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Ample groupoid homology and étale correspondences

Alistair Miller

Abstract. We show that étale correspondences between ample groupoids induce homomorphisms
of homology groups. To complement this we explore the module categories of ample groupoids.
We construct an induction-restriction adjunction for subgroupoids, which generates a procedure for
building resolutions of arbitrary groupoid modules. These resolutions can be used to work with the
Tor picture of groupoid homology, enabling explicit descriptions of the maps in homology induced
by étale correspondences.

1. Introduction

This paper is focused on a homology theory for ample groupoids. Introduced in the étale
setting [4], the theory for ample groupoids in particular garnered attention from those
in C�-algebras and in topological dynamics after a series of papers by Matui [12–14].
Here he advanced two conjectures for an ample groupoid G, the HK conjecture relating
the homology H�.G/ to the K-theory K�.C�r .G// of the groupoid C�-algebra, and the
AH conjecture relating H�.G/ to the topological full group of G. Although there are
counterexamples to the HK conjecture [5, 21], both conjectures have been verified for
large classes of ample groupoids (see [3, 6] and [11, 16–18, 21, 22]) and have led to the
discovery of deeper connections of groupoid homology to operator K-theory [19] and
topological full groups [11].

Many computations in groupoid homology utilise its invariance under Morita equiv-
alences [4]. We work more generally with étale correspondences, a notion of morphism
for groupoids which capture not only Morita equivalences, but also étale homomorphisms
and actors/algebraic morphisms. There are further examples, such as a correspondence
�S W S Ë E� ! GS which we associate to an inverse semigroup S . Étale correspond-
ences were introduced to serve as models for C�-correspondences of the associated
C�-algebras [1, 2, 7–9]. C�-correspondences are the basis for Kasparov cycles, and a
proper étale correspondence of étale groupoids induces a map in the K-theory of the asso-
ciated C�-algebras. In accordance with the similarities between groupoid homology and
K-theory, we develop the functoriality of groupoid homology with respect to étale cor-
respondences. This generalises the Morita invariance of groupoid homology for ample
groupoids.
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Theorem A (Corollary 3.6). Let G and H be ample groupoids. Then a proper étale cor-
respondence �W G ! H induces homomorphisms

H�.�/W H�.G/! H�.H/

of homology groups.

The map H�.�/WH�.G/!H�.H/ is designed to be able to describe homomorphisms
of homology groups which may appear in other contexts. For example, in [19] the homo-
logy H�.G/ is recovered from equivariant KK-theoretic data in order to connect it to the
K-theory K�.C �r .G//. The K-theoretic functoriality of étale correspondences is extended
to the level of equivariant KK-theory in [15]. To show that H�.�/W H�.G/! H�.H/ is
compatible with this KK-theoretic functoriality via the recovery process, the description
of H�.�/ must be flexible enough to apply in this situation. This means working with
groupoid modules which appear as K-theory groups of C�-algebras equipped with the
action of a groupoid.

Working with the category G-Mod of G-modules, we have a flexible description of
the homology groups H�.G/ as TorG� .ZŒG

0�;ZŒG0�/ [3, 11]. Concretely this means that
any projective or even left G-acyclic1 resolution P� ! ZŒG0� of G-modules computes
H�.G/ as H�.ZŒG0�˝G P�/. For example, using the bar resolution ZŒG�C1�! ZŒG0�
recovers Matui’s definition of H�.G/ [12, Definition 3.1]. The value of Corollary 3.6 is
not only the existence of H�.�/ but also its uniqueness: it allows us to recognise when a
map from H�.G/ to H�.H/ is equal to H�.�/, no matter which resolutions are used to
model H�.G/ and H�.H/.

In the setting of an inverse semigroup S , the correspondence �S W S Ë E� ! GS
induces an isomorphism in homology (Example 3.10). This computes the homology
H�.GS / of the universal groupoid GS as

H�.GS / Š
M

Œe�2SnE�

H�.Se/;

where Se D ¹s 2 S j s�s D e D ss�º is the stabiliser subgroup of S at a non-zero idem-
potent e 2 E�.

The module-theoretic approach to Theorem A extends naturally to the homology
groups H�.GIM/ D TorG� .ZŒG

0�; M/ of an ample groupoid G with coefficients in a
G-module M . The properness of the étale correspondence �W G ! H is used only to
define a G-module map from ZŒG0� to the G-module Ind� ZŒH 0� induced by �. In gen-
eral, an étale correspondence �W G ! H induces maps in homology with coefficients as
follows.

1A G-module P is left G-acyclic if Hi .GIP / D 0 for each i � 1. This property is weaker than both
projectivity and flatness.
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Theorem B (Theorem 3.5). Let G and H be ample groupoids, let M be a G-module
and N an H -module. Then for each étale correspondence �W G ! H and G-module
map f WM ! Ind�N , there are induced homomorphisms

H�.�If /W H�.GIM/! H�.H IN/

of homology groups.

To complement our approach which enables the use of arbitrary left G-acyclic reso-
lutions, we construct a canonical left G-acyclic resolution of any G-module. This derives
from an induction-restriction adjunction, reflecting the situation for group modules.

Theorem C (Proposition 2.18). Let G be an ample groupoid and let H � G be an open
subgroupoid. Then there is a restriction functor ResHG WG-Mod!H -Mod and an induc-
tion functor IndHG WH -Mod! G-Mod which is left adjoint to ResHG .

Taking the unit space X D G0, the adjunction IndGX a ResXG generates in a standard
way the bar resolution

� � � ! ZŒGnC1�˝X M ! � � � ! ZŒG�˝X M !M

of any G-module M . This is left G-acyclic by a groupoid version of Shapiro’s lemma
(Lemma 2.19), and it recovers the chain complex given in [19, Section 1.3] to define
H�.GIM/ after taking the coinvariants ZŒG0�˝G �.

2. Modules over an ample groupoid

An ample groupoid is an étale groupoid whose unit space is locally compact, Hausdorff
(LCH) and totally disconnected. The space of arrows is then automatically totally dis-
connected and locally LCH, but not necessarily Hausdorff. Following for example [3]
and [11], we take a module approach to the homology of an ample groupoid. For a totally
disconnected locally LCH space X and an open Hausdorff subspace U � X , we include
Cc.U;Z/ into the abelian group of integer valued functions on X by setting an element
of Cc.U;Z/ to be 0 outside U . We write ZŒX� for the span of Cc.U;Z/ across all open
Hausdorff subspaces U �X . For any open Hausdorff cover U ofX , the span of Cc.U;Z/
over U 2 U is equal to ZŒX�.

Definition 2.1 (Groupoid ring). For an ample groupoidG, the groupoid ring is the abelian
group ZŒG�with a multiplication given by convolution: for �;� 2ZŒG� and g 2G we have

� � �.g/ D
X

h2Gr.g/

�.h�1/�.hg/:

In this document, a ring need not be commutative nor even unital. In place of unital-
ity, ZŒG� is locally unital. This means that for any finite collection �1; : : : ; �n of elements
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in ZŒG�, there is an idempotent e 2 ZŒG� such that e�i D �ie D �i for each i . In this
case, the idempotent may be taken to be the indicator function �U on a compact open
set U � G0. For a locally unital ring R, we require our (left) R-modules M to be
non-degenerate or unitary in the sense that RM D M . The categories of left and right
R-modules are written R-Mod and Mod-R respectively. When R D ZŒG�, we refer to
R-modules as G-modules and write G-Mod and Mod-G for the left and right module
categories.

For continuous maps � W Y ! X and �W Z ! X , we write Y ��;X;� Z for the fibre
product ¹.y; z/ 2 Y � Z j �.y/ D �.z/º of Y and Z over X . If � and � are understood,
we may write Y �X Z.

Definition 2.2 (G-space). Let G be an étale groupoid. A (left) G-space X consists of a
topological space equipped with:

• a continuous map � W X ! G0 called the anchor map,

• a continuous map ˛W G �s;G0;� X ! X called the action map. We usually write g � x

for ˛.g; x/.

This describes a G-space if whenever g; h 2 G and x 2 X satisfy the compatibility con-
ditions s.g/ D r.h/ and s.h/ D �.x/, we have �.h � x/ D r.h/ and gh � x D g � .h � x/.

Example 2.3 (G-space module). Let G be an ample groupoid and let X be a totally
disconnected locally LCH (left) G-space with anchor map � W X ! G0. Then the abelian
group ZŒX� is a G-module with ZŒG�-action given by

ZŒG� � ZŒX�! ZŒX�

.�;m/ 7! � �m

x 7!
X

g2G�.x/

�.g�1/m.g � x/:

Similarly, for a totally disconnected locally LCH right G-space Z with anchor map
� W Z ! G0, the abelian group ZŒZ� is a right G-module via the map

ZŒZ� � ZŒG�! ZŒZ�

.m; �/ 7! m � �

z 7!
X

g2G�.z/

m.z � g/�.g�1/:

Given a G-equivariant local homeomorphism f W X ! Y of (left) G-spaces, we functori-
ally obtain a G-module homomorphism f�W ZŒX�! ZŒY �, which at � 2 ZŒX� and y 2 Y
is given by

f�.�/.y/ D
X

x2f �1.y/

�.x/:

The canonical left and right actions of G on its unit space G0 give rise to modules with
abelian group ZŒG0� which we call the trivial left and right G-modules.
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Note that we do not require our G-spaces to have an étale anchor map as in [3]. To
work with the abelian group ZŒX� of a totally disconnected locally LCH space X , we
make use of the following rephrasing of [11, Lemma 2.2], which can for example be used
to construct actions of ZŒG�.

Lemma 2.4. Let X be a totally disconnected locally LCH space and let A be an abelian
group. Suppose that O is an open Hausdorff cover of X and let U be the set of com-
pact open subsets of elements of O. Let 'WU! A be such that '.U1/C '.U2/ D '.U /
whenever U1 t U2 D U with U1, U2 and U in U. Then 'WU! A extends uniquely to a
group homomorphism y'W ZŒX�! A such that y'.�U / D '.U / for each U 2 U.

The categories R-Mod and Mod-R of left and right modules over a locally unital
ring R retain much of the behaviour of the unital setting. We may take the tensor product
M ˝R N of a right R-module M and a left R-module N , and a (left) R-module is flat
if the functor � ˝R M W Mod-R ! Ab preserves exact sequences, or, equivalently, pre-
serves injectivity. An R-module P is projective if every morphism out of P lifts through
surjective morphisms. Direct sums of copies of R need no longer be freely generated
by a set of elements, and R need not be projective as a module over itself,2 although
it is always flat. Instead, for each idempotent e 2 R, the module Re is projective [3,
Remark 2.9]. It is then straightforward to see that R-Mod has enough projectives, as for
any R-module M , there is a direct sum P of modules of the form Re and a surjective
morphism P !M .

Remark 2.5. We may often carry over results from the unital setting by using the
multiplier ringM.R/ WD EndMod-R.R/ of a locally unital ring R. This is a unital ring con-
taining R, and R-modules may be identified with M.R/-modules A such that R �A D A.
Under this identification, an R-module is projective/flat if and only if it is projective/flat
as an M.R/-module.

Definition 2.6. Let G be an étale groupoid and let X be a topological space. An action
G ÕX is basic if the map

G �G0 X ! X �GnX X

.g; x/ 7! .g � x; x/

is a homeomorphism.

A basic action G Õ X is free, and is proper if and only if the orbit space GnX is
Hausdorff [2, Proposition 2.19]. Conversely, any free proper action is basic. The orbit
map qW X ! GnX of a basic action is étale [2, Lemma 2.12], so if X is locally LCH then
so is GnX . For a basic G-space X which is further étale in the sense that its anchor map
is étale, a slice U � X is an open Hausdorff subspace on which the quotient map and the

2In [3, Section 2.3] this is pointed out for ZŒX�, whereX is the reals equipped with a rational sequence
topology.
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anchor map are injective. This defines a partial homeomorphism from G0 to GnX . Slices
for the left multiplication action G ÕG are exactly the open bisections.

For the next proposition, we will utilise Steinberg’s picture ofG-modules for an ample
groupoid G in terms of G-sheaves [24]. For each G-module M , there is a G-sheaf M

along with a natural isomorphism M Š �c.G
0;M/ of G-modules. The fibre Mx of M

at x 2 G0 is constructed as a direct limit over the compact open subsets U; V � G0

containing x. Given any x 2 V � U , left multiplication by �V defines a homomorphism
�U �M ! �V �M , and we have

Mx D lim
�!
x2U

�U �M:

As M is the union of �U �M for such U , we may assign to each m 2M its equivalence
class mx 2Mx . The topology on M ensures that for each m 2M the section

G0 !M

x 7! mx

is continuous and compactly supported. Ifmx D nx for somem;n 2M and x 2 G0, then
by construction there is a compact open neighbourhood of x on whichm agrees with n. A
G-map f WM !N induces a morphism of the associatedG-sheaves .fx/x2G0 WM!N ,
and f is injective if and only if fx WMx ! Nx is injective for each x 2 G0.

Remark 2.7. Any sheaf M over a totally disconnected LCH space X is automatically
c-soft in that each continuous section f WK !M on a compact subspaceK � X extends
to a continuous section zf W X !M.

For any ample groupoid G and n � 1, the G-space module ZŒGn� is flat [11, Proposi-
tion 2.4]. This result may be adapted to any basic étale G-space:

Proposition 2.8. Let G be an ample groupoid and let X be a basic étale right G-space.
Then ZŒX� is a flat G-module.

Proof. Let � WX!G0 be the anchor map and qWX!X=G the orbit map. Let f WA!B

be an injective G-module map. This implies that the fibre fy W Ay ! By is injective for
each y 2 G0. We need to check that id˝f W ZŒX�˝G A! ZŒX�˝G B is injective, so
let a 2 ker id˝f . Then there are compact slices Ui � X and elements ai 2 A indexed by
a finite set I such that

a D
X
i2I

�Ui ˝ ai :

Let ¹O1; : : : ; Onº be a finite set of compact open Hausdorff subsets of X=G such that for
each i 2 I , there is 1 � k � n such that q.Ui / � Ok . We proceed to show that a D 0 by
induction on n.
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If nD 1, then q.Ui / � O1 for each i 2 I . We may assume that the q.Ui / are pairwise
disjoint because of disjointification: for each non-empty J � I let

VJ D
\
i2J

q.Ui / \
\
i2InJ

.O1 n q.Ui //;

and for i 2 J set U 0i;J D q
�1.VJ / \ Ui . Then the VJ are pairwise disjoint and for each

i 2 I , we have
Ui D

G
i2J�I

U 0i;J :

For each J , pick an element iJ 2 J . For each i 2 J , we have q.U 0i;J / D VJ D q.U
0
iJ ;J

/,
so because the action X Ô G is basic, there is a compact open bisection Wi;J � G such
that U 0i;J D U

0
iJ ;J

�Wi;J . Setting

bJ D
X
i2J

�Wi;J � ai ;

then by construction we have

a D
X
i2I

�Ui ˝ ai D
X
;¤J�I

X
i2J

�U 0i;J ˝ ai D
X
;¤J�I

�U 0iJ ;J
˝ bJ :

Thus we may assume that the q.Ui / are pairwise disjoint for i 2 I . For each x 2 X there
is an evaluation map for A given by

evx W ZŒX�˝G A! A�.x/

� ˝ a 7!
X

g2G�.x/

�.x � g/.g�1 � ar.g//

and similarly for B . These maps are compatible with f W A! B in the sense of the equal-
ities evx ı.id˝f / D f�.x/ ı evx . For x 2 Ui , pairwise disjointness of the orbits of the
slices implies that evx.a/ D .ai /�.x/. But then f�.x/..ai /�.x// D evx..id˝f /.a// D 0
and by injectivity of f�.x/, we have .ai /�.x/ D 0. Since this holds for each x 2 Ui , we
have �Ui ˝ ai D 0 and therefore a D 0.

If n� 2, we may assume by the same disjointification procedure as above that for each
1 � k � n the q.Ui / � Ok are pairwise disjoint for i 2 I . Let I 0 � I be the set of i such
that q.Ui / � Ok for some k < n. Pick some j 2 I n I 0. Then there is a compact open set
U 0j �Uj such that �Uj ˝ aj D�U 0j ˝ aj and q.U 0j /�

S
i2I 0 q.Ui /, constructed as follows.

For any u 2 Uj with q.u/ …
S
i2I 0 q.Ui /, we may conclude that a�.u/ D 0 by evaluation

at u and injectivity of f . Then ay D 0 for y in a compact open neighbourhoodWu of �.u/
in �.Uj /. Moving Wu for each u to X=G via Uj , we obtain a compact open cover of the
compact set q.Uj / n

S
i2I 0 q.Ui / which therefore has a finite subcover. We obtain finitely

many compact opens in Uj which we subtract from Uj to obtain U 0j . By construction a
vanishes on �.Uj n U 0j / and q.U 0j / �

S
i2I 0 q.Ui /.
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We now cover q.U 0j / by finitely many compact open subsets V1; : : : ; VN � q.U 0j /
each contained in q.Ui / for some i 2 I 0, and we may assume that these are disjoint.
Thus �U 0j D

PN
mD1 �q�1.Vm/\U 0j , and so we are able to reduce to the case where we have

a D
P
i2I �Ui ˝ ai such that for each i 2 I there is k < n with q.Ui / � Ok .

For a flat G-module ZŒY � as in Proposition 2.8, the tensor product over G with a left
G-module of the form ZŒZ� corresponds to the fibre product Y �G Z of spaces over G,
which is the quotient of Y �G0 Z by the diagonal action of G.

Proposition 2.9. Let G be an ample groupoid, let Y be a basic étale right G-space with
anchor map � W Y !G0 and letZ be a totally disconnected leftG-space. Then Y �G Z is
totally disconnected and locally LCH, and there is an isomorphism �W ZŒY �˝G ZŒZ� Š
ZŒY �G Z� given on simple tensors by

�W ZŒY �˝G ZŒZ�! ZŒY �G Z�

� ˝ � 7! �.�; �/

Œy; z�G 7!
X

g2G�.y/

�.y � g/�.g�1 � z/:

Proof. The fibre product Y �G0 Z is totally disconnected and locally LCH, and the
diagonal action G Õ Y �G0 Z is basic, from which it follows that Y �G Z is totally
disconnected and locally LCH.

Let �W Z ! G0 be the anchor map for G ÕZ, and let � be the set of pairs .U; V / of
compact open Hausdorff subsets U � Y and V � Z such that Y ! Y=G and � W Y ! G0

are injective on U and �.V / � �.U /. The sets U �G0 V with .U; V / 2 � form a basis of
compact open Hausdorff sets in Y �G0 Z, so their images q.U �G0 V / under the local
homeomorphism qW Y �G0 Z! Y �G Z form a basis of compact open Hausdorff sets in
Y �G Z. For � 2ZŒY � and � 2ZŒZ� define �.�; �/W Y �G Z!Z at Œy; z�G 2 Y �G Z by

�.�; �/W Œy; z�G 7!
X

g2G�.y/

�.y � g/�.g�1 � z/:

By construction, �.�U ; �V / D �q.U�G0V / for each .U; V / 2 � , so we obtain a balanced
bilinear map �W ZŒY � � ZŒZ�! ZŒY �G Z� whose image generates ZŒY �G Z�. There
is therefore a surjective homomorphism

�W ZŒY �˝G ZŒZ�! ZŒY �G Z�

� ˝ � 7! �.�; �/:

Consider the cover R D ¹q.U �G0 V / j .U; V / 2 �º of compact open Hausdorff sets in
Y �G Z which is closed under compact open subsets. Using Lemma 2.4, we define an
inverse  W ZŒY �G Z�! ZŒY �˝G ZŒZ� to � by setting

 .�q.U�G0V // WD �U ˝ �V :
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We need to check that this is well defined and respects disjoint unions within R. First,
suppose that .U1; V1/; .U2; V2/ 2 � with q.U1 �G0 V1/ D q.U2 �G0 V2/. Define

W WD ¹g 2 G j there are u1 2 U1 and u2 2 U2 such that u1 � g D u2º:

The action Y ÔG is basic and � restricts to homeomorphisms on U1 and U2, from which
it follows thatW is a compact open bisection inG. Furthermore, because q.U1 �G0 V1/D
q.U2 �G0 V2/, we obtain that �.V1/ � r.W /, �.V2/ � s.W / and W � V2 D V1. We may
then calculate

�U1 ˝ �V1 D �U1 ˝ �W � �V2 D �U1 � �W ˝ �V2 D �U2 � �r.W / ˝ �V2 D �U2 ˝ �V2 :

Now suppose that q.U1 �G0 V1/ t q.U2 �G0 V2/ D q.U �G0 V /. By the above argu-
ment we may assume that U1 �G0 V1 t U2 �G0 V2 D U �G0 V , so V1 t V2 D V and
we can write �U ˝ �V D �U ˝ �V1 C �U ˝ �V2 D �U1 ˝ �V1 C �U2 ˝ �V2 . By
Lemma 2.4,  extends uniquely to a homomorphism  W ZŒY �G Z�! ZŒY �˝G ZŒZ�
such that � ı  D 1 by construction. The elements �U ˝ �V over every pair .U; V / 2 �

generate ZŒY �˝G ZŒZ�, so therefore  is an inverse to �.

Proposition 2.9 extends the description of the coinvariants ZŒX�G of the module of a
free, proper, étale G-space X in [3, Lemma 2.5].

Definition 2.10 (Coinvariants functor). Let G be an ample groupoid and let M be a
G-module. The coinvariants MG of M is the abelian group

MG WD ZŒG0�˝G M:

This gives us a functor CoinvG WG-Mod! Ab. We often think ofMG as a quotient ofM
via the surjective homomorphism �G W m 7! Œm�WM !MG which sends m to e ˝m for
any idempotent e 2ZŒG0� such that e �mDm. The kernel of �G is generated by elements
of the form �U �m� �s.U / �m for compact open bisections U �G and elementsm 2M .

To discuss derived functors, we recall the fundamental lemma of homological algebra
[20, Comparison Theorem 6.16].

Lemma 2.11 (Fundamental lemma of homological algebra). Let R be a locally unital
ring, let f W A! B be a map of R-modules, let P� ! A be a projective resolution and
Q� ! B a resolution. Then there is a chain map P� ! Q� over f which is unique up to
chain homotopy.

Definition 2.12 (Derived functors). LetR be a locally unital ring and let F W R-Mod!Ab
be an additive functor. The derived functors LnF WR-Mod! Ab for n 2N are defined as
follows. For each R-module A, there is a projective resolution P� ! A because R-Mod
has enough projectives. We set LnF.A/DHn.F.P�//, which is independent of the choice
of projective resolutions up to canonical isomorphisms by the fundamental lemma of
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homological algebra. Given a morphism f WA! B ofR-modules and a projective resolu-
tionQ�!B , there is a chain mapP�!Q� over f which is unique up to chain homotopy,
and therefore for each n 2 N a unique induced map Hn.F.P�//! Hn.F.Q�//, which
we set Ln.f /W Ln.A/! Ln.B/ to be.

The Tor group TorRn .A; B/ of a right R-module A and a left R-module B is the nth
left derived functor of A˝R � at B . We use this to define groupoid homology.3

Definition 2.13 (Groupoid homology). Let G be an ample groupoid and let M be a
G-module. The groupoid homology Hn.GIM/ of G with coefficients in M is the nth
Tor group TorGn .ZŒG

0�;M/. This may be identified with Ln CoinvG.M/.

The Tor groups of a locally unital ring may be computed with flat resolutions in place
of projective resolutions, as in the case of unital rings [20, Corollary 10.23]. This may be
justified through use of the multiplier ring, see Remark 2.5.

Example 2.14 (Bar resolution). Let G be an ample groupoid. There is an explicit flat
resolution .ZŒG�C1�; @�/ of the (left) G-module ZŒG0�

� � �
@nC1
���! ZŒGnC1�

@n
�! � � �

@2
�! ZŒG2�

@1
�! ZŒG1�

@0
�! ZŒG0�! 0 (2.1)

called the bar resolution.
For n � 0, we consider the space GnC1 of composable n C 1-tuples as a left G-

space whose G-module ZŒGnC1� is flat. We set @0 WD s�W ZŒG1�! ZŒG0�. For n � 1
and 0 � i � n, we define face maps @ni W G

nC1 ! Gn by

@ni W .g0; : : : ; gn/ 7!

8<: .g0; : : : ; gigiC1; : : : ; gn/ if i < n;

.g0; : : : ; gn�1/ if i D n:

The face maps are G-equivariant local homeomorphisms and therefore induce G-module
maps .@ni /�W ZŒG

nC1�! ZŒGn�. The boundary maps @nW ZŒGnC1�! ZŒGn� are given
for n � 1 by

@n WD

nX
iD0

.�1/i .@ni /�:

The exactness of the bar resolution (2.1) is witnessed by a chain homotopy induced by
local homeomorphisms hnW Gn ! GnC1. These are defined for n � 1 by

hnW .g0; : : : ; gn�1/ 7! .r.g0/; g0; : : : ; gn�1/

and h0 is the inclusion G0 � G1. Taking the coinvariants of the bar resolution, we obtain
the chain complex

� � �
.@nC1/G
�����! ZŒGn�

.@n/G
���! � � �

.@2/G
���! ZŒG1�

.@1/G
���! ZŒG0�! 0: (2.2)

3This definition is shown to be equivalent to the usual definition under mild assumptions in [3] and in
full generality in [11].
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The boundary maps are given by .@n/G D
Pn
iD0.�1/

i ."ni /�, where for n � 1, the face
map "ni W G

n ! Gn�1 is defined by

"ni W .g1; : : : ; gn/ 7!

8̂̂<̂
:̂
.g2; : : : ; gn/ if i D 0;

.g1; : : : ; gigiC1; : : : ; gn/ if 0 < i < n;

.g1; : : : ; gn�1/ if i D n:

The chain complex (2.2) is typically used as a concrete way to define H�.G/ (see [12,
Section 3.1]).

The homology of an ample groupoidG can be computed with even more general types
of resolutions called left G-acyclic resolutions.

Definition 2.15. Let G be an ample groupoid. A G-module A 2 G-Mod is left G-acyclic
if Hn.GIA/ D 0 for each n � 1.

Proposition 2.16. Let G be an ample groupoid, let M be a G-module, let P� ! M be
a projective resolution and let Q� ! M be a left G-acyclic resolution. Then the unique
(up to homotopy) chain map P�!Q� induces an isomorphism Hn.GIM/Š Hn..Q�/G/
for each n. Furthermore, given a G-module map f WM ! N , left G-acyclic resolutions
Q�!M andQ0�!N and a chain mapQ�!Q0� over f , the induced map in homology
Hn..Q�/G/! Hn..Q0�/G/ may be identified with Hn.GIf /W Hn.GIM/! Hn.GIN/.

Proof. The first part of the statement is covered in the setting of unital rings in [25, 2.4.3],
including the linked exercise, but holds in general for abelian categories with enough
projectives (see [10, Section 13.3]). Alternatively, viewing G-modules as modules over
the multiplier ringM.ZŒG�/, we preserve exactness, projectivity and tensor products, and
therefore also Tor groups. The isomorphism Hn.GIM/ Š Hn..Q�/G/ can be deduced by
working over the unital ringM.ZŒG�/. The identification of the induced map in homology
then follows from the fundamental lemma of homological algebra.

Definition 2.17. Let G be an ample groupoid and let H be an open subgroupoid of G.
The inclusion ZŒH � � ZŒG� of groupoid rings gives rise to the subgroupoid restriction
functor ResHG W G-Mod! H -Mod which for a G-module M returns the H -module

ResHG M D ZŒH � �M:

The subgroupoid induction functor IndGH W H -Mod ! G-Mod is given by the tensor
product with the bimodule ZŒGH0 �, so for an H -module N we have

IndGH N D ZŒGH0 �˝H N:

The restriction functor ResHG sends a G-module map to its restriction and is there-
fore exact. The action GH0 Ô H is basic and étale, so IndGH is an exact functor by
Proposition 2.8.
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Proposition 2.18 (Induction-restriction adjunction). Let G be an ample groupoid and let
H � G be an open subgroupoid. Then there is an adjunction

.�; "/W IndGH a ResHG

with unit and counit

�W idH -Mod ) ResHG IndGH ;

"W IndGH ResHG ) idG-Mod

such that for M 2 H -Mod, N 2 G-Mod, � 2 ZŒH �, m 2 M , � 2 ZŒGH0 � � ZŒG� and
n 2 ZŒH � �N , we have

�M WM ! ZŒH � � .ZŒGH0 �˝H M/

� �m 7! � ˝m;

"N W ZŒGH0 �˝H .ZŒH � �N/! N

� ˝ n 7! � � n:

Proof. For each H -module M , well-definition of the map �M follows from the applica-
tion of a local unit on the left of each � 2 ZŒH �. This is an H -module map and natural
in M by construction. For each G-module, N the above formula describes a balanced
bilinear map through which we obtain "N , which is a G-module map and natural in N .
To verify the counit-unit equations we must check that

"IndGH M
ı IndGH .�M / D idIndGH M

;

ResHG ."N / ı �ResHG N
D idResHG N

:

Let m 2M , n 2 N , � 2 ZŒGH0 � and � 2 ZŒH �. We then calculate

"IndGH M
.IndGH .�M /.� ˝ � �m// D "IndGH M

.� ˝ �M .� �m//

D "IndGH M
.� ˝ � ˝m/

D � � � ˝m

D � ˝ � �m:

Letting e 2 ZŒH � be a left unit for �, we verify the second equation:

ResHG ."N /.�ResHG N
.� � n// D ResHG ."N /.�ResHG N

.e � � � n//

D ResHG ."N /.e ˝ � � n/

D "N .e ˝ � � n/

D � � n:
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Lemma 2.19 (Shapiro’s Lemma). LetG be an ample groupoid and letH �G be an open
subgroupoid of G. Then for any H -module M , there is an isomorphism

H�.GI IndGH M/ Š H�.H IM/:

Proof. Let F�!M be a flat resolution inH -Mod. Then IndGH F�! IndGH M is exact by
exactness of IndGH . The G-module ZŒGH0 � is flat and it follows that IndGH F� ! IndGH M
is a flat resolution in G-Mod. By Proposition 2.9 there is an isomorphism of right H -
modules ZŒG0� ˝G ZŒGH0 � Š ZŒH 0�. Through this, there is a natural isomorphism
.IndGH N/G Š NH for each H -module N , and so there is also a chain isomorphism
.IndGH F�/G Š .P�/H . This witnesses the claimed isomorphism in homology.

Corollary 2.20. Let G be an ample groupoid with unit space X and let M be an
X -module. Then IndGX M is left G-acyclic.

Example 2.21 (Bar resolution of a module). Let G denote an ample groupoid with unit
space X , let M be a G-module, and consider the functor

L D IndGX ResXG W G-Mod! G-Mod:

From the counit "W L) id of the adjunction IndGX a ResXG we may construct a chain
complex

� � � ! LnC1M
ın
�! � � �

ı1
�! LM

�0
�!M ! 0 (2.3)

with �0 D "M W LM !M and for n � 1

ın D

nX
iD0

.�L/i"Ln�iM W L
nC1M ! LnM:

This is exact because applying ResXG does not change the underlying chain complex of
abelian groups, and in X -Mod there is a contracting homotopy coming from the unit
�W id) ResXG IndGX of the adjunction (see [25, 8.6.10, 8.6.11]). This is given at n � 0 by
hn D �ResXG L

nM W ResXG L
nM ! ResXG L

nC1M . The resolution L�C1M !M in (2.3) is
the bar resolution ofM . It is leftG-acyclic by Corollary 2.20 and may therefore be used to
compute H�.GIM/. We note that the chain complex CoinvG.L�C1M/ D ZŒG��˝X M
coincides with the chain complex defining H�.GIM/ in [19]. ForM D ZŒX�, we recover
the bar resolution (Example 2.14).

3. Étale correspondences of ample groupoids

We refer the reader to [2] and [15] for an introduction to and examples of étale corres-
pondences of étale groupoids.
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Definition 3.1 (Definition 3.1 in [2]). Let G and H be étale groupoids. An étale corres-
pondence �W G ! H is a space � with a left G-action and a right H -action with anchor
maps �W �! G0 and � W �! H 0 called the range and source such that:

• The G-action commutes with the H -action, i.e., � is a G-H -bispace.

• The right action �ÔH is free, proper and étale.

We say that �W G ! H is proper if the map �W �=H ! G0 induced by � is proper. If
we want to highlight the correspondence �, we may write �� and �� instead of � and �.
For x 2 G0 and y 2 H 0, we write �x and �y for the range and source fibres ��1.x/ and
��1.y/. An isomorphism of étale correspondences �;ƒW G ! H is a G-H -equivariant
homeomorphism � Š ƒ.

The compositionƒ ı� of étale correspondences�WG!H andƒWH !K is given
by the space � �H ƒ, with G acting through its action on � and K acting through its
action on ƒ. This forms an associative composition up to isomorphism, with identities up
to isomorphism given at G by the G-G-bispace G.

If �W G ! H is an étale correspondence of ample groupoids, then � is a totally
disconnected locally LCH space. The space ZŒ�� becomes a G-H -bimodule.

Definition 3.2. Let �W G ! H be an étale correspondence of ample groupoids. The
induction functor Ind� WH -Mod! G-Mod is given by the tensor product ZŒ��˝H �.

Proposition 2.8 shows that Ind� is an exact functor and Proposition 2.9 gives an expli-
cit description of Ind� onH -modules of the form ZŒY � for anH -space Y as ZŒ��H Y �.
In particular, we have Ind�ZŒH 0�ŠZŒ�=H�. For étale correspondences�WG!H and
ƒWH !K of ample groupoids, we obtain an isomorphism ZŒ��H ƒ�ŠZŒ��˝H ZŒƒ�
and therefore a natural isomorphism Indƒı� Š Ind� Indƒ.

Proposition 3.3. Let �W G ! H be an étale correspondence of ample groupoids. There
is a map ı�W ZŒ��G ! ZŒH 0� of right H -modules such that the following diagram
commutes.

ZŒ�� ZŒH 0�

ZŒ��G

��

�G
ı�

The map ı� satisfies ı�.�˝ �/ D ��.� � �/ for each � 2 ZŒG0� and � 2 ZŒ��.

Proof. The balancing of the bilinear map

ZŒG0� � ZŒ��! ZŒH 0�

.�; �/ 7! ��.� � �/

follows from the G-invariance of � W �! H 0. The desired map ı�W ZŒ��G ! ZŒH 0�

is induced by this. The diagram commutes because for each � 2 ZŒG0� and � 2 ZŒ��,
we have �G.� � �/ D �˝ �.
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Through the tensor product over H , the map ı�W ZŒ��G ! ZŒH 0� induces a map
ı� ˝ id W .Ind�M/G ! MH for each H -module M , and this is natural in M . We have
compatibility with composition of correspondences:

Proposition 3.4. Let �W G ! H and ƒW H ! K be étale correspondences of ample
groupoids and let �WZŒ��˝H ZŒƒ�ŠZŒ��H ƒ� be the isomorphism in Proposition 2.9.
Then the following diagram commutes.

ZŒ��G ˝H ZŒƒ� ZŒƒ�H

ZŒ� �H ƒ�G ZŒK0�

ı�˝id

�G ıƒ

ıƒı�

Proof. Let � 2 ZŒG0�, � 2 ZŒ�� and � 2 ZŒƒ�. Through both routes round the diagram,
the simple tensor �˝ � ˝ � 2 ZŒG0�˝G ZŒ��˝H ZŒƒ� is sent to the following element
of ZŒK0�.

K0 ! Z

z 7!
X
�2ƒz

X
!2��.�/

�.�.!//�.!/�.�/:

Theorem 3.5. Let �W G ! H be an étale correspondence of ample groupoids, let M be
a G-module, N an H -module and f W M ! Ind� N a G-module map. Then there is an
induced map in homology

H�.�; f /W H�.GIM/! H�.H IN/

such that for any

• left G-acyclic resolution P� !M ,

• left H -acyclic resolution Q� ! N ,

• and chain map zf W P� ! Ind�Q� lifting f WM ! Ind�N ,

the chain map .ı� ˝ id/ ı zfG W .P�/G ! .Q�/H shown below induces H�.�; f / in
homology.

� � � .Pn/G � � � .P0/G

� � � .Ind�Qn/G � � � .Ind�Q0/G

� � � .Qn/H � � � .Q0/H

. zfn/G . zf0/G

ı�˝id ı�˝id

Proof. To construct the map H�.�; f /, we may consider arbitrary projective resolu-
tions P 0� ! M and Q0� ! N . We obtain a resolution Ind� Q0� ! Ind� N . A chain
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map zf 0W P 0� ! Ind�Q0� lifting f W M ! Ind� N exists by the fundamental lemma of
homological algebra (Lemma 2.11). We may then set H�.�; f / to be

H�..ı� ˝ id/ ı zf 0G/W H�..P
0
�/G/! H�..Q0�/H /

after identifying these with H�.GIM/ and H�.H IN/.
Now given P� ! M , Q� ! N and zf W P� ! Ind� Q� as in the statement of the

theorem, there are chain maps � W P 0�! P� and � WQ0�!Q�. By the fundamental lemma
of homological algebra, zf ı � is chain homotopic to Ind� � ı zf 0. The following diagram
of chain complexes therefore commutes up to chain homotopy.

.P 0�/G .P�/G

.Ind�Q0�/G .Ind�Q�/G

.Q0�/H .Q�/H

�G

zf 0G
zfG

.Ind� �/G

ı�˝id ı�˝id

�H

We deduce that .ı�˝ id/ ı zf 0G and .ı�˝ id/ ı zfG induce the same map in homology.

In particular, if�W G ! H is a proper correspondence, then there is a G-module map
��W ZŒG0�! Ind� ZŒH 0� induced by the proper G-equivariant map �W �=H ! G0.

Corollary 3.6. Let G and H be ample groupoids. Then any proper étale correspondence
�W G ! H induces a map

H�.�/W H�.G/! H�.H/

in homology. It is induced by the chain map

.ı� ˝ id/ ı fG W .P�/G ! .Q�/H

for any left G-acyclic resolution P� ! ZŒG0�, left H -acyclic resolution Q� ! ZŒH 0�

and chain map f W P� ! Ind�Q� over ��W ZŒG0�! Ind� ZŒH 0�.

Proposition 3.7. Let �W G ! H and ƒW H ! K be proper étale correspondences of
ample groupoids. Then we have

H�.ƒ ı�/ D H�.ƒ/ ı H�.�/W H�.G/! H�.K/:

Proof. Consider the proper maps �W .� �H ƒ/=K ! G0, given by ��W �=H ! G0,
and �ƒW ƒ=K ! H 0. Let P� ! ZŒG0�, Q� ! ZŒH 0� and R� ! ZŒK0� be left G, H
and K-acyclic resolutions, and let f W P� ! Ind�Q� and gW Q� ! Indƒ R� be chain
maps over ���W ZŒG

0�! Ind� ZŒH 0� and ��ƒW ZŒH
0�! Indƒ ZŒK0�. Then

P� Ind�Q� Ind� IndƒR� Indƒı�R�
f id˝g �˝id



Ample groupoid homology and étale correspondences 17

is a chain map over

ZŒG0� Ind� ZŒH 0� Ind� Indƒ ZŒK0� Indƒı� ZŒK0�;
��� id˝��ƒ �˝id

where �W ZŒ�� ˝H ZŒƒ� Š ZŒ� �H ƒ� is the isomorphism in Proposition 2.9. Under
the identifications of modules induced fromH -space modules andK-space modules with
quotient G-space modules, these maps are induced by the proper maps in the following
diagram.

G0 �=H � �H .ƒ=K/ .� �H ƒ/=K
�� id��ƒ Š

The composition of these maps is �W .� �H ƒ/=K ! G0, and we may conclude by
Corollary 3.6 that H�.ƒ ı�/ is induced by the chain map

.ıƒı� ˝ id/ ı ..� ˝ id/ ı .id˝g/ ı f /G W .P�/G ! .R�/K :

Consider the following diagram.

.P�/G .Ind�Q�/G .Ind� IndƒR�/G .Indƒı�R�/G

.Q�/H .IndƒR�/H .R�/K

fG .id˝g/G

ı�˝id

.�˝id/G

ı�˝id ıƒı�˝id

gH ıƒ˝id

By Corollary 3.6, the lower route induces H�.ƒ/ ı H�.�/, so it suffices to verify that the
diagram commutes. The right square commutes by Proposition 3.4, and the left square
commutes by naturality of ı� ˝ id W .Ind�M/G !MH in H -modules M .

Example 3.8 (Induced map in homology from an étale homomorphism). Let 'W G ! H

be an étale homomorphism of ample groupoids. Recall from Example 2.14 that the chain
complex .ZŒG��; .@�/G/ (2.2) computes the homology of G. For each n � 0 the local
homeomorphism 'nW Gn ! Hn induces a homomorphism 'n� W ZŒG

n�! ZŒHn�. These
form a chain map which induces a map in homology H�.'/W H�.G/! H�.H/.

The associated correspondence�' WG!H is the spaceG0 �H0 H . Consider the bar
resolutions ZŒG�C1�!ZŒG0� and ZŒH �C1�!ZŒH 0�. For each n� 0, the induced mod-
ule Ind�' ZŒHnC1� has underlying abelian group ZŒG0 �H0 HnC1�, with the G-module
structure coming from the action G Õ G0 �H0 HnC1. Consider the following local
homeomorphisms.

 nW G
nC1
! G0 �H0 HnC1 �nW G

0
�H0 HnC1

! Hn

.g0; : : : ; gn/ 7! .r.g/; '.g0/; : : : ; '.gn// .x; h0; : : : ; hn/ 7! .h1; : : : ; hn/

"G;nW G
nC1
! Gn "H;nWH

nC1
! Hn

.g0; : : : ; gn/ 7! .g1; : : : ; gn/ .h0; : : : ; hn/ 7! .h1; : : : ; hn/
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The map  n is G-equivariant, while �n and "G;n are G-invariant and "H;n isH -invariant.
We obtain a chain map

f WD . �/�W ZŒG
�C1�! Ind�' ZŒH �C1�

over the identity ZŒG0�! ZŒG0� D Ind�' ZŒH 0�. By Corollary 3.6, H�.�'/ is induced
by the chain map .ı�' ˝ id/ ı fG WZŒG�C1�G!ZŒH �C1�H . The coinvariants ZŒGnC1�G
and ZŒHnC1�H are given by ZŒGn� and ZŒHn� with quotient maps induced by "G;n
and "H;n. Under these identifications, ı�' ˝ id W .Ind�' ZŒHnC1�/G ! ZŒHnC1�H is
induced by the G-invariant map �n.

ZŒGnC1� ZŒG0 �H0 HnC1�

ZŒGn� .ZŒG0 �H0 HnC1�/G

ZŒHn�

. n/�

."G;n/��G �G .�n/�

fG

.'n/�

ı�'˝id

The equality �n ı  n D 'n ı "G;nW GnC1 ! Hn of local homeomorphisms implies that
.ı�' ˝ id/ ı .. n/�/G D 'n� W ZŒGn� ! ZŒHn�. It follows that H�.�'/ D H�.'/, so
Corollary 3.6 recovers the standard functoriality of groupoid homology with respect to
étale homomorphisms.

Example 3.9 (Induced map in homology from an action correspondence). Let G be an
ample groupoid, let X be a totally disconnected LCH G-space with a proper anchor map
� W X ! G0 and let H D G Ë X be the action groupoid. For each n consider the map
�nWH

n!Gn forgetting the elements ofX . For each U �Gn in an open Hausdorff cover
of Gn coming from bisections in G, the preimage ��1n .U / is Hausdorff and the restriction
�nW �

�1
n .U /! U is proper, and we therefore obtain a map ��n W ZŒG

n�! ZŒHn�. These
form a chain map which induces a map in homology H�.�/W H�.G/! H�.H/.

The associated correspondence �W G ! H is the space H D G Ë X . We again con-
sider the bar resolutions ZŒG�C1� ! ZŒG0� and ZŒH �C1� ! ZŒX�. For each n � 0,
the induced module Ind� ZŒHnC1� has underlying abelian group ZŒHnC1�, with the
G-module structure coming from the action G ÕHnC1. The proper G-equivariant maps
�nW G

nC1 ! HnC1 induce a chain map

f WD ���C1W ZŒG
�C1�! Ind� ZŒH �C1�

over ��W ZŒG0�! ZŒX� D Ind� ZŒX�. By Corollary 3.6, H�.�/ is induced by the chain
map .ı� ˝ id/ ı fG W ZŒG�C1�G ! ZŒH �C1�H . The coinvariants .Ind� ZŒHnC1�/G is
given by ZŒHn�, and ı� ˝ id W ZŒHn�! ZŒHn� is simply the identity. The chain map

fG W .ZŒG
�C1�/G ! .Ind� ZŒH �C1�/G
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is given at n by ��n W ZŒG
n�! ZŒHn�. Therefore, .ı� ˝ id/ ı fG D ��� , and we deduce

that H�.�/ D H�.�/.

Example 3.10 (Inverse semigroup homology isomorphism). Let S be an inverse semi-
group, let E be its idempotent semilattice with E� D E n ¹0º and let yE be the space
of filters on E. We associate to S both the discrete groupoid S Ë E� and the universal
groupoid GS D S Ë yE. Then there is a proper correspondence �S W S Ë E� ! GS with
bispace

�S D
G
e2E�

®
Œs; �� 2 S Ë yE j s � � 2 Ue

¯
such that H�.�S /W H�.S Ë E�/! H�.GS / is an isomorphism. The isotropy of the dis-
crete groupoid S ËE� at e 2 E� is given by the stabiliser subgroup

Se D ¹s 2 S j s
�s D e D ss�º:

The homology of the universal groupoid GS therefore reduces to a direct sum

H�.GS / Š H�.S ËE�/ Š
M

Œe�2SnE�

H�.Se/

of the group homology of the stabiliser subgroups over the orbit space SnE�.

Proof. Set G D S Ë E� and H D GS . Consider the space Z D
F
e2E� Ue equipped

with the diagonal action of S and let L D S Ë Z. The local homeomorphism Z ! yE

sending .e; �/ to � induces an étale homomorphism  W L ! H . This induces a chain
map  ��W ZŒL

��! ZŒH �� of Matui’s chain complexes. Furthermore, L is the transforma-
tion groupoid of an action G Õ Z with a proper anchor map � W Z ! E� sending .e; �/
to e. This induces a chain map ��� W ZŒG

��! ZŒL��. Setting �S W G ! H to be the com-
position of the associated correspondences, the map H�.�S / is induced by the chain
map  �� ı �

�
� W ZŒG

��! ZŒH �� by Examples 3.8 and 3.9. For each n � 0 and x 2 Gn,
the preimage ��1n .x/ is a compact Hausdorff open set on which  n is injective. The
image Vx WD  n.��1n .x// is a compact open Hausdorff subset ofHn on which the source
map snWHn ! yE is an isomorphism Vx Š Usn.x/. Thus for x 2 Gn we have

 n� ı �
�
n W ZŒG

n�! ZŒHn�;

�¹xº 7! �Vx :

We claim that for each n this is an isomorphism. For surjectivity, it suffices to span ZŒVx �
for each x 2Gn, as ¹Vy j y 2Gnº is an open cover ofHn. The set ¹Vy j y 2Gn; Vy � Vxº
is mapped through sn to ¹Ue j e 2 E�; e � sn.x/º. Furthermore, intersections of the formT
e2I Ue \

T
e2J .Usn.x/ n Ue/ for finite subsets I and J of ¹e 2 E� j e � sn.x/º form

a basis for the topology of Usn.x/ and therefore span¹�Ue j e � sn.x/º D ZŒUsn.x/� as it
is closed under products and contains the indicators of the complements. It follows that
¹�Vy j y 2 G

n; Vy � Vxº spans ZŒVx �.
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We turn to injectivity. For each e 2 E�, consider the principal filter e" D ¹f 2 E j
e � f º 2 yE. For each x 2 Gn, there is a unique x" 2 Vx with sn.x"/D sn.x/". The map
x 7! x" induces a linear map ZŒHn�! Cb.G

n;Z/. For each x 2 Gn, the indicator �Vx
is sent to the indicator �x# on the set x# D ¹y 2 Gn j Vy � Vxº. Now let J � Gn be
finite and suppose there are integers .ax/x2J such that

P
x2J ax�x# D 0. Then ax D 0

for any x 2 J with Vx maximal, and therefore ax D 0 for each x 2 J . It follows that
¹�Vx j x 2 G

nº is linearly independent.

Remark 3.11. Steinberg constructs an isomorphism between the groupoid ring ZŒGS �
and the inverse semigroup ring ZŒS� [23, Theorem 6.3], from which the above proof that
H�.GS / Š H�.S Ë E�/ takes heavy inspiration. The feature of Example 3.10 we would
like to highlight is how this isomorphism in homology is induced by an explicit étale
correspondence.
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