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Commensurating HNN-extensions: Hierarchical hyperbolicity
and biautomaticity

Sam Hughes and Motiejus Valiunas

Abstract. We construct a CAT.0/ hierarchically hyperbolic group (HHG) acting geometrically
on the product of a hyperbolic plane and a locally-finite tree which is not biautomatic. This gives
the first example of an HHG which is not biautomatic, the first example of a non-biautomatic
CAT.0/ group of flat-rank 2, and the first example of an HHG which is injective but not Helly.
Our proofs heavily utilise the space of geodesic currents for a hyperbolic surface.

1. Introduction

Let H be a locally compact group with Haar measure �. A discrete subgroup � < H
is a lattice if �.H=�/ is finite. We say � is uniform is H=� is compact. Roughly
speaking, we say a lattice � < H1 �H2 is irreducible if the projection of � ! Hi

is non-discrete and if � does not split as a direct product of two infinite groups (see
Section 2 for details). Throughout we will denote the n-regular tree by Tn and its
automorphism group by Tn.

Automatic and biautomatic groups were developed in the 1980s; a detailed account
is given in the book [22] by Epstein, Cannon, Holt, Levy, Paterson, and Thurston.
In the 1990s Alonso and Bridson introduced the class of semihyperbolic groups [3]
which contains all CAT.0/ and biautomatic groups. In recent work of Leary and
Minasyan [40], the authors construct irreducible uniform lattices in Isom.E2n/� T2m
(m � 2, n � 1), giving the first examples of CAT.0/ groups which are not biauto-
matic. These groups were classified up to isomorphism by the second author [52] and
studied in the context of fibring by the first author [35]. It follows from [34] and [53]
that all known examples of CAT.0/ but not biautomatic groups are either constructed
from or contain non-biautomatic Leary–Minasyan groups as subgroups.

In the 2010s, Behrstock, Hagen and Sisto in [8] introduced the coarse geomet-
ric class of hierarchically hyperbolic groups (HHGs) and spaces (HHSs), with the
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motivation coming from isolating the main geometric features common to mapping
class groups and compact special groups. Very roughly these are spaces admitting a
coordinate system and hierarchy consisting of and parametrised by hyperbolic spaces,
and groups of isometries acting geometrically whilst preserving the hierarchy and
coordinate structure. The theory has received a lot of attention; being studied and
developed by numerous authors [1, 2, 7, 11, 20, 20, 21, 48–51].

As previously mentioned some of the main motivation for, and examples of, HHGs
come from CAT.0/ cubical groups [7, 29] which are known to be biautomatic by the
work of Niblo and Reeves [45]. A 2021 result of Haettel, Hoda and Petyt shows that
HHGs are semihyperbolic [28], as a corollary this gave a new proof that mapping class
groups are semihyperbolic (see also [21] and [30]). One may hope that proving HHGs
are biautomatic would give another proof that mapping class groups are biautomatic.
Thus, a natural question is whether every HHG is biautomatic? It appears to be open
whether any non-biautomatic Leary–Minasyan groups are HHGs – although experts
expect them not to be. In this paper we construct the first example of an HHG which
is not biautomatic.

Theorem A. There exists a non-residually finite torsion-free uniform irreducible lat-
tice � < PSL2.R/ � T24 such that � is a hierarchically hyperbolic group but is not
biautomatic.

The group we construct is a “hyperbolic” analogue of the groups introduced by
Leary–Minasyan in [40]. Indeed, � is an HNN-extension of an arithmetic surface
where the stable letter commensurates the surface whilst acting as an infinite order
elliptic isometry of the hyperbolic plane RH2. That the action is by isometries allows
us to deduce that � is a CAT.0/ lattice acting freely cocompactly on the product
RH2 � T24, where T24 is the Bass–Serre tree. Note that we adopt the lattice viewpoint
so we may use results of [34]. From here we apply [36, Cor. 3.3] to deduce � is an
HHG.

Our strategy to show that � is not biautomatic is very different to that in Leary and
Minasyan’s work (for example, � is neither constructed from nor contains a Leary–
Minasyan group). Instead of studying the boundary of a biautomatic structure, we
develop a new method to show the failure of biautomaticity. In particular, we use
deep work of Martínez-Granado and Thurston on extending functions to the space of
geodesic currents of a hyperbolic surface [41, 42].

The question of whether every automatic group is biautomatic first appeared in [22,
Qu. 2.5.6] and [25, Rem. 6.19]. We do not know if the group � is automatic. In spite
of this we can still deduce an amusing consequence.

Corollary B. At least one of the following statements is false:

(1) Every HHG is automatic.

(2) Every automatic group is biautomatic.
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Note that the analogous statement with “CAT.0/ group” instead of “HHG” follows
from the work of Leary and Minasyan [40]. However, since � is CAT.0/ it can be
deduced here too.

Question 1.1. Is the group � automatic?

Recall that the flat-rank of a CAT.0/ group � (acting onX ), denoted flat-rank.�/,
is the maximal rank of an isometrically embedded Euclidean space in X .

In [23, Qu. 43] it was asked if every group acting geometrically on a piece-wise
Euclidean CAT.0/ 2-complex group is biautomatic. (See [23] and [44] for recent pro-
gress.) One may hope to relax the hypothesis “2-dimensional piece-wise Euclidean
CAT.0/” to “flat-rank 2 CAT.0/”. Indeed, all previous examples of CAT.0/ but not
biautomatic groups have had flat-rank at least 3. The next corollary, which follows
from the Flat Torus Theorem, shows that one cannot.

Corollary C. There exists a CAT.0/ group � with flat-rank.�/D 2, that is not biauto-
matic.

In [32], the authors introduce a property regarding commensurators of abelian sub-
groups, Condition (C), and show that its failure is closely related to Leary–Minasyan
groups [32, Prop. 8.4]. A natural question would be to ask whether the failure of Con-
dition (C) for a CAT.0/ group is equivalent to the failure of biautomaticity. However,
by [32, Thm. 1.3], the group � has Condition (C) and fails to be biautomatic.

In [9, Thm. 7.3] it is shown that HHGs are coarse median spaces as introduced by
Bowditch [14]. We say a group is a coarse median group if it acts geometrically on
a coarse median space and the coarse median operator is equivariant up to bounded
error. In [47, Rem. 3.14] it is shown that HHGs are coarse median groups. We remark
that � appears to be the first example of a coarse median group of type F which is not
biautomatic.

The group � also appears as an example highlighting the difference between dis-
crete and non-discrete versions of “injective” metric spaces. We say that a geodesic
metric space (respectively a graph) X is injective (respectively Helly) if the collection
of all metric balls in X satisfies the Helly property. Injective metric spaces and Helly
graphs, as well as groups acting on them geometrically – injective groups and Helly
groups, respectively – have been extensively studied [5, 16, 18, 19, 31, 37, 39]. The
following result gives a negative answer to the question in [27, p. 4].

Corollary D. There exists a group � which is injective but not Helly and not biauto-
matic.
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Proof. It follows from Theorem A that � is not biautomatic. Moreover, Helly groups
are biautomatic [16, Thm. 1.5 (1)], and so � is not Helly. On the other hand, for
every metric spaceX there exists a “smallest” injective metric spaceE.X/, called the
injective hull of X , into which X embeds isometrically, so that a group action on X
extends to an action on E.X/ (see [37]). It is known that E.RH2/ is proper and finite
Hausdorff distance away from the image of RH2 ,! E.RH2/ (see [27, Prop. 4.6]); it
also follows from the definitions that (real) trees are injective and that the `1 product
X �1 Y of injective spaces X and Y is injective. Therefore, the geometric action
of � on RH2 �1 T24 extends to a geometric action on the proper injective metric
space E.RH2/ �1 T24, and so � is injective, as required.

On the other hand, one may replace the Helly property with a coarse Helly prop-
erty to study the classes of coarsely injective and coarsely Helly graphs and groups.
Coarsely injective and coarsely Helly groups have been studied in [16, 28, 46]; in
particular, it has been shown that all HHGs are coarsely injective [28, Cor. H]. It is
currently unknown if all coarsely Helly groups are biautomatic, or even if they all are
Helly.

Question 1.2. Is � coarsely Helly?

It has been communicated to us by Alexander Engel and Damian Osajda that they
have shown certain mapping class groups are not Helly. Such groups are HHGs and
therefore coarsely injective.

It is a well known open problem whether S -arithmetic lattices are biautomatic.
Indeed, this is a special case of [43, Prob. 34] in McCammonds list (after the Amer-
ican Institute of Mathematics meeting ‘Problems in Geometric Group Theory’, April
23–27, 2007). It would be extremely interesting to adapt the methods here to apply
to a uniform S -arithmetic lattice in PSL2.R/ � PSL2.Qp/. The main issue is show-
ing that vertex stabilisers in the action on the Bruhat–Tits tree TpC1 are quasi-convex
with respect to any biautomatic structure on the lattice. Note that since such a lattice
is residually finite, so if this strategy can be implemented successfully, one would also
get a negative answer to [40, Qu. 12.4].

We end with a broad conjecture which would vastly generalise our work here. The
reader is directed to Section 2 for definitions.

Conjecture 1.3. Let H be a semi-simple real Lie group with trivial centre and no
compact factors. Let T be the automorphism group of a locally-finite unimodular
leafless tree. Suppose T is non-discrete. If � is an irreducible non-residually finite
uniform .H � T /-lattice, then � is not biautomatic.



Commensurating HNN-extensions: Hierarchical hyperbolicity and biautomaticity 401

1.1. Outline of the paper

In Section 2 we revise the necessary background on lattices, biautomatic structures,
geodesic currents on a hyperbolic surface, and the intersection form. The remainder
of the article is then dedicated to proving Theorem A.

The strategy of the proof of Theorem A is as follows. We first assume that � has a
biautomatic structure .B;M/ and consider a biautomatic structure .A;L/ induced by
.B;M/ on a quasi-convex subgroup G; here G is a vertex stabiliser in the action of �
on T . The groupG acts freely cocompactly on a copy of RH2 and so can be identified
with a subgroup of PSL2.R/, giving rise to a Riemann surface † D GnPSL2.R/.
The next step is to show that stable word length function �LWG ! R with respect
to .A;L/ takes only rational values and extends over the space of geodesic currents
of †. Now, the translation length function of G also extends to the space of geodesic
currents of†. Moreover, using the density of the projection of � to PSL2.R/we show
that both functions agree. Now, the translation length function takes values which
are not rational multiples of each other. This is a contradiction, and so � cannot be
biautomatic.

In Section 3 we study stable word length �L on a biautomatic structure .A;L/ as
a function from G ! R. The key results, Proposition 3.1 and Lemma 3.5, imply that
for a hyperbolic group G the function takes rational values.

In Section 4 we show that the function �L, viewed as a function on the homo-
topy classes of closed curves on †, satisfies a technical property known as “quasi-
smoothing” (see Proposition 4.2). This allows us to extend �L continuously to the
space of geodesic currents of †.

In Section 5 we complete our study of functions on geodesic currents. The key
result, Proposition 5.6, is that if t is an elliptic isometry of RH2 commensurating G
such that hG; ti is dense in PSL2.R/, and if a continuous function F on the space of
geodesic currents of † is in a sense “t -invariant”, then F.
/ is a constant multiple
of the length of the geodesic representative of 
 , where 
 is a closed curve on †. In
the remaining sections, we construct a lattice � < PSL2.R/ � T that will allow us to
apply this result for F D �L.

In Section 6 we study properties of irreducible uniform lattices in PSL2.R/ � T
for sufficiently general trees. In particular, for a non-residually finite lattice we prove
that projection to PSL2.R/ is dense (Lemma 6.1) and that a vertex stabiliser of the
action on the tree T is quasi-convex with respect to any biautomatic structure (Pro-
position 6.3).

In Section 7 we construct �; an explicit example of a non-residually finite irre-
ducible uniform lattice in PSL2.R/ � T24 as an HNN-extension. The key tool is
the arithmetic of quaternion algebras which allow us to ensure the stable letter acts
on RH2 as an infinite order elliptic isometry that commensurates the vertex group.
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We show that the translation lengths on RH2 of some elements of a vertex stabiliser
in the tree are not rational multiples of each other (Lemma 7.3).

In Section 8 we prove Theorem A. In the appendix (Appendix A) we detail a
presentation of � .

2. Preliminaries

2.1. Lattices and graphs of groups

Our example will be constructed as a lattice in PSL2.R/ � T24. To this end we record
some definitions and results we will use in Section 6 and Section 7.

Definition 2.1. Let H be a locally compact topological group with right invariant
Haar measure �. A discrete subgroup � � H is a lattice if the covolume �.H=�/ is
finite. A lattice is uniform if H=� is compact and non-uniform otherwise. Let S be
a right H -set such that for all s 2 S , the stabilisers Hs are compact and open, then
if � � H is discrete the stabilisers in the action of � on S are finite.

Let X be a locally finite, connected, simply connected simplicial complex. The
group H D Aut.X/ of simplicial automorphisms of X naturally has the structure of
a locally compact topological group, where the topology is given by uniform conver-
gence on compacta.

Note that T the automorphism group of a locally-finite tree T admits lattices if and
only if the group T is unimodular (that is the left and right Haar measures coincide).
In this case we say T is unimodular. We say a tree T is leafless if it has no vertices of
valence one.

Two notions of irreducibility for a lattice will feature in this paper.

Definition 2.2. Let T be a locally-finite unimodular leafless tree not isometric to R

and T DAut.T / be non-discrete and cocompact. Let � be a uniform .PSL2.R/ � T /-
lattice. We say that � is weakly irreducible if one (and hence both; see [34, Prop. 3.4])
of the images of the projections �PSL2.R/W � ! PSL2.R/ and �T W � ! T are non-
discrete. We say � is algebraically irreducible if there is no finite index subgroup
�1 � �2 of � with �1 and �2 infinite. By [15, Thm. 4.2], the two notions of irreducib-
ility are equivalent for a .PSL2.R/ � T /-lattice � . So if � is either (and hence both)
weakly or algebraically irreducible we will simply state that � is irreducible.

To construct and study lattices in product with a tree we will utilise the graph of
lattices construction from [34]. Before we do this we will define graphs of groups
following Bass [6].
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Definition 2.3. A graph of groups .A;A/ consists of a connected graph A together
with some extra data A D .VA; EA; ˆA/. This data consists of vertex groups Av 2
VA for each vertex v, edge groups Ae D Axe 2 EA for each (oriented) edge e, and
monomorphisms .˛eWAe ! A�.e// 2 ˆA for every oriented edge in A. We will often
refer to the vertex and edge groups as local groups and the monomorphisms as struc-
ture maps.

Definition 2.4. The path group �.A/ has generators the vertex groups Av and ele-
ments te for each edge e 2 EA along with the relations:8̂<̂

:
The relations in the groups Av;

txe D t
�1
e ;

te˛xe.g/t
�1
e D ˛e.g/ for all e 2 EA and g 2 Ae D Axe:

9>=>;
Definition 2.5. We will often abuse notation and write A for a graph of groups. The
fundamental group of a graph of groups can be defined in two ways. Firstly, con-
sidering reduced loops based at a vertex v in the graph of groups, in this case the
fundamental group is denoted �1.A; v/ (see [6, Def. 1.15]). Secondly, with respect to
a maximal or spanning tree of the graph. Let X be a spanning tree for A, we define
�1.A;X/ to be the group generated by the vertex groups Av and elements te for each
edge e 2 EA with the relations:8̂̂̂<̂

ˆ̂:
The relations in the groups Av;

txe D t
�1
e for each (oriented) edge e;

te˛xe.g/t
�1
e D ˛e.g/ for all g 2 Ae;

te D 1 if e is an edge in X:

9>>>=>>>;
Note that the definitions are independent of the choice of basepoint v and spanning
tree X and both definitions yield isomorphic groups so we can talk about the funda-
mental group of A, denoted �1.A/.

We say a group G is covirtually isomorphic to H if there exists a finite nor-
mal subgroup N E G such that G=N Š H . We are now ready to define a graph of
PSL2.R/-lattices.

Definition 2.6. A graph of PSL2.R/-lattices .A;A;  / is a graph of groups .A;A/
that is equipped with a morphism of graphs of groups  WA! PSL2.R/ such that:

(1) Each local group A� 2 A is covirtually a PSL2.R/-lattice and the image
 .A� / is a PSL2.R/-lattice;

(2) The local groups are commensurable in � D �1.A/ and their images are com-
mensurable in PSL2.R/;

(3) For each e 2 EA the element te of the path group �.A/ is mapped under  
to an element of CommPSL2.R/. e.Ae//.
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The relevance of a graph of PSL2.R/-lattices is the following special case of [34,
Thm. A].

Theorem 2.7 ([34, Thm. A]). Let .A;A; / be a finite graph of PSL2.R/-lattices with
locally-finite unimodular non-discrete Bass–Serre tree T , and fundamental group � .
Suppose T D Aut.T / admits a uniform lattice. If each local group A� is covirtually
a uniform PSL2.R/-lattice, and the kernel Ker. jA� / acts faithfully on T , then � is
a uniform .PSL2.R/ � T /-lattice and hence a CAT.0/ group. Conversely, if ƒ is a
uniform .PSL2.R/ � T /-lattice, then ƒ splits as a finite graph of uniform PSL2.R/-
lattices with Bass–Serre tree T .

2.2. Biautomatic structures

We are interested in studying when a groupG is biautomatic; we briefly introduce the
necessary definitions and basic results on biautomaticity below, and refer the inter-
ested reader to [22] for a more comprehensive account.

We remark that the nowadays standard definition of a biautomatic structure that
we give below differs from [22, Def. 2.5.4] (see [4] for an explanation). However, for
finite-to-one structures these definitions are equivalent [4, Thm. 6].

LetG be a group with a finite generating set A. Formally, we view A as a finite set
together with a function �0AWA! G that extends to a surjective monoid homomorph-
ism �AWA

� ! G, where A� is the free monoid on A; we say that a word v 2 A�

labels the element �A.v/ 2 G. For simplicity, we will assume that A is symmetric
(�A.A/ D �A.A/�1) and contains the identity (�A.1/ D 1G for an element 1 2 A).
We denote by dA the combinatorial metric on the Cayley graph Cay.G;A/ of G.

We study (combinatorial) paths in Cay.G; A/. Given a path p in Cay.G; A/ and
an integer t 2 ¹0; : : : ; jpjº, where jpj is the length of p, we denote by yp.t/ 2 G
the t -th vertex of p, so that yp.0/ and yp.jpj/ are the starting and ending vertices
of p, respectively. We further define yp.t/ 2 G for any t 2 Z�0 [ ¹1º by setting
yp.t/ D yp.jpj/ whenever t > jpj.

Definition 2.8. Let G be a group with a finite symmetric generating set A containing
the identity, and let L � A�. We say .A;L/ is a (uniformly finite-to-one) biautomatic
structure on G if

(i) L is recognised by a finite state automaton over A;

(ii) there exists N � 1 such that

1 � j��1A .g/ \Lj � N for every g 2 GI

and
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(iii) L satisfies the “two-sided fellow traveller property”: there exists a constant
� � 1 such that if p and q are paths in Cay.G;A/ labelled by words in L and
satisfying

dA. yp.0/;bq.0// � 1 and dA. yp.1/;bq.1// � 1;
then

dA. yp.t/;bq.t// � � for all t .

We say G is biautomatic if it has some uniformly finite-to-one biautomatic structure.

The standard notion of a biautomatic structure appearing in the literature (cf. [22])
is more general than the notion of a uniformly finite-to-one biautomatic structure
as defined here. Nevertheless, it can be shown that every biautomatic group (in the
sense of [22], for instance) has a uniformly finite-to-one biautomatic structure [22,
Thm. 2.5.1] and so is biautomatic in our sense as well. In this paper, we assume all
biautomatic structures to be uniformly finite-to-one.

We record the following result for future reference; for part (i), it is enough to
take � to be larger than the number of states in an automaton over A recognising L.

Theorem 2.9 (Epstein et al. [22, Lem. 2.3.9 and Thm. 3.3.4]). Let .A;L/ be a biauto-
matic structure on a group G. Then there exists a constant � � 1 with the following
properties:

(i) if v 2 A� is a subword of a word w 2 L, then there exist u1; u2 2 A� such
that ju1j; ju2j � � and u1vu2 2 L, and if v is a prefix (respectively, suffix)
of w, then we can take u1 D 1 (respectively, u2 D 1);

(ii) if v; w 2 L are such that �A.v/ D �A.wa/ or �A.v/ D �A.aw/ for some
a 2 A, then

ˇ̌
jvj � jwj

ˇ̌
� �; and

(iii) any path in Cay.G;A/ labelled by a word in L is a .�; �/-quasi-geodesic.

The following notion will be crucial in our arguments.

Definition 2.10. Let .A;L/ be a biautomatic structure on a group G, and letH � G.
We say that H is L-quasiconvex if there exists a constant � � 1 such that every path
in Cay.G;A/ starting and ending at vertices ofH and labelled by a word in L belongs
to the �-neighbourhood of H .

The importance of the notion of L-quasiconvexity can be summarised in the fol-
lowing result. It can be extracted from the proofs of [25, Thm. 3.1 and Prop. 4.3] and
from [22, Lem. 2.3.9].

Theorem 2.11 (Gersten and Short; Epstein et al.). Let .B;M/ be a biautomatic struc-
ture on a group G.
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(i) For any g1; : : : ; gn 2 G, the centraliser CG.¹g1; : : : ; gnº/ is M-quasiconvex.

(ii) Let H � G be an M-quasiconvex subgroup. Then there exists a biautomatic
structure .A;L/ on H and a constant � � 1 such that if v 2M and w 2 L

represent the same element of G, thenˇ̌
jvj � jwj

ˇ̌
� �:

A biautomatic structure .A;L/ on H � G appearing in Theorem 2.11 (ii) will be
called a biautomatic structure associated to .B;M/.

Finally, we record the following observation.

Lemma 2.12. Let .A;L/ be a biautomatic structure on a groupG, letH1 �H2 �G,
and suppose that ŒH2 W H1� <1. Then H1 is L-quasiconvex if and only if H2 is L-
quasiconvex.

Proof. Note that since ŒH2 W H1� < 1, there exists a constant � � 1 such that H2
belongs to the �-neighbourhood of H1 in Cay.G; A/. Moreover, let � � 1 be the
constant appearing in Definition 2.8 (iii).

Suppose first that H1 is L-quasiconvex, and let �1 � 1 be the constant appear-
ing in Definition 2.10. Let p2 be a path in Cay.G; A/ labelled by a word in L with
yp2.0/; yp2.1/ 2 H2. Since H2 belongs to the �-neighbourhood of H1, there exist
g�; gC 2 H1 such that

dA.g�; yp2.0// � � and dA.gC; yp2.1// � �I

moreover, since �AjL is surjective, there exists a path p1 in Cay.G; A/ labelled by
a word in L, starting at g� and ending at gC. It then follows that p2 is in the ��-
neighbourhood of p1, and p1 is in the �1-neighbourhood ofH1. Therefore, p2 is in the
.�� C �1/-neighbourhood of H1, and so of H2; it follows that H2 is L-quasiconvex,
as required.

Conversely, suppose that H2 is L-quasiconvex, and let �2 � 1 be the constant
appearing in Definition 2.10. Then any path in Cay.G;A/ labelled by a word in L and
with endpoints inH1 belongs to the �2-neighbourhood ofH2, and so to the .�2 C �/-
neighbourhood of H1. It follows that H1 is L-quasiconvex, as required.

2.3. Geodesic currents

We now fix a closed orientable Riemannian surface † of constant curvature �1, and
let G D �1.†/. We also fix the universal covering map z†! † and the G-action by
isometries on z†. Let 	C.z†/ be the set of oriented (i.e., directed) geodesic lines on z†.
Since each such geodesic line is uniquely determined by its endpoints on @z† Š S1,
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we can topologise 	C.z†/ by identifying it with the open cylinder

¹.x; y/ 2 S1 � S1 j x ¤ yº:

Note that the G-action on z† induces an action of G on 	C.z†/.
By an (oriented) curve on † we mean a free homotopy class of essential con-

tinuous maps S1 ! †. We denote by CC.†/ the set of all curves on †, which can
also be identified with the set of non-trivial G-conjugacy classes. Given a primitive
curve 
 2 CC.†/ (meaning that 
 ¤ �n for any � 2 CC.†/ and n � 2), we may
associate a Borel measure �
 on 	C.z†/ as follows: let y
 WS1 ! † be the unique (up
to reparametrisation of S1) geodesic representative of 
 , let A.
/ � 	C.z†/ be the
set of all lifts of y
 , and let �
 .E/ WD jE \ A.
/j for any Borel subset E � 	C.z†/.
We may also define this when 
 is not primitive, by setting ��n WD n�� for primitive
� 2 CC.†/ and n � 2. By construction, A.
/, and so �
 , is G-invariant; moreover,
one can see that A.
/ is discrete in 	C.†/, implying that �
 is a Radon measure.
This motivates the following definition.

Definition 2.13. An (oriented) geodesic current on† is aG-invariant Radon measure
on 	C.z†/. The set of all geodesic currents on † form a topological space GC.†/

under the weak* topology: we have �n ! � in GC.†/ if and only ifZ
f d�n !

Z
f d�

for all continuous functions f W	C.z†/! R with compact support. By slightly abus-
ing the notation, we will identify a curve 
 2 CC.†/ with the corresponding geodesic
current 
 WD �
 2 GC.†/, and will therefore view CC.†/ as a subset of GC.†/.

It is known that a current � is uniquely determined by the values of
R
f d� for

compactly supported continuous functions f W	C.z†/! R, as a consequence of the
following theorem.

Theorem 2.14 (Riesz Representation Theorem; see [41, Thm. 1.7.13]). Let X be a
locally compact Hausdorff space, and let Cc.X/ be the set of continuous functions
f WX ! R with compact support. For any linear functional F WCc.X/! R such that
F.f / � 0 whenever f .x/ � 0 for all x 2 X , there exists a unique Radon measure �
on X such that F.f / D

R
f d� for all f 2 Cc.X/. In particular, if � and �0 are

Radon measures on X such that
R
f d� D

R
f d�0 for all f 2 Cc.X/, then � D �0.

A core part of this paper is based on studying certain functions f WCC.†/! R.
The terminology we use below roughly follows the terminology of [42] and [41];
however, since the functions we consider are assumed to satisfy the additive union
property in the sense of [42, Def. 1.1], we are able to make some simplifications to
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the statements of results. Given two maps y
1; y
2WS1 ! †, a crossing of y
1 and y
2 is
a pair .x1; x2/ 2 S1 � S1 such that

y
1.x1/ D y
2.x2/;

and a self-crossing of y
 WS1 ! † is a pair .x1; x2/ 2 S1 � S1 such that

x1 ¤ x2 and y
.x1/ D y
.x2/:

A crossing or a self-crossing is essential if, roughly speaking, it is unavoidable in a
homotopy class; see [42, Def. 2.6 and Lem. 2.8].

Definition 2.15. Let f WCC.†/! R.

(i) We say f is homogeneous if f .
n/ D nf .
/ for all 
 2 CC.†/ and n � 1.

(ii) We say f satisfies the join quasi-smoothing property if there exists a constant
� � 0 such that the following holds. Let .x1; x2/ be an essential crossing of maps

y
1; y
2WS
1
! †

representing curves 
1;
2 2CC.†/, respectively, and let 
 2CC.†/ be the homotopy
class of a curve obtained by cutting y
i at xi and regluing the four resulting endpoints
in a way that respects the orientation of the y
i . Then

f .
/ � f .
1/C f .
2/C �:

(iii) We say f satisfies the split quasi-smoothing property if there exists a con-
stant � � 0 such that the following holds. Let .x1; x2/ be an essential self-crossing of
a map y
 W S1 ! † representing a curve 
 2 CC.†/, and let 
1; 
2 2 CC.†/ be the
homotopy classes of the two curves obtained by cutting y
 at x1 and x2 and regluing
the four resulting endpoints in a way that respects the orientation of y
 . Then

f .
1/C f .
2/ � f .
/C �:

Given a function f WCC.†/! R that satisfies the join and split quasi-smoothing
properties, the following result allows us to construct such a function that is also
homogeneous.

Theorem 2.16 (Martínez-Granado and Thurston [42, Thm. B]). Let f WCC.†/! R

be a function satisfying the join and split quasi-smoothing properties. Then the func-
tion xf WCC.†/! R defined by xf .
/ D limn!1 f .


n/=n is well defined, homogen-
eous, and satisfies the join and split quasi-smoothing properties.

The main motivation for these definitions arises from the following result that is
crucial in our argument.
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Theorem 2.17 (Martínez-Granado and Thurston [42, Thm. A]). Let f WCC.†/! R

be a homogeneous function satisfying the join and split quasi-smoothing properties.
Then f extends to a unique continuous homogeneous function f WGC.†/! R.

As a consequence of Theorems 2.16 and 2.17, if a function f WCC.†/! R sat-
isfies the join and split quasi-smoothing properties, then xf WCC.†/! R extends to a
unique continuous homogeneous function xf WGC.†/! R.

Another property we use is “positive linearity”. We say a function f WGC.†/!R

is positively linear if

f .c1�1 C c2�2/ D c1f .�1/C c2f .�2/

for all c1; c2 � 0 and �1; �2 2 GC.†/.

Lemma 2.18. Let f W CC.†/ ! R be a homogeneous function satisfying the join
and split quasi-smoothing properties. Then the function f W GC.†/ ! R given by
Theorem 2.17 is positively linear.

Proof. Let RCCC.†/ � GC.†/ be the subspace of currents of the form
P
i ci
i for

some ci � 0 and 
i 2 CC.†/. Since f WCC.†/! R is homogeneous, we can extend
it to a function yf WRCCC.†/! R by setting

yf

�X
i

ci
i

�
WD

X
i

cif .
i /:

The fact that f WCC.†/! R satisfies the join and split quasi-smoothing properties
in our terminology implies that yf WRCCC.†/! R satisfies quasi-smoothing in the
terminology of [42]. In particular, by the uniqueness in Theorem 2.17, the restriction
of f WGC.†/!R to RCCC.†/ coincides with yf . By the definition of yf , it therefore
follows that

f .c1�1 C c2�2/ D c1f .�1/C c2f .�2/

for all c1; c2 � 0 and �1; �2 2 RCCC.†/. Since RCCC.†/ is dense in GC.†/ [13,
Prop. 2] and since f W GC.†/! R is continuous, it follows that f W GC.†/! R is
positively linear, as required.

2.4. Intersection numbers

Finally, we study the intersection numbers between currents. Let

D	C.z†/ � 	C.z†/ � 	C.z†/

be the set of pairs .
1; 
2/ of geodesic lines on z† that intersect transversely; one can
show that D	C.z†/ is a 4-manifold. The G-action on z† induces a free and properly
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discontinuous action on D	C.z†/, and so we may define the quotient

D	C.†/ WD D	C.z†/=G:

Definition 2.19. Let �1; �2 2 GC.†/. The product measure �1 � �2 on 	C.z†/ �

	C.z†/ isG-invariant, so it induces a measure�1��2 on D	C.†/. The intersection
number of �1 and �2, denoted �†.�1; �2/, is the total mass of the measure �1 � �2.
We write �.�1; �2/ for �†.�1; �2/ when the surface † is clear.

For 
1; 
2 2 CC.†/, one may check that �.
1; 
2/ is equal to the standard geomet-
ric intersection number of geodesic representatives y
1; y
2WS1 ! †, i.e., the number
of points at which y
1 and y
2 intersect transversely. Moreover, it turns out that the
intersection number is always finite, and induces a continuous function

GC.†/ � GC.†/! R:

Theorem 2.20 (Bonahon [12, Sec. 4.2]). For any �1; �2 2 GC.†/, we have

�.�1; �2/ <1:

Moreover, the function �WGC.†/ � GC.†/! R is homogeneous and continuous.

We say � 2 GC.†/ is a filling current if every geodesic line in z† transversely
intersects another geodesic line contained in the support of �.

Proposition 2.21 (Bonahon [13, Prop. 4 and its proof]). Let � 2 GC.†/ be a filling
current. Then

�.�; �/ > 0

for all�2 GC.†/, and the subspace ¹�2 GC.†/ j �.�;�/� 1º of GC.†/ is compact.

We record the following observation on intersection numbers for future reference.

Lemma 2.22. Let 'W†0 ! † be a k-sheeted covering map (for some k <1) that is
a local isometry, and let z'W z†0 ! z† be a lift of '. Then

�†0.�1 ı z'; �2 ı z'/ D k � �†.�1; �2/

for all �1; �2 2 GC.†/.

Proof. The isometry z' induces a homeomorphism

	C. z†0/ � 	C. z†0/! 	C.z†/ � 	C.z†/

that maps D	C. z†0/ onto D	C.z†/; let z'0WD	C. z†0/! D	C.z†/ be this induced
map. Moreover, we can canonically identify D	C.†/with the set of triples .x; t1; t2/,
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where x 2 † and t1; t2 2 T 1x† Š S1 are such that t1 ¤ t2, and the topology is the
“usual” one (see [12]); this viewpoint allows us to see that ' induces a k-sheeted
covering map

'0WD	C.†0/! D	C.†/:

One may check that we have

p† ı z'
0
D '0 ı p†0 ;

where p†WD	C.z†/!D	C.†/ and p†0 WD	C. z†0/!D	C.†0/ are the canonical
covering maps. It follows that .�1 ı z'/� .�2 ı z'/ D .�1 � �2/ ı '0, i.e., we have

Œ.�1 ı z'/� .�2 ı z'/�.A/ D .�1 � �2/.'0.A//

for every Borel subset A � D	C.†0/ such that '0jA is injective. This implies that

Œ.�1 ı z'/� .�2 ı z'/�.D	C.†0// D k � .�1 � �2/.D	C.†//;

as required.

3. Stable word lengths

Throughout this section, we fix a biautomatic group G with a (uniformly finite-to-
one) biautomatic structure .A;L/. We define several functions G ! R associated to
lengths of words in L, and study the relationship between them.

Proposition 3.1. Let g 2G, and for each n� 1 letwn 2L be a word representing gn.
Then the sequence .jwnj=n/1nD1 converges and the limit limn!1 jwnj=n is rational.

Proof. Suppose first that g has finite order, and so the subgroup hgi is finite. Since
.A;L/ is finite-to-one, it follows that the set ¹wn j n� 1º is finite, and so the sequence
.jwnj/

1
nD1 is bounded. Therefore, jwnj=n ! 0 2 Q as n ! 1, which implies the

result.
Suppose now that g has infinite order. By Theorem 2.11 (i), the centraliser CG.g/

is L-quasiconvex (with associated structure .A1;L1/, say), and so finitely generated,
implying (again by Theorem 2.11) that its centre Z.CG.g// is L1-quasiconvex (with
associated structure .A2;L2/, say). Thus Z.CG.g// is a finitely generated abelian
group containing g, and so (as g has infinite order) we have Z.CG.g// D H � F ,
whereH ŠZN , g 2H , and F is finite. In particular,H has finite index inZ.CG.g//,
and is therefore L2-quasiconvex; let .B;M/ be the associated biautomatic structure
on H .
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By applying Theorem 2.11 (ii) three times, it follows that there exists a constant
� � 1 such that for each n � 1, if vn 2M is a word representing gn, thenˇ̌

jvnj � jwnj
ˇ̌
� �:

Moreover, since .B;M/ is a biautomatic structure onH ŠZN , there exists a constant
� � 0 and a function f WH ! Q such that f .hn/ D nf .h/ for all h 2 H and n � 1,
and such that jf .h/ � jujj � � for any h 2 H and any word u 2M representing h
(see [53, Prop. 4.2 and its proof]). In particular, for each n � 1, we haveˇ̌̌̌

jwnj

n
� f .g/

ˇ̌̌̌
�

ˇ̌̌̌
jvnj

n
�
f .gn/

n

ˇ̌̌̌
C
�

n
D
jf .gn/ � jvnjj C �

n
�
�C �

n
;

and so jwnj=n! f .g/ 2 Q as n!1, as required.

Motivated by this, we introduce the following terminology.

Definition 3.2. Let g 2 G.

(i) The L-word length of g, denoted jgjL, is the length of the shortest word in L

representing g.

(ii) The conjugacy L-word length of g is defined as kgkL WDminh2G jhgh�1jL.

(iii) The stable L-word length of g is defined as �L.g/ WD limn!1 jg
njL=n.

It follows from Proposition 3.1 that �L.g/ is well defined: indeed, this number is
equal to limn!1.jwnj=n/ in the notation of the proposition. We make the following
easy observation.

Lemma 3.3. We have �L.hgh
�1/ D �L.g/ for all g; h 2 G.

Proof. Let � � 1 be the constant given in Theorem 2.9, and let wn; vn 2 L be the
shortest words representing gn; hgnh�1, respectively. Thenˇ̌

jwnj � jvnj
ˇ̌
� 2�max¹jhjA; 1º;

and so
�L.g/ D lim

n!1
jwnj=n D lim

n!1
jvnj=n D �L.hgh

�1/;

as required.

In particular, it follows that

�L.g/ D min
h2G

�L.hgh
�1/ D min

h2G
lim
n!1

jhgnh�1jL=n

for any g 2 G. In the remainder of this section, we prove that if G is hyperbolic
then the minimum and the limit in this expression can be swapped, and therefore
�L.g/ D limn!1 kg

nkL=n for all g 2 G.
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Lemma 3.4. Suppose G is hyperbolic. Then there exist constants � � 1 and " � 0
satisfying the following property. Let g 2 G be an element of infinite order, and let
w 2L be a word representing a conjugate of g with jwj D kgkL. Then any bi-infinite
path in Cay.G;A/ labelled by � � �www � � � is a .�; "/-quasi-geodesic.

Proof. Let � � 1 be the constant given in Theorem 2.9. Then there exist constants
`;�� 1 and "� 0 such that every `-local .�; 2�.�C 1//-quasi-geodesic in Cay.G;A/
is a .�; "/-quasi-geodesic [17, Ch. 3, Th. 1.4]. Moreover, if w 2 A� is a word repres-
enting an infinite order element, then any bi-infinite path in Cay.G; A/ labelled by
� � �www � � � is a quasi-geodesic [26, Prop. 8.21]. Since A is finite, there are only
finitely many words w 2 L of length < `; therefore, after increasing � � 1 and " � 0
if necessary, we may assume that for every word w 2 L with jwj < ` representing
an element of infinite order, a path in Cay.G; A/ labelled by � � �www � � � is a .�; "/-
quasi-geodesic.

It is therefore enough to show the following: if g 2 G and w 2 L are such that w
represents g and jwj D kgkL� `, and if 
 �Cay.G;A/ is a bi-infinite path labelled by
� � �www � � � , then any subpath of 
 of length � ` is a .�; 2�.� C 1//-quasi-geodesic.
Thus, let � � 
 be a subpath of length � ` from h 2 
 to k 2 
 . We aim to show that

j�j � �dA.h; k/C 2�.� C 1/:

Since j�j � ` � jwj, it follows that � is labelled by a subword of ww; however,
since paths labelled byw are .�; �/-quasi-geodesic, we may without loss of generality
assume that � is not labelled by subword of w. Thus � is labelled by a word w1w2,
where w1 and w2 are a suffix and a prefix of w, respectively. Since jw1j C jw2j D
j�j � ` � jwj, it follows that w D w2vw1 for some v 2 A�. Since v is a subword of
a word in L, there exist words u1; u2 2 A� of length � � such that u1vu2 2 L. See
Figure 1.

Now let g0 2 G be the element represented by w1w2v 2 A�, so that g and g0 are
conjugate in G, and let w0 2 L be a word representing g0. By construction, we have
w0; u1vu2 2 L, and there exist paths in Cay.G; A/ labelled by those two words that
start distance � dA.h; k/C ju1j � dA.h; k/C � apart and end distance � ju2j � �
apart. Therefore,

jwj D kgkL � jw
0
j � ju1vu2j C �.dA.h; k/C 2�/

� jvj C 2� C �.dA.h; k/C 2�/

D jwj � j�j C �dA.h; k/C 2�.� C 1/:

It follows that j�j � �dA.h; k/C 2�.� C 1/, as required.
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h

w1 w2

k v

w1

w0

u2

u1

Figure 1. The proof of Lemma 3.4. The thick path is 
 , the red subpath is �, and the blue and
green paths are labelled by words in L.

Lemma 3.5. Suppose G is hyperbolic. Then kgnkL=n ! �L.g/ as n ! 1 for
every g 2 G.

Proof. Fix g 2 G. If g has finite order, then the set ¹kgnkL j n � 1º is bounded,
implying that kgnkL=n! 0 D �L.g/ as n! 1, as required. Therefore, we may
without loss of generality assume that g has infinite order. After replacing g by its
conjugate if necessary (we can do this by Lemma 3.3), we may assume kgkL D jw1j
for some word w1 2 L representing g.

For each n � 1, let hn 2 G and wn 2 L be such that wn represents h�1n g
nhn and

kgnkL D jwnj. By replacing hn with hngM for some M D M.n/ 2 Z if necessary,
we may assume that

dA.hn; 1G/ � dA.hn; g
m/

for all m 2 Z (when n is fixed); in particular, we may take h1 D 1G . Let 
n be a
bi-infinite path in Cay.G; A/ labelled by � � �wnwnwn � � � such that a sub-ray of 
n
labelled by wnwnwn � � � starts at the vertex hn.

By Lemma 3.4, there exist constants � � 1 and " � 0 such that each 
n is a
.�; "/-quasi-geodesic. Furthermore, since 
n and 
1 contain vertices gmnhn and gmn,
respectively, for all m 2 Z, it follows that 
n and 
1 have the same endpoints on the
boundary @G. Therefore, by [17, Ch. 3, Th. 3.1], there exists a constant ˇ � 0 such
that 
n is Hausdorff distance � ˇ away from 
1 for each n 2 Z. See Figure 2.

Now since hn 2 
n, there exists a vertex kn 2 
1 such that dA.hn;kn/�ˇ. Since 
1
is the union of the hgi-translates of a path labelled by w1 and starting at 1G , we have

dA.g
M ; kn/ � jw1j

for some M DM.n/ 2 Z. But then the minimality of dA.hn; 1G/ implies that

dA.hn; 1G/ � dA.hn; g
M / � dA.hn; kn/C dA.g

M ; kn/ � ˇ C jw1j:

As A is finite, it follows that the set C WD ¹hn j n � 1º is finite.
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1
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gnhn

� ˇ

Figure 2. The proof of Lemma 3.5.

Now for each h 2 C and n � 1, let vn;h 2L be a word representing h�1gnh 2 G.
We then have

kgnkL D min¹jvn;hj j h 2 C º:

Furthermore, it follows from Proposition 3.1 that jvn;hj=n! �L.hgh
�1/ and there-

fore, by Lemma 3.3, jvn;hj=n! �L.g/ as n!1, for each h 2 C . As C is finite, we
thus have kgnkL=n! �L.g/ as n!1, as required.

4. Quasi-smoothing

Throughout this section, we fix a hyperbolic group G together with a (uniformly
finite-to-one) biautomatic structure .A;L/ on G. We use the notation of Defini-
tion 3.2.

Lemma 4.1. Let G be a hyperbolic group, and let .A;L/ be a finite-to-one biauto-
matic structure on G. Then there exists a constant � � 0 such that the following hold:

(i) for all g; h 2 G, we have jghjL � jgjL C jhjL C �;

(ii) for all g; h 2 G, we have jghjL � jgjL C �jhjA and jhgjL � jgjL C �jhjA;

(iii) for all g; h 2 G and w 2 L such that w represents gh and a prefix of w
represents g, we have jgjL C jhjL � jghjL C � .

Proof. Let � be the constant given by Theorem 2.9. Since Cay.G; A/ is hyperbolic,
there exists a constant ı such that geodesic triangles in Cay.G; A/ are ı-slim, and
a constant ˇ such that any two .�; �/-quasi-geodesics with the same endpoints are
Hausdorff distance� ˇ away from each other [17, Ch. 3, Th. 1.2]. In particular, .�;�/-
quasi-geodesic triangles in Cay.G;A/ are .ı C 2ˇ/-slim. We set

� WD �.2ı C 4ˇ C 4� C 3/:
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(i) Let v1; v2; w 2 L be words representing g, h and gh, respectively, such that

jgjL D jv1j; jhjL D jv2j; andjghjL D jwj:

Let 
; �1; �2 � Cay.G; A/ be the paths from 1G to gh (respectively, from 1G to g,
from g to gh) labelled by w (respectively, v1, v2). Then these three paths form a
.�; �/-quasi-geodesic triangle in Cay.G; A/, which must be .ı C 2ˇ/-slim. Thus, if
we write 
 D 
1
2 and �1 D �11�12 in such a way that the endpoints of 
1 and �11 are
distance � ı C 2ˇ apart and 
1 is as long as possible, then we can write �2 D �21�22
in such a way that the starting points of 
2 and �22 are distance � ı C 2ˇ C 1 apart.

Let w1; w2; v01; v
0
2 2 A

� be the labels of 
1; 
2; �11; �22, respectively. Then there
exist words u1;u2; t1; t2 2A�, all of length� �, such thatw1u1;u2w2; v01t1; t2v

0
2 2L;

see Figure 3 (a). It follows that the endpoints of the paths starting at 1G and labelled
by w1u1 and by v01t1 are distance � ı C 2ˇ C 2� apart, implying thatˇ̌

jw1u1j � jv
0
1t1j

ˇ̌
� �.ı C 2ˇ C 2�/:

Similarly,
ˇ̌
ju2w2j � jt2v

0
2j
ˇ̌
� �.ı C 2ˇ C 1C 2�/. It follows that

jghjL D jwj � jw1u1j C ju2w2j

� jv01t1j C jt2v
0
2j C �.2ı C 4ˇ C 4� C 1/

� jv01j C jv
0
2j C �.2ı C 4ˇ C 4� C 1/C 2�

� jv1j C jv2j C � D jgjL C jhjL C �;

as required.

(ii) This is trivially true if h D 1G . Otherwise, it is immediate from the choice
of � that

jghjL; jhgjL � jgjL C �jhjA � jgjL C �jhjA:

(iii) Let w D v1v2, so that v1 and v2 represent g and h, respectively. Since
v1 and v2 are a prefix and a suffix, respectively, of a word in L, it follows that
v1u1; u2v2 2 L for some u1; u2 2 A� with ju1j; ju2j � �; see Figure 3 (b). It then
follows that

jgjL � jv1u1j C �ju1j and jhjL � ju2v2j C �ju2j:

Moreover, we have jjghjL � jwjj � �, implying that

jgjL C jhjL � jv1u1j C ju2v2j C �.ju1j C ju2j/

D jv1j C jv2j C .ju1j C ju2j/.� C 1/

� jwj C 2�.� C 1/ � jghjL C � C �.2� C 2/ � jghjL C �;

as required.
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(a) Part (i)
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v1

g

v2

ghu1u2

(b) Part (iii)

Figure 3. The proof of Lemma 4.1. The blue paths have length � �, and the green dashed lines
have length � ı C 2ˇ C 1.

Now let† be a closed orientable hyperbolic surface, letGD�1.†/, and let .A;L/
be a biautomatic structure onG as before. We may then identify CC.†/with the set of
non-trivial conjugacy classes in G. Since the function k�kLWG ! R is by definition
invariant under conjugacy in G, it factors through a function CC.†/! R which we
also denote by k�kL. We aim to show that k�kLWCC.†/! R satisfies the join and
split quasi-smoothing properties; see Definition 2.15.

Proposition 4.2. The function k�kL satisfies the join and split quasi-smoothing pro-
perties.

Proof. Let V D Cay.G; A/=G: that is, V is a rose – a graph with one vertex – with
one loop edge for each element of A. We will not distinguish pointed loops in V
from their pointed homotopy classes, allowing us to assign to each such loop a label
w 2 A�. Let �V WCay.G; A/! V and �†W z†! † be the canonical covering maps,
and let � W V ! † be a continuous map that sends each edge in V to a pointed loop
on † labelled by the corresponding element of A � G D �1.†/.

Since � ı�V maps loops in Cay.G;A/ to nullhomotopic loops in† and so induces
a trivial map �1.Cay.G;A//! �1.†/, it follows that

� ı �V D �† ı z�

for some map z� W Cay.G; A/ ! z†. Moreover, z� is clearly G-equivariant; since V
and † are both compact and the G-action on z† is properly discontinuous, it follows
by the Švarc–Milnor lemma that z� is a .�; "/-quasi-isometry for some � � 1 and
" � 0, implying that the diameter of z��1.zx/ is at most �" for any zx 2 z†. In particular,
if x1; x2 2 V are such that �.x1/ D �.x2/, then there are lifts zx1 2 ��1V .x1/ and
zx2 2 �

�1
V .x2/ such that z�.zx1/ D z�.zx2/. This implies that

dCay.G;A/.zx1; zx2/ � �"I
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therefore, if z
 W Œ0; 1�! Cay.G;A/ is a geodesic from zx1 to zx2, then 
 WD �V ı z
 is a
path in V of length � �" that is mapped (under � ) to a nullhomotopic loop on †.

Let � be the constant given by Theorem 2.9, and let ˇ � 0 be the constant such
that any two .�; �/-quasi-geodesic paths in Cay.G; A/ with the same endpoints are
Hausdorff distance � ˇ apart: such a ˇ exists by [17, Ch. 3, Th. 1.2]. We set

� WD � max¹9C 2�"; 7C 2ˇ C 2�"º;

where � is the constant given in Lemma 4.1. We now prove the (i) join quasi-smooth-
ing and (ii) split quasi-smoothing properties.

(i) For i 2 ¹1; 2º, let 
i 2 CC.†/, and let wi 2 L represent an element in the
conjugacy class corresponding to 
i such that jwi j D k
ikL; moreover, let �i WS1! V

be the (pointed) loop on V labelled by wi , so that the loop y
i WD � ı �i is in the free
homotopy class 
i . Suppose .y1; y2/ is an essential crossing of y
1 and y
2, so that

y
1.y1/ D y
2.y2/;

and let 
 2 CC.†/ be the path obtained by the join quasi-smoothing procedure as
in Definition 2.15. We can thus write �1 D �11 � �12 and �2 D �21 � �22 for some
�ij W Œ0; 1�! V , where we write � 0 � � 00 for concatenation of paths � 0 and � 00 (under
some reparametrisation), so that

.� ı �11/ � .� ı �22/ � .� ı �21/ � .� ı �12/

is in the homotopy class 
 .
Let xi WD �i .yi / 2 V for i 2 ¹1; 2º, so that �.x1/ D �.x2/. Then, as explained

above, there exists a path �W Œ0; 1�! V from x1 to x2 of length � �" such that the
loop � ı � is nullhomotopic in †. It follows that

� ı .�11 � � � �22 � �21 � x� � �12/

is a well-defined loop that is in the homotopy class 
 , where x�W Œ0; 1� ! V can be
taken to be the “reverse” of �. See Figure 4 (a).

By adding or removing initial and terminal subpaths of length at most one to/from
the paths �ij , � and x�, we may modify our construction so that each of these paths
start and end at the vertex of V . In particular, there exist paths

� 011; �
0
12; �

0
21; �

0
22; �

0; x�0W Œ0; 1�! V;

all starting and ending at the vertex of V , such that �1 D � 011 � �
0
12 and �2 D � 021 � �

0
22,

such that �0 and x�0 have length � �"C 2, and such that

� 011 � �
0
� � 022 � �

0
21 � x�

0
� � 012

is a well-defined loop that is mapped under � to the homotopy class 
 .
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�11

�

�22

�21

x�

�12

�

�.�/ �.x�/

�.�22/

�.�21/�.�12/

�.�11/

(a) Join quasi-smoothing, (i)

�1

�2

�3

x��

�

�.�/ �.x�/

�.�3/

�.�2/

�.�1/

(b) Split quasi-smoothing, (ii)

Figure 4. The proof of Proposition 4.2. The top pictures represent the situation in V , the bottom
ones in †. The red point is the one at which the quasi-smoothing procedure is done, and the
blue paths have length � �".

Letw11;w12;w21;w22; v;xv2A� be the labels of the paths � 011;�
0
12;�

0
21;�

0
22; �

0;x�0,
respectively. We then have w1 D w11w12 2 L, w2 D w21w22 2 L, and

jvj; jxvj � �"C 2I

moreover, the G-conjugacy class of w11vw22w21xvw12 corresponds to the homotopy
class 
 . If, given u 2 A�, we write jujL for jgjL, where g 2 G is the element repres-
ented by u, then Lemma 4.1 implies that

k
kL � jw11vw22w21xvw12jL � jw11vjL C jw22jL C jw21xvjL C jw12jL C 3�

� jw11jL C jw22jL C jw21jL C jw12jL C .3C 2.�"C 2//�

� jw11w12jL C jw21w22jL C .3C 2.�"C 2/C 2/�

� k
1kL C k
2kL C �;

as required.

(ii) Let 
 2 CC.†/, and let w 2 L represent an element in the conjugacy class
corresponding to 
 such that jwj D k
kL; moreover, let � WS1 ! V be the (pointed)
loop on V labelled by w, so that the loop y
 WD � ı � is in the free homotopy class 
 .
Suppose .y1; y2/ is an essential self-crossing of y
 , and let 
1; 
2 2 CC.†/ be the
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paths obtained by the split quasi-smoothing procedure as in Definition 2.15. Similarly
to the previous case (see Figure 4 (b)), we may find paths

� 01; �
0
2; �
0
3; �
0; x�0W Œ0; 1�! V;

all starting and ending at the vertex of V , such that � D � 01 � �
0
2 � �

0
3, such that � 01 � �

0 � � 03
and � 02 � x�

0 are well-defined loops that are mapped (under � ) to the free homotopy
classes 
1 and 
2, respectively, and such that �0 and x�0 have length � �"C 2.

Letw1;w2;w3; v; xv 2A� be the labels of the paths � 01;�
0
2;�
0
3; �
0;x�0, respectively. It

then follows that w D w1w2w3 2L, that jvj; jxvj � �"C 2, and that the G-conjugacy
classes of w1vw3 and w2xv correspond to the homotopy classes 
1 and 
2, respect-
ively. Now let u 2 L be a word such that u and w1w2 represent the same element
ofG. Since u andw1w2 are both .�; �/-quasi-geodesic words, we can write uD u1u2
so that u1s and w1 represent the same element of G for some s 2 A� with jsj � ˇ;
consequently, s�1u2 and w2 also represent the same element of G. We then have

k
1kL C k
2kL � jw1vw3jL C jw2xvjL � jw1vjL C jw3jL C jw2xvjL C �

� jw1jL C jw3jL C jw2jL C .1C 2.�"C 2//�

D ju1sjL C jw3jL C js
�1u2jL C .5C 2�"/�

� ju1jL C jw3jL C ju2jL C .5C 2�"C 2ˇ/�

� jujL C jw3jL C .5C 2�"C 2ˇ C 1/�

D jw1w2jL C jw3jL C .6C 2�"C 2ˇ/�

� jw1w2w3jL C .6C 2�"C 2ˇ C 1/� � k
kL C �;

as required.

5. Invariant measures

In this section, we fix a closed orientable hyperbolic surface † and let G D �1.†/.
We view G as a uniform lattice in PSL2.R/ Š IsomC.z†/, the group of orientation-
preserving isometries of the universal cover z† Š RH2 of †.

Note that PSL2.R/ acts smoothly, freely and transitively on T 1 z†, the unit tangent
bundle of z†. We thus have a diffeomorphism PSL2.R/ Š T 1 z†. Under this diffeo-
morphism, the G-action on T 1 z† corresponds to the G-action on PSL2.R/ by left
multiplication, and the R-action on T 1 z† by translations along lifts of geodesic lines
on z† corresponds to the action of a subgroup R Š R on PSL2.R/ by right multiplic-
ation; see [41, Sec. 1.8.3]. After noticing that PSL2.R/=R Š 	C.z†/, we can then
identify GC.†/ with a certain space of measures on PSL2.R/, as follows.
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Proposition 5.1 (Benoist and Oh [10, Prop. 8.1]). Let G 0.†/ be the space of Radon
measures on PSL2.R/ that are G-invariant on the left and R-invariant on the right,
equipped with the weak* topology. Then the map

GC.†/! G 0.†/;

� 7! �0;

where
�0.E/ D

Z
�R.g

�1E \R/ d�.gR/

for a Borel subset E � PSL2.R/ and �R is a left Haar measure on R, is a homeo-
morphism.

Throughout this section, we will thus identify GC.†/ with the space G 0.†/ in
Proposition 5.1. We will assume all the measures on PSL2.R/ in this section to be
R-invariant on the right. We will also fix a left Haar measure �† on PSL2.R/. We
may rescale �† so that �.
; �†/ is equal to the length of the geodesic representative
y
 WS1 ! † for any 
 2 CC.†/; see [41, Sec. 1.8.3].

Now let � be a Radon measure on PSL2.R/ that is G0-invariant for some finite
index subgroup G0 of G. We then construct a current y� 2 GC.†/ as follows. Let
g1; : : : ; gs be a right transversal of G0 in G. Given a Borel subset E � PSL2.R/, we
then set

y�.E/ WD s�1
sX
iD1

�.giE/:

It is straightforward to check that y� is indeed G-invariant and does not depend on the
choice of the right transversal G0.

We consider the following special case. Let � 2 GC.†/, and let t 2 PSL2.R/
be such that G0 WD t�1Gt \ G has finite index in G. Then the measure �.t�/ is
G0-invariant. We define �.t/ WD y�0, where �0 D �.t�/.

Given an element t 2 PSL2.R/, we write h�G; t �i for the submonoid of PSL2.R/
generated by G [ ¹tº, and h�t �i for the submonoid generated by t .

Lemma 5.2. Let t 2 PSL2.R/ be an elliptic isometry of RH2. If hG; ti is dense in
PSL2.R/, then so is h�G; t �i.

Proof. If t has finite order (m, say), then we have t�1 D tm�1 2 h�t �i, and so

hG; ti D h�G; t �i:

Therefore, without loss of generality we may assume that t has infinite order.
Since t is elliptic, it stabilises a point x0 2 RH2. As t has infinite order, the

submonoid h�t �i of StabPSL2.R/.x0/ Š S1 is infinite, and so dense in StabPSL2.R/.x0/
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(by the Dirichlet Approximation Theorem, for instance). In particular, for any open
neighbourhood U � PSL2.R/ of t�1, there exists m 2 N such that tm 2 U .

Now let V � PSL2.R/ be open. Since hG; ti is dense, there exists h 2 hG; ti such
that h 2 V . We can write h D h0t�1h1t�1 � � � t�1hn for some h0; : : : ; hn 2 h�G; t �i.
Consider the map 'W PSL2.R/! PSL2.R/ defined by '.g/ D h0gh1g � � � ghn, and
note that '.t�1/D h 2 V . Since the multiplication in PSL2.R/ is continuous, so is the
map ', implying that '�1.V / is an open neighbourhood of t�1 in PSL2.R/. But then
tm 2 '�1.V / for some m 2 N, implying that '.tm/ 2 V \ h�G; t �i, and in particular
that V \ h�G; t �i ¤ ¿. As V was an arbitrary open subset, it follows that h�G; t �i is
dense in PSL2.R/, as required.

Lemma 5.3. Let t 2 PSL2.R/ be an element such that G0 WD t�1Gt \ G has finite
index in G, and such that the monoid h�G; t �i is dense in PSL2.R/. Let � 2 GC.†/ be
a non-zero current such that �.t/ D �. Then � D k � �† for some k > 0.

Proof. We aim to show that �.h�/D� for all h 2 PSL2.R/: this will imply the result
by the uniqueness of the Haar measure.

Let f W PSL2.R/! R be a continuous function with compact support given by
K � PSL2.R/, and consider the map If WPSL2.R/ 7! R given by

If .g/ D

Z
f d�.g�/:

Such a map If is continuous: see [24, Lem. 15, p. 278] and its proof.
Now since � is G-invariant, it follows that If .gh/ D If .h/ whenever g 2 G,

implying that If factors through the map PSL2.R/ ! GnPSL2.R/ Š T 1†. Since
T 1† is compact, so is the image of If , and so If attains its infimum: that is, the set

Mf WD ¹x 2 PSL2.R/ j If .x/ � If .y/ for all y 2 PSL2.R/º

is non-empty.
Now let g1; : : : ; gs be a right transversal of G0 in G with g1 D 1. We then have

�.E/ D �.t/.E/ D s�1
sX
iD1

�.tgiE/

for any Borel subset E. In particular, it follows that for any x 2 PSL2.R/,

If .x/ D

Z
f d�.x�/ D s�1

sX
iD1

Z
f d�.tgix�/ D s�1

sX
iD1

If .tgix/:

Therefore, if x 2Mf then If .tgix/ D If .x/ for all i . In particular, If .tx/ D If .x/:
that is, tx 2Mf .
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Thus, if x 2 Mf , then tx 2 Mf and gx 2 Mf for all g 2 G, implying that
h�G; t �iMf �Mf . As h�G; t �i is dense in PSL2.R/ andMf ¤ ¿, it follows thatMf is
also dense; as If is continuous, this implies that If is actually constant on PSL2.R/.
But since f was arbitrary, it follows from Theorem 2.14 that �.h�/ D � for all
h 2 PSL2.R/, as required.

Lemma 5.4. Let t 2 PSL2.R/ be an element such that G0 WD t�1Gt \ G has finite
index in G, and let � 2 GC.†/. Then �.�.t/; �†/ D �.�; �†/.

Proof. Let g1; : : : ; gs be a right transversal ofG0 inG with g1 D 1. For 1 � i � s, let
†i !† be the finite covering map corresponding to the subgroup g�1i G0gi �G, and
let †0 ! † be the finite covering map corresponding to the subgroup tG0t�1 � G.
Then the element tgi 2 PSL2.R/ induces an isometry 'i W†i ! †0, and also a dif-
feomorphism z'i W PSL2.R/! PSL2.R/ such that �0 ı z'i D �0.tgi�/ 2 GC.†i / for
any �0 2 GC.†0/. Note that we have

ŒG W tG0t
�1� D ŒG W g�1i G0gi � D s

for all i , since the surfaces†0;†1; : : : ;†s are pairwise isometric (and therefore have
the same genus) and since ŒG W G0� D s.

Now since �† is a left Haar measure, we have

�† D �†.tgi�/ D �† ı z'i

for all i . It then follows by Lemma 2.22 that

�†.�; �†/ D s
�1�†0.�; �†/ D s

�2

sX
iD1

�†0.�; �†/

D s�2
sX
iD1

�†i .� ı z'i ; �† ı z'i / D s
�2

sX
iD1

�†i
�
�.tgi�/; �†

�
D s�1

sX
iD1

�
s � Œg�1i G0gi W yG�

��1
�y†
�
�.tgi�/; �†

�
D ŒG W yG��1�y†

�
s�1

sX
iD1

�.tgi�/; �†

�
D ŒG W yG��1�y†.�

.t/; �†/ D �†.�
.t/; �†/;

where yG D
Ts
iD1 g

�1
i G0gi and y†! † is the finite cover corresponding to yG � G.

Thus
�.�.t/; �†/ D �.�; �†/;

as required.
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Lemma 5.5. Let t 2 PSL2.R/ be an element such that G0 WD t�1Gt \ G has finite
index in G. Let � 2 GC.†/ be a non-zero current, and define .�n/1nD0 � GC.†/

inductively by �0 D � and �n D �
.t/
n�1 for n � 1. Then the closure of² nX

iD0

ci�i j n � 0; ci 2 Œ0;1/

³
in GC.†/

contains a non-zero current x� such that x�.t/ D x�.

Proof. Consider the sequence .x�n/1nD1 � GC.†/, where x�n D n�1
Pn�1
iD0 �i . By

Lemma 5.4, we have

�.�n�1; �†/ D �.�
.t/
n�1; �†/ D �.�n; �†/

for all n � 1, and therefore �.�n; �†/ D �.�; �†/ by induction on n. It follows that

�.x�n; �†/ D �.�; �†/

for all n � 1. But by Proposition 2.21, the subspace

¹�0 2 GC.†/ j �.�0; �†/ � �.�; �†/º

of GC.†/ is compact, implying that the sequence .x�n/1nD1 has a convergent sub-
sequence: x�nm ! x� as m!1, say. Note that we have

�.x�; �†/ D lim
m!1

�.x�nm ; �†/ D �.�; �†/

since �.�; �†/ is continuous (by Theorem 2.20), whereas �.�; �†/ > 0 since � ¤ 0
and �† is filling (by Proposition 2.21), so x� ¤ 0. We aim to show that x�.t/ D x�.

Let g1; : : : ; gs be a right transversal of G0 in G with g1 D 1, and for 1 � i � s,
let†i ! † be the finite covering map corresponding to the subgroup g�1i G0gi � G.
Note that since x�nm! x� asm!1, we also have x�nm.tgi�/!x�.tgi�/ in GC.†i /,
and therefore x�.t/nm ! x�

.t/ as m!1. We aim to show that we also have x�.t/nm ! x�
as m!1; this will imply thatZ

f dx� D
Z
f dx�.t/

for every continuous function f WPSL2.R/! R with compact support, and the result
will then follow by Theorem 2.14.

Let D be a (relatively compact) fundamental domain for the action of G on
PSL2.R/ by left multiplication, and let K � PSL2.R/ be compact. We claim that
�n.K/ � �.DK/ for all n � 0. Indeed, since we have

�n D �
.t/
n�1 D s

�1

sX
iD1

�n�1.tgi�/
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for all n � 1 and since �0 D �, it follows by induction on n that

�n D s
�n

snX
iD1

�.hi�/

for some h1; : : : ; hsn 2 PSL2.R/. We can pick some k1; : : : ; ksn 2 G such that
kihi 2 D for each i . Note that �.kihi�/ D �.hi�/ since � is G-invariant; there-
fore,

�n.K/ D s
�n

snX
iD1

�.kihiK/ � s
�n

snX
iD1

�.DK/ D �.DK/;

as claimed.
Now let f W PSL2.R/ ! R be a continuous function with compact support K.

Since x�.t/n � x�n D n�1.�n � �/ for any n � 1, we haveˇ̌̌Z
f dx�.t/n �

Z
f dx�n

ˇ̌̌
D n�1

ˇ̌̌̌Z
f d�n �

Z
f d�

ˇ̌̌̌
� n�1

�ˇ̌̌Z
f d�n

ˇ̌̌
C

ˇ̌̌Z
f d�

ˇ̌̌�
� n�1kf k1

�
�n.K/C �.K/

�
� n�1kf k1

�
�.DK/C �.K/

�
;

and therefore ˇ̌̌Z
f dx�.t/n �

Z
f dx�n

ˇ̌̌
! 0 as n!1:

On the other hand, since x�nm ! x� we haveˇ̌̌Z
f dx�nm �

Z
f dx�

ˇ̌̌
! 0 as m!1:

Since nm !1 as m!1, it follows thatˇ̌̌Z
f dx�.t/nm �

Z
f dx�

ˇ̌̌
! 0 as m!1:

But as f was arbitrary, it follows that indeed x�.t/nm ! x� (in the weak* topology) as
m!1, as required.

Proposition 5.6. Let t2PSL2.R/ be an elliptic isometry of RH2 such that t�1Gt\G
has finite index in G and such that hG; ti is dense in PSL2.R/. Let F W GC.†/ !
Œ0;1/ be a continuous positively linear function such that F.
 .t// D F.
/ for all

 2 CC.†/. Then F D k � �.�; �†/ for some k � 0.
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Proof. Let k D F.�†/=�.�†; �†/. We will aim to show that F.
/ D k � �.
; �†/ for
all 
 2 CC.†/. As RCCC.†/ is dense in GC.†/ (see [13, Prop. 2]) and as F and
�.�; �†/ are positively linear and continuous, this will imply the result.

Let 
 2 CC.†/, and define .
n/1nD0 inductively by 
0 D 
 and 
n D 

.t/
n�1 for

n � 1. Since F is positively linear and F.
 0.t// D F.
 0/ for any 
 0 2 CC.†/, it
follows that F.
n/ D F.
/ for all n � 0; on the other hand, �.
n; �†/ D �.
; �†/

for all n � 0 by Lemma 5.4 and induction on n. Since f and �.�; �†/ are positively
linear, it also follows that

F.�/=�.�; �†/ D F.
/=�.
; �†/

whenever �D
Pn
iD0 ci
i for some c0; : : : ; cn � 0. Since F and �.�; �†/ are continu-

ous, it follows from Lemma 5.5 that there exists a non-zero current x� 2 GC.†/ such
that F.x�/=�.x�; �†/ D F.
/=�.
; �†/ and x� D x�.t/.

Now by Lemma 5.2, the submonoid h�G; t �i is dense in PSL2.R/. Therefore, it
follows from Lemma 5.3 that x� D k0 � �† for some k0 > 0. Thus

F.
/ D
F.x�/

�.x�; �†/
�.
; �†/ D

k0 � F.�†/

k0 � �.�†; �†/
�.
; �†/ D k � �.
; �†/;

as required.

6. Lattices in the hyperbolic plane and a tree

In this section we will collect a number of results about irreducible cocompact lat-
tices in the product of PSL2.R/ and the automorphism group T of a locally-finite
unimodular leafless tree T . Will assume T is non-discrete. Throughout � will be an
irreducible cocompact lattice in PSL2.R/ � T . Note that by [34, Cor. 3.6] � is either
an irreducible S -arithmetic lattice and T is a .p C 1/-regular tree for some prime p,
or � is non-residually finite. In either case, by Theorem 2.7 � contains a commensur-
ated subgroup G isomorphic to the fundamental group of a closed compact surface
which arises as a finite index subgroup of a vertex stabiliser of the action of � on T .

First, we will investigate the density of the projection of � to PSL2.R/.

Lemma 6.1. The projection P of � to PSL2.R/ is dense.

Proof. If � is linear then P contains an S -arithmetic lattice and such a subgroup of
PSL2.R/ is dense. Thus, we may assume � is non-residually finite. By Theorem 2.7,
� splits as a graph of groups in which each vertex group is a finite extension of a
uniform lattice in PSL2.R/. In particular, P contains a uniform PSL2.R/-lattice and
hence is Zariski-dense in PSL2.R/. A Zariski-dense subgroup of SL2.R/ is either



Commensurating HNN-extensions: Hierarchical hyperbolicity and biautomaticity 427

dense or discrete. Indeed the Lie algebra of its closure is an ideal, hence either 0
or sl2.R/. Now, since � is irreducible, P is non-discrete and so we conclude that P
is dense in PSL2.R/.

Our next task is to show there is a commensurated surface subgroup of � which
is M-quasiconvex with respect to any biautomatic structure .B;M/. The key fact
is that in a biautomatic group the centraliser of a finite set is M-quasiconvex (see
Theorem 2.11 (i)). Before this we will need a lemma.

Lemma 6.2. If � is non-residually finite, then we have a short exact sequence

1 F � P 1
�PSL2.R/

where F is fundamental group of a graph of finite groups and P is linear. In particu-
lar, if � is torsion-free, then F is a free group. In both cases F is infinite, not virtually
abelian, and every locally finite subgroup of F is finite.

Proof. Since � is non-residually finite � does not admit any faithful linear represent-
ation and so F is non-trivial. Now, � splits as a graph of finite-by-Fuchsian groups
and each Fuchsian group is isomorphic to its image in P . It follows that the action
of F on T has finite stabilisers. In particular, F is the fundamental group of a graph of
finite groups. If � is torsion-free, then each vertex and edge stabiliser of the F -action
on T is trivial. It follows that F admits a free action on a tree and so must be free.
That P is linear follows from the fact PSL2.R/ is linear.

Since � is CAT.0/, it has only finitely many conjugacy classes of finite subgroups,
implying that any ascending sequence of finite subgroups of � terminates. It follows
that � (and so F ) has no infinite locally finite subgroups. We claim that if F was finite
then F must act trivially on T . Indeed, if F was finite then it acts on T elliptically
with fixed point set T F a subtree of T . By normality of F in � , the subtree T F is
�-invariant. But � is a uniform lattice and T is leafless, so � acts minimally on T .
Thus, F is infinite. It remains to show that F is not virtually abelian.

Since F is infinite and not locally finite, it contains a finitely generated infinite
subgroup. Such a subgroup cannot be torsion (otherwise it would fix a point in T ,
contradicting the fact that the action of F on T has finite stabilisers); it follows that F
contains an infinite order element g. Since the action of F on T has finite stabilisers,
g must be hyperbolic in this action; let `� T be the axis of g. Since T is non-discrete
it follows that T is not a line; moreover, since the �-action on T is cocompact and
since T is leafless and locally-finite, there exists an element h 2 � such that h` ¤ `.
Then g and hgh�1 are two hyperbolic elements of F that have distinct axes, so gn

does not commute with hgmh�1 for any n;m¤ 0. This implies that F is not virtually
abelian.
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Proposition 6.3. Suppose .B;M/ is a finite-to-one biautomatic structure on � . If �
is non-residually finite and torsion-free, then any vertex stabiliser of the action on T

is an M-quasiconvex subgroup.

Proof. Let G be a commensurated surface subgroup of � . Let F D Ker.�PSL2.R//

and note by Lemma 6.2 that F is a non-abelian free subgroup acting freely on T . Let
g; h be contained in this free group and suppose that they do not commute.

We claim since G is commensurated and F is normal, the elements g and h com-
mute with the subgroup S D G \ Gg \ Gh which has finite index in G. Indeed, let
s 2 S and note s and sg fix vertices of T . It follows that the commutator Œs; g� lies
in Gg . The commutator Œs; g� maps trivially under the projection to PSL2.R/, but the
projection restricted to Gg is injective. Thus, Œs; g� D 1 and the claim follows.

By the previous claim, C WD C�.¹g; hº/ contains S . Now, g and h have distinct
axes so C must fix a vertex on T . In particular, C is a finite-index subgroup of a
vertex stabiliser containing a finite index subgroup S of G, implying that C is com-
mensurable with G in � . Finally, since C is the centraliser of a finite set, it follows
from Theorem 2.11 that C is M-quasiconvex. By Lemma 2.12, it follows that G is
M-quasiconvex as well.

Finally, we record this proposition for later use. It is a special case of [36, Cor. 3.3].

Proposition 6.4. � is a hierarchically hyperbolic group.

7. An explicit example

Throughout this section we will use quaternion algebras and arithmetic Fuchsian
groups derived from them, for the relevant background the reader should consult [38,
Ch. 5]. The construction appeared in the first author’s PhD thesis, however, the exam-
ple there is different to the one given here [33, Sec. 4.5.2].

Let Q be the quaternion algebra .2; 13/Q, this is a 4-dimensional algebra over Q

with basis ¹1; i; j; kº satisfying the relations i2 D 2, j 2 D 13 and k D ij D �j i . The
algebra Q has a representation 'WQ!M2.R/ given by

1 7!

"
1 0

0 1

#
; i 7!

"p
2 0

0 �
p
2

#
; j 7!

"
0 1

13 0

#
; k 7!

"
0

p
2

�13
p
2 0

#
:

Let t D 1
3
.1C 3i C k/ 2 Q, and note that

'.t/ D

"
1
3
.3
p
2C 1/ 1

3

p
2

�
13
3

p
2 1

3
.1 � 3

p
2/

#
I



Commensurating HNN-extensions: Hierarchical hyperbolicity and biautomaticity 429

it follows that the image of '.t/ in PSL2.R/ is an infinite order elliptic isometry
of RH2. A basis for a maximal order M of Q is given by the following quaternions

¹a;b;c;dº WD
°3
2
C
3

2
i �

1

2
j �

1

2
k;
3

2
�
3

2
i �

1

2
j C

1

2
k;
5

2
C i �

1

2
j;
7

2
C 2i C

1

2
j
±
I

this has image given by

'.a/ D

"
3
2
.
p
2C 1/ �1

2
.
p
2C 1/

13
2
.
p
2 � 1/ 3

2
.1 �
p
2/

#
; '.b/ D

"
3
2
.1 �
p
2/ 1

2
.
p
2 � 1/

�
13
2
.
p
2C 1/ 3

2
.
p
2C 1/

#
;

'.c/ D

"
1
2
.2
p
2C 5/ �

1
2

�
13
2

1
2
.5 � 2

p
2/

#
; '.d/ D

"
1
2
.4
p
2C 7/ 1

2
13
2

1
2
.7 � 4

p
2/

#
:

Conjugating M by t we obtain another maximal order N . Let U 1.M/ and U 1.N /
denote the groups of norm one quaternions under multiplication inM and N respect-
ively. Note that their image under ' is contained in SL2.R/.

Denote the image of U 1.M/ and U 1.N / under ' after projecting to PSL2.R/ by
PM and PN , respectively. Both of these groups are isomorphic to the fundamental
group of a genus 2 surface (this may be verified in Magma). It is easy to see '.t/
commensurates U 1.M/ and hence U 1.M/ and U 1.N / share a common finite index
subgroup. The intersection K D PM \ PN has index 12 in both PM and PN , in
particular, K is the fundamental group of a genus 13 surface. We compute, using
Dehn’s algorithm a word in a; b; c; d for t�1gt for each generator g of K. We will
denote the subgroup generated by these words H and note that H t D K.

We now build a HNN-extension � D PM�H tDK . The group has 5 generators
which (abusing notation) we label a, b, c, d , t and admits a presentation with 27
relations, displayed in Appendix A.

Lemma 7.1. � is an irreducible uniform lattice in PSL2.R/ � T24.

Proof. Since � is a graph of groups equipped with a morphism to PSL2.R/ such that
the vertex stabiliser �v is a uniform PSL2.R/ lattice and the stable letter commen-
surates �v , it follows � is a graph of lattices in the sense of Definition 2.6. The two
embeddings of the edge group have index 12 in �v so the Bass–Serre tree of � is 24-
regular. Thus, � is a uniform lattice in PSL2.R/ � T24 by Theorem 2.7. The image of
the subgroup generated by stable letter t in PSL2.R/ is clearly non-discrete because
it is generated by an infinite order elliptic isometry. The irreducibility now follows
from [34, Prop. 3.4].

Lemma 7.2. � is non-residually finite.

Proof. Because � is an HNN-extension the first Betti number of � is at least 1 (in fact
a direct computation yields it is exactly 1). Since � is an irreducible lattice it follows
from [34, Prop. 3.7] that � is non-residually finite.
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Lemma 7.3. The translation lengths of a and c in their action on RH2 are not
rational multiples of each other.

Proof. For a hyperbolic isometry g of PSL2.R/ its translation length is

�.g/ D 2 cosh�1
�1
2

tr.zg/
�
;

where zg is a choice of lift of g to SL2.R/. It follows that we have

�.a/ D 2 log
�3
2
C

p
5

2

�
and �.c/ D 2 log

�5
2
C

p
21

2

�
:

Suppose that p
q
�.a/ D �.c/ where p; q 2 Z, p; q � 1, then we have

�3
2
C

p
5

2

�p
D

�5
2
C

p
21

2

�q
:

The left-hand side is always of the formm1Cm2
p
5 and the right-hand side is always

of the form m3 C m4
p
21 for some rational numbers m1; m2; m3; m4 > 0. This is

clearly impossible and we conclude that �.a/ is not a rational multiple of �.c/.

8. Proof of Theorem A

Theorem A. There exists a non-residually finite torsion-free irreducible uniform lat-
tice � < PSL2.R/ � T24 such that � is a hierarchically hyperbolic group but is not
biautomatic.

Proof. Let � be the HNN-extension constructed in Section 7. Then, � is an irre-
ducible uniform lattice in PSL2.R/ � T24 by Lemma 7.1, non-residually finite by
Lemma 7.2, torsion-free by construction, and a hierarchically hyperbolic group by
Proposition 6.4. It remains to show � is not biautomatic.

Let yG < � be a vertex stabiliser for the �-action on the Bass–Serre tree T24 of � .
By construction, we have � D h yG; yti for an element yt 2 � such that t WD �PSL2.R/.yt /

is an infinite order elliptic isometry of RH2. Moreover, the group G WD �PSL2.R/.
yG/

is a torsion-free uniform lattice in PSL2.R/, and the projection �PSL2.R/.�/ D hG; ti

is dense in PSL2.R/ by Lemma 6.1. As yG is commensurated in � , it follows that
t�1Gt \ G has finite index in G. Let † D GnRH2, so that † is a closed orientable
hyperbolic surface and G Š �1.†/.

Now suppose for contradiction that .B;M/ is a (uniformly finite-to-one) biauto-
matic structure on � . By Proposition 6.3, the subgroup yG < � is M-quasiconvex;
let .A;L/ be the biautomatic structure on yG associated to .B;M/, as given by The-
orem 2.11. As �PSL2.R/ maps yG isomorphically to G, we will identify .A;L/ with a
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biautomatic structure onG. Consider the function k�kLWG!R, as defined in Defin-
ition 3.2. By construction, k�kL is invariant under conjugacy in G, and therefore
factors through a function CC.†/! R which we also denote by k�kL. Similarly, it
follows from Lemma 3.3 that the function �LWG ! R (as defined in Definition 3.2)
factors through a function �LWC

C.†/! R.
By Proposition 4.2, the function k�kLWCC.†/! R satisfies the join and split

quasi-smoothing properties, and therefore, by Theorem 2.16, the function given by
� 0

L
WCC.†/! R and defined by � 0

L
.
/Dlimn!1 k


nkL=n is homogeneous and sat-
isfies the join and split quasi-smoothing properties. By Lemma 3.5, we have � 0

L
D�L.

Thus, by Theorem 2.17, �LWC
C.†/! R extends to a unique continuous homogen-

eous function �LWG
C.†/! R, which is also positively linear by Lemma 2.18.

We now claim that �L.
/D �L.

.t// for every 
 2 CC.†/ (in the notation of Sec-

tion 5). Indeed, let 
 2 CC.†/, let g 2 G be an element corresponding to 
 , let r � 1
be such that t�1gr t 2 G, and let g1; : : : ; gs be a right transversal of t�1Gt \G in G.
Then, for each i , the measure 
 r.tgi�/ is a curve on † corresponding to the element
.tgi /

�1gr tgi 2 G. Furthermore, it follows from Theorem 2.11 that the restriction of
�MW� ! R to yG Š G coincides with �LWG ! R; in particular, by Lemma 3.3 we
have

�L..tgi /
�1gr tgi / D �M..tgi /

�1gr tgi / D �M.g
r/ D �L.g

r/:

As �LWG
C.†/! R is positively linear, we then have

r � �L.

.t// D s�1

sX
iD1

r � �L.
.tgi�// D s
�1

sX
iD1

�L.

r.tgi�//

D s�1
sX
iD1

�L..tgi /
�1gr tgi / D s

�1

sX
iD1

�L.g
r/

D �L.g
r/ D �L.


r/ D r � �L.
/;

and thus �L.
/ D �L.

.t//, as claimed.

We now apply Proposition 5.6 with F D �L; therefore, there exists a constant
k > 0 such that �L D k � �.�; �†/. In particular, since �.
; �†/ > 0 for all 
 2 CC.†/

by Proposition 2.21, we have

�L.
1/

�L.
2/
D
�.
1; �†/

�.
2; �†/

for any 
1; 
2 2 CC.†/. But note that �.
; �†/ is precisely the length of the geodesic
representative S1!† of 
 , which is equal to the translation length of a lift of 
 in its
action on RH2. In particular, if 
a; 
c 2 CC.†/ correspond to the elements a; c 2 G
appearing in Lemma 7.3, we then have �L.
a/

�L.
c/
… Q. This contradicts Proposition 3.1,

which implies that �L takes only rational values.



S. Hughes and M. Valiunas 432

A. A presentation of the group

The group � constructed in Section 7 is generated by a, b, c, d , and t subject to the
following 27 relations:

a�1dcbc�1ab�1d�1 D 1;

td�1a2cb�1c�1t�1 D d;

td�1a2ca�1dt�1 D a2c�1;

td�1a2cbd�1a�1dt�1 D acb�1;

td�1adc�1d�1adca�2dt�1 D baba�1;

td�1adc�1a�1dt�1 D b2c�1;

td�1adbc�1ab�1c�1dba�1ca�1cb�1c�1t�1 D bdc�1b�1;

tb2c�1a�2dt�1 D cbd�1a�1;

td�2a2d�1a�1dt�1 D c3;

td�1ab�1d�1adt�1 D cdc�1;

tba�1cba�1dba�1ca�1cb�1c�1t�1 D a�1bc�1b�1;

td�1adcba�1d�1a�1dt�1 D a�1cb;

td�1a2dcd�1a�1dt�1 D a�1db�1;

td�1adcb�1c�1a�1da�2dt�1 D b�1ab�1a�1;

td�1adcb�2a�2dt�1 D b�1cba�1;

td�1adcb�1c�1ba�2dt�1 D b�1dba�1;

td�1ad2ba�1cb�2c�1d�1a�1dt�1 D c�1a2;

td�1ada�2dba�1d�1a�1dt�1 D c�1b2;

td�1a2d�1ac�1abc�1a�1a�1dt�1 D abad�1a�1;

td�1a2d�1cb�2c�1d�1a�1dt�1 D ab2a;

td�1a2d�1ab�3c�1d�1a�1dt�1 D abca;

td�1a2d�1ac�1b�1c�1d�1a�1dt�1 D abda;

td�1a2cb�1a�1dba�1dba�1ca�1cb�1c�1t�1 D adac�1b�1;

td�1a2cb�2c�1d�1a2d�1a�1dt�1 D adbc;

td�1a2c�1dba�1d�1a�1dt�1 D ab�1ab;

td�1adc�1d�1acb�1a�1cb�1c�1t�1 D bcab�1;

td�1adc�1d�1ad�1adba�1dt�1 D bcba�1c�1:
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