topology on @B� 0 is the subspace topology induced by the topology on4� 0.

Remark 4.7. In this section, we explicitly use the notation @B� 0 to denote the construc-
tion of the Bowditch boundary of .G;P / from the graph � 0. Outside of Section 4, we use
the notation @PG to refer to the Bowditch boundary of G with respect to P .

Assuming Hypotheses 4.2, let � 0H be the image of �H in � 0. Following Definition 4.6,
we can define @B� 0H , and moreover @B� 0H embeds in @B� 0.

Proposition 4.8. Assuming Hypotheses 4.2, @B� 0H is closed in @B� 0.

We prove Proposition 4.8 by showing that the complement of @B� 0H is open in @B� 0.
Specifically, if y 2 @B� 0 n @B� 0H , we find an open neighborhood of y that does not contain
any points of @B� 0H . For the topology introduced in Definition 4.6, it suffices to prove that
there exists a finite set of vertices that any geodesic from y to a point in @B� 0H must pass
through.

Proof. Since �H is convex in � , � 0H is s-quasiconvex in � 0 for some s � 0. Set ı > 1 so
that � 0H has ı-thin triangles.

Let y 2 @B� 0 n @B� 0H . To prove that @B� 0 n @B� 0H is open, we find a finite Ay � V�
so that if h 2 @B� 0H , any geodesic from y to h passes through Ay . If so, then N.y;Ay/ �
@B�

0 n @B�
0
H . We now fix a geodesic 
 from y to some h 2 @B� 0H and split the proof into

two cases depending on whether y is a conical limit point or a peripheral point.
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y1
<ı

<ı
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< 2ı

< 2ı9ı < d.y0; y1/ < 10ı

< 16ı

Figure 2. The situation in Proposition 4.8 in case 1 where h … …� 0 .

Case 1: y 2 @� 0. Fix a base point h0 2 � 0H . Let � be a geodesic ray from h0 to y and
choose a vertex y0 2 � so that d.y0;� 0H / > 2sC 100ı. Choose a second vertex y1 2 V.� 0/
on � so that 9ı < d.y0; y1/ < 10ı and y0 lies between y0 and h0.

Let

Ay D ¹v 2 V.�
0/ W v lies on an arc from y0 to y1 of length at most 22ıº:

By [4, Proposition 2.1 (F2)] and the fineness of � 0, there are only finitely many arcs
from y0 to y1 of length at most 22ı, so Ay is finite. We show that 
 intersects Ay .

We claim that d.y0; 
/; d.y1; 
/ < 3ı. First suppose h 2 @� 0, so we can parameterize

 W .�1;1/! � 0, where limt!1 
.t/D y and limt!�1 
.t/D h. There existsM such
that for t > 0 with t sufficiently large, we have d.
.t/; �/ < M and d.
.�t /; � 0H / < M .
Then there are geodesics �t whose endpoints are xt;� 2 � and xt;h 2� 0h with d.x� ; 
/< M
and d.xh; 
/ < M . We claim that there are xt;0; xt;1 2 �t so that d.y0; xt;0/ < ı and
d.y1; xt;1/ < ı. Indeed, when t is large, there is a geodesic triangle with vertices h0, xt;� ,
xt;h so that one side is �t , one side lies in � and the other side lies in Ns.�

0
H /. Since

triangles are ı-thin and d.y0; � 0H /; d.y1; �
0
H / > 2s C 90ı, then d.y0; �t /; d.y1; �t / < ı.

Again, for large enough t > 0, each of the quantities

d.xt;� ; xt;0/; d.xt;� ; xt;1/; d.xt;h; xt;0/; d.xt;h; xt;1/

can be made arbitrarily large. In particular, they can all be made to exceed the con-
stant M C 2ı. A standard hyperbolic geometry argument using a 2ı-slim quadrilateral
implies that d.xt;0; 
/;d.xt;1; 
/ < 2ı. Then for appropriately large T > 0, we have points
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zT;0; zT;1 2 
 so that d.zT;0; xT;0/; d.zT;1; xT;1/ < 2ı which implies that d.y0; zT;0/ < 3ı
and d.y1; zT;1/ < 3ı.

In the case that h 2 …� 0 , a similar argument where xt;h is replaced by h proves
the claim that d.y0; 
/; d.y1; 
/ < 2ı and that we can choose zT;0, zT;i in 
 so that
d.yi ; zT;i / < 2ı for i D 0; 1.

Since 9ı < d.y0; y1/ < 10ı, then 3ı < d.zT;1; zT;2/ < 16ı by the triangle inequality.
Construct an arc � consisting of

• a path of length at most 3ı from y0 to zT;0,

• a subpath of 
 from zT;0 to zT;1 whose length is more than 1 < 3ı but has length at
most 16ı,

• a path of length at most 3ı from y1 to zT;1.

The subpath of 
 is long enough that it contains a vertex of � 0. Therefore, � is a path
between y0 and y1 with length at most 22ı and intersects 
 in a vertex.

Case 2: y 2 …� 0 . Fix a base point h0 2 � 0H and let � be a geodesic from h0 to y. Let
y0 D y. Let y1 2 V.� 0/ be a vertex on � such that ı < d.y0; y1/ < 2ı or if no such vertex
exists, set y1 D h0. Let

Ay D ¹v 2 V.�
0/ W v lies on a path of length at most 10ı from y0 to y1º:

As in the proof of case 1, Ay is finite by [4, Proposition 2.1 (F2)]. Let h 2 @B� 0H and
suppose that 
 is a geodesic from y to h. Let z 2 
 be a vertex of � 0H such that ı <
d.z; y/ < 2ı, or if no such vertex exists, then h 2 …� 0 and we can set z D h with 0 <
d.z; y/ < ı.

Consider a geodesic triangle with vertices z, y, h0 and let � be the side joining z to h0.
Since d.y; z/ < 2ı, there must exist some point x 2 � and y2 2 � with d.x; y2/ < ı and
d.x; z/ < 2ı by ı-thinness of geodesic triangles. Then d.y; y2/ < 5ı and � is geodesic,
so d.y2; y1/ < 5ı. Therefore, there is a path from y0 to y1 of length at most 10ı that
intersects 
 in the vertex z, and so 
 \ Ay ¤ ;.

We have showed that for all y 2 @B� 0 n @B� 0H , there exists a finite collection of ver-
tices Ay so that

N.y;Ay/ � @B�
0
n @B�

0
H :

Thus @B� 0 n @B� 0H is open in @B� 0.

Proposition 4.9. The limit set of H , ƒH , in @B� 0 is @B� 0H .

Proof. Immediately, @B� 0H � ƒH . By Proposition 4.8, @B� 0H is closed and H -invariant,
so ƒH � @B� 0H because the limit set of H is the smallest closed H -invariant subset
of @M .

Theorem 1.2. Let .G;P / be a relatively hyperbolic pair and let � be a hyperbolic graph
with a G-action so that � is generalized fine with respect to the action of .G;P /. For any
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P 2 P and g 2 G, let �P g be the subgraph of � whose cell stabilizer are commensu-
rable to P g . If H � G has a quasiconvex cocompact core �H and one of the following
holds:

• � is fine or

• for all P 2 P and g 2 G, �H \ �P g ¤ ; implies jP g \H j D 1,

then H is relatively quasiconvex in .G;P /.

Proof. The action of H on the fine hyperbolic subgraph � 0H constructed by electrifying
with respect to the �P g shows that H is hyperbolic relative to the infinite vertex sta-
bilizers. By [16, Theorem 1.1], the induced convergence group action of H on @B� 0H
is geometrically finite. Since @B� 0H D ƒH , the subgroup H has a geometrically finite
convergence group action on ƒH , and hence H satisfies Definition 4.4 for relative quasi-
convexity.

We can also rephrase Theorem 1.2 as a criterion for relative quasiconvexity in fine
hyperbolic graphs. This special case recovers the following result of Martínez-Pedroza
and Wise.

Corollary 1.3 ([17, Theorem 1.7]). Let .G;P / be a relatively hyperbolic pair acting
cocompactly on a fine hyperbolic graph so that every edge stabilizer is finite. A subgroup
H � G is relatively quasiconvex in .G;P / if and only ifH has a quasiconvex cocompact
core in � .

Proof sketch. One direction follows immediately from Theorem 1.2. If H is relatively
quasiconvex, the join of ƒH in � provides the quasiconvex core for H , see [4, end of
Section 5].

Remark 4.10. For a relatively hyperbolic pair .G;P /, we use the notation @PG to denote
the Bowditch boundary of G with respect to P . When � 0 is a fine hyperbolic graph that
witnesses the relative hyperbolicity of .G;P /, we henceforth conflate @PG with @B� 0.

We can also prove that hyperplane stabilizers are relatively quasiconvex.

Corollary 4.11. Let .G;P / act relatively geometrically on a CAT.0/ cube complex zX .
Let H be the stabilizer of a hyperplane W of zX . Then H is relatively quasiconvex in
.G;P /.

Proof. Subdivide zX cubically once to a complex zXW so that W is a subcomplex. The
action of .G;P / on zXW is still relatively geometric. Recall from Example 3.3 that zX .1/W
is generalized fine with respect to the action of .G;P /. If �P g intersects W \ zX .1/W , then
a finite index subgroup of P g stabilizes an edge of zX dual toW . Hence P g � StabG.W /.
Since W is convex and cocompact in zXW , W \ zX .1/W is an H -invariant H -cocompact
connected convex subgraph of zX .1/W . The relative quasiconvexity of H now follows from
Theorem 1.2.
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5. A separation criterion for the Bowditch boundary

A construction of Sageev [19] shows that group actions on CAT(0) cube complexes arise
naturally from groups with collections of ‘codimension-1’ subgroups. Building on the
work of Bergeron and Wise [3] for hyperbolic cubulations, the first and second authors
gave a boundary criterion [8, Theorem 2.6] for relatively geometric actions that guaran-
tees the existence of a relatively geometric action of a relatively hyperbolic pair .G;P / on
a CAT(0) cube complex whenever G contains a sufficient collection of full relatively qua-
siconvex subgroups that separate points in the Bowditch boundary. The main theorem of
this section, Theorem 5.7, helps to show that stabilizers of quasiconvex cores in fine hyper-
bolic graphs exhibit ‘hyperplane-like’ behavior and provide a source of codimension-1
subgroups that may be used with [8, Theorem 2.6].

5.1. Hypersets and hypercarriers

Let � be a graph. A hyperset L in � is a collection of edge midpoints and vertices of �
so that � n L has two components. A (hyperset) carrier J for L is a subgraph of �
containing L. Immediately, a hyperset carrier J for L has the property that if v1; v2 2 J
and v1, v2 are joined by an edge in � whose midpoint lies in L, then J contains that edge
between v1, v2.

Hypersets and carriers arise naturally in the one-skeleton of a CAT(0) cube complex.
We will see that they are particularly helpful in the setting of relatively geometric actions.

Example 5.1. Let zC be a CAT(0) cube complex, and let W be a hyperplane. Then L D
W \ zC .1/ is a hyperset. One choice of hyperset carrier J for L is the intersection of the
hyperplane carrier of W with zC .1/.

In this situation, we refer toL as the hyperset associated toW and J as the (hyper)car-
rier (of the hyperset associated to W ).

We observe the following useful fact in the setting of generalized fine hyperbolic
graphs.

Observation 5.2. Let † be generalized fine with respect to the action of .K;D/ and
let †Dk be the subgraph of cells whose stabilizer is commensurable to Dk for D 2 D ,
k 2K. Let � W†! � be the electrification map that collapses the†Dk . Let S D

S
¹†Dk W

†Dk \ L ¤ ;º. Suppose L is a hyperset and J is a connected quasiconvex hyperset
carrier.

Given an edge e of †, �.e/ is either an edge or a vertex of � . Hence � takes an
edge midpoints to an edge midpoint or a vertex. Any path �0 in � between images of the
components of † n L has a de-electrification � that must pass through L an odd number
of times. Since �.�/D �0, then �0 passes through �.L/ an odd number of times. Therefore,
�.L/ is a hyperset in � .

Immediately, �.J / is a subgraph of � that contains �.L/, so �.J / is a hyperset carrier
for �.L/.
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5.2. The separation criterion

We set the following assumptions for the remainder of this subsection.

Hypotheses 5.3. Let .K;D/ be a relatively hyperbolic pair and let K act on a fine ı-
hyperbolic graph � with the following properties:

• the action of K is cocompact,

• edge stabilizers are finite, and

• each D 2 D stabilizes a single vertex.

Let L be a hyperset, and let J be a connected quasiconvex carrier for L.

Our goal is to decide whether two points in the Bowditch boundary @DK lie in com-
plementary components of the limit set of StabG.L/. The hyperset L separates � into
two complementary components, but it is not immediately apparent that the limit set
ƒ StabG.L/ partitions the Bowditch boundary into multiple components with respect to
the topology described in Definition 4.6.

Definition 5.4. With the setup in Hypotheses 5.3, J has the two-sided carrier property if
there exist connected quasiconvex subsets JC and J� of J so that

(1) JC \ J� � L,

(2) JC [ J� D J ,

(3) every path in � between vertices in the two distinct components of � n L must
intersect both JC and J�, and

(4) if v is a vertex of J� \ JC with infinite stabilizer, then v 2 ƒStabK.L/.

Figure 3. An example of a hyperset carrier J with the two-sided carrier property in the one-skeleton
of a polygonal complex. The hyperset L is the union of points indicated in black. The subset JC

(resp. J�) is indicated in red (resp. blue).

The two-sided carrier property arises naturally in our intended application to relatively
geometric actions. See Figure 3 for an illustration of the two-sided carrier property.

Example 5.5. When .K;D/ acts relatively geometrically on a CAT(0) cube complex zX ,
and W is a hyperplane with associated hyperset L and carrier J , there are two natural
sides JC and J� of the carrier J . Note that the two sides are slightly larger than the
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combinatorial hyperplanes on either side of W because L needs to be contained in their
union. Recall that zX .1/ usually fails to be fine, but Proposition 2.12 implies that collapsing
compact subgraphs of zX .1/ yields a fine hyperbolic graph. The images of L and J remain
a hyperset and hypercarrier, respectively, but JC and J� may have overlapping images.
As we will see, this may only happen at vertices that are already parabolic points in the
limit set of the stabilizer of W .

Recall that under Hypotheses 5.3, the points of the Bowditch boundary are either con-
ical limit points that lie in @� , the visual boundary of � or are parabolic vertices (also
called peripheral vertices) of � , which are stabilized by maximal parabolics.

Definition 5.6. Assuming Hypotheses 5.3, we say that L separates x; y 2 @DK if x; y …
ƒStabK.L/ and one of the following holds:

• x, y are both conical limit points, and there exists some geodesic 
 W .�1;1/! �

with limt!1 
.t/D x and limt!�1 
.t/D y so that there exists T > 0 such that for
all t� < �T < 0 < T < tC, 
.tC/ and 
.t�/ are in distinct components of � n L,

• x is a parabolic vertex in � , y is a conical limit point, and there exists some geodesic

 W Œ0;1/! � from x D 
.0/ to y so that for sufficiently large t , 
.t/ and x are in
distinct components of � n L,

• x, y are both parabolic vertices in � , and x, y lie in distinct components of � n L.

In the first two cases, we say that the geodesic 
 witnesses that L separates x and y.

The remainder of this section is devoted to proving Theorem 5.7.

Theorem 5.7. Assume Hypotheses 5.3 and let J satisfy the two-sided carrier property. If
L separates x; y 2 @DK nƒ StabK.L/, then there exists a subgroup KL � StabK.L/ of
index at most 2 so that x, y are in KL-distinct components of @DK nƒKL.

We first establish some notation that we will use below.

Notation 5.8. Let Y be a subset of 
 and let r 2 R. Then

Nr .Y / D ¹x 2 � W inf
y2Y

d�.x; y/ � rº:

Recall from Definition 4.6 that if x 2 @DK and A is a set of vertices in � , the set
N.x; A/ consisting of y 2 @DK so that some geodesic from x to y avoids A n ¹xº is
an open neighborhood of x in @DK. The following lemma helps us control certain open
neighborhoods of points in @DK nƒStabK.L/.

Lemma 5.9. Assume Hypotheses 5.3. Let J0 be a connected quasiconvex subset of J , and
let x 2 @DK nƒ StabK.J / so that x … J0. There exists a finite collection of vertices Vx
such that for any vertex j 2 J0 and any geodesic 
x;j between x and j , the intersection

x;j \ .Vx n x/ is not empty.
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Proof. Fix some j0 2 J0, and fix R so J0 is R-quasiconvex. Consider a (possibly ideal)
geodesic triangle with vertices x, j0, j and sides 
x;j , 
x;j0 , 
j;j0 .

Case 1: x is a conical limit point. Let x0 be a vertex on 
x;j0 so that d.x0; J0/ >
RC ı C 1. Such a vertex exists because x … ƒ StabK.J /. Since 
j;j0 � NR.J0/ by qua-
siconvexity, d.x0; 
j;j0/ > ı. Therefore, by hyperbolicity, there exists a vertex y0 2 
x;j
so that d.x0; y0/ < ı. Then there exist vertices y1 2 
x;j and x1 2 
x;j0 so that y1 lies
between y0 and j on 
x;j , x1 lies between x0 and j0 on 
x;j0 , and d.y1; x1/ � ı. Hence
there exists a .1; 4ı/-quasi-geodesic arc from j0 to x0 following

• from j0 to x1 via 
x;j0 ,

• from x1 to y1 via a geodesic of length at most ı,

• from y1 to y0 via 
x;j ,

• from y0 to x via a geodesic of length at most ı.

Then y1 lies on a .1;4ı/-quasi-geodesic arc between x0 and j0. Let Vx0;j0 be the subgraph
of .1; 4ı/-quasi-geodesic arcs between x0 and j0. By [4, Lemma 8.2], Vx0;j0 is locally
finite. The length of any such arc is uniformly bounded above by d.x0; j0/C 4ı, so this
subgraph has finite diameter and is therefore finite. Hence y1 is one of finitely many
vertices in � .

Case 2: x is a parabolic point. If d.x; J0/ > R C ı C 1, carry out the same proof as in
the preceding case (the choice x0 D x suffices).

Hence assume d.x; J0/ � R C ı C 1. The geodesic triangle with vertices x, j , j0
is ı-thin. Therefore, there exist a vertex j1 2 J0 and a subpath of 
x;j of length at most
RC ı C 2 between x and a vertex y1 2 
x;j so that y1 ¤ x and vertices y1, j1 have the
following properties:

• either y1 is the vertex on 
x;j in J0 that is closest to x in which case we set j1 D y1,

• or d.y1; j1/ < RC ıC 1, a shortest path from y1 to j1 does not backtrack along 
x;j
and there is an arc from x to j1 passing through y1 that does not contain any vertices
of J0 other than j1.

In the first case, y1 ¤ x because x … J0. In the second case, one might worry that elim-
inating backtracking could force us to choose y1 D x. If d.x; j / � R C ı C 1, this is
not a problem. If d.x; j / < R C ı C 1, we can ensure we are in the first case by letting
y1 D j1 be the vertex on 
x;j in J0 that is closest to x. In both cases, we obtain an arc �
from x to j1 that contains y1 and no vertices of J0 other than j1.

In all of these above cases,

d.j1; j0/ � d.j0; x/C d.j1; y1/C d.y1; x/ � 3RC 3ı C 4:

Since J0 is connected and quasiconvex, and � is hyperbolic, there exist � � 1 and
� � 0 so that some .�; �/-quasi-geodesic arc � in J0 connects j0 and j1. Thus � has
length at most �.3R C 3ı C 4/C �. Note that � cannot backtrack along � at j1 because
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every edge of � has both endpoints in J0 while j1 is the only vertex on � that lies in J0.
Hence y1 is on an arc from x0 to j0 of length at most

�.3RC 3ı C 4/C � C d.j1; y1/C d.y1; x/ � �.3RC 3ı C 4/C � C 3RC 3ı C 4

and there are finitely many such arcs by [4, Proposition 2.1 (F2)], since � is fine. Then
there are finitely many possibilities for y1.

Proposition 5.10. Assume Hypotheses 5.3, and suppose J has the two-sided carrier prop-
erty. Suppose L separates x; y 2 @DK nƒ StabK.L/. If z 2 @DK nƒ StabK.L/ and L
does not separate x, z, then L separates y, z.

Proof. Consider a geodesic triangle with vertices x, y, z and sides 
xy , 
yz , 
xz , where
the ordered subscripts indicate the endpoints and orientation. Further, assume 
xy wit-
nesses that L separates x, y.

If z is a conical limit point, then all but a finite length of 
xz lies in a single component
C of � n L because L does not separate x from z. By hypothesis z … ƒ StabK.L/, so, as
t !1, the quasiconvexity of L ensures that d.
xz.t/; L/!1. Moreover, for all t > 0
large enough, 
yz.t/ lies in C by hyperbolicity. If y is a parabolic point, then y lies in the
other component C 0 ¤ C of � n L, otherwise y is a conical limit point and, for all t > 0
sufficiently large, 
zy.t/ D 
yz.�t / lies in C 0. In either case, L separates y from z.

If z is a parabolic vertex in 
 , then z 2 C by hypothesis. As above, whether y is
a parabolic or conical limit point, L separates y from z.

By Proposition 5.10, there is an equivalence relation� on @DK nƒStabK.L/ defined
by x � y if and only if x D y or L does not separate x, y. There are two equivalence
classes.

Proposition 5.11. Assume Hypotheses 5.3, and suppose J has the two-sided carrier prop-
erty. If x; y 2 @D.K/ n ƒ StabK.L/ and x 6� y, then x, y lie in distinct components of
@DK nƒ StabK.L/. By passing to a subgroup KL of index at most 2 in StabK.L/, these
components are KL-distinct.

Proof. We claim that if z 2 @DK nƒStabK.L/, then there exists an open neighborhoodU
of z 2 @DK nƒStabK.L/ so that u � z for all u 2 U .

To this end, we claim that there is a finite set of vertices Vz so that any geodesic from
z that crosses L must pass through Vz .

If z … J , then Lemma 5.9 with J D J0 immediately provides Vz . Hence, we may
assume z is a parabolic vertex in J .

The two-sided carrier property ensures that J D JC [ J� and JC \ J� � L. Then
z … L, so z 2 JC n J� or z 2 J� n JC. Up to relabeling, we may assume z 2 JC n J�.
Since every path from z to a vertex of the other component of � nLmust pass through J�,
we can apply Lemma 5.9 to show that there exists a finite set of vertices Vz so that any
geodesic 
 from z to J� has 
 \ Vz ¤ ;.
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Hence in all cases, ifL separates z;w 2 @D.K/ nƒStabK.L/, any geodesic between z
and w passes through Vz .

Recall that the set N.z; Vz/ from Definition 4.6 is an open neighborhood of z in
@D.K/. Therefore, if U D N.z; Vz/, then z � u for all u 2 U .

Thus we conclude that Œx� and Œy� are unions of components of @DK n StabK.L/
because they are open and partition @DK n StabK.L/.

Each k 2 StabK.L/ permutes two components of � n L, so StabK.L/ acts on the
equivalence classes of �. By passing to an index 2 subgroup KL of StabK.L/ if neces-
sary, we can ensure that for any kL 2 KL, kL � Œx� ¤ Œy�, so x and y are in KL-distinct
components of @DK n StabK.L/.

Proposition 5.11 completes the proof of Theorem 5.7.

6. Separating points in the Bowditch boundary of a group acting
relatively geometrically using hyperplane stabilizers

For this section, let .K;D/ act relatively geometrically on a CAT(0) cube complex zX . For
D 2D and k 2K, let†Dk denote the subgraph induced by the vertices whose stabilizers
are commensurable to Dk . Let � be the complete electrification of zX with respect to

¹†Dk W D 2 D ; k 2 Kº:

Recall that the electrification map ˇW zX .1/ ! � that collapses the †Dk to a single vertex
is a continuous coarse inverse of the map in Proposition 2.11 and is K-equivariant.

Let L be the hyperset associated to a hyperplane W of zX as in Example 5.1. Let J be
the associated hyperset carrier. Then ˇ.J / is a quasiconvex subset of � . Let KW be the
stabilizer of W .

Since J is associated to a hyperplane, J nL has two distinct components JC and J�

that are connected and convex. Therefore, ˇ.JC/ and ˇ.J�/ are both quasiconvex.

Proposition 6.1. Let W be a hyperplane of zX , and let Dk be a peripheral subgroup.
Then W is dual to an edge of †Dk if and only if Dk is commensurable to a subgroup of
StabK.W /.

Proof. IfW is dual to an edge e of†Dk , then StabK.e/ is commensurable toDk . SinceW
is the unique hyperplane dual to e, we have StabK.e/ � StabK.W /.

Conversely, suppose Dk is commensurable to a subgroup D0 � StabK.W / \ Dk .
By passing to a further finite index subgroup, we may assume that there is a vertex x
in †Dk such thatD0 � StabK.x/. By convexity ofW , there is a unique point p inW that
is the nearest point projection of x. The point p is sometimes called the gate of x in W .
When W is a hyperplane, the gate of x is a dual edge midpoint (see [15, Section 2.2]).
Hence, D0 � StabK.p/.
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Let e be the edge with midpoint p. The stabilizers StabK.e/ and StabK.p/ are com-
mensurable because the action is cellular. Moreover, the peripheralDk is commensurable
to StabK.e/ because cell stabilizers in a relatively geometric action are commensurable
to a unique peripheral subgroup and peripheral subgroups have finite intersection. Thus,
e � †Dk as needed.

Proposition 6.1 is particularly relevant for studying hypersets in � , the electrified
fine hyperbolic graph. In particular, peripheral points that lie in hypersets coming from
images of hyperplanes in zX are visible in the subgroup structure of the hyperplane stabi-
lizer.

Proposition 6.2. If x 2 ˇ.JC/ \ ˇ.J�/ is a vertex, then x is a peripheral point whose
stabilizer is commensurable to a subgroup of StabK.W /.

Proof. Since JC \ J� \ zX .0/ D ;, there exist distinct vertices yC 2 JC n L and y� 2
J� n L such that ˇ.yC/ D x D ˇ.y�/. Since ˇ is the map that collapses the †Dk , yC
and y� both lie in some †Dky

y
where Dy 2 D and ky 2 K. Any combinatorial path

between different sides ofW contains an edge dual toW , so the connected subgraph†Dky
y

must contain an edge e dual to W . The stabilizer of the edge e stabilizes W and must be
commensurable to Dky

y by Proposition 6.1.

Proposition 6.3. The hyperset carrier ˇ.J / has the two-sided carrier property.

Proof. We immediately see that ˇ.J / D ˇ.JC/ [ ˇ.J�/. If s 2 ˇ.JC/ \ ˇ.J�/, then s
has stabilizer commensurable to a subgroup of KW . Therefore, ˇ.†kD/ is a vertex in
ƒ StabK.ˇ.L// the limit set of the hyperset stabilizer. Let � be a path between compo-
nents of � n ˇ.L/. Let ` 2 ˇ.L/\ �. Either ` is the midpoint of an edge whose endpoints
are in ˇ.JC/ and ˇ.J�/ or ` is a vertex formed by collapsing an edge dual to a hyper-
plane. In both cases, ` 2 ˇ.JC/\ ˇ.J�/. Hence every path between vertices of � n ˇ.L/
intersects both ˇ.JC/ and ˇ.J�/.

We are now ready to prove that any two points x; y 2 @DK can be separated by
a hyperset associated to a hyperplane.

As we have seen, relatively geometric actions on CAT.0/ cube complexes let us take
advantage of both the cubical geometry of zX as well as the fine graph structure of � . The
following Definition 6.4 lets us study separating hypersets using the separating properties
of hyperplanes. Note that it need not be the case that every hyperset in � is the image of
a hyperplane in zX .

Definition 6.4. LetW be a hyperplane in zX with associated hypersetL as in Example 5.1.
We say that W separates x; y 2 @DK nƒ StabK.W / if ˇ.L/ separates x, y in the sense
of Definition 5.6.

We are now ready to prove that any two points x; y 2 @DK can be separated by
a hyperset (associated to a hyperplane). Our strategy is to show that if x; y 2 @DK, then
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some hyperplane W separates x, y in the sense of Definition 6.4. Then we apply Theo-
rem 5.7 to show that x, y lie in distinct complementary components of ƒStabK.W /.

Lemma 6.5. Let x be a parabolic point in @DK with stabilizer Kx and let 
 be a com-
binatorial geodesic with end-vertices v, w in zX so that v 2 †Kx , and let 
 be of minimal
length among all combinatorial geodesics between w and †Kx . Then every hyperplane
dual to an edge of 
 does not intersect †Kx .

Proof. Suppose e is the edge of 
 with endpoint v 2†Kx . By minimality, e 6�†Kx . LetW
be the hyperplane dual to e. If W intersects †Kx , then W is dual to an edge f 2 †Kx .
Note that StabK.f / and StabK.v/ are commensurable, so there exists a k 2 Kx so that K
fixes f , v and not e. Since k fixes the dual edge f , k �W D W . Then k � e is adjacent
to v and is dual to W . Therefore, the hyperplane W self-osculates which is impossible in
a CAT(0) cube complex (see, for example, [21, pp. 20–21]).

The first paragraph shows that the first edge (counting from v) of any geodesic be-
tween v andw cannot be dual to a hyperplane that intersects†Kx . We now assume that the
first i edges of any minimal geodesic � between v andw are dual to a hyperplane that does
not intersect †Kx and prove that the .i C 1/st edge of � is dual to a hyperplane that does
not intersect†Kx . Now let e1; e2; : : : ; ek be the edges of � with corresponding dual hyper-
planes W1; W2; : : : ; Wk . If WiC1 intersects †Kx , then there is a disk diagram D enclosed
by the path e1 : : : eieiC1, a curve in the carrier of WiC1 and a path in Kx . Since Wi does
not intersect †Kx , it must exit D by crossing WiC1.

By [21, Lemma 3.6], WiC1 and Wi cannot interosculate. Therefore, ei and eiC1 must
corner a square. Let e0i and e0iC1 be the edges opposite ei and eiC1, respectively. Then let

� 0 D e1e2 : : : ei�1e
0
iC1e

0
ieiC2 : : : ek :

NowWiC1 is the hyperplane dual to the i th edge of � 0 from v, which violates the inductive
hypothesis. Hence WiC1 cannot intersect †Kx .

Before continuing with the proof of Theorem 1.4, we require one additional auxiliary
fact. It is clear that geodesics in � lift to quasi-geodesics in zX via the de-electrification
map in Proposition 2.11. We need a way to show that long enough quasi-geodesics in zX
escape any finite neighborhood of some hyperplane. Recall the Ramsey number Ram.a;b/
is the number of vertices such that any graph on Ram.a; b/ vertices either contains a com-
plete graph of size a or its complement contains a complete graph of size b (see [12] for
more about Ramsey numbers). We may associate to any CAT.0/ cube complex its cross-
ing graph with vertex set corresponding to hyperplanes, and two vertices are adjacent if
and only if their associated hyperplanes cross (see, for example, [15] for more details on
crossing and related graphs).

Lemma 6.6. Let � be an arbitrary CAT.0/ cube complex with d D dim.�/. Let ˛ be an
arbitrary combinatorial geodesic in �. For any positive integer N > 0, any collection H

consisting of at least R D Ram.d C 1; N / distinct hyperplanes all dual to edges of ˛
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contains a subset ¹h1; : : : ; hN º � H that form a nested sequence of N -halfspaces hC1 ¨
hC2 ¨ � � � ¨ hCN .

In particular, if the geodesic ˛ has length at least R, then there exist a hyperplane h

dual to an edge of ˛ and a vertex ˛.t/ such that d.˛.t/; h/ � N � 1.

Proof. Let C denote the crossing graph of �. Since zX has finite dimension, any col-
lection of pairwise crossing hyperplanes in � has cardinality at most d , so C does not
contain a complete graph on d C 1 vertices. Hyperplanes dual to edges of a combinatorial
geodesic are distinct by work of Sageev [19, Theorem 4.13], so the hyperplanes dual to
edges of ˛ correspond to an induced subgraph of C .

So, any collection of at least R hyperplanes dual to ˛ contains a subset ¹h1; : : : ; hN º
that pairwise do not cross. Each hi is dual to an edge of ˛, so ¹h1; : : : ; hN º can be totally
ordered by picking an orientation on ˛. This orientation corresponds to a choice of halfs-
paces hCi , which are clearly nested.

To see the last statement of Lemma 6.6, observe that if hC1 ¨ hC2 ¨ � � � ¨ hCN is
a sequence of N nested halfspaces, then any points p 2 h1 and q 2 hN are distance
d.p; q/ � N � 1 apart. Thus, for p D ˛ \ h1 we have d.p; hN / � N � 1.

As we saw in the proof of Lemma 6.6, (combinatorial) geodesics in CAT.0/ cube
complexes may only cross a given hyperplane at most once. On the other hand, (infi-
nite) quasi-geodesics may cross a given hyperplane (infinitely) many times even when the
underlying complex is locally finite. Relatively geometric actions on CAT.0/ cube com-
plexes give up local finiteness, but require that the cube complex also be ı-hyperbolic.
In Lemmas 6.7 and 6.8, we will show that in ı-hyperbolic CAT.0/ cube complexes there
is a choice of hyperplane whose interactions with a given quasi-geodesic have many of
the same useful properties of a hyperplane dual to an honest geodesic. A subspace Y of
a geodesic metric space X is called Morse when for every A > 0 and B � 0 there exists
a constant D D D.A; B/ � 0 such that any .A; B/-quasi-geodesic joining points in Y
is contained in the D-neighborhood of Y . We call D the Morse constant for the quasi-
geodesic parameters .A;B/.

Lemma 6.7. Let zX be a ı-hyperbolic CAT.0/ cube complex. Let 
 W .�1;1/! zX .1/

be a connected bi-infinite combinatorial .�; �/-quasi-geodesic. Given M > 1, there exist
a hyperplane W of zX and tM > 0 such that for all t with jt j > tM ,

(1) 
.˙t / lie in distinct complementary components of W ,

(2) 
 crosses W an odd number of times, and

(3) d.
.t/;W / > M .

In particular, 
.t/ 2 W implies jt j � tM .

Proof. For any t1; t2 2 R, we write Œ
.t1/; 
.t2/� to mean any combinatorial geodesic
connecting 
.t1/ to 
.t2/. Note also that the M -neighborhood of a convex subset of zX is
necessarily Morse.
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Let D D D.�; "/ > 0 be the Morse constant for the quasi-geodesic parameters of 
 .
Let R be the constant from Lemma 6.6 with N D 2.D CM C 1/C 1. Choose

tM > �.RC "/:

Let 
0 D Œ
.�tM /; 
.tM /�. By choice of tM , we have diam.
0/ > R. Lemma 6.6 guar-
antees that there exist hyperplanes ¹hi W �.D CM C 1/ � i � D CM C 1º all dual to
edges of 
0 that form the following nested sequence of halfspaces:

h�.DCMC1/ ¨ � � � ¨ h�1 ¨ h0 ¨ h1 ¨ � � � ¨ hDCMC1:

We will see that we may choose W D h0. Since the halfspaces of the hi are nested,

min¹d.
.�tM /; h0/; d.
.tM /; h0/º > D CM: (�)

The concatenation,
‡ WD 
 j.�1;�tM / [ 
0 [ 
 j.tM ;1/;

is again a .�; "/-quasi-geodesic. Since 
0 crosses h0, if 
.t/ 2 NM .h0/ for some t with
t > tM , then 
.tM / 2 NDCM .h0/, contrary to (�). We conclude that if t > tM , then

.tM / … NM .h0/. Similarly, if t < �tM , then 
.t/ … NM .h0/. Since ‡ and 
 coincide
for all jt j > tM , we immediately have that 
.t/ and 
.�t / lie in distinct components of
zX nNM .h0/. Since 
0 crosses h0 once, 
 crosses h0 an odd number of times.

It remains to account for the situation where 
 joins a parabolic point to a conical limit
point. Using a similar argument to Lemma 6.7, it is possible to prove the following.

Lemma 6.8. Let 
 W Œ0;1/! zX be an infinite combinatorial .�; �/-quasi-geodesic ray in
a ı-hyperbolic CAT.0/ cube complex zX where x D 
.0/ is a vertex. Given M > 1, there
exist a hyperplane W of zX and tM > 0 so that for all t with t > tM ,

(1) W separates 
.0/ and 
.t/,

(2) †StabK .x/ \W D ;,

(3) d.
.t/;W / > M .

In particular, if 
.t/ 2 W then 0 < t � tM .

The same strategy used in Lemma 6.7 works to prove Lemma 6.8 with the following
adjustments:

• The hyperplane W should be the hyperplane dual to an edge in the middle of a geo-
desic joining 
.0/ and 
.t/ for some suitable t � 0.

• When t � maxD2D¹diam†Dº, then †StabK .x/ \W D ;.

We summarize the discussion above in the context of separating points in the Bowditch
boundary as follows.

Proposition 6.9. Let x;y 2 @DK be distinct. There exists a hyperplane that separates x, y
in the sense of Definition 6.4 with respect to the action of K on zX .
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Proof. If x, y are both conical limit points, let 
 be a bi-infinite geodesic between x and y.
Then the complete de-electrification y
 of 
 is a connected bi-infinite quasi-geodesic such
that ˇ.y
/ D 
 . Lemma 6.7 allows us to choose a hyperplane in zX so that if jt j � 0,
y
.t/ does not cross W , y
.˙t / are on opposite sides of W and

d.y
.t/;W / > max
D2D
¹diam†D C 2ıº:

Therefore, for jt j � 0, 
.˙t / each lie in distinct components of � n ˇ.L/ by Lemma 6.7.
For all S > 0, diam¹t W d.
.t/; W / � Sº <1 because otherwise a standard hyperbolic
geometry argument using a thin quadrilateral shows that diam¹t W d.
.t/;W / < 2ıº is not
bounded above, which contradicts our choice of W . Hence, limt!˙1 d.
.t/; W / D 1,
and x, y are not in the limit set of the stabilizer of W .

If one of x, y is a conical limit point, assume without loss of generality that x is the
conical limit point and y is a parabolic point. Apply the argument from the previous case
except use Lemma 6.8 in place of Lemma 6.7 to extract the desired hyperplaneW . To see
that y … ƒStabK.W /, observe that W \†StabK .x/ D ; and apply Proposition 6.1.

If x, y are both distinct parabolic vertices in � , let y
 be a minimal length geodesic
in zX .1/ between†StabK .x/ and†StabK .y/. Then 
 has an edge with finite stabilizer because
StabK.x/ \ StabK.y/ is finite. Let W be the hyperplane dual to this edge. We see that
x; y … ƒStabK.W / by Lemma 6.5 and Proposition 6.1.

Finally, we prove Theorem 1.4 from the introduction.

Theorem 1.4. Let .K;D/ act relatively geometrically on a CAT.0/ cube complex zX .
If x;y 2 @DK and x¤ y, then there exist a hyperplaneW of zX and a finite index subgroup
KW � StabK.W / so that x, y are in KW -distinct components of @DK nƒKW .

Proof. Let W be the separating hyperplane specified by Proposition 6.9 with associ-
ated hyperset L. Then ˇ.L/ separates x, y and its carrier ˇ.J / is quasiconvex. Since K
acts relatively geometrically, K acts cocompactly on zX and on � , see Proposition 2.11.
In particular, zX is finite-dimensional. Edge stabilizers are finite because each maximal
parabolic stabilizes exactly one vertex, distinct maximal parabolics have finite intersection
(see, e.g., [4, p. 26]) and all cell stabilizers are parabolic. According to Proposition 6.3,
ˇ.J / has the two-sided carrier property. Therefore, by Theorem 5.7, there exists a sub-
group KW of index at most 2 in StabG.W / so that x, y are in KW -distinct components
of @DK nƒKW .
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[7] C. Druţu and M. Sapir, Tree-graded spaces and asymptotic cones of groups (with an appendix
by Denis Osin and Mark Sapir). Topology 44 (2005), no. 5, 959–1058 Zbl 1101.20025
MR 2153979

[8] E. Einstein and D. Groves, Relative cubulations and groups with a 2-sphere boundary. Compos.
Math. 156 (2020), no. 4, 862–867 Zbl 1481.20167 MR 4079630

[9] E. Einstein and D. Groves, Relatively geometric actions on CAT.0/ cube complexes. J. Lond.
Math. Soc. (2) 105 (2022), no. 1, 691–708 Zbl 1521.20096 MR 4411337

[10] E. Einstein and T. Ng, Relative cubulation of small cancellation free products. 2021,
arXiv:2111.03008

[11] B. Farb, Relatively hyperbolic groups. Geom. Funct. Anal. 8 (1998), no. 5, 810–840
Zbl 0985.20027 MR 1650094

[12] R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey theory. 2nd edn., Wiley Ser. Dis-
crete Math. Optim., John Wiley & Sons, New York, 1990 Zbl 0455.05002 MR 1044995

[13] M. Gromov, Hyperbolic groups. In Essays in group theory, pp. 75–263, Math. Sci. Res. Inst.
Publ. 8, Springer, New York, 1987 Zbl 0634.20015 MR 919829

[14] D. Groves and J. F. Manning, Dehn filling in relatively hyperbolic groups. Israel J. Math. 168
(2008), 317–429 Zbl 1211.20038 MR 2448064

[15] M. F. Hagen, The simplicial boundary of a CAT(0) cube complex. Algebr. Geom. Topol. 13
(2013), no. 3, 1299–1367 Zbl 1267.05302 MR 3071129

[16] G. C. Hruska, Relative hyperbolicity and relative quasiconvexity for countable groups. Algebr.
Geom. Topol. 10 (2010), no. 3, 1807–1856 Zbl 1202.20046 MR 2684983

[17] E. Martínez-Pedroza and D. T. Wise, Relative quasiconvexity using fine hyperbolic graphs.
Algebr. Geom. Topol. 11 (2011), no. 1, 477–501 Zbl 1229.20038 MR 2783235

[18] D. V. Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algo-
rithmic problems. Mem. Amer. Math. Soc. 179 (2006), no. 843, vi+100 pp. Zbl 1093.20025
MR 2182268

[19] M. Sageev, Ends of group pairs and non-positively curved cube complexes. Proc. Lond. Math.
Soc. (3) 71 (1995), no. 3, 585–617 Zbl 0861.20041 MR 1347406

https://doi.org/10.1307/mmj/20216112
https://doi.org/10.1307/mmj/20216112
https://zbmath.org/?q=an:1286.57019
https://mathscinet.ams.org/mathscinet-getitem?mr=3104553
https://doi.org/10.1353/ajm.2012.0020
https://zbmath.org/?q=an:1279.20051
https://mathscinet.ams.org/mathscinet-getitem?mr=2931226
https://doi.org/10.1142/S0218196712500166
https://zbmath.org/?q=an:1259.20052
https://mathscinet.ams.org/mathscinet-getitem?mr=2922380
https://doi.org/10.1007/s10711-007-9178-0
https://zbmath.org/?q=an:1161.20032
https://mathscinet.ams.org/mathscinet-getitem?mr=2353977
https://doi.org/10.5802/jep.50
https://zbmath.org/?q=an:1431.20029
https://mathscinet.ams.org/mathscinet-getitem?mr=3646028
https://doi.org/10.1016/j.top.2005.03.003
https://doi.org/10.1016/j.top.2005.03.003
https://zbmath.org/?q=an:1101.20025
https://mathscinet.ams.org/mathscinet-getitem?mr=2153979
https://doi.org/10.1112/s0010437x20007095
https://zbmath.org/?q=an:1481.20167
https://mathscinet.ams.org/mathscinet-getitem?mr=4079630
https://doi.org/10.1112/jlms.12556
https://zbmath.org/?q=an:1521.20096
https://mathscinet.ams.org/mathscinet-getitem?mr=4411337
https://arxiv.org/abs/2111.03008
https://doi.org/10.1007/s000390050075
https://zbmath.org/?q=an:0985.20027
https://mathscinet.ams.org/mathscinet-getitem?mr=1650094
https://zbmath.org/?q=an:0455.05002
https://mathscinet.ams.org/mathscinet-getitem?mr=1044995
https://doi.org/10.1007/978-1-4613-9586-7_3
https://zbmath.org/?q=an:0634.20015
https://mathscinet.ams.org/mathscinet-getitem?mr=919829
https://doi.org/10.1007/s11856-008-1070-6
https://zbmath.org/?q=an:1211.20038
https://mathscinet.ams.org/mathscinet-getitem?mr=2448064
https://doi.org/10.2140/agt.2013.13.1299
https://zbmath.org/?q=an:1267.05302
https://mathscinet.ams.org/mathscinet-getitem?mr=3071129
https://doi.org/10.2140/agt.2010.10.1807
https://zbmath.org/?q=an:1202.20046
https://mathscinet.ams.org/mathscinet-getitem?mr=2684983
https://doi.org/10.2140/agt.2011.11.477
https://zbmath.org/?q=an:1229.20038
https://mathscinet.ams.org/mathscinet-getitem?mr=2783235
https://doi.org/10.1090/memo/0843
https://doi.org/10.1090/memo/0843
https://zbmath.org/?q=an:1093.20025
https://mathscinet.ams.org/mathscinet-getitem?mr=2182268
https://doi.org/10.1112/plms/s3-71.3.585
https://zbmath.org/?q=an:0861.20041
https://mathscinet.ams.org/mathscinet-getitem?mr=1347406


E. Einstein, D. Groves, and T. Ng 676

[20] D. Spriano, Hyperbolic HHS I: Factor systems and quasi-convex subgroups. 2018,
arXiv:1711.10931

[21] D. T. Wise, From riches to raags: 3-manifolds, right-angled Artin groups, and cubical geome-
try. CBMS Reg. Conf. Ser. Math. 117, American Mathematical Society, Providence, RI, 2012
Zbl 1278.20055 MR 2986461

[22] A. Yaman, A topological characterisation of relatively hyperbolic groups. J. Reine Angew.
Math. 566 (2004), 41–89 Zbl 1043.20020 MR 2039323

Received 15 December 2021.

Eduard Einstein
Department of Mathematics and Statistics, Swarthmore College, 500 College Avenue, Swarthmore,
PA 19081, USA; eeinste1@swarthmore.edu

Daniel Groves
Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago,
851 S. Morgan Street, 322 Science and Engineering Offices (M/C 249), Chicago, IL 60607-7045,
USA; dgroves@uic.edu

Thomas Ng
Faculty of Mathematics, Technion – Israel Institute of Technology, 32000 Haifa, Israel;
Department of Mathematics, Brandeis University, 415 South Street, Waltham, MA 02453, USA;
thomas.ng.math@gmail.com

https://arxiv.org/abs/1711.10931
https://doi.org/10.1090/cbms/117
https://doi.org/10.1090/cbms/117
https://zbmath.org/?q=an:1278.20055
https://mathscinet.ams.org/mathscinet-getitem?mr=2986461
https://doi.org/10.1515/crll.2004.007
https://zbmath.org/?q=an:1043.20020
https://mathscinet.ams.org/mathscinet-getitem?mr=2039323
mailto:eeinste1@swarthmore.edu
mailto:dgroves@uic.edu
mailto:thomas.ng.math@gmail.com

	1. Introduction
	1.1. Outline

	2. Obtaining fine hyperbolic graphs from relatively geometric actions
	2.1. Fine hyperbolic graphs and relative hyperbolicity
	2.2. Electrification and de-electrification
	2.3. Obtaining an action on a fine hyperbolic graph from a relatively geometric action

	3. Generalized fine actions
	4. Quasi-convex subgraphs of generalized fine graphs
	5. A separation criterion for the Bowditch boundary
	5.1. Hypersets and hypercarriers
	5.2. The separation criterion

	6. Separating points in the Bowditch boundary of a group acting relatively geometrically using hyperplane stabilizers
	References

