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On the asymptotic growth of Birkhoff integrals for locally
Hamiltonian flows and ergodicity of their extensions

Krzysztof Frączek and Corinna Ulcigrai

Abstract. We consider smooth area-preserving flows (also known as locally Hamiltonian flows)
on surfaces of genus g � 1 and study ergodic integrals of smooth observables along the flow
trajectories. We show that these integrals display a power deviation spectrum and describe the
cocycles that lead the pure power behaviour, giving a new proof of results by Forni [Ann. of
Math. (2) 155 (2002), 1–103] and Bufetov [Ann. of Math. (2) 179 (2014), 431–499] and gen-
eralizing them to observables which are non-zero at fixed points. This in particular completes
the proof of the original formulation of the Kontsevitch–Zorich conjecture. Our proof is based
on building suitable correction operators for cocycles with logarithmic singularities over a full
measure set of interval exchange transformations (IETs), in the spirit of Marmi–Moussa–Yoccoz
work on piecewise smooth cocycles over IETs. In the case of symmetric singularities, exploit-
ing former work of the second author [Ann. of Math. (2) 173 (2011), 1743–1778] we prove a
tightness result for a finite codimension class of observables. We then apply the latter result to
prove the existence of ergodic infinite extensions for a full measure set of locally Hamiltonian
flows with non-degenerate saddles in any genus g � 2.

1. Introduction and main results

In this paper we give a contribution to the study of ergodic theory of smooth area-
preserving flows on higher genus surfaces (also known as locally Hamiltonian flows)
as well as to the infinite ergodic theory of flow extensions. The class of surface flows
that we work with is introduced in Section 1.1. We study in particular deviations of
ergodic averages, by proving the existence of a power deviation spectrum for the
ergodic integrals along the flow. This extends and gives a new proof of results by
Forni [17] and Bufetov [6] for observables with compact support outside a neigh-
bourhood of the fixed points of the flow, to observables which have full support and
are non-zero at singularities. We then use our result to show the existence of infinite
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extensions of such flows which are ergodic with respect to the natural infinite invari-
ant measure. This result generalizes to higher genus a classical result by Krygin [37]
in genus one and extends a previous result in higher genus by the authors (see [22],
where we showed the existence of ergodic extensions in any genus, but only for flows
with self-similar foliations) to a full measure set of flows.

1.1. Locally Hamiltonian flows

Let M be a compact, connected, orientable (smooth) surface and let g denote its
genus. We will assume throughout that g � 1. We will consider smooth flows on M
preserving a smooth measure � (i.e., absolutely continuous measure with smooth
positive density), see Section 2.1. These flows, also known in the literature as multi-
valued Hamiltonian, are locally Hamiltonian flows: indeed, the flow  R WD . t /t2R

is locally Hamiltonian in the sense that around any point in M one can find coordin-
ates .x1; x2/ on M in which  R is locally given by the solution to the equations´

Px1 D @H=@x2;

Px2 D �@H=@x1

for some smooth real-valued Hamiltonian function H . A global Hamiltonian H can-
not be in general defined (see [46, §1.3.4]), but one can think of  R as globally given
by a multi-valued Hamiltonian function. We will assume throughout this paper that
the fixed points of  R are non-degenerate (also called Morse fixed points), namely
that for every fixed point p the local Hamiltonian H is a Morse function at p.

The interest in the study of multi-valued Hamiltonians and the associated flows in
higher genus (g � 1) and, in particular, in their ergodic and mixing properties, was
highlighted by Novikov [47] in connection with problems arising in solid-state phys-
ics as well as in pseudo-periodic topology (see, e.g., the survey [68] by A. Zorich).
The simplest examples of locally Hamiltonian flows with singularities on a torus,
i.e., flows with one centre and one simple saddle (see Figure 1 (a)), were studied by
V. Arnold in [2] and are nowadays often called Arnold flows.1

On the space of locally Hamiltonian flows, one can define a topology (see Sec-
tion 2.1.1) as well as a measure class (the Katok fundamental class, see Section 2.1.2).
Our understanding of the typical chaotic properties (in the measure theoretical sense)
of these flows has advanced a lot in the last forty years. While results concerning

1More precisely, referring to the decomposition described in Section 2.1.1, we call Arnold
flow the restriction to a minimal component obtained by removing the centre and the disk filled
by periodic orbits around it (called island), which, as Arnold shows in [2], is always bounded
by a saddle loop.
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(a) An Arnold flow (g D 1) (b) A flow on a surface of g D 3

Figure 1. Examples of locally Hamiltonian flows on a surfaces.

orbit properties, such as minimality or ergodicity, were known first, since they can be
simply deduced2 from classical results which were proved using Teichmüller dynam-
ics (see below as well as Section 2.1.4), results on finer chaotic properties such as
(weak or multiple) mixing, or recently spectral and disjointness results, were proved
only in the last twenty years, since they depend on the movement along trajectories
(i.e., on time-reparametrization) and require more delicate estimates exploiting the
locally Hamiltonian parametrization of the orbits. We summarize some of the known
results in Section 2.1.4 below.

In the classification of chaotic behaviour in locally Hamiltonian flows it is cru-
cial to distinguish between two open sets (complementary, up to measure zero, see
Section 2.1.2 for more details): in the first open set, which we will denote by Umin,
the typical flow is minimal, in the sense that the orbits of all points which are not
fixed points are dense in M . On the other open set, that we call U:min, the flow is not
minimal, but one can decompose the surface into a finite number of subsurfaces with
boundary Mi , i D 1; : : : ; N such that for each i either Mi is a periodic component,
i.e., the interior of Mi is foliated into closed orbits of  R (in Figure 1 (b) one can see
three periodic components, namely two disks and one cylinder, all foliated by closed
orbits), or Mi is such that the restriction of  R to Mi is minimal in the sense above
(two such subsurfaces are visible in the example in Figure 1 (b)). The latter are called
minimal components and there are at most g of them (where g is the genus ofM ), see
Section 2.1.4.

2One can show (see, for example, [68]) that every minimal locally Hamiltonian flow on M
(as well as the restriction of a locally Hamiltonian flow to one of its minimal components
(see Section 2.1.1)) has the same trajectories (up to time-reparametrization) as a translation
flow. Thus, one can infer properties which depend only on trajectories as sets and not on their
time-parametrization, such as minimality and ergodicity, from the known properties of typical
translation flows.
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The study of locally Hamiltonian flows is intertwined with the study another
famous class of flows on surfaces, namely translation (linear) flows3 on translation
surfaces, which are at the centre of Teichmüller dynamics. Each minimal component
of a locally Hamiltonian flow  R indeed can be seen as a time-reparametrization (or
a time-change) of a translation flow. Notice though that the time-change is singular at
the fixed points Fix. R/ of  R (see Section 2.3.2 and Remark 2.3 for a more precise
description of the relation). One of the results which can be inferred from classical
results on translation flows (proved through Teichmüller dynamics) is that the typ-
ical flow (in the measure theoretical sense) in Umin is ergodic (with respect to �)
and the typical flow in U:min is ergodic when restricted to each minimal component
(see Section 2.1.4); it also follows that the associated foliation into flow trajector-
ies (or equivalently any Poincaré map of the flow) is uniquely ergodic (i.e., there
is a unique invariant probability transverse measure, the transverse measure induced
by �). Notice, though, that any locally Hamiltonian flow  R with Fix. R/¤ ; is not
uniquely ergodic (as a smooth flow on a compact manifold): indeed, in the presence
of singularities, there are always trivial invariant measures (Dirac deltas) supported
at singularities. The presence of such measures and their effect on ergodic integrals
plays a key role in this work.

1.2. Power deviations and asymptotic behaviour of ergodic averages

Let  R denote either a locally Hamiltonian flow onM in Umin or the restriction of  R

in U:min to a minimal component Mi , that by abusing the notation we will again
denote by M here, and assume that  R is ergodic (and the associated foliation is
uniquely ergodic). Thus, for every smooth observable f WM ! R and for almost
every4 initial point p 2M , the ergodic averages of f converge to the spatial averages,
i.e.,

lim
T!C1

IT .f; p/

T
D

Z
M

f d�; (1.1)

3Translation flows are unit speed linear flows on translation surfaces, namely surfaces
which are locally Euclidean outside a finite number of conical singularities with cone angles
of angle 2�k, k 2 N. On these surfaces, one has a well defined notion of direction and for
each � 2 S1 one can define a directional flow h�R D .h

�
t /t2R which moves points along lines

in direction � at unit speed.
4Equidistribution of almost very point follows simply by ergodicity and Birkhoff ergodic

theorem. Unique ergodicity yields a stronger conclusion if the observable if supported outside
the set of fixed points Fix. R/: in this case equidistribution, namely (1.1), holds for any regu-
lar p, i.e., any p such that its forward orbit is . t .p//t�0 is dense. One can show though, that
this is not the case for observables f which are non-zero at some fixed points, namely there are
regular points for which equidistribution does not hold.
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where

IT .f; p/ D IT .f; p;  R/ WD

Z T

0

f
�
 t .p/

�
dt:

With deviations of ergodic averages one refers to the study of the oscillations of
the ergodic integrals IT .f; p/ (or the related Birkhoff sum over an interval exchange
map obtained as Poincaré section) of an observable f WM ! R of zero meanZ

M

f .p/ d� D 0

over the orbit of (typical) point p 2 M . A distinctive phenomenon first discovered
experimentally by A. Zorich in the 1990s (see [68] and also [36,67]) is that deviations
of ergodic averages have polynomial nature, in the following sense: for a typical flow,
for suitable classes of observables, one can find an exponent � D �.f /with 0 < � < 1
such that, IT .f; p/ � O.T �/ for every regular point p, where we use the notation

IT .f; p/ � O.T
�/ , lim sup

T!1

log IT .f; p/
logT

D �: (1.2)

Kontsevich and Zorich explained this phenomenon heuristically using renormaliz-
ation and conjectured that, at least in the case of locally Hamiltonian flows with
non-degenerate fixed points,5 there is a full deviation spectrum, namely there are
exactly g positive exponents 0 < �g < � � � < �2 < �1 WD 1 and a corresponding fil-
tration of HgC1 � Hg � � � � � H1 of the space of smooth functions such that if
f 2 Hi nHiC1 with 1 � i � g, then

IT .f; p/ � O.T
�i /

(see [36]). Zorich gave in [68] a rigorous proof of this phenomenon for ergodic integ-
rals of a special class of functions f WM ! R, those which represent cohomology
classes.6 We included an outline of the arguments explaining these deviations in
the appendix in Section A.1.1 for the interested reader. Forni proved most of this
conjecture in [17] (with the exception of simplicity, namely the strict inequalities

5This is the framework proposed in the paper [36], where Kontsevich (based on joint
work with Zorich) formulates the conjecture on the existence of the deviation spectrum (which
later became known as Kontsevich–Zorich conjecture). They first state the result for homology
classes (or equivalently characteristic functions over interval exchange transformations) and
then suggest that the phenomenon should hold more generally if one considers, for simplicity,
locally Hamiltonian flows with Morse saddles and the space of smooth functions.

6In the setting of [68], this class of functions reduces to the study of Birkhoff sums of
piecewise constant functions over interval exchange maps.
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between �g < �g�1 < � � � < �1, which was later proved by Avila and Viana in [5],
while the positivity of �g > 0 is a crucial part of [17]) for smooth observables and
typical flows in the closely related class of translation flows on translation surfaces
(see footnote 3). In the setting of locally Hamiltonian flows, he considers the min-
imal case  R 2 Umin and has the further assumption that the (smooth) observable f
is compactly supported outside of a neighbourhood of the finite set of fixed points
Fix. R/ (or, more generally, in the Sobolev regularity setting, that at least the func-
tion f vanishes on Fix. R/, see [17] as well as [18]). We comment below on the
consequences of this assumption (see Remark 1.1).

The power spectrum of ergodic integrals is related in [17, 68] to Lyapunov expo-
nents of the Kontsevich–Zorich cocycle (so that in particular the strict inequalities
�g < �g�1 < � � �< �1 hold in view of the simplicity of the Lyapunov spectrum, which
is the result later shown by Avila–Viana in [5]); the filtration is described by Forni
in [17] in terms of kernels of what we nowadays call Forni’s invariant distributions.
We refer the interested reader to [5,16,18,68] for surveys of this phenomenon; in [16]
other instances of parabolic flows for which deviations can be studied via renomaliz-
ation are also mentioned.

A finer analysis of the behaviour of Birkhoff sums or integrals, beyond the size of
oscillations, appears in the work [6] by Bufetov, as well as in the work [40] by Marmi,
Moussa and Yoccoz. In [6], Bufetov studies limit theorems for ergodic integrals of
translation flows (and describe weak limit distributions) in terms of objects that he
calls Hölder cocycles (or, in the more general context of Markov compact, finitely-
additive measures) and turn out to be dual to Forni’s invariant distributions (see [6] for
details). In particular, he shows that for a full measure set of translation flows hR WD

.ht /t2R (with respect to the Masur–Veech measure), there exists g � 1 cocycles7

ˆi .t; x/WR �M ! R

for i D 2; : : : ; g (closely related to the limit shapes introduced independently at the
same time by Marmi, Moussa and Yoccoz in [40]), each of which has a pure power
growth, i.e., such that jˆi .T; x/j � O.T �i / (in the sense of (1.2) above), which,
together with the trivial cocycle ˆ1.t; x/ D t , encode the asymptotic behaviour of
the ergodic integrals along the flow, by providing an asymptotic expansion up to sub-
polynomial terms, i.e., such that

IT .f; p; hR/ D

Z T

0

f
�
hs.p/

�
ds

D c1T C c2ˆ2.T; p/C � � � C cgˆg.T; p/C err.f; T; p/;

7Here ˆi .t; x/ is a cocycle over the flow hR in the sense that ˆi .t C s; x/ D ˆi .t; x/C
ˆi .s; ht .x//.
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where the error term err.f; T; p/ is subpolynomial, i.e., for any � > 0, there exists
C� > 0 such that

j err.f; T; p/j � C�T �:

The constant of the linear leading term is c1 D
R
f d!, where ! is the underlying

translation surface area form, and the other coefficients can be computed evaluating
invariant distributions Di for i D 1; : : : ; g, i.e., ci D Di .f /.

1.3. Ergodicity of extensions

A classical way to visualize and study the behaviour of ergodic averages of an observ-
able f WM ! R along the flow  R on M is to consider the flow on M �R given by
coupling  R with the differential equation on R:

dy
dt
D f

�
 t .p/

�
; y 2 R; t 2 R:

One can see that the solution is given by the flow ˆ
f
R WD .ˆ

f
t /t2R on M � R given

by the formula

ˆ
f
t .p; y/ D

�
 t .p/; y C

Z t

0

f
�
 s.p/

�
ds
�
; p 2M; y 2 R; t 2 R: (1.3)

Thus, the flow ˆ
f
R is a skew product and provides an extension to M � R of the

flow  R on M (i.e., it projects on the M coordinate to the flow  R). The motion in
the R fiber is determined by the oscillations of the ergodic integrals of f along  R.
Notice thatˆfR preserves the infinite product measure �� Leb, where � is the invari-
ant measure for  R and Leb denotes the Lebesgue measure on R.

The study of these types of skew products goes back to Poincaré [48] and his
work on differential equations on R3 (in the case when  R is a smooth flow on the
torus); the study of infinite skew product extensions in greater generality became later
a central topic in infinite ergodic theory, see for example the monographs [1, 55].
A basic question is whether the flow ˆ

f
R is ergodic (see Section 2.1.3) or, if not,

what is a description of ergodic components. A necessary condition for ergodicity is
that f has zero mean, i.e.,

R
M
f d� D 0, since otherwise ˆfR has a drift and is not

even recurrent (see Section 2.1.3). In the setting of extensions, a property completely
opposite to ergodicity is reducibility. If the skew product on M �R is reducible (see
Section 2.1.3 for the definition), M � R is foliated into invariant sets for ˆfR, on
which the dynamics is conjugated to  R on M .

Taking a suitably chosen Poincaré section (see Section 2.3.3 for details), the erg-
odicity of ˆfR is equivalent to the ergodicity of a skew product automorphism T' of
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the strip I �R, where I D Œ0; 1/, of the form

T'.x; y/ D
�
T .x/; y C '.x/

�
; x 2 I; y 2 R; (1.4)

where T W I ! I is a rotation (i.e., the map T .x/ D x C ˛ mod 1) when M is a torus
(g D 1), or more in general, for any g � 1, an interval exchange transformation (see
Section 2.2.1), while 'W I ! xR is a function with singularities (i.e., points where the
function blows up) which are logarithmic (see Section 2.3.1 for the precise definition)
whenever  R has only non-degenerate saddles (while polynomial in presence of a
degenerate saddle).

Remark 1.1. Notice also that if f is compactly supported in M n Fix. R/ (or, more
generally, it vanishes on Fix. R/, see Section 4.2.2, in particular Proposition 4.1),
then the function ' in (1.4) is piecewise absolutely continuous (or even piecewise
smooth), in particular does not have logarithmic singularities. Thus, the singularit-
ies are a combined effect of the nature of the locally Hamiltonian parametrization,
together with the assumption that (the jet of) f does not vanish identically zero at
Fix. R/.

We stress that the problem of ergodicity of skew product extensions over IETs is
currently actively researched, but still widely open. See, for example, [8, 10, 19, 23,
26, 27, 49, 50] for some results in particular settings.

In the genus one case, the existence of ergodic skew products was first discovered
by Krygin, in [37], in the case where the flow  R has no singularities. Ergodicity
of extensions of typical Arnold flows8 (or, correspondingly, of skew products of the
form (1.4) where T is a rotation and ' has one asymmetric logarithmic singularity,
see Section 2.3.1 for definitions), was proved by Fayad and Lemańczyk in [13], where
they proved ergodicity for a full measure set of rotation numbers. This case is partic-
ularly delicate since the underlying Arnold flows are mixing; in a related easier case
(namely the case when T is a rotation but ' in (1.4) has one symmetric logarithmic
singularity, see Section 2.3.1), ergodicity was proved previously by Lemańczyk and
the first author, see [21].

Very little is understood in the case of infinite skew product extensions (i.e., exten-
sions by a non-compact fiber, for which the natural invariant measure is infinite) of
locally Hamiltonian flows in higher genus g � 2, even in the case when f WM ! R

has compact support in M n Fix. R/ and the cocycle ' is piecewise-smooth (see
Remark 1.1) or even piecewise-constant. Some specific results for piecewise constant
or piecewise absolutely continuous cocycles over IETs with9 d > 2 were proved for
example in [10, 15, 23, 39].

8Recall that an Arnold flow is the restriction to the minimal component of a locally Hamilto-
nian flow in genus one with one saddle and one centre, see Figure 1 (a).

9We always denote by d the number of exchanged intervals.



On Birkhoff integrals for locally Hamiltonian flows 239

We considered the case of a locally Hamiltonian flow  R with non-degenerate
saddles and a general observable f WM ! R and, correspondingly, of a cocycle '
with logarithmic (symmetric) singularities in our previous joint work [22], where we
showed the existence of ergodic extensions in any genus, but for a very restrictive class
of locally Hamiltonian flows. More precisely, in [22] we could treat only the special
(measure zero) class of locally Hamiltonian flows in Umin for which the Poincaré sec-
tion can be chosen to be a self-similar interval exchange transformation10 and restrict
the observable f to belong to an infinite-dimensional (but finite codimension g)
space. For extensions of flows in this special class, though, we could provide a com-
plete description of the ergodic behaviour and prove a dichotomy between ergodicity
and reducibility. One of the main results of this paper is to show that this dichotomy
actually holds also for a full measure set of such minimal locally Hamiltonian flows
(see the Main Theorem 1.2 below).

1.4. Main results

One of the main results of this paper is that infinite ergodic extensions exist in any
genus g � 1 for a full measure set of (minimal) locally Hamiltonian flows with non-
degenerate fixed points (with respect to the Katok fundamental class for each stratum,
see Section 2.1.2). More precisely, we are able to extend the result previously proved
in [22] only for a measure zero class of self-similar IETs to a full measure set of
locally Hamiltonian flows, by proving the following dichotomy for the dynamics of
the extensions.

Theorem 1.2 (Ergodic or reducible extensions of locally Hamiltonian flows). For
a full measure set of locally Hamiltonian flows  R with non-degenerate saddles
in Umin, for any � > 0, for any f in a infinite-dimensional (finite codimension) sub-
space K � C2C�.M/, we have the following dichotomy:

• if
P
x2Fix. R/

jf .x/j ¤ 0, then the extension ˆfR is ergodic;

• if
P
x2Fix. R/

jf .x/j D 0, then the extension ˆfR is reducible.

We will comment later on the full measure set, which is explicitly described by
a new Diophantine-type condition (see Section 3.2.2 for the definition) as well as on
the infinite-dimensional (invariant) subspace K (which will be defined as the kernel
of g invariant distributions, see Section 7.2).

10These IETs are also known as periodic-type IETs in the literature, see for example [56].
In [22] we further assume that the periodic-type IET is of hyperbolic type, see [22] for details.
Explicit examples of locally Hamiltonian flow of hyperbolic periodic type were constructed
in [10].
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The proof of this ergodicity result takes as starting point our results on deviations
of ergodic averages11 of f , which is of independent interest and that we now state.
As it is clear from the dichotomy, to produce ergodic extensions one needs to study
observables f WM ! R which do not vanish at (at least one) the saddle points12

in Fix. R/.

For ergodic integrals of (typical) minimal locally Hamiltonian flows in Umin (see
Theorem 1.3), as well as for minimal components of (typical) locally Hamiltonian
flows in U:min (see Theorem 1.4), we give asymptotic descriptions of the deviation
spectrum, as follows.

Theorem 1.3 (Asymptotic power spectrum of ergodic integrals (minimal case)). For
a full measure set of locally Hamiltonian flows on M in Umin with non-degenerate
saddles, there exist a power spectrum 0 < �g < � � � < �2 < �1 WD 1, where g is the
genus of the surfaceM and, for any � > 0, invariant distributionsDi WC 2C�.M/!R,
i D 1; : : : ; g, such that, for every f 2 C 2C�.M/, we have the asymptotic expansionZ T

0

f
�
 t .x/

�
dt D

gX
iD1

Di .f /ui .T; x/

C

X
�2Fix. R/

f .�/u� .T; x/C errb.f; T; x/;

where, for 1 � i � g, ui are smooth cocycles ui WR �M ! R over the flow  R such
that

lim sup
T!C1

log kui .T; � /kL1.M/

logT
D �i ; (1.5)

while, for � 2 Fix. R/, u� are smooth cocycles u� WR �M ! R over  R which
grow sub-polynomially pointwise and in Lp-norm for every p � 1, i.e., such that

lim sup
T!C1

log ju� .T; x/j
logT

D 0 for a.e. x 2M;

lim sup
T!C1

log ku� .T; � /kLp.M/

logT
D 0 for all p � 1;

(1.6)

and errb is a uniformly bounded error term, i.e.,

sup
t2R
k errb.f; t; � /kL1 < C1: (1.7)

11In particular, to prove ergodicity we need to show a form of tightness of Birkhoff sums,
which, combined with enough oscillations thanks to the presence of logarithmic singularities,
allows to apply classical essential values (see [55]).

12Since we are here assuming that R 2Umin has only non-degenerate fixed points, Fix. R/

consists of simple saddles only, see Section 2.1.1.
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Furthermore, for every � 2 Fix. R/ and for �-almost every x 2 M , the values of
the cocycle t 7! u� .t; x/ are equidistributed on R, i.e., for any pair of intervals
J1; J2 � R, we have

lim
T!C1

Leb¹t 2 Œ0; T � W u� .t; x/ 2 J1º
Leb¹t 2 Œ0; T � W u� .t; x/ 2 J2º

D
jJ1j

jJ2j
: (1.8)

Finally, if we set

err.f; t; x/ WD
X

�2Fix. R/

f .�/u� .t; x/C errb.f; t; x/; (1.9)

as soon as f does not vanish identically on Fix. R/, for �-almost every x 2M also
the values of the cocycle t 7! err.f; t; x/ are equidistributed on R.

The Main Theorem 1.3 completes in particular the proof of the Kontsevich–Zorich
conjecture, in its original formulation for smooth functions over locally Hamiltonian
flows with non-degenerate saddles (as formulated in [36], see the above Section 1.2).
The result should be seen as a generalization (for smooth13 functions) of both the
results by Forni [17] (since it proves the existence of a power deviation spectrum)
and Bufetov [6] (since we show the existence of asymptotic cocycles). While the
observables in both Forni’s [17] and Bufetov’s [6] works vanish on Fix. R/, we allow
the observables to be non-zero at singularities in Fix. R/. This leads to the presence
in the asymptotic expansion of k new cocycles, where k is the cardinality of Fix. R/,
one for each saddle � 2 Fix. R/. We will call these u� singular cocycles, since they
describe the fluctuations of the ergodic averages due to the presence of singularities.
While these cocycles u� have sub-polynomial deviations, as shown by (1.6), they are
not uniformly bounded.

Comparison with Forni’s and Bufetov’s works. To further compare the result with
Forni’s [17] and Bufetov’s [6] works, let us consider the global error term err.f; t; �/
defined as in (1.9) combining the bounded error errb.f; t; �/ together with the co-
cycles u� , � 2 Fix. R/. Then one can see that err.f; t; �/ has always sub-polynomial
pointwise growth (in view of (1.6) combined with (1.7)), but we have a dichotomy:
on one hand, if f does vanish identically on Fix. R/, err.f; t; �/ coincides with
errb.f; t; �/ and is uniformly bounded. In this case, the g cocycles ui , which lead
the power growth, can be shown a posteriori to coincide with the Bufetov functionals

13The class of functions considered by Forni [17, 18] and Bufetov [6] is more general:
smoothness is not required, but only a Sobolev condition in [17] (see also [18] for a more
general result on the cohomological equation) and a weak Lipschitz property in Bufetov’s work,
see [6] for details.
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in [6] up to a bounded error. On the other hand, as soon as f does not vanish identic-
ally on Fix. R/, err.f; t; x/ cannot be controlled uniformly: for �-almost every x, the
function t 7! err.f; t; x/ is unbounded, in view of the equidistribution of err.f; t; �/ in
this case (see the final part of Theorem 1.3, which follows directly from the ergodicity
of the extensions proved in the Main Theorem 1.2, more precisely from an application
of the ratio ergodic theorem in infinite ergodic theory).

This novel phenomenon is an effect of the presence of infinite tails, due to the
assumption that f is non-zero at (some) singularities and the slowing down of tra-
jectories near Hamiltonian saddles. We are nevertheless able to control the error term
err.f; t; �/ pointwise almost everywhere and in average, in any Lp-norm with p � 1,
in view of (1.6), (1.7) and (1.9).

Minimal components in the non-minimal setting. Another novelty of our work
is that, while Forni and Bufetov in [6, 17] study only minimal flows, we prove the
existence of an asymptotic expansion also for ergodic integrals of non-minimal flows
in U:min. More precisely, we prove the following result for a minimal component
M0 �M of a typical flow on U:min.

Theorem 1.4 (Asymptotic power spectrum for non-minimal components). For a full
measure set of locally Hamiltonian flows onM in U:min with non-degenerate saddles,
for any minimal componentM0 �M of  R, if g0 denotes the genus ofM0, there exist
a power spectrum 0 < �g0 < � � �< �2 < �1 WD 1 and, for any � > 0, g0 invariant distri-
butionsDi WC 2C�.M0/!R, i D 1; : : : ;g0, and g0 smooth cocycles ui WR�M0 ! R,
for i D 1; : : : ; g0, each of which satisfies (1.5), such that for every f 2 C 2C�.M0/,
we have an asymptotic expansionZ T

0

f
�
 t .x/

�
dt D

g0X
iD1

Di .f /ui .T; x/C err.f; T; x/;

where, if f vanishes on Fix. R/ \M0, the error term err.f; T; �/ satisfies

lim sup
T!C1

log k err.f; T; � /kL1.M0/
logT

� 0; (1.10)

while if f is not identically zero on Fix. R/ \M0, then

lim sup
T!C1

log j err.f; T; x/j
logT

D 0 for �-almost every x 2M0; (1.11)

and furthermore

lim sup
T!C1

log k err.f; T; � /kLp.M0/
logT

D 0 for every p � 1: (1.12)
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Notice that in this case, when restricting to a minimal component of  R 2U:min,
we only claim that err.f; T; �/ grows sub-polynomially (which is the same type of
estimate proved by Bufetov for the error term in the symmetric case). This result
is in particular an extension of Bufetov’s work [6] to the restriction to a minimal
component in the non-minimal case  R 2 U:min.

Thus, Theorems 1.3 and 1.4 complete the study of deviations of ergodic averages
of smooth functions over locally Hamiltonian flows with non-degenerate saddles. The
study of locally Hamiltonian flows with degenerate-saddles leads to other new phe-
nomena and additional polynomial terms in the asymptotic expansion and is treated
in the paper [20] by M. Kim and the first author.

The proof and the Diophantine-like conditions. The proof of the asymptotic expan-
sion in Theorem 1.3, which will be proved at the same time than Theorem 1.4, follows
a completely different approach to both Forni’s [17] and Bufetov’s [6] works and
is inspired by the work of Marmi–Moussa–Yoccoz [39] on solving the cohomolo-
gical equation for (Roth-type) interval exchange transformations (and the follow up
work [43] by Marmi and Yoccoz). We comment in detail on this strategy below in
Section 1.5.

An advantage of this different approach is that it allows to give a description of
the full measure set of locally Hamiltonian flows for which the result holds in terms of
a Diophantine-type condition. Furthermore, it also provides a different construction
of the cocycles which describe the asymptotic behaviour of ergodic integrals in terms
of the correction operators.

The full measure Diophantine-like conditions (which are different for Theorem 1.3
and Theorem 1.4, respectively) are expressed more precisely on the interval exchange
transformations which arise as Poincaré sections of the flows. We introduce (in Sec-
tion 3.2) two such conditions, both of which we show to be of full measure. The first,
that we call Uniform Diophantine Condition (or UDC), is used to prove the existence
of the asymptotic expansion in both Theorem 1.3 and Theorem 1.4 up to a subpoly-
nomial error. In the case of minimal flows in Umin, to improve the estimates on the
error and show in particular that the error is equidistributed (see the second part of
Theorem 1.3), we need to assume a more restrictive condition, namely the Symmet-
ric Uniform Diophantine Condition (or SUDC). For this result indeed we also need to
crucially exploit the cancellations proved by the second author in [59] to prove typical
absence of mixing and these require further assumptions on the IET to hold.

Both Diophantine-like conditions expressed in terms of the matrices of the Rauzy–
Veech cocycle, which often plays the role of multi-dimensional continued fraction in
the study of IETs. These conditions, similarly to the Roth-type condition for IETs
introduced by Marmi–Moussa–Yoccoz in [39] (and its variations, see for example [39,
41–43]), impose constraints both on the growth of the matrices of (an acceleration of)
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the cocycle, as well as requests on the hyperbolic behaviour of the matrix product, in
the form of Oseledets genericity requests. In addition, we require effective Oseledets
control, which in turns allow to control certain Diophantine series (see Section 3.3).
We point out that similar conditions also appear in the recent work [25] on rigidity of
generalized interval exchanges.

1.5. Correction of cocycles

We comment now on the methods and the proofs and compare our strategy to the one
developed by Marmi, Moussa and Yoccoz in their work [40].

1.5.1. Reduction to skew-products over IETs. First of all we work with Poincaré
maps, both to study the flow  R and its extensionsˆfR; it is well known that Poincaré
maps of area-preserving flows, in suitably chosen coordinates, are interval exchange
transformations (for short IETs), namely, piecewise-isometries of the interval I D
Œ0; 1/ (the definition is recalled in Section 2.2.1). Moreover, any minimal locally
Hamiltonian flow admits a representation as special flow over the IET

T W I ! I;

which arises as a Poincaré map (see Section 2.2.2 for a definition). The roof function

r W I ! xRC;

which arises from this representation, has singularities at the discontinuities of T ,
which, in case of simple (non-degenerate) saddles, are of logarithmic type (formally
defined in Section 2.3.1), i.e., as x ! x˙i approaches a discontinuity xi 2 I of T
from the right or left, r.x/ blows up as C˙i j log jx � xi jj , where the constants C˙i
are positive and are globally symmetric, namelyX

CCi D
X

C�i ;

for typical flows in Umin, while asymmetric for minimal components of typical flows
in U:min.

Fix now an observable f WM!R which is non-zero on Fix. R/. To study ergodic
integrals, we build the extensionˆfR onM �R (given by (1.3)). Choosing a Poincaré
section for the extension which projects on I , namely of the form I �R, the Poincaré
first return map of ˆfR (in suitable coordinates) turns out to be a skew product over
the IET T of the form (1.4), in which the cocycle ' has logarithmic singularities
(where the constants C˙i here can be positive or negative, or zero if the function is
zero on Fix. R/, in which case there are no singularities, see Remark 1.1). We have
now reduced the study of ergodic integrals and ergodicity of extensions to the study of
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Birkhoff sums of cocycles with logarithmic singularities over IETs and the ergodicity
of skew products over IETs with logarithmic singularities. In particular, we want to
understand the growth of the Birkhoff sums

'.n/ WD

n�1X
kD0

' ı T k

of ' over T , as they describe the movement in the R-component of the iterates of the
skew product T' in (1.4).

1.5.2. Marmi–Moussa–Yoccoz corrections. The growth of Birkhoff sums '.n/ of
a piecewise smooth cocycle (continuous on each continuity interval of T ) were stud-
ied by Marmi–Moussa–Yoccoz in [39] (to study the cohomological equation14 for
IETs). The main result proved in [39] for Birkhoff sums is that, under a (full meas-
ure) Diophantine condition on the IET T , one can correct the cocycle ', i.e., subtract
a piecewise-constant function � constant on the continuity intervals of T so that the
Birkhoff sums

.' � �/.n/ D

n�1X
kD0

.' � �/ ı T k

of the corrected cocycle ' � � are uniformly bounded in n and x.
Birkhoff sums are studied using renormalization, namely inducing the IET and,

correspondingly, the cocycle ' on smaller and smaller nested subintervals .I .k//k2N

(defined using an acceleration of Rauzy–Veech induction as renormalization algor-
ithm). The crucial phenomenon evidenced in [39] is that renormalized Birkhoff sums,
which we denote S.k/' (see Section 3.1.5 for the definition) look more and more
piecewise constant observables (an heuristic explanation for this is given in Sec-
tion A.1). This guarantees that it is possible to subtract ' a piecewise constant observ-
able � (the correction) so that the corrected cocycle ' � � has exponentially small
renormalized Birkhoff sums. An heuristic outline of this argument (for which we
thank the referee) is included in Section A.1 for the curious reader (see Section A.1.2).

14Given an IET T and a function 'W I ! R,  W I ! R is a solution of the cohomological
equation for T with datum ' if  ı T � D '. Marmi–Moussa–Yoccoz in [39] identify a (full
measure) Diophantine-like condition on T (called Roth-type condition) and a subspace (of finite
codimension) of the space of cocycles ' which are piecewise absolutely continuous on each
continuity interval of T , for which one can find a continuous solution  to the cohomological
equation ı T � D '. By a theorem of Gottschalk and Hedlund such a solution can be shown
to exist if one can prove that there exists a point x0 such that the Birkhoff sums '.n/.x0/ are
bounded independently on n 2 N. Marmi–Moussa–Yoccoz then show that there exists a finite
codimension subspace of cocycles ' for which Birkhoff sums are uniformly bounded.
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An observable whose renormalized Birkhoff sums tend to zero exponentially is then
easily shown (by an interpolation argument) to have uniformly bounded Birkhoff
sums (exploiting the Diophantine-like condition on the IET).

Deviations for piecewise constant cocycles. For cocycles which are piecewise con-
stant on each continuity interval, the phenomenon of power deviations of ergodic
averages was proved by Zorich in [68] (giving in particular the result for ergodic
integrals of functions which represent cohomology classes mentioned in Section 1.2,
see also footnote 6, since these integrals can be reduced to Birkhoff sums of piecewise
constant cocycles), according to the following blueprint: piecewise constant cocycles
of this form can be identified with vectors in Rd (identifying the piecewise constant
cocycle with the vector of values taken on each of the d exchanged intervals). Study-
ing the action of renormalization on these cocycles reduces to study a product of
integer-valued matrices (the Rauzy–Veech cocycle). Oseledets’ theorem guarantees
the existence of Oseledets filtration and Oseledets exponents. At times, which grows
exponentially like the top exponents, special Birkhoff sums of mean zero observables
then grow exponentially like one of the lower exponents and this explains the power
deviations (see Section A.1, in particular Section A.1.1, for a longer heuristic explan-
ation of the phenomenon). From the approximation of (special) Birkhoff sums of
piecewise smooth observables by piecewise constant cocycles explained above, one
can in principle recover the power deviations spectrum for piecewise smooth observ-
ables from the phenomenon for piecewise constant ones (providing a variation on the
direct proof given by Forni in [17]).

Corrections of cocycles with logarithmic singularities. In this paper, we are inter-
ested, as motivated above (see the reduction at the beginning of Section 1.5), in
cocycles with logarithmic singularities. As in the case of piecewise smooth observ-
ables, if we are able to control the evolution of the size of renormalized Birkhoff
sums S.k/', k 2 N, of an arbitrary observable ' with logarithmic singularities up
to a piecewise constant observable, we can hope to prove the deviation spectrum res-
ult deducing it from the deviations phenomenon for this special class of observables.
Although the main steps of our correction procedure are inspired by the construction
introduced in [39] (and later developed in [43]), there are considerable differences
and difficulties to successfully implement this strategy in this more general setting.
The major and most evident one is that, for observables with logarithmic singular-
ities (as for arbitrary L1 observables), the original approach breaks down from the
start, since neither their supremum norm (since functions with logarithmic singularit-
ies are always unbounded) nor that of their derivatives of the sequence of renormalized
Birkhoff sums is finite. We therefore need to:
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(1) find an alternative way (in practice, a norm on the space of observables) to
measure the error (which is the defect of a given renormalized Birkhoff sum to being
piecewise constant) picked up renormalizing Birkhoff sums;

(2) show that as one renormalizes, this error stays ideally bounded, or at least
does not grow too much under renormalization (i.e., grows slower than the Birkhoff
sums of the piecewise constant correction); and

(3) show that controlling this error in terms of this new norm suffices to establish a
deviation spectrum or any other ergodic-theoretic result one might be after. Hereafter
we explain how we address all these issues.

The key idea to treat cocycles with logarithmic singularities, which are unboun-
ded, is to work with the normalized L1-norm, which to an observable 'W I ! R

associates
1

jI j

Z
I

j'.x/j dx:

To control the difference between the (normalized) L1-norm of a cocycle with logar-
ithmic singularities and piecewise-constant cocycles, we also introduce a norm den-
oted by LV (see Section 4.2.1) on the cocycles we work with, which is induced by
a Banach space structure (on a larger space of cocycles). The technical result at the
heart of this paper (Theorem 6.1) shows that the normalized L1-norm can indeed
be controlled under renormalization and exploited to build correction operators (see
Section 6.1), which bound and control the normalized L1-norm of the sequence�

S.k/'
�
k2N

:

The use of both norms has already appeared in our previous work [22], where we had
built corrections15 for the (measure zero set of) IETs of hyperbolic periodic type. To
extend the result to almost every IET requires changes also to the basic step of the
construction that we used there, as well as the introduction of the above mentioned
delicate Diophantine-type condition on the IET. We refer the interested reader to Sec-
tion 6 (and in particular the outline of the strategy to build the correction operators
given in Section 6.1.2) for further details on the differences.

A qualitatively different behaviour appears in the control of Birkhoff sums of '
depending on whether the logarithmic singularities of ' are symmetric or not. Rough-
ly, while in the asymmetric case, we can only show the average of renormalized
Birkhoff sums grow subexponentially, namely for any � > 0, we have that the nor-
malized norm

kS.k/'kL1 � Ce
�k

15In [22], for IETs of hyperbolic periodic type, we build correction operators for cocycles
with symmetric logarithmic singularities and we then exploit the result to build ergodic exten-
sions, but we do not work out the full deviation spectrum and asymptotic cocycles formalism.
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for all k 2 N (which is sufficient for the deviations result), in the symmetric case,
we show that the normalized kS.k/'kL1 , after correction by a suitable piecewise
constant observable, simply do not grow (i.e., there is a uniform bound). The proof
of this exploits the delicate cancellations among contributions of singularities which
were proved by the second author in [59], as well as the new SUDC Diophantine-type
condition introduced in this paper.

The second essential ingredient is to show that controlling the normalized L1-
norm suffices to establish deviation of ergodic averages and ergodicity of extensions.
In a nutshell, the cocycles ui WR �M ! R which lead to understanding the beha-
viour of ergodic integrals (see the statement of Theorem 1.3) correspond (after the
reduction to skew-products) to the piecewise constant cocycles which give the cor-
rections. While the difference between deviations of ergodic averages of piecewise
smooth cocycles and their corrections is controlled in the sup norm, now we control
average L1-norms. A new technical hurdle is therefore to find a way of exploiting
the L1-estimates obtained to prove estimates on the growth of Birkhoff sums, which,
because of unboundedness, necessarily have to be non-uniform in the initial point.
The strategy to deal with this technical difficulty uses that the L1-norm still controls
the sup norm on large sets, although the control becoming worse as the set we choose
grows bigger (we refer to Section 7 and in particular to Section 7.1.3 for more details).

Finally, to prove the result on the ergodicity of extensions in the case of minimal
locally Hamiltonian flows in Umin (which give rise to symmetric logarithmic singular-
ities), the sharper bound on corrected Birkhoff sums (namely that corrected Birkhoff
sums have uniformly boundedL1-norm) is essential. This bound indeed show that the
sequence of renormalized Birkhoff sums (seen as a sequence of random variables) is
tight. This, combined with partial rigidity of the IET in the base (a result which dates
back to Katok [31]) and the presence of logarithmic singularities (which comes from
the assumption that f is non-identically zero on Fix. R/), allows to apply a quite
standard ergodicity criterion based on the existence of essential values (see Proposi-
tion 8.4 for the precise incarnation of the criterion which we use in this paper).

Structure of the paper

The following Section 2 contains background material on locally Hamiltonian flows
and their extensions (see, in particular, Sections 2.1.1–2.1.3 for basic definitions). We
also summarize (in Section 2.1.4) the typical ergodic properties of locally Hamilton-
ian flows and explain their reductions to special flows, as well as the reduction of their
extensions to skew products over IETs (see in particular Section 2.3).

Section 3 is dedicated to the Diophantine-like conditions on the IET. We first recall
basic definitions and properties of the Rauzy–Veech induction procedure and the asso-
ciated cocycle (see Section 3.1 to Section 3.1.7). Using Rauzy–Veech induction, we
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can then define the two Diophantine conditions (the UDC and the SUDC conditions)
that are used in the main results and prove that they have full measure (see Section 3.2
and in particular Theorem 3.8).

In Sections 4, 5 and 6 we study cocycles with logarithmic singularities over IETs.
In the first part, Section 4, we introduce the new norms on the space of cocycles with
logarithmic singularities which we are going to use. This addresses the static part of
the problem, i.e., provide the tools to show that it is enough to control the L1-norm
of renormalized Birkhoff sums to be able to do correction using piecewise-constant
observables without making too large a mistake. It remains to show that the normal-
ized L1–norm do not grow too fast under renormalization: this is the dynamic part,
which is addressed in Section 6. First, in Section 5, we prove the crucial estimates
which will be needed to control in Section 6 the error which is made at each step of the
renormalization procedure when approximating a cocycle with logarithmic singular-
ities with a piecewise constant cocycle. The different type of estimates which provide
the tools to prove the different qualitative growth of corrected cocycles in the symmet-
ric (uniformly bounded) versus the asymmetric (slowly growing) case are presented
in Section 5.2 and Section 5.3 respectively. With the input of these estimates, we then
proceed in Section 5 at investigating the renormalization process induced on such
cocycles by performing Rauzy–Veech induction. It is in Section 6 that the correction
operators, which provide the desired piecewise constant correction, are constructed
and the above mentioned Theorem 6.1 about existence and properties of the correc-
tion operators is proved.

The asymptotic deviation spectrum (see the first part of Main Theorem 1.3) is
proved in Section 7.2, where the asymptotic of ergodic integrals is expressed in terms
of the cocycles associated to the correction operators. In Section 8 we state the ergodi-
city criterion that we then apply to prove ergodicity of extensions. After discussing
also the reducibility case, we then prove Main Theorem 1.2, as well as the second part
of Main Theorem 1.3. Some technical but standard proofs in this part are relegated to
the appendix (in particular, the proofs of the ergodicity criterion and of a cohomolo-
gical reduction result which is needed for the reducibility part).

2. Definitions, background material and reductions

In this section we recall some basic definitions and background material concerning
locally Hamiltonian flows (Section 2.1) and their extensions (Section 2.1.3), includ-
ing a brief summary in Section 2.1.4 of our current knowledge of their typical chaotic
properties. We also give the definition of special flows (see Section 2.2.2) and skew-
products (in Section 2.2.3) over interval exchange transformations (defined in Sec-
tion 2.2.1). We finally recall in Section 2.3 the representation of locally Hamiltonian
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(a) Centre (b) Simple saddle (c) Multisaddle

Figure 2. Type of singularities of a locally Hamiltonian flow.

flows to special flows (see Section 2.3.2) with logarithmic singularities (defined in
Section 2.3.1) and the reduction of the study of their extensions to skew products over
IETs, see Section 2.3.3.

2.1. Locally Hamiltonian flows

Let .M; !/ be a compact, connected, orientable surface with a fixed smooth area
form !. A smooth area preserving flow  R D . t /t2R on M is a smooth flow on M
which preserves the measure � associated to !. These flows are also called locally
Hamiltonian flows or multi-valued Hamiltonian flows in the literature, in view of their
interpretation as flows locally given by Hamiltonian equations, see the introduction.

It turns out that such smooth area preserving flows on M are in one-to-one cor-
respondence with smooth closed real-valued differential 1-forms as follows. Given a
smooth, closed, real-valued differential 1-form �, let X be the vector field determined
by � D iX!, where iX denotes the contraction operator, i.e., iX! D !.�; �/ and con-
sider the flow  R onM given by X . Since � is closed, the transformations  t , t 2 R,
are area-preserving. Conversely, every smooth area-preserving flow can be obtained
in this way.

Let Fix. R/ denote the set of fixed points (also called singularities) of the flow R.
We will always require that Fix. R/ is a finite set, so in particular singularities are
isolated. Remark that when g � 2, Fix. R/ is always not empty. Since  R is area-
preserving, singularities in Fix. R/, as shown in Figure 2, can be either centres
(Figure 2 (a)), simple saddles (Figure 2 (b)) or multi-saddles (i.e., saddles with 2k
prongs, k � 2, see Figure 2 (c) for k D 3). For g D 1, i.e., on a torus, if there is a sin-
gularity then there has to be another one and we get an Arnold flow as in Figure 1 (a).

We call saddle connection a flow trajectory from a saddle to a saddle and a saddle
loop a saddle connection from a saddle to the same saddle (see Figure 3). A peri-
odic component is either a (maximal) punctured disk or a (maximal) cylinder filled
with closed (i.e., periodic) trajectories (see Figure 3 (a) and Figure 3 (b), respectively).
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(a) Periodic island (b) Periodic cylinder (c) g D 2 minimal component

Figure 3. Periodic and minimal components.

A minimal component is a subsurfaceM 0 �M , possibly with boundary, such that any
trajectory different than a fixed point and a saddle connection is dense inM 0. Periodic
and minimal components are bounded by union of saddle connections.

2.1.1. Open sets, genericity and minimality. Let us denote by F the set of smooth
closed 1-forms on M (i.e., locally Hamiltonian flows) with isolated zeros. One can
define a topology on F by considering perturbations of closed smooth 1-forms by
(small) closed smooth 1-forms.16 We say that a condition is generic (in the sense of
Baire) if it holds for flows described by an open and dense set of forms with respect
to this topology.

Let A � F be the subset of Morse 1-forms (adopting the notation introduced by
Ravotti [52]), namely forms which are locally the differential of a Morse function
(i.e., a function that has non-degenerate zeros, so that the Hessian at every fixed point
is non-degenerate). The set A of Morse 1-forms is then generic. Locally Hamilto-
nian flows corresponding to forms in A have only non-degenerate fixed points, i.e.,
centres and simple saddles (see Figures 2 (a) and 2 (b)), as opposed to degenerate
multi-saddles (as in Figure 2 (c)). We denote by As;c the set of 1-forms in A with s
saddle points and c centres. By the Poincare–Hopf theorem, c � s D 2� 2g. Further-
more, each As;l is open and their union A is dense in F (see, e.g., [52, Lemma 2.3]).

For every 1-form in A, the surface M splits into periodic components and (up
to g) minimal components (as proved independently by Maier [45], Levitt [38] and
Zorich [68]). Notice that if there is a unique minimal component (which is equal to
the whole surface M ), then c D 0 (since if there is a centre, then it is associated to a
periodic component) and s D 2g � 2.

Moreover, one can show that if the flow  R given by a closed 1-form � has a
saddle loop homologous to zero (i.e., the saddle loop is a separating curve on the

16Let �, �0 be two smooth closed 1-forms. We say that �0 is an �-perturbation of � if for
any x 2 M there exists coordinates on a simply connected neighbourhood U of x, such that
�jU D dH and .�0 � �/jU D dh, where khkC1 < �kHkC1 .



K. Frączek and C. Ulcigrai 252

surface), then the saddle loop is persistent under small perturbations (see [68, §2.1]
or [52, Lemma 2.4]). In particular, the set of locally Hamiltonian flows which have
at least one saddle loop is an open set, which consists of non-minimal flows. The set
U:min mentioned in the introduction is an open and dense set of this open set (where
the open condition guarantees asymmetry in the special flow representation recalled in
Section 2.3.2; we refer to [52] for the precise definition, see [52, Notation 3.3, §3.1]).
The set Umin is given by the interior (which one can show to be non-empty) of the
complement of U:min, i.e., the set of locally Hamiltonian flows without saddle loops
homologous to zero.17

2.1.2. Measure class and typicality. Let us fix an open set As;c of closed 1-forms
with c centres and s (simple) saddles. A measure-theoretical notion of typical on As;c

can be defined on each As;c as follows, by using the Katok fundamental class (intro-
duced by Katok in [30], see also [46]), i.e., the cohomology class of the 1-form �

which defines the flow. Let 1; : : : ; n be a base of the relative homology

H1
�
M;Fix. R/;R

�
;

where n D 2g C s C c � 1, and consider the period map

‚.�/ D

�Z
1

�; : : : ;

Z
n

�

�
2 Rn:

The map ‚ is well defined in a neighbourhood of � in As;c and one can show that it
is a complete isotopy invariant (see [30], or also [52, Proposition 2.7]).

The pull-back Per� Leb of the Lebesgue measure class (i.e., class of sets with
zero measure) by the period map gives the desired measure class on closed 1-forms
in As;c . When we use the expression typical below (or typical in Umin or U:min) we
mean full measure in each As;c with respect to this measure class on each As;c (or on
each open subset of As;c contained in the union Umin or U:min).

2.1.3. Ergodicity and reducibility of extensions. Let ˆfR WD .ˆ
f
t /t2R on M � R

denotes the extension of an ergodic flow  R on M by f WM ! R given by the for-
mula (1.3). Recall that, if  R preserves a measure �, ˆfR preserves the (infinite)
measure � � Leb. The flow ˆ

f
R is recurrent if � � Leb-almost every point is recur-

rent. A result by Atkinson [3] (which holds for 1-dimensional extensions of ergodic

17Note that saddle loops non-homologous to zero (as well as saddle connections) disap-
pear after arbitrarily small perturbations; therefore neither the set of 1-forms with saddle loops
(or more generally saddle connections) non-homologous to zero, nor its complement are open
(see [52] for details).
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flows) shows that ˆfR is recurrent if and only ifZ
M

f d� D 0:

We recall that ˆfR is ergodic with respect to the (infinite) measure � � Leb if
for any measurable set A which is invariant, i.e., such that � � Leb.ˆft A4A/ D 0
for all t 2 R, either � � Leb.A/ D 0 or � � Leb.Ac/ D 0, where Ac denotes the
complement.

Remark that if f D 0, the phase spaceM �R for the corresponding trivial exten-
sion given byˆft .x;y/D . t .x/;y/ is foliated in invariant sets of the formM � ¹yº,
y 2 R. In this sense, the dynamics is reduced to the dynamics of the surface flow  R.
We say that ˆfR is (topologically) reducible if it is isomorphic to ˆ0R and the iso-
morphism GWM � R ! M � R is of the form G.x; y/ D .x; y C g.x//, where
gWM ! R is continuous. So the reducibility of ˆfR is equivalent to asking thatZ t

0

f . sx/ ds D g. tx/ � g.x/

for every regular point x 2 M and any t 2 R. In this case, the phase space is again
foliated into invariant sets for ˆfR of the form ¹.x; y C g.x//; x 2 M º, y 2 R. On
each leaf the action of ˆfR is conjugated to  R on M .

2.1.4. Typical chaotic properties of locally Hamiltonian flows. Let us briefly sum-
marize the key chaotic properties of locally Hamiltonian flows and some of the recent
works on this topic. We already recalled in the introduction, in view of the relation
between locally Hamiltonian flows and translation flows (see also Remark 2.3), the
seminal works by Keane [32] and Masur [44] and Veech [61] show that a full measure
set of locally Hamiltonian flows in Umin are minimal and ergodic and that for almost
every flow in U:min, the restriction to each minimal component is ergodic (and in
both cases the underlying foliation in uniquely ergodic).

Mixing depends crucially on the type of singularities of the flow. For a (non-
generic) locally Hamiltonian flow with at least one degenerate saddle (see, e.g., Fig-
ure 2 (c)), mixing was proved in the 1970s (by Kochergin in [33]). When � 2 A and
all saddles are simple, one has the following dichotomy: in Umin, the typical locally
Hamiltonian flow is weakly mixing, but it is not mixing in view of work [58, 59] by
the second author (see also [34, 35] and [54] for previous special cases of this result).
There exist nevertheless exceptional mixing flows, see the work by [9], which pro-
duces sporadic examples in g D 5. If � 2 U:min, the restriction of the typical locally
Hamiltonian flow  R on each of its minimal components is mixing (as proved by
Ravotti [52] extending previous work by the second author [57]). Ravotti also shows
in [52] subpolynomial bounds for the speed of mixing.
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Further recent work (see [28]) also shows that locally Hamiltonian flows in U:min

display a quantitative shearing property inspired by the Ratner property which plays
a crucial role in the theory of unipotent flows (or more precisely a variation intro-
duced in [12] to deal with the presence of singularities). From this property, one can
deduce that the restriction of a typical locally Hamiltonian flow  R in U:min on its
minimal components is not only mixing, but mixing of all orders, see [28]. Arnold
flows in genus one were also recently shown (by A. Kanigowski and M. Lemańczyk
and the second author, see [29]) to typically have disjointness18 of rescalings, a prop-
erty which in particular implies Sarnak Möbius orthogonality conjecture [53] to hold
(see [29] for details and [14] for a nice survey on the conjecture and progress toward it).

The spectral theory of locally Hamiltonian flows is still largely not understood.
Examples19 of locally Hamiltonian flows on surfaces of any genus � 1 with singu-
lar continuous spectrum were build by M. Lemańczyk and the first author (see [21,
Theorem 1]). For some flows in genus one with a degenerate singularity (sometimes
known as Kochergin flows), Forni, Fayad and Kanigowski could recently, prove in [11]
that the spectrum is countably Lebesgue. The first typical spectral result for surfaces
of higher genus, namely g � 2 was recently proved by Chaika, Kanigowski and the
authors, who showed in [7] that a typical locally Hamiltonian flow on a genus two
surface with two isomorphic simple saddles has purely singular spectrum.

2.2. IETs, special flows and extension

Let us now introduce the notation that we will use for interval exchange transforma-
tions (Section 2.2.1) and recall the definition of two basic constructions, special flows
(Section 2.2.2) and extensions of IETs (Section 2.2.3).

2.2.1. Interval exchange transformations. Let A be a d -element alphabet and let
� D .�0; �1/ be a pair of bijections �"WA! ¹1; : : : ; dº for " D 0; 1. We adopt the
notation from [63]. Denote by �0

A
the subset of irreducible pairs, i.e., such that

�1 ı �
�1
0 ¹1; : : : ; kº ¤ ¹1; : : : ; kº

for 1 � k < d .
For any � D .�˛/˛2A 2 RA

>0, let

j�j D
X
˛2A

�˛; I D Œ0; j�j/

18The notion of disjointness in ergodic theory was introduced in the 1970s by H. Furstenberg,
see in particular [24].

19These examples are known as Blokhin examples and are essentially built gluing genus one
flows. This allows to study them using (special flows over) rotations. On the other hand, they
are highly non-typical.
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and define I˛ D Œl˛; r˛/, where

l˛ D
X

�0.ˇ/<�0.˛/

�ˇ ; r˛ D
X

�0.ˇ/��0.˛/

�ˇ :

Then jI˛j D �˛ . Denote by �� the matrix Œ�˛ ˇ �˛;ˇ2A given by

�˛ ˇ D

8̂̂<̂
:̂
C1 if �1.˛/ > �1.ˇ/ and �0.˛/ < �0.ˇ/;

�1 if �1.˛/ < �1.ˇ/ and �0.˛/ > �0.ˇ/;

0 in all other cases:

Given .�; �/ 2 �0
A
�RA

>0, let

T.�;�/W Œ0; j�j/! Œ0; j�j/

stand for the interval exchange transformation (IET) on d intervals I˛ , ˛ 2 A, which
are rearranged according to the permutation ��11 ı �0, i.e.,

T.�;�/x D x C w˛

for x 2 I˛ , where w D ���.

Keane condition. Let End.T / stand for the set of end points of the intervals I˛ ,
where ˛ 2 A. A pair .�; �/ satisfies the Keane condition if Tm

.�;�/
l˛ ¤ lˇ for all

m � 1 and for all ˛; ˇ 2 A with �0.ˇ/ ¤ 1. Keane [32] showed that an IET with an
irreducible permutation that satisfy the Keane condition is minimal.

We record here two remarks that will be useful later.

Remark 2.1. Note that for every ˛ 2A with �0.˛/¤ 1, there exists ˇ 2A such that
�0.ˇ/ ¤ d and l˛ D rˇ . It follows that

¹l˛ W ˛ 2 A; �0.˛/ ¤ 1º D ¹r˛ W ˛ 2 A; �0.˛/ ¤ dº:

Remark 2.2. Denote by yT.�;�/W .0; jI j�! .0; jI j� the exchange of the intervals yI˛ WD
.l˛; r˛�, ˛ 2 A, i.e.,

T.�;�/x D x C w˛

for x 2 .l˛; r˛�. Note that for every ˛ 2 A with �1.˛/ ¤ 1, there exists ˇ 2 A such
that �1.ˇ/ ¤ d and T.�;�/l˛ D yT.�;�/rˇ .

2.2.2. Special flow definition. Let T W I ! I be an (ergodic) IET and let r W I !
R>0 [ ¹C1º be an integrable function such that

r D inf
x2I

r.x/ > 0:
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The special flow over T under the roof function r is the flow T rR WD .T
r
t /t2R acting

on
I r WD ¹.x; s/ 2 I �R W 0 � s < r.x/º;

so that
T rt .x; s/ D

�
x; s C t � r .n/.x/

�
;

where r .n/.x/ denote the Birkhoff sums cocycle20 associated to r and n is the unique
integer number with

r .n/.x/ � s C t < r .nC1/.x/:

It describes the motion of a point in .x; s/ 2 I r � I � R along vertical trajectories,
modulo the identification of each point .x; r.x//, x 2 I , with the point .T x; 0/.

2.2.3. Skew product extensions. Given an IET T W I ! I and a function 'W I ! R

the extension of T by ' is the skew-product map T' W I � R ! I � R defined as
in (1.4) by

T'.x; y/ D
�
T .x/; y C '.x/

�
:

Notice that, for n � 0, the iterates of T' have the form

T n' .x; y/ D
�
T n.x/; y C '.n/.x/

�
;

where

'.n/.x/ WD

n�1X
kD0

'
�
T k.x/

�
:

Remark that the Birkhoff sums '.n/.�/ are a (additive) cocycle over T in view of the
cocycle relation

'.mCn/.x/ D '.m/.T nx/C '.n/.x/:

2.3. Reduction to special flows and skew-product presentations

We recall two classical results that show that locally Hamiltonian flows and their
extensions can be reduced respectively to the study of special flows and skew-product
extensions over IETs, with roof functions or, respectively, cocycles, with logarithmic
singularities.

20Here r.n/.x/ denotes the additive cocycle defined by

r.n/.x/ WD
X

0�k<n

r.T kx/ if n � 0, and

r.n/.x/ WD �
X

n�k<0

r.T k.x// if n < 0.
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I˛0 I˛1

C�˛0 C
C
˛0

C�˛1

CC˛1 D 0

(a) Roof function r 2 LG.
F
˛2A I˛/

I˛0 I˛1

C�˛0

CC˛0

C�˛1

CC˛1 D 0

(b) Cocycle ' 2 LG.
F
˛2A I˛/

Figure 4. Examples of functions with geometric logarithmic singularities in LG.
F
˛2A I˛/.

2.3.1. Logarithmic singularities. We say that a function (or cocycle) 'W I ! R

for an IET T.�;�/ has logarithmic singularities if there exist constants CC˛ ; C
�
˛ 2 R,

˛ 2 A, and a function g' absolutely continuous on the interior of each interval I˛ ,
where ˛ 2 A (i.e., with the notation that we will introduce later, a function g' 2
AC.

F
˛2A I˛/), such that

'.x/D�
X
˛2A

CC˛ log
�
jI j
°x � l˛
jI j

±�
�

X
˛2A

C�˛ log
�
jI j
°r˛ � x
jI j

±�
C g'.x/: (2.1)

We refer to Figure 4 for some examples. If g' � 0, we will sometimes say that ' is
purely logarithmic. We say that the logarithmic singularities are of geometric type if
at least one among C�

��1
0
.d/

and C�
��1
1
.d/

is zero and at least one among CC
��1
0
.1/

or
CC
��1
1
.1/

is zero (as shown in the examples in Figure 4). We denote by LG.
F
˛2A I˛/

the space of functions with logarithmic singularities of geometric type. We define also
the subspace LSG.

F
˛2A I˛/ � LG.

F
˛2A I˛/ of functions satisfying the symmetry

condition X
˛2A

C�˛ �
X
˛2A

CC˛ D 0: (2.2)

2.3.2. Special flow representations of locally Hamiltonian flows. It is well known
that locally Hamiltonian flows can be represented as special flows as follows (see, for
example, [10, 22, 52, 59]). Consider either a minimal locally Hamiltonian flow  R

on M or the restriction of a locally Hamiltonian flow on M to a minimal com-
ponent M 0 � M . Let � be the associated closed 1-form and assume that � 2 A,
i.e., � is Morse. Then  R can be shown to be (measure theoretically) isomorphic
to a special flow T r W I r ! I r over an interval exchange transformation T W I ! I

of d � 2 intervals and under a roof r 2 LG.
F
˛2A I˛/. The number of exchanged
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intervals is d D 2g C s � 1 in the case when  R is minimal and s is the number
of simple saddles, or, for a minimal component M 0, d D 2g0 C s0 � 1, where g0 is
the genus of M 0 and s0 is the number of saddles in the closure of M 0. Furthermore, if
� 2Umin, the logarithmic singularities are symmetric, i.e., ' 2 LSG.

F
˛2A I˛/ (while

they are asymmetric for special flows representations of minimal components of typ-
ical � 2 U:min).

Remark 2.3. We recall for contrast that also translation flows can be seen as special
flows over an interval exchange map, but under a roof function r which is piecewise-
constant (and constant on each continuity interval of the IET). One can therefore see
from these special representations that minimal (components of) locally Hamiltonian
flows are time-changes of translation flows via a singular reparametrization.

2.3.3. Reduction to skew products. The study of (ergodic properties of) extensions
can be reduced to the study of skew-products over IETs as follows.

Proposition 2.4 (Reduction of ergodicity of extensions to skew products). Consider
a Morse closed 1-form � 2 A on M and let  R on M be the associated locally
Hamiltonian flow. Consider its minimal component M 0 � M . For every C 2C�-map
f WM 0 ! R (� > 0), the extension ˆfR of  R on M 0 has a Poincaré map which,
in suitable coordinates, is given by a skew-product of the form

.x; y/ 7! T'f .x; y/ WD
�
T x; y C 'f .x/

�
; .x; y/ 2 I �R; (2.3)

where T D T.�;�/ with � irreducible and the cocycle 'f W I ! R has logarithmic
singularities, i.e., 'f 2 LG.

F
˛2A I˛/, where .I˛/˛2A are intervals exchanged by T .

Moreover, the extension ˆfR on M 0 � R is ergodic with respect to � � Leb if
and only if T'f W I � R ! I � R is ergodic with respect to the (restriction of) the
2-dimensional Lebesgue measure on I �R.

We give here only a brief sketch of the proof, referring to the proof in [22] for
details.

Proof. Fix a segment  � M 0 � M transverse to the flow  R, containing no fixed
points and whose endpoints lie on outgoing separatrices of saddles. It is well known
(see, e.g., [65, Section 4.4]) that one can choose a parametrization t 2 I ! .t/ of 
by the unit interval I D Œ0; 1/, so that the Poincaré first return map T W I ! I of
the flow  R to  is an IET, which is minimal by assumption. It follows that � is
irreducible.

Denote by r WI !R>0 the first return time map for the flow . t /t2R onM 0. Then
the isomorphism between the restriction of  R to M 0 and a special flow T r on I r is
given by

I r 3 .x; s/ 7!  s.x/ 2M
0:
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As recalled in the Section 2.3.2, r 2 LG.
F
˛2A I˛/, and moreover if  R 2 Umin,

i.e., M 0 DM , then r 2 LSG.
F
˛2A I˛/; see, e.g., [52].

Consider now the extension ˆfR of  R on M 0 given by a bounded function

f WM 0 ! R:

The Poincaré first return map of ˆfR on M 0 �R to the section  �R in the paramet-
rization by I � R is by construction an extension of the Poincaré map T of  R to
I , with return time function r.x; y/ D r.x/ (i.e., the return time only depends on the
return to I in the first coordinate, by definition of the section which has full fiber).
Moreover, if we consider the cocycle

'f .x/ WD

Z r.x/

0

f
�
 t .x/

�
dt (2.4)

(which gives the value of the ergodic integrals of f along the trajectory from x until
the first return time to the section), one can then see that the first return Poincaré map
of the extension ˆfR has the form (2.3). If f is a C 2C�-map, from the explicit expres-
sion (2.4) and the properties of r , one can then show that also 'f 2 LG.

F
˛2A I˛/

(see [22] for details) and 'f 2 LSG.
F
˛2A I˛/ if � 2 Umin.

The final statement is simply a consequence that ergodicity of a minimal flow
is equivalent to ergodicity of its Poincaré map with respect to the induced measure,
together with the remark that, under the isomorphism described above, the measure
induced on the section  � R by the invariant measure � � Leb is mapped to the
Lebesgue measure on I �R.

The following result shows that not only ergodicity, but also reducibility of the
extension ˆfR can be reduced to a property of the skew product T'f given by Propos-
ition 2.4.

Proposition 2.5 (Reduction of reducibility to skew products, [22]). For every min-
imal locally Hamiltonian flow  R on M with non-degenerate saddles and for any
f 2 C 2C�.M/ vanishing on Fix. R/, the associated flowˆfR is reducible if and only
if the cocycle 'f WI !R is a coboundary with a bounded transfer map having at least
one continuity point, i.e., there exists a bounded gW I ! R such that 'f D g � g ı T
and g has at least one continuity point.

The statement of the proposition is proved in the proof21 of [22, Lemma 6.3].

21Note that the statement of [22, Lemma 6.3] claims incorrectly that reducibility requires
the existence of transfer function continuous at every point, while a the existence of a point of
continuity is sufficient. Nevertheless, the proof of [22, Lemma 6.3] is correct and gives a proof
of the statement of Proposition 2.5 here above.
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3. Rauzy–Veech induction and Diophantine-type conditions

In this section we define the Diophantine-type condition on IETs, which we will use
to prove our main results on deviations of ergodic averages and ergodicity of exten-
sions. The condition is described in terms of Rauzy–Veech induction, an algorithm
introduced by Rauzy and Veech in [51, 61] which is now a well established tool to
study IETs as well to impose Diophantine conditions on them (see, e.g., [4–6, 39,
41, 57, 59, 66] and many more). We first recall some basic background material con-
cerning Rauzy–Veech induction in Section 3.1. The condition, that we call Uniform
Diophantine Condition, or for short UDC, is defined in Section 3.2 (see Definition 3
in Section 3.2.2). In Section 3.2.3 we also prove that this condition is satisfied by a
full measure set of IETs (see Theorem 3.8).

3.1. Rauzy–Veech induction

We recall here some basic definitions and notation related to Rauzy–Veech induction
that will be used throughout the paper, including how it acts on Rokhlin towers (Sec-
tion 3.1.4) and on Birkhoff sums (Section 3.1.5), as well as the definition of natural
extension (Section 3.1.6). We recall also Oseledets’ theorem (Section 3.1.7).

3.1.1. Elementary step of RV induction. Let T D T.�;�/, .�; �/ 2 �0
A
�RA

>0 be an
IET satisfying Keane’s condition. Then ���1

0
.d/ ¤ ���1

1
.d/. Let

zI D
�
0;max

�
l��1
0
.d/; l��1

1
.d/

��
and denote by R.T / D zT W zI ! zI the first return map of T to the interval zI . Set

".�; �/ D

8<: 0 if ���1
0
.d/ > ���1

1
.d/;

1 if ���1
0
.d/ < ���1

1
.d/:

Let us consider a pair z� D .z�0; z�1/ 2 �0
A

, where

z�".˛/ D �".˛/ for all ˛ 2 A;

z�1�".˛/ D

8̂̂<̂
:̂
�1�".˛/ if �1�".˛/ � �1�" ı ��1" .d/;

�1�".˛/C 1 if �1�" ı ��1" .d/ < �1�".˛/ < d;

�1�"�
�1
" .d/C 1 if �1�".˛/ D d:

As it was shown by Rauzy in [51], zT is also an IET on d -intervals

zT D T
.z�;z�/

with z� D A�1.�; �/�; (3.1)
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where
A.T / D A.�; �/ D I CE��1" .d/��1

1�"
.d/ 2 SL.ZA/:

Moreover,
At .�; �/��A.�; �/ D �z� :

It follows that ker�� D A.�; �/ ker�z� . Thus, taking H.�/ D ��.RA/ D ker�?� ,
we get

H.z�/ D At .�; �/H.�/: (3.2)

Moreover, dimH.�/ D 2g and dim ker�� D �.�/ � 1, where �.�/ is the number
of singularities and g is the genus of the translation surfaces associated to � .

3.1.2. Renormalized induction. Let G � �0
A

be any Rauzy class, i.e., a minimal
subset of �0

A
for which G �RA

>0 is R-invariant. Let

�A
WD ¹� 2 RA

>0 W j�j D 1º:

Then we can define the normalized Rauzy–Veech renormalization

zR W G ��A
! G ��A; zR.�; �/ D

�
z�; z�=jz�j

�
:

Veech in [61] proved the existence of an zR-invariant ergodic measure �G ( zR is recur-
rent with respect to �G ) which is equivalent to the product of the counting measure
on G and the Lebesgue measure on �A.

For every T satisfying the Keane condition, the IET zT fulfils the Keane condi-
tion as well. Therefore, we can iterate the renormalization procedure and generate a
sequence of IETs .Rn.T //n�0. For every n � 1, let

A.n/.T / D A.T / � A
�
R.T /

�
� � �A

�
Rn�1.T /

�
:

In what follows, the norm of a vector is defined as the sum of the absolute value
of coefficients and for any matrix B D ŒB˛ˇ �˛;ˇ2A, we set

kBk D max
˛2A

X
ˇ2A

jB˛ˇ j:

3.1.3. Accelerations. Let T WI ! I be an arbitrary IET satisfying Keane’s condition.
Let .nk/k�0 be an increasing sequence of integer numbers with n0 D 0, called an
accelerating sequence. For every k � 0, let

T .k/ WD Rnk .T /W I .k/ ! I .k/:

Denote by .�.k/; �.k// the pair defining T .k/ and by

�.k/ D .�.k/˛ /˛2A D
�
jI .k/˛ j

�
˛2A

the vector which determines T .k/.
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In view of (3.1), letting Z.k C 1/ WD A.nkC1�nk/.Rnk .T //t for k � 0, we have

�.k/ D Z.k C 1/t�.kC1/ for all k � 0:

We use the notation from [39], but adopt the convention later introduced in [43]. For
each 0 � k < l , let

Q.k; l/ D Z.l/ �Z.l � 1/ � � �Z.k C 2/ �Z.k C 1/

D A.nl�nk/
�
Rnk .T /

�t
:

Then Q.k; l/ 2 SLA.Z/ and �.k/ D Q.k; l/t�.l/. It follows that

jI .k/j � jI .l/jkQ.k; l/k: (3.3)

We will write Q.k/ for Q.0; k/.
We say that Z.k/, k 2 N (resp. Q.k; l/) are the matrices (resp. the product

matrices) of the acceleration of A along the (accelerating) sequence .nk/k2N .

3.1.4. Rokhlin towers. By definition, T .l/W I .l/ ! I .l/ is the first return map of
T .k/W I .k/ ! I .k/ to the interval I .l/ � I .k/. Moreover, Q˛ˇ .k; l/ is the time spent
by any point of I .l/˛ in I .k/

ˇ
until it returns to I .l/. It follows that

Q˛.k; l/ D
X
ˇ2A

Q˛ˇ .k; l/

is the first return time of points of I .l/˛ to I .l/.
The map T .k/W I .k/ ! I .k/ can be then represented as a Rokhlin skyscraper as

follows. For every ˛ 2 A, we say that the set®
.T .k//i .I .l/˛ /; 0 � i < Q˛.k; l/

¯
is called a Rokhlin tower. Notice that the Q˛.k; l/ sets called floors of the tower are
pairwise disjoint intervals and that, for 0 � i < Q˛.k; l/, T .k/ acts on the i th floor
.T .k//i .I

.l/
˛ / mapping it to the .i C 1/th one. The union of all Rokhlin towers over

˛ 2 A gives I .k/.

3.1.5. Special Birkhoff sums. We deal with the special Birkhoff sums operators
S.k; l/WL1.I .k//! L1.I .l// for 0 � k < l defined by

S.k; l/f .x/ D
X

0�j<Q˛.k;l/

f
�
.T .k//jx

�
if x 2 I .l/˛ :

When k WD 0, we simply write S.l/f for S.0; l/f . Let T D T .0/ be an IET satisfying
Keane’s condition. For every k � 0, let �.k/ � L1.I .k// be the subspace of functions
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on I .k/ which are constant on each I .k/˛ , ˛ 2 A. Then, for 0 � k < l , we have

S.k; l/�.k/ D �.l/:

Let us identify every function X
˛2A

h˛�I .k/˛
2 �.k/

with the vector h D .h˛/˛2A 2 RA. Clearly �.k/ is isomorphic to RA. Under the
identification, the operator S.k; l/ is the linear automorphism of RA whose matrix in
the canonical basis is Q.k; l/. In view of (3.2), for 0 � k < l , we have

Q.k; l/H.�.k// D H.�.l//:

For every k � 0, let

�.k/s WD
®
h 2 �.k/ W 9�>0 9C>0 8l>k kQ.k; l/hk � CkQ.k; l/k

��
¯
:

The space �.k/s is a subspace of H.�.k// and for every l > k, we have

Q.k; l/�.k/s D �
.l/
s :

Therefore, the restriction operator and the quotient operators of Q.k; l/,

Qs.k; l/W�
.k/
s ! �.l/s ;

Q[.k; l/W�
.k/=�.k/s ! �.l/=�.l/s ;

Q].k; l/WH.�
.k//=�.k/s ! H.�.l//=�.l/s ;

are well defined and are invertible. The arguments presented in [43, Section 3.2] show
that, if dim�

.0/
s D g, then

kQ].k; l/
�1
k D kQs.k; l/k: (3.4)

3.1.6. The natural extension. Rauzy–Veech induction is not invertible, but it can be
extended to an invertible induction on the space of zippered rectangles (as described
in the seminar paper by Veech [61]). We recall briefly the construction. We refer the
reader who needs more background to the lecture notes by Yoccoz [65] or Viana [63].

For every � 2 SA
0 , let

‚� WD

²
� 2 RA

W

X
�0.˛/�k

�˛ > 0;
X

�1.˛/�k

�˛ < 0 for 1 � k < d
³
:
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For every � 2 ‚� , let h D h.�/ D ��� 2 RA
>0. For every Rauzy class G � SA

0 , let

X.G / D
[
�2G

®
.�; �; �/ 2 ¹�º ��A

�‚� W h�;���i D 1
¯
: (3.5)

For every .�; �; �/ 2 X.G /, denote by M.�; �; �/ the translation surface arising in
the zippered rectangles process. Then M.�; �; �/ is zippered from the rectangles
I˛ � Œ0; h˛�, ˛ 2 A such that the pointsX

�0.˛/�k

.�˛ C i�˛/; 0 � k � d;

are its singular points. Moreover, the IET T is the first return map to I �M.�; �; �/
for the vertical flow on M.�; �; �/.

The map yRWX.G /! X.G / given by

yR.�; �; �/ D

�
z�;

A�1.�; �/�

jA�1.�; �/�j
; jA�1.�; �/�jA�1.�; �/�

�
is an invertible map and is the natural extension of zR. Denote by y�G the natural
extension of the measure �G . Then y�G is yR-invariant and yR is recurrent and ergodic
with respect to y�G .

3.1.7. Oseledets splitting. First, let us extend the cocycle AWG �ƒA! SLA.Z/ to
yAWX.G /! SLA.Z/ by

yA.�; �; �/ WD A.�; �/

and let us consider the cocycle yAWZ �X.G /! SLA.Z/,

yA .n/.�;�; �/D

8̂̂<̂
:̂
yA.�; �; �/ � yA. yR.�; �; �// � � � yA. yRn�1.�; �; �// if n � 0;
yA. yR�1.�; �; �//�1 � yA. yR�2.�; �; �//�1 � � � yA. yRn.�; �; �//�1

if n < 0:

Then
yA .n/.�; �; �/ D A.n/.�; �/ if n � 0: (3.6)

Let Y � X.G / be a subset with 0 < y�G .Y / < C1. For a.e. .�; �; �/ 2 Y , let
r.�; �; �/�1 by the first return time of .�; �; �/ for the map yR to the set Y . Denote
by yRY WY!Y the induced map and by yAY WY ! SLA.Z/ the induced cocycle, i.e.,

yRY .�; �; �/ D yR
r.�;�;�/.�; �; �/; yAY .�; �; �/ D yA

.r.�;�;�//.�; �; �/

for a.e. .�; �; �/ 2 Y . Let y�Y be the restriction of y�G to Y . Then yRY is an ergodic
measure-preserving invertible map on .Y; y�Y /.
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Suppose that log k yAY k and log k yA�1Y k are integrable. Then, by Oseledets’ the-
orem, symplecticity of yAY (see [66]) and simplicity of spectrum (see [5]), there exists
�1 > � � � > �g > 0 such that for a.e. .�; �; �/ 2 Y we have an Oseledets splitting

RA
D

M
�g�i�g

�i .�; �; �/

for which

lim
n!˙1

1

n
log k yA.n/Y .�; �; �/tvk D �i if v 2 �i .�; �; �/ and i > 0;

lim
n!˙1

1

n
log k yA.n/Y .�; �; �/tvk D ��i if v 2 �i .�; �; �/ and i < 0;

lim
n!˙1

1

n
log k yA.n/Y .�; �; �/tvk D 0 if v 2 �0.�; �; �/;

and
dim�i .�; �; �/ D 1 if i ¤ 0; dim�0.�; �; �/ D � � 1:

Furthermore, we have that

H.�/ D
M
i¤0

�i .�; �; �/:

We denote by �s.�; �; �/ and �u.�; �; �/ the stable and unstable spaces, which are
given respectively by

�s.�; �; �/ WD
M

�g�i��1

�i .�; �; �/ and �u.�; �; �/ WD
M
1�i�g

�i .�; �; �/:

Notice that both �s.�; �; �/ and �u.�; �; �/ have exactly dimension g. We say in this
case that the Oseledets splitting is of hyperbolic type.

3.1.8. Veech bases for the kernel ker �� . In [61, 62], Veech explicitly defines a
basis for ker�� for every � in a given Rauzy class. We recall the construction (which
uses the classical notation for the permutation describing the IETs, also called mono-
dromy, namely the permutation �1 ı��10 ). Let us first define the extended permutation
pW ¹0; 1; : : : ; d; d C 1º ! ¹0; 1; : : : ; d; d C 1º to be the permutation

p.j / D

´
�1 ı �

�1
0 .j / if 1 � j � d;

j if j D 0; d C 1:

Following Veech (see [61, 62]), denote by � D �� the corresponding permutation on
¹0; 1; : : : ; dº,

�.j / D p�1
�
p.j /C 1

�
� 1 for 0 � j � d:
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Notice that (recalling Remark 2.2), we have

yT.�;�/r��1
0
.j / D T.�;�/r��1

0
.�j /

for all j ¤ 0; p�1.d/.
Denote by †.�/ the set of orbits for the permutation � . Let †0.�/ stand for the

subset of orbits that do not contain zero. Then†.�/ corresponds to the set of singular
points of any translation surface associated to � , and hence #†.�/ D �.�/.

For every O 2 †.�/, denote by b.O/ 2 RA the vector given by

b.O/˛ D �O

�
�0.˛/

�
� �O

�
�0.˛/ � 1

�
for ˛ 2 A;

where �O.j / D 1 iff j 2 O, and 0 otherwise. Moreover, for every O 2 †.�/, we
denote by

A�O D ¹˛ 2 A; �0.˛/ 2 Oº; AC
O
D ¹˛ 2 A; �0.˛/ � 1 2 Oº: (3.7)

If ˛ 2 AC
O

(respectively, ˛ 2 A�
O

) then the left (respectively, right) endpoint of I˛
belongs to a separatrix of the saddle represented by O.

Lemma 3.1 (see [62]). For every irreducible pair � , we have

(i)
P

O2†.�/ b.O/ D 0;

(ii) the vectors b.O/, O 2 †0.�/ are linearly independent;

(iii) the linear subspace generated by ¹b.O/, O 2 †0.�/º is equal to ker�� .

Moreover, h 2 H.�/ if and only if hh; b.O/i D 0 for every O 2 †.�/.

Veech also describes how these bases change under Rauzy–Veech induction.

Lemma 3.2 (see Veech, [62]). Suppose that T
.z�;z�/

D R.T.�;�//. Then there exists a
bijection �W†.�/! †.z�/ such that

A.�; �/�1b.O/ D b.�O/ for all O 2 †.�/:

3.1.9. The boundary operator. The following operator @� is known by boundary
operator (as a special case of the more general operator introduced in [39], see Sec-
tion 4.1.3). Let †.�/ and A˙

O
be as in the previous subsection.

Definition 1. Let @� WRA ! R†.�/ stand for the linear transformation which maps a
vector h 2RA to the vector in R†.�/ whose coordinates .@�h/O;O 2†.�/ are given
by

.@�h/O WD hh; b.O/i D
X
˛2A�

O

h˛ �
X
˛2A

C

O

h˛ for O 2 †.�/:



On Birkhoff integrals for locally Hamiltonian flows 267

One sees (in light of Remark 2.1) that the image of @� is

@�.R
A/ D

²
.xO/O2†.�/ W

X
O2†.�/

xO D 0

³
: (3.8)

Remark 3.3. We can identify a vector h 2RA with a piecewise constant function gh,
which gives the constant value h˛ to the subinterval I˛ . Then the operator @ can be
thought of as acting on piecewise constant functions and producing, as a value at
O 2 †.�/, the sum of jumps of the function gh at the endpoints corresponding to the
singularity labelled by O.

Two extensions of this operator (viewed as in the previous remark as an operator
on functions) will be defined later, to functions piecewise absolutely continuous on
each I˛ (Section 4.1.3) and to functions with logarithmic singularities (Section 4.3.3).

3.1.10. Boundary operator estimate. Let H.�/ WD ker @� . Denote by

pH.�/WR
A
! H.�/

the orthogonal projection onH.�/ with respect to the standard scalar product on RA.

Lemma 3.4. For any h 2 RA, we have

kpH.�/hk �
p
dkhk:

Moreover, for any Rauzy class G � �0A there exists a positive constant CG such that,
for every � 2 G and h 2 RA, we have

kh � pH.�/hk � CGk@�hk: (3.9)

Proof. Let H.�/? � RA be the orthogonal complement of H.�/. By Lemma 3.1,
@� WH.�/

? ! @�.RA/ s a linear isomorphism. It follows that there exists C� > 0

such that
khk � C�k@�hk for all h 2 H.�/?:

Hence, (3.9) holds with CG D max¹C� W � 2 G º. Denote by k � k2 the Euclidean
norm on RA. Since

khk2 � khk �
p
dkhk2

and pH.�/ is an orthogonal projection, we have

kpH.�/hk �
p
dkpH.�/hk2

�
p
dkhk2 �

p
dkhk:
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3.2. The uniform Diophantine-type condition and its full measure

We will now define the Diophantine-type condition that we will use. First, it is con-
venient to introduce an acceleration of Rauzy–Veech induction which produces times
which we call Rokhlin-balanced. We then define the condition and prove that it has
full measure.

3.2.1. The Rokhlin-balanced acceleration. The following acceleration of Rauzy–
Veech induction produces times of the Rauzy–Veech algorithm where the correspond-
ing Rokhlin towers (see Section 3.1.4) are balanced in the sense that all bases have
comparable lengths (see Definition 2 (B1)) and all the towers travel together for a long
enough time (see Definition 2 (B2)). We call these times Rokhlin-balanced.

Definition 2 (Rokhlin-balance). Let us say that an accelerating sequence .nk/k�0 is
Rokhlin-balanced if there exist constants � > 1 and 0 < ı < 1 such that the following
two conditions hold for every k 2 N:

(B1) jI .k/j � �jI
.k/
˛ j for all k � 1 and ˛ 2 A;

(B2) for every k � 1, there exists a natural number 0 < pk � min˛2A Q˛.k/

such that ¹T iI .k/ W 0 � i < pkº is a Rokhlin tower of intervals with meas-
ure greater than ıjI j.

We say that an IET is Rokhlin-balanced if it satisfies Keane’s condition and it admits
a Rokhlin balanced accelerating sequence .nk/k�0.

Remark 3.5. Notice that by conditions (B1) and (B2), for every ˛ 2 A and k � 1,
we have

kQ.k/kjI .k/j � �
X
˛2A

Q˛.k/jI
.k/
˛ j D �jI j; (3.10)

Q˛.k/�
.k/
˛ �

1

�
pkjI

.k/
j �

ı

�
jI j; (3.11)

so that each Rokhlin tower of a balanced acceleration induction time has measure
uniformly bounded below.

Let us show that for almost every IET one can find a Rokhlin-balanced sequence
by considering returns of Rauzy–Veech induction to special compact sets (for the
parameter space of the natural extension, see Section 3.1.6). Let us recall that X.G /
denotes the domain of the natural extension of the Rauzy–Veech induction (see (3.5)
in Section 3.1.6).

Lemma 3.6. Let � be irreducible. For Lebesgue-almost every choice of �, the IET
T D T.�;�/ is Rokhlin-balanced. Furthermore, for every 0 < ı < 1, one can define
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a set Y D Y.ı/ � X.G / such that a Rokhlin-balanced accelerating sequence with
constant ı is given by returns of the natural extension of Rauzy–Veech induction to Y .

Proof. Fix 0 < ı < 1. Let us consider a subset Y D Y.ı/ � X.G / which satisfies:

(i) its projection Y0 on G �ƒA is precompact with respect to the Hilbert metric;

(ii) for every .�; �; �/ 2 Y , we have

min
²² X

�0.˛/�k

�˛ W 1 � k < d

³
[ ¹h˛.�/ W ˛ 2Aº

³
> ımax¹h˛.�/ W ˛ 2Aº:

Let R > 0 be such that

Y0 � G � xBH
�
.1=d; : : : ; 1=d/; R

�
;

where xBH ..1=d; : : : ; 1=d/; R/ is the closed ball (with respect to the Hilbert met-
ric dH ) of radius R and centre at the centre of the simplex ƒA.

Balance at visit times. Consider any sequence .nk/k�1 which corresponds to visits
to the set Y . By definition, for every k belonging to this subsequence,�

�.k/; �.k/; � .k/
�
2 Y:

It follows that dH .�.k/; .1=d; : : : ; 1=d// � R. Therefore,

max
˛2A
jI .k/˛ j=min

˛2A
jI .k/˛ j � e

R;

which implies the condition (B1) for � WD eR.
As .�.k/; �.k/; � .k// D yRnk .�; �; �/ 2 Y , by condition (ii) in the choice of Y ,

taking

t .k/ WD min
²² X

�
.k/
0
.˛/�l

� .k/˛ W 1 � l < d

³
[ ¹h.k/˛ W ˛ 2 Aº

³
; .h.k/ D h.� .k///;

we have that I .k/ � Œ0; t .k/� is a rectangle (without singular points inside) in the trans-
lation surface M.�.k/; �.k/; � .k// (DM.�; �; �/) and its area is greater than

t .k/
X
˛2A

�.k/˛ > ımax
˛2A

h.k/˛

X
˛2A

�.k/˛ � ıh�
.k/; h.k/i D ıjI j:

This gives (B2) with pk WD Œt .k/=max˛2A h˛.�/� and ı WD ı2

2
< ı

2
min˛2A h˛.�/
max˛2A h˛.�/

.

Typical Rokhlin balance. It now follows from Poincaré recurrence theorem (and
absolute continuity and finiteness of the Veech invariant measure, see [61]) that almost
every IET visits Y.ı/ infinitely often and hence is Rokhlin-balanced.
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3.2.2. The uniform Diophantine condition. We state now the Diophantine-type
condition that we will use in the main theorems. This condition, which is a strengthen-
ing of the Roth-type condition introduced by Marmi, Moussa and Yoccoz in [39] (see
Remark 3.7) involves a quantitative control of hyperbolicity, in the form of control
of contraction of the Rauzy–Veech cocycle (see, in particular, (UDC1) in Defini-
tion UDC). We remark that the condition is similar in nature to the condition used
by S. Ghaozuani and the second author in [25] to study generalized IETs, which also
involve quantitative control on hyperbolicity (there referred to as effective Oseledets
control). We refer the interested reader to the ICM Proceedings [60] by the second
author for an overview and discussion on the nature and role played by different
Diophantine-like conditions on IETs in the literature and some open questions on
the relation between them.

Definition 3 (UDC). An IET T W I ! I satisfying Keane’s condition, satisfies the
Uniform Diophantine Condition UDC if T is Rokhlin-balanced (in the sense of Defin-
ition 2), and for every � > 0 there exist constants 0 < c < C , a Rokhlin-balanced
accelerating sequence .nk/k�0 and an increasing sequence of integers .rn/n�0 with
r0 D 0 and rn=n! ˛ > 0, so that:

(O) T is Oseledets generic, i.e., there exists an extension .�; �; �/ of T D T.�;�/
such that it admits an Oseledets splitting of hyperbolic type, as we saw in
Section 3.1.7;

and, furthermore, the matrices Z.k/ and product matrices Q.k; l/ of the acceleration
along the subsequence .nk/k2N (see Section 3.1.3) satisfy the following conditions:

(UDC1) kQs.k; l/k � Ce��.l�k/ for all 0 � k � l , where � D �g=2;

(UDC2) kZ.k C 1/k � Ce� jk�rnj for all k � 0 and n � 0;

(UDC3) ce�1k � kQ.k/k � Ce�1.1C�/k for all k � 0;

Remark 3.7. By conditions (UDC2) and (UDC3), there exists C 0 > 0 such that

kZ.k C 1/k D O
�
kQ.k/k�

�
: (3.12)

Then using arguments from [39, Section 1.3.1], one can show that

kQ.k/k D O
�
min
˛2A

Q˛.k/
1C�

�
: (3.13)

Thus, the UDC condition implies condition (a) of the Roth-type Diophantine con-
dition defined in [39]. The other two conditions (as well as the last assumption of
the restricted Roth-type condition22) also hold, in view of the Oseledets genericity

22In [41], Marmi, Moussa and Yoccoz introduced a more restrictive (but still full measure)
Diophantine-type condition, that they called restricted Roth-type: in addition to all the properties
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assumption (O) (see, for example, [43, Remark 3.4]). Thus, IETs which satisfy the
UDC are in particular of (restricted) Roth-type.

3.2.3. Full measure of the UDC. Let us show that the UDC condition has full meas-
ure.

Theorem 3.8. Almost every IET satisfies the UDC Diophantine condition.

Proof. We split the proof in several steps.

Construction of a good recurrence set. Let us consider a subset Y � X.G / which
satisfies the assumptions (i) and (ii) in the proof of Lemma 3.6, which guarantees that
visits to Y give a Rokhlin-balanced sequence, and furthermore such that:

(iii) y�.Y / is finite, so y�Y WD y�=y�.Y / is a probability measure;

(iv) the functions log k yAY k and log k yA�1Y k are integrable with respect to y�Y .

Let �1 > � � � > �g > 0 the positive Lyapunov exponents of the corresponding accel-
erated cocycle, which are g and distinct in view of [15] and [5]. Let � WD �g=2 and
� D deR. Fix 0 < � < �g=2. Since for y�Y -a.e. .�; �; �/ 2 Y , we have

lim
n!C1

1

n
log k yA .n/Y .�; �; �/t ��s.�;�;�/ k D ��g ;

the map from Y to R given by

.�; �; �/ 7! sup
n�0

e.�g��/nk yA
.n/
Y .�; �; �/t ��s.�;�;�/ k

is a.e. defined and measurable. Therefore, there exists a measurable subset K � Y
with y�Y .K/=y�Y .Y / > 1 � �=2 and C > 0 such that if .�; �; �/ 2 K, then for every
n � 0,

k yA
.n/
Y .�; �; �/t ��s.�;�;�/ k � Ce

�.�g��/n � Ce��n: (3.14)

First acceleration. Let us consider the induced map yRK WK ! K and the induced
cocycle yAK WK ! SLA.Z/. Then

yRK.�; �; �/ D yR
rK.�;�;�/
Y .�; �; �/;

where rK.�; �; �/ is the first return time of .�; �; �/ 2 K to K for the map yRY .

of Roth-type, one requests in this case that the stable space has exactly dimension g. This holds
for IETs which satisfy the UDC in view of the Oseledets genericity assumption (O), since we
require that the splitting is of hyperbolic type, which means exactly that there are g positive
exponents, see Section 3.1.7.
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Let
r
.n/
K WD

X
0�i<n

rK ı yR
i
K

for every n � 0. Then
r
.n/
K

n
!
y�Y .Y /

y�Y .K/
a.e. on K;

and furthermore yA.n/K D yA
.r
.n/
K
/

Y for every n�0. In view of inequality (3.14), for every
.�; �; �/ 2 K, we have

k yA
.n/
K .�; �; �/t ��s.�;�;�/ k � Ce

��r
.n/
K
.�;�;�/

� Ce��n; (3.15)

and for a.e. .�; �; �/ 2 K, we have

lim
n!C1

1

n
log k yA .n/K .�; �; �/k D �1

y�Y .Y /

y�Y .K/
2
�
�1; �1.1C �/

�
: (3.16)

Second acceleration. Since the functions log k yAKk and log k yA�1K k are integrable, for
a.e. .�; �; �/ 2 K, we have

log k yAK. yRn
K.�; �; �//k=n! 0 as jnj ! C1;

also the map from K to R given by

.�; �; �/ 7! sup
n2Z

e�� jnj
 yAK� yRn

K.�; �; �/
�

is a.e. defined and measurable. Thus, there exists a subset K 0 � K with y�K.K 0/ > 0
and a constant C 0 > 0 such that if .�; �; �/ 2 K 0, then for every n 2 Z, we have yAK� yRn

K.�; �; �/
� � C 0e� jnj: (3.17)

Moreover, for a.e. .�; �; �/ 2 K 0, there exists an increasing sequence of non-negative
integer numbers .rn.�; �; �//n�1 such that r1.�; �; �/ D 0 and

yR
rn.�;�;�/
K .�; �; �/ 2 K 0 for all n � 0, and

rn.�; �; �/

n
!
y�K.K/

y�K.K 0/
DW ˛ > 0:

(3.18)

Let K 00 � K 0 be a subset of .�; �; �/ 2 K 0 for which (3.16) and (3.18) hold. Then

y�G .K
00/ D y�G .K

0/ > 0:

By the ergodicity of yR, for a.e. .�; �; �/ 2 X.G /,

there exists n1.�; �; �/ � 0 such that yRn1.�;�;�/.�; �; �/ 2 K 00: (3.19)
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By the Fubini argument, there exists a measurable subset „ � G �ƒA such that

�G .G �ƒ
A
n„/ D 0;

and for every .�;�/2„ there exists � 2‚� such that .�;�;�/2X.G / satisfies (3.19).

Full measure. We can now show that every .�;�/2„ satisfies the UDC. Suppose that
.�;�/ 2„ and .�;�; �/ 2 X.G / satisfies (3.19). Then the corresponding acceleration
sequence .nk/k�0 is defined by setting n0 WD 0 and then defining nk inductively such
that, for every k � 1,

yRnk .�; �; �/ D yRk�1
K
yRn1.�;�;�/.�; �; �/:

Let us now consider the cocycle matrices Z.k/, k 2 N, of the acceleration along
the sequence .nk/k2N , as defined in Section 3.1.3, as well as their products Q.k; l/,
k; l 2 N (see again Section 3.1.3). By definition of Q and (3.6), for 1 � k � l , we
have

Q.k; l/ D yA
.l�k/
K

�
yRk�1
K

�
yRn1.�; �; �/

��t
;

Q.0; l/ D yA
.l�1/
K

�
yRn1.�; �; �/

�t yA.n1/.�; �; �/t ;
kQs.k; l/k D

 yA.l�k/K

�
yRk�1
K

�
yRn1.�; �; �/

��t �
�s. yR

k�1
K

. yRn1 .�;�;�///

;
kQs.0; l/k �

 yA.l�1/K

�
yRn1.�; �; �/

�t �
�s. yR

n1 .�;�;�//

A.n1/.�; �/t:
Since yRk�1

K . yRn1.�; �; �// 2 K for every k � 1, by (3.15), for 0 � k < l we have

kQs.k; l/k � Ce
�
A.n1/.�; �/te��.l�k/;

which gives (UDC1).
Consider now the sequence .rn/n�0 defined setting r0 WD 0 and, for n � 1,

rn WD rn
�
yRn1.�; �; �/

�
C 1:

As yRn1.�; �; �/ 2 K 00, by (3.18), we have rn=n! ˛ > 0 and

yRrn�1
K

�
yRn1.�; �; �/

�
D yR

rn. yR
n1 .�;�;�//

K
yRn1.�; �; �/ 2 K 0 for n � 1:

Since
Z.k C 1/ D yAK

�
yRk�1
K

�
yRn1.�; �; �/

��t for k � 1

and Z.1/ D yA.n1/.�; �; �/t , by (3.17), for every n � 1 and k � 1 we have

kZ.k C 1/k D
 yAK� yRk�1

K

�
yRn1.�; �; �/

��
D
 yAK� yRk�rn

K

�
yRrn�1
K

�
yRn1.�; �; �/

���
� C 0e� jk�rnj:
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For k D 0, on the other hand, we have

kZ.1/k D
A.n1/.�; �/ � A.n1/.�; �/e� jrnj

for every n � 0. Moreover, as r1 D 1, it follows that for every k � 1 we have

kZ.k C 1/k � C 0e� jk�r1j � C 0e� jk�r0j;

which gives (UDC2) with C D max.C 0; kA.n1/.�; �/k/.
As yRn1.�; �; �/ 2 K 00, by (3.16),

lim
k!C1

log kQ.k/k
k

D lim
k!C1

log k yA.k�1/K . yRn1.�; �; �//k

k

D
�1 y�Y .Y /

y�Y .K/
2
�
�1; �1.1C �/

�
;

which implies the condition (UDC3). Finally, the sequence .nk/k�0 is a Rokhlin-
balanced acceleration sequence by Lemma 3.6, since the set Y was chosen to satisfies
the conditions (i) and (ii) which guarantee Rokhlin-balance in the proof of Lemma 3.6.
This concludes the proof.

3.3. Diophantine series

In the proof of our main results, certain sums and series (defined in Definition 4) which
depend on the matrices of the (accelerated) cocycle will play a central role, both to
control Birkhoff sums and to prove ergodicity. We here show that these quantities,
under the UDC, are first of all well defined and furthermore grow in a controlled way
(see Proposition 3.9).

Definition 4. For every IET T W I ! I satisfying Keane’s condition and any acceler-
ating sequence we define four sequences .Kl/l��1, .K 0

l
/l��1, .Ck/k�0, .C 0

k
/k�0:

Kl.T / WD
X
j�l

kZ.j C 1/kkQs.l; j C 1/k for l � 0 and K�1 WD 0I

K 0l.T / WD
X
j�l

kZ.j C 1/kkQs.l; j C 1/k log kQ.j /k for l � 0 and K 0�1 WD 0I

Ck.T / WD
X
0�l�k

kQs.l; k/k
�
kZ.l/kKl�1.T /CKl.T /

�
for k � 0I

C 0k.T / WD
X
0�l�k

kQs.l; k/k
�
kZ.l/kK 0l�1.T /CK

0
l.T /

�
for k � 0:

Proposition 3.9 below shows in particular that if T satisfies the UDC these quant-
ities are finite, and hence well defined for every pair of integers k � 0, l � �1.
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Proposition 3.9. For every IET T WI! I satisfying the UDC all sequences .Kl/l��1,
.K 0

l
/l��1, .Ck/k�0, .C 0

k
/k�0 are well defined, and for every 0 < � < �=2, there exists

a constant D > 0 such that

Kl.T / � De
�.rn�l/ if rn�1 � l � rn for some n � 0I (3.20)

K 0l.T / � D.l C 1/e
�l for every l � 0I (3.21)

Crn.T / � D for every n � 1I (3.22)

C 0k.T / � D.k C 1/e
2�k for every k � 0: (3.23)

Proof. By (UDC1) and (UDC2), for rn�1 < l � rn, we have

Kl.T / D
X

lC1�j�rn

kZ.j /kkQs.l; j /k C
X
j>rn

kZ.j /kkQs.l; j /k

� C 2
X

lC1�j�rn

e�.rn�jC1/e��.j�l/ C C 2
X
j>rn

e�.j�1�rn/e��.j�l/

� C 2e�.rn�l/
X
j�1

e��j C C 2e��.rn�lC1/
X
j�0

e�.���/j ;

which gives (3.20).
By condition (UDC3), for all j � l C 1, we have

log kQ.j /k � logC C �1.1C �/j � C 0j � C 0.l C 1/.j � l/:

Therefore, again by (UDC1) and (UDC2), we have

K 0l.T / � C
0.l C 1/

X
j�lC1

kZ.j /kkQs.l; j /k.j � l/

� C 0C 2.l C 1/
X
j�lC1

.j � l/e�j e��.j�l/

D C 0C 2.l C 1/e�l
X
j�1

je�.���/j ;

which gives (3.21).
In view of (3.20), (UDC1) and (UDC2), we have

Crn.T / D
X

0�l�rn

kQs.l; rn/k
�
kZ.l/kKl�1.T /CKl.T /

�
� C 2D

X
0�l�rn

e��.rn�l/
�
e�.rn�lC1/e�.rn�lC1/ C e�.rn�l/

�
� 2C 2De2�

X
l�0

e�.��2�/l ;

which gives (3.22).



K. Frączek and C. Ulcigrai 276

In view of (3.21), (UDC1) and (UDC2), for every k � 0 we have

C 0k.T / D
X
0�l�k

kQs.l; k/k
�
kZ.l/kK 0l�1.T /CK

0
l.T /

�
� C 2D

X
0�l�k

e��.k�l/
�
le�le�.l�1/ C .l C 1/e�l

�
� .k C 1/2C 2De2�k

X
j�0

e�.��2�/j ;

which gives (3.23).

4. Cocycles with logarithmic singularities

We define in this section norms on the spaces of cocycles 'W I ! R with logarithmic
singularities over IETs that will allow us to control the normalized L1-norm of (spe-
cial) Birkhoff sums and in particular the error obtained when subtracting a suitable
piecewise-constant observable. We first introduce (in Section 4.1) the class of cocycles
of bounded variation over a given IET, then move to cocycles with logarithmic singu-
larities. We then prove several properties which will be used later in the proofs of the
main results.

4.1. Bounded variation and absolutely continuous cocycles

Let us denote by BV.
F
˛2A I˛/ the space of functions 'W I ! R such that the restric-

tion 'W I˛ ! R is of bounded variation for every ˛ 2 A.

4.1.1. Banach structure on bounded variation cocycles. For every function ' 2
BV.

F
˛2A I˛/ and x 2 I , we will denote by 'C.x/ and '�.x/ the right-handed and

left-handed limit of ' at x, respectively. Let us denote by Var.'/jJ the total variation
of ' on the interval J � I . Then set

Var' WD
X
˛2A

Var.'/jInt I˛ :

The space BV.
F
˛2A I˛/ is equipped with the Banach norm k'kBVDk'ksupCVar'.

4.1.2. Piecewise absolutely continuous cocycles. Denote by AC.
F
˛2A I˛/ the sub-

space of cocycles in BV.
F
˛2A I˛/ which are absolutely continuous on the interior

of each I˛ , ˛ 2 A.
Denote by BV1.

F
˛2A I˛/ the space of functions ' 2 AC.

F
˛2A I˛/ such that

'0 2BV.
F
2̨A I˛/. The space AC.

F
˛2A I˛/ equipped with the BV-norm is a Banach

space and BV1.
F
˛2A I˛/ is its dense subspace.
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4.1.3. Boundary operator on cocycles. Let @� WBV.
F
˛2A I˛/! R†.�/ be the lin-

ear operator given by

.@�'/O WD
X
˛2A�

O

'�.r˛/ �
X
˛2A

C

O

'C.l˛/

for O 2 †.�/. This is an extension of the operator defined in Section 3.1.9 from
piecewise constant cocycles (in view of Remark 3.3) to bounded variation cocycles.
It associates to each singularity the sum of jumps at the discontinuities associated to
that singularity (see also Remark 3.3).

Remark that if ' 2 AC.
F
˛2A I˛/, thenX

O2†.�/

.@�'/O D

Z
I

'0.x/ dx DW s.'/: (4.1)

4.2. Cocycles with logarithmic singularities

Consider the space L.
F
˛2AI˛/ of cocycles with logarithmic singularities on

F
˛2AI˛ ,

defined in Section 2.3.1 (see, in particular, (2.1) for the form of such cocycles), as well
as its subsets LG.

F
˛2A I˛/ and LSG.

F
˛2A I˛/, consisting of the cocycles in L with

logarithmic singularities respectively of geometric type (see Section 2.3.1) and sym-
metric geometric type, i.e., satisfying in addition also the symmetry condition (2.2)
(both also defined in Section 2.3.1).

We will also use the spaces

LBV.
F
˛2A I˛/ WD L.

F
˛2A I˛/C BV.

F
˛2A I˛/;

LGBV�F
˛2A I˛

�
WD LG

�F
˛2A I˛

�
C BV

�F
˛2A I˛

�
;

LSGBV�F
˛2A I˛

�
WD LSG

�F
˛2A I˛

�
C BV

�F
˛2A I˛

�
;

consisting of all functions with logarithmic singularities (respectively, symmetric log-
arithmic singularities) of geometric type of the form (2.1) for which we require only
that g' 2 BV.

F
˛2A I˛/. Notice that the space BV (AC resp.) coincides with the sub-

space of functions ' 2 LGBV (LG resp.) as in (2.1) such that C˙˛ D 0 for all ˛ 2 A.

4.2.1. Norms and Banach space structure. We now define a norm on the space
LBV.

F
˛2A I˛/, which makes it a Banach space.

Definition 5. For every ' 2 LBV.
F
˛2A I˛/ of the form (2.1), set

L.'/ WD
X
˛2A

�
jCC˛ j C jC

�
˛ j
�
;

LV.'/ WD L.'/C Varg' :
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The space LBV.
F
˛2A I˛/ equipped with the norm

k'kLV D L.'/C kg'kBV

becomes a Banach space. Since LGBV.
F
˛2AI˛/, LG.

F
˛2AI˛/, and LSG.

F
˛2AI˛/

are closed subsets23 of LBV.
F
˛2A I˛/ they also inherit the norms L and LV (which

make them complete metric spaces). Moreover, for every ' 2 LGBV.
F
˛2A I˛/, we

have
1

jI j
k'kL1.I / �

�
1C j log jI jj

�
k'kLV : (4.2)

Indeed, since every ' 2 LGBV.
F
˛2A I˛/ is of the form (2.1), we have

1

jI j
k'kL1.I / �

L.'/

jI j

Z
I

j log xj dx C
kg'kL1.I /

jI j

�
�
1C j log jI jj

�
L.'/C kg'ksup:

We can associate a value also to each saddle in Fix. R/ individually as follows.
Using the notation introduced in Section 3.1.8, let O 2 †.�/ be a saddle and let
A�

O
;AC

O
be the sets of letters defined in (3.7), associated respectively to right and left

endpoints of intervals which correspond to this saddle. Then

�O.'/ WD
X
˛2A�

O

C�˛ �
X
˛2A

C

O

CC˛ ; (4.3)

is the value of the asymmetry at the saddle labelled by O. We also set

A�.'/ WD
X

O2†.�/

j�O.'/j:

Comparing the above definition and (4.3) with Definition 5, one sees that

A�.'/ � L.'/: (4.4)

23More precisely, LG.
F
˛2A I˛/ (and similarly the other spaces) is only a union of closed

linear subspaces and not a linear subspace itself. Indeed, f 2 LG.
F
˛2A I˛/ iff

CC
��10 .1/

.f / D 0 and C�
��10 .d/

.f / D 0, or

CC
��11 .1/

.f / D 0 and C�
��10 .d/

.f / D 0, or

CC
��10 .1/

.f / D 0 and C�
��11 .d/

.f / D 0, or

CC
��11 .1/

.f / D 0 and C�
��11 .d/

.f / D 0.

Thus, while if we sum up two functions from different spaces then the sum can be outside
LG.

F
˛2A I˛/ (so LG.

F
˛2A I˛/ is not a linear subspace), each of these 4 conditions defines

a closed subspace (of codimension 2), so that LG.
F
˛2A I˛/ is a union of four closed linear

subspaces.
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4.2.2. Properties of the cocycles arising in the reduction. As we saw in Section 2.3,
the study of extensions of locally Hamiltonian flows can be reduced to the study of
skew product extensions of IETs with logarithmic singularities (see Proposition 2.4).
We now recall the properties of the cocycles which appear from this reduction, which
were described in [22] (see [22, Proof of Theorem 6.1 and Proposition 6.1]).

Let M 0 � M be a minimal component of a locally Hamiltonian flow  R with
non-degenerate saddles. Fix a section  as in the proof of Proposition 2.4 and con-
sider the map that associate f 2 C 2C�.M 0/ to the cocycle 'f which appears in the
skew-product presentation of the Poincaré map of the extension ˆfR to  � R (see
Proposition 2.4).

Proposition 4.1 (Properties of the skew-products cocycles, see [22], and in particu-
lar24 [22, Theorem 6.1]). For every � > 0 the map from C 2C�.M/ to LG.

F
˛2A I˛/

which maps
f 7! 'f 2 LG.

F
˛2A I˛/

is a bounded linear operator. Moreover, g0'f 2 LG.
F
˛2A I˛/ and there exists C > 0

such that

C�1
X

�2Fix. R/\M
0

jf .�/j � L.'/

� C
X

�2Fix. R/\M
0

jf .�/j for every f 2 C 2C�.M/:

Furthermore,

(i) if f 2 C 1.M/ and f .�/ D 0 for all � 2 Fix. R/ \M
0, then the map

'jf jW I ! R

is bounded;

(ii) if  R 2 Umin, so M 0 DM , then A�.'f / D 0 and @�.'f / D 0.

4.3. Properties of cocycles with logarithmic singularities

We state and prove in this section a number of elementary properties of cocycles
with logarithmic singularities which will be used in the construction of the correction
operators.

24The statements are all part of [22, Theorem 6.1], but (i). Namely, the boundedness of 'jf j
when f 2 C 1.M/ and f vanishes on Fix. R/ \M

0. This last statement can be proved with
the same arguments used in [22] to prove Theorem 6.1.
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4.3.1. Control of tails of the derivatives growth. The derivative of a cocycle with
logarithmic singularities has singularities which explode at most as 1=x, as stated in
the following lemma.

Lemma 4.2. Suppose that LG.
F
˛2A I˛/ and g' D 0. For every ˛ 2A, denote bym˛

the middle point of the interval I˛ , i.e., m˛ WD 1
2
.l˛ C r˛/. Then

j'0.x/.x � l˛/j � L.'/ for x 2 .l˛; m˛�;

j'0.x/.x � r˛/j � L.'/ for x 2 Œm˛; r˛/:
(4.5)

Proof. Indeed, for every x 2 .l˛; m˛� and ˇ 2 A, we have°x � lˇ
jI j

±
�
x � l˛

jI j
;

°rˇ � x
jI j

±
�
r˛ � x

jI j
�
x � l˛

jI j
:

It follows that

j'0.x/.x � l˛/j �
X
ˇ2A

jCC
ˇ
j.x � l˛/

jI j¹.x � lˇ /=jI jº
C

X
ˇ2A

jC�
ˇ
j.x � l˛/

jI j¹.rˇ � x/=jI jº

�

X
ˇ2A

�
jCC
ˇ
j C jC�ˇ j

�
D L.'/:

The second inequality of (4.5) follows by the same arguments.

4.3.2. Control of mean value on subintervals. For every integrable function f WI!
R and a subinterval J � I , let m.f; J / stand for the mean value of f on J , i.e.,

m.f; J / D
1

jJ j

Z
J

f .x/ dx:

Proposition 4.3 ([22, Proposition 2.5]). If ' 2 LGBV.
F
˛2A I˛/ and J � I˛ for some

˛ 2 A, then

jm.'; J / �m.'; I˛/j � LV.'/

�
4C
jI˛j

jJ j

�
(4.6)

and
1

jJ j

Z
J

j'.x/ �m.'; J /j dx � 8LV.'/: (4.7)

Lemma 4.4. Let ' 2 LGBV.
F
˛2A I˛/. Then for every x 2 Int I˛ , we haveˇ̌

'.x/ �m
�
'; Œl˛; m˛�

�ˇ̌
� LV.'/

�
1C log

jI˛j

.x � l˛/

�
if x 2 .l˛; m˛�;ˇ̌

'.x/ �m
�
'; Œm˛; r˛�

�ˇ̌
� LV.'/

�
1C log

jI˛j

.r˛ � x/

�
if x 2 Œm˛; r˛/:

(4.8)
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Proof. We divide the proof into three steps.

Step 1. First note that for anyC 1-map f W .x0;x1�!R such that jf 0.x/.x � x0/j �C
for x 2 .x0; x1�, we have that for all t; s 2 .x0; x1�,

jf .s/ � f .t/j D

ˇ̌̌̌Z s

t

f 0.u/ du
ˇ̌̌̌
� C

ˇ̌̌̌Z s

t

1

u � x0
du
ˇ̌̌̌
D C

ˇ̌̌̌
log

t � x0

s � x0

ˇ̌̌̌
;

and hence thatˇ̌
f .s/ �m

�
f; Œx0; x1�

�ˇ̌
�

C

x1 � x0

Z x1

x0

ˇ̌̌̌
log

t � x0

s � x0

ˇ̌̌̌
dt

D C

�
log

x1 � x0

s � x0
C 1 � 2

x1 � s

x1 � x0

�
� C

�
log

x1 � x0

s � x0
C 1

�
: (4.9)

Step 2. Suppose now that ' 2 LG.
F
˛2A I˛/ with g' D 0. In view of Lemma 4.2

(see (4.5)), we can apply (4.9) to f D ' restricted to I˛ and taking C D LV.'/ D

L.'/. This gives (4.8) in the case g' D 0.

Step 3. Consider now the general case. For every g 2 BV.
F
˛2A I˛/ and any interval

J � I˛ , we have

jg.x/ �m.g; J /j � Var.g/ for every x 2 J : (4.10)

Adding this equality to the result of Step 2, we obtain (4.8) for any ' 2 LG.
F
˛2A I˛/.

From Lemma 4.4 and (4.10), we immediately get the following corollary.

Corollary 4.5. Let ' 2 LGBV.
F
˛2A I˛/. Then for every x 2 Int I˛ , we have

j'.x/j �
2jI j

jI˛j

k'kL1.I /

jI j
CLV.'/

�
1C log

jI˛j

min¹x � l˛; r˛ � xº

�
: (4.11)

If additionally ' 2 BV.
F
˛2A I˛/, then

k'ksup �
jI j

min˛2A jI˛j

k'kL1.I /

jI j
C Var.'/: (4.12)

4.3.3. Extension of the boundary operator. In this subsection, we show that the
operator @� WBV.

F
˛2A I˛/! R†.�/ introduced in Section 4.1.3 can be extended to

an operator @� WLGBV.
F
˛2A I˛/! R†.�/ as follows.

Definition 6. Let @� WLGBV.
F
˛2A I˛/! R†.�/ be a linear operator given by

@�.'/O WD lim
x!0C

� X
˛2A�

O

�
'.r˛ � x/C C

�
˛ log x

�
�

X
˛2A

C

O

�
'.l˛ C x/C C

C
˛ log x

��
for every ' 2 LGBV.

F
˛2A I˛/ and O 2 †.�/.
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Let a WDmin¹jIˇ j Wˇ2Aº=2. Then for every ˛2A and every '2LGBV.
F
˛2A I˛/,

there are 'C˛ ; '
�
˛ W Œ0; a�! R functions of bounded variation such that

'.r˛ � x/ D �C
�
˛ log x C '�˛ .x/;

'.l˛ C x/ D �C
C
˛ log x C 'C˛ .x/ for x 2 .0; a�:

For every O 2†.�/, let us consider the bounded variation mapDO W Œ0; a�!R given
by

DO.x/ WD
X
˛2A�

O

'�˛ .x/ �
X
˛2A

C

O

'C˛ .x/ for x 2 Œ0; a�: (4.13)

Then for all x 2 .0; a�, we have

DO.x/ D
X
˛2A�

O

�
'.r˛ � x/C C

�
˛ log x

�
�

X
˛2A

C

O

�
'.l˛ C x/C C

C
˛ log x

�
: (4.14)

As DO is of bounded variation, it follows that

@�.'/O D .DO/C.0/ (4.15)

is well defined.

4.4. Mean value projection

If ' 2 L1.I /, we can consider the piecewise constant function that is constant and
equal to the meanm.';I˛/ on I˛ . Formally, we define the linear operator MWL1.I /!

RA given by
M.'/.x/ D m.'; I˛/ if x 2 I˛:

This operator will play an important role in defining corrections operators. In the rest
of this subsection we prove the following Proposition, that gives an estimate on how
the boundary operator @� changes when one projects using this mean value projection
operator M.

Proposition 4.6. For every ' 2 LGBV.
F
˛2A I˛/, we have

k@�.M'/k � k@�.'/k CA�.'/

�
1C log

2

minˇ2A jIˇ j

�
C 2dLV.'/

�
5C 2

jI j

minˇ2A jIˇ j

�
: (4.16)

Furthermore, we also have that

k@�.'/k � 2d log
2

minˇ2A jIˇ j
k'kLV : (4.17)
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Proof. Suppose that g'D0. Then the maps '˙˛ W Œ0; a�!R (a WDmin¹jIˇ j W ˇ2Aº=2)
are of class C 1 for all ˛ 2 A with

j'˙˛ .x/j � L.'/ log a�1 and j.'˙˛ /
0.x/j � L.'/=a for x 2 Œ0; a�:

In view of (4.13) and (4.15), it follows that for every O 2 †.�/ the map DO is of
class C 1, and we have

j@�.'/Oj D jDO.0/j � .#AC
O
C #A�O/L.'/ log a�1 (4.18)

and

jD0O.x/j �
.#AC

O
C #A�

O
/L.'/

a
for x 2 Œ0; a�:

Therefore, for every x 2 Œ0; a�,ˇ̌
DO.0/ �m

�
DO; Œ0; a�

�ˇ̌
�

R a
0
jDO.0/ �DO.x/j dx

a

�

R a
0

R x
0
jD0

O
.s/j ds dx
a

� .#AC
O
C #A�O/L.'/: (4.19)

Moreover, by (4.14) and (4.3), we have

m
�
DO; Œ0; a�

�
D �O.'/m

�
log; Œ0; a�

�
C

X
˛2A;�0.˛/2O

m
�
'; Œr˛ � a; r˛�

�
�

X
˛2A;�0.˛/�12O

m
�
'; Œl˛; l˛ C a�

�
:

In view of (4.6), for every ˛ 2 A, we haveˇ̌
m
�
'; Œr˛ � a; r˛�

�
�m.'; I˛/

ˇ̌
� L.'/

�
4C
jI˛j

a

�
;ˇ̌

m
�
'; Œl˛; l˛ C a�

�
�m.'; I˛/

ˇ̌
� L.'/

�
4C
jI˛j

a

�
:

As m.log; Œ0; a�/ D log a � 1, it follows thatˇ̌
@�.M'/O �m

�
DO; Œ0; a�

�ˇ̌
� j�O.'/j.1C log a�1/

CL.'/

�
4.#AC

O
C #A�O/C 2

jI j

a

�
:

Together with (4.15) and (4.19), this gives

j@�.M'/O � @�.'/Oj � j�O.'/j.1C log a�1/

CL.'/

�
5.#AC

O
C #A�O/C 2

jI j

a

�
:
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As
P

O2†.�/.#AC
O
C #A�

O
/ D 2#A D 2d and A�.'/ D

P
O2†.�/ j�O.'/j, sum-

ming up these inequalities for all O 2 †.�/, we have

k@�.M'/ � @�.'/k � A�.'/.1C log a�1/C 2dL.'/

�
5C
jI j

a

�
: (4.20)

Now assume that g' ¤ 0. Since g' 2 BV.
F
˛2A I˛/, we have

j.g'/C.l˛/ �m.g' ; I˛/j � Varg' and j.g'/�.r˛/ �m.g' ; I˛/j � Varg' :

It follows that, for every O 2 †.�/, we haveˇ̌
@�.M.g'//O � @�.g'/O

ˇ̌
D

ˇ̌̌̌ X
�0.˛/2O

�
m.g' ; I˛/ � .g'/�.r˛/

�
�

X
�0.˛/�12O

�
m.g' ; I˛/ � .g'/C.l˛/

�ˇ̌̌̌
� .#AC

O
C #A�O/Varg' :

Summing up these inequalities for all O 2 †.�/, we have

k@�.M.g'// � @�.g'/k � 2d Varg' ; (4.21)

which together with (4.20) this completes the proof of (4.16).
By the definition of @�.g'/O , we also have

j@�.g'/Oj � .#AC
O
C #A�O/kg'ksup for every O 2 †.�/:

This, together with (4.18), gives

k@�.'/k � 2d

�
L.'/

2

minˇ2A jIˇ j
C kg'ksup

�
:

As k'kLV D L.'/C Varg' C kg'ksup, this completes the proof of (4.17).

5. Renormalization of cocycles with log singularities

The renormalization map on IETs given by Rauzy–Veech induction (or any of its
accelerations) induce also a renormalization operator on cocycles over IETs, given
by taking special Birkhoff sums (see defined in Section 3.1.5 and also Section 5.1
below). In this section we estimate special Birkhoff sums of cocycles with logarithmic
singularities: those estimates will be used in Section 6 to implement the correction
strategy (in particular to estimate each step of renormalization what is left after sub-
tracting a piecewise constant observable). The estimates which we need on S.k; l/'



On Birkhoff integrals for locally Hamiltonian flows 285

for the correction procedure should be a function of (1) the normalized L1-norm of
the observable ' that is being corrected or, more precisely, LV.'/ and (2) the com-
binatorial complexity of the step of renormalization, which is given by kQ.k; l/k.
The estimates that we prove are different in the symmetric and asymmetric cases. Let
us give a preliminary rough overview of the results and the phenomena behind the
proofs.

The asymmetric case. In the case of asymmetric singularities, treated in Section 5.3,
the growth is controlled by Proposition 5.11, which provides the crucial estimate to
carry out the classical correction strategy (for the general case, in particular the asym-
metric one): it gives that (up to a constant), for a ' which is purely logarithmic (i.e.,
of the form (2.1), but with g' D 0), we have the estimate

LV
�
S.k/'

�
�
jI
.k/
maxj

jI
.k/
min j

log kQ.k/kLV.'/;

where jI .k/maxj=jI
.k/
min j is the ratio between the bigger and smaller renormalization inter-

vals (which provides a measure of how well balanced the floors of Rokhlin towers of
the kth renormalization step are). The proof builds on estimates of the Birkhoff sums
of the derivatives of ' (when ' is purely logarithmic) and encapsulates the following
heuristic phenomenon (which is also at the base of the works on mixing properties
of locally Hamiltonian flows by Kochergin [34, 35], the second author in [57] and
Ravotti [52]): the only way the Birkhoff sums at a point can explode is if its iterates
come abnormally close to the a singular point: the number of times this happens is a
function of Q.k/ and the magnitude of the contribution of each is controlled by how
unbalanced the dynamical partition (which in turn is given by Lemma 5.10).

The symmetric case. In the symmetric case, which is considered in Section 5.2,
instead of the control of the derivative '0 by the number of times images of a point
come abnormally close to a singular point, a much finer (although delicate) estim-
ate can be obtained exploiting cancellations, i.e., showing that the contributions from
the closest visits to the singularities (from the left and from the right) cancel out
because of the symmetry. This fine cancellations rely on the work of the second author
in [59], see Theorem 5.6. In view of these cancellations, the estimate given by Pro-
position 5.11 in the asymmetric case can be improved and replaced in the symmetric
case by a stronger estimate (see Proposition 5.8, whose proof relies on Theorem 5.6)
which reads (up to a uniform constant)

LV
�
S.k/'

�
�
jI
.k/
maxj

jI
.k/
min j

LV.'/;
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where the ratio jI .k/maxj=jI
.k/
min j is as before a measure of the balance between floors of

the Rokhlin towers.
We now proceed to state and prove these estimates (in Section 5.2 and Sec-

tion 5.3).

5.1. Special Birkhoff sums

Recall that for all 0� k < l the renormalization operator S.k; l/WL1.I .k//!L1.I .l//

is given by

S.k; l/'.x/ D
X

0�i<Qˇ.k;l/

'
�
.T .k//ix

�
for x 2 I .l/

ˇ
:

We write S.k/' for S.0; k/' and we use the convention that S.k; k/' WD '. Sums of
this form are usually called special Birkhoff sums. Since Rokhlin towers representa-
tion allows to write I .k/ as

I .k/ D
[
ˇ2A

Qˇ.k;l/�1[
iD0

.T .k//iI
.l/

ˇ
;

where the intervals in the union are all pairwise disjoint, from the definition of special
Birkhoff sums, one can see that for every ' 2 L1.I .k//, we haveZ

I .l/
S.k; l/'.x/ dx D

Z
I .k/

'.x/ dx:

Therefore, we also have that

kS.k; l/'kL1.I .l// � k'kL1.I .k//: (5.1)

If g 2 BV.
F
˛2A I

.k/
˛ /, then

VarS.k; l/g � Varg: (5.2)

The following lemma, which was proved by the authors in [22], shows that con-
stants of logarithmic singularities, as a set, is invariant under renormalization when
logarithmic singularities are normalized suitably (i.e., by the map f .x/ 7!f .�¹x=�º/,
where � is the length of the inducing interval).

Lemma 5.1 (see [22]). For each 0 � k � l and for each ' 2 LG.
F
˛2A I

.k/
˛ / of the

form

'.x/ D �
X
˛2A

�
CC˛ log

�
jI .k/j

°x � l .k/˛
jI .k/j

±�
C C�˛ log

�
jI .k/j

°r .k/˛ � x
jI .k/j

±��
; (5.3)
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there exists a permutation �WA! A such that

S.k; l/'.x/ D�
X
˛2A

�
CC˛ log

�
jI .l/j

°x � l .l/˛
jI .l/j

±�
C C��.˛/ log

�
jI .l/j

°r .l/˛ � x
jI .l/j

±��
C gS.k;l/'.x/;

where gS.k;l/' 2 BV1.
F
˛2A I

.l/
˛ /.

Remark 5.2. In the general case, when ' 2 LG.
F
˛2A I

.k/
˛ / and g' is non-trivial,

the map ' � g' is of the form (5.3). It follows that

S.k; l/'.x/ D S.k; l/.' � g'/.x/C S.k; l/.g'/.x/

D �

X
˛2A

�
CC˛ log

�
jI .l/j

°x � l .l/˛
jI .l/j

±�
C C��.˛/ log

�
jI .l/j

°r .l/˛ � x
jI .l/j

±��
C gS.k;l/.'�g'/.x/C S.k; l/.g'/.x/:

As gS.k;l/.'�g'/ and S.k; l/.g'/ belong to AC.
F
˛2A I

.l/
˛ /, we have

gS.k;l/' D gS.k;l/.'�g'/ C S.k; l/.g'/: (5.4)

Recalling the definition of L and A� (see Definition 5) and of the various spaces
of cocycles with logarithmic singularities (refer to Section 4), we immediately have
the following corollary.

Corollary 5.3 (Invariance of L and A�). For every ' 2 LGBV.
F
˛2A I

.k/
˛ /,

L
�
S.k; l/'

�
D L.'/ and A�

�
S.k; l/'

�
D A�.'/: (5.5)

Therefore, the operator S.k; l/ maps

(i) the space LGBV.
F
˛2A I

.k/
˛ / into the space LGBV.

F
˛2A I

.l/
˛ /;

(ii) the space LG.
F
˛2A I

.k/
˛ / into the space LG.

F
˛2A I

.l/
˛ /;

(iii) the space LSGBV.
F
˛2A I

.k/
˛ / into the space LSGBV.

F
˛2A I

.l/
˛ /;

(iv) the space LSG.
F
˛2A I

.k/
˛ / into the space LSG.

F
˛2A I

.l/
˛ /.

The following result (Lemma 5.4) is a generalization of [22, Lemma 3.2], which
was proved for cocycles with strongly symmetric logarithmic singularities. Since the
proof of the following lemma runs in the same way, we skip it. The operator @� which
appears in the statement was defined in Section 4.3.3.

Lemma 5.4. For all 0 � k � l and for every ' 2 LG.
F
˛2A I

.k/
˛ /, we have@�.l/�S.k; l/'� D @�.k/.'/: (5.6)
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5.2. Cancellations for symmetric singularities

The following property of cocycles with symmetric logarithmic singularities was
proved by the second author in [59, Proposition 4.1] and will play a crucial role to
renormalize cocycles with symmetric logarithmic singularities and in the proof of
ergodicity.

Let us denote by .x/C the positive part of x, i.e., .x/CD x if x � 0, and .x/CD1
if x < 0, so that if x < 0, then 1=.x/C is zero. Using this notation, for every ˛ 2 A,
let us define

xl˛ WD min
0�i<Qˇ.k/

.T ix � l˛/
C; xr˛ WD min

0�i<Qˇ.k/
.r˛ � T

ix/C: (5.7)

Then xl˛ (resp. xr˛) is the closest visit to the singularity l˛ from the right (resp. to r˛
from the left) in the orbit segment ¹T i .x/; 0 � i < Qˇ .k/º.

Remark 5.5 (Closest visits comparison). By the proof of [22, Proposition 3.2], for
every x 2 I .k/

ˇ
and any ˛ 2 A, we haveˇ̌̌̌

ˇ 1xl˛ � 1

jI .k/j
®
x�l

.k/
˛

jI .k/j

¯
ˇ̌̌̌
ˇ � 1

jI
.k/
˛ j

;

ˇ̌̌̌
ˇ 1

xr
�.˛/

�
1

jI .k/j
®
r
.k/
˛ �x

jI .k/j

¯
ˇ̌̌̌
ˇ � 1

jI
.k/
˛ j

:

Thus, the closest visits defined above are comparable with the quantities expressed
above in terms of ¹ � º.

The following theorem (as the proof below indicates) follows from the results
in [59], combined with the acceleration defined in the UDC.

Theorem 5.6 (Cancellations for symmetric logarithmic singularities). For almost
every .�; �/ 2 G � RA

>0, there exists an accelerating sequence and a constant M D
M.�;�/ � 1 such that T.�;�/ satisfies the UDC (along the accelerating sequence) and
for every ' 2 LSG.

F
˛2A I˛/ with g0' D 0, any k � 1 and x 2 I .k/

ˇ
, we haveˇ̌̌̌

.'0/.Qˇ.k//.x/ �
X
˛2A

CC˛

xl˛
C

X
˛2A

C�˛
xr˛

ˇ̌̌̌
�ML.'/

Qˇ .k/

jI j
; (SUDC1)

where xl˛ and xr˛ are the closets visits defined in (5.7).
Moreover, for every 0 � r < Qˇ .k/ and x 2 I .k/

ˇ
, we have

ˇ̌
.'0/.r/.x/

ˇ̌
�

X
˛2A

jCC˛ j

xl˛
C

X
˛2A

jC�˛ j

xr˛
CML.'/

Qˇ .k/

jI j
: (SUDC2)

Proof. By the proofs of [59, Propositions 4.1 and 4.2], there exists a precompact
subset ED � X.G / with positive measure such that yAED and yA�1ED are log-integrable
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and the accelerating sequence defined by recurrence of .�; �; �/ to ED is such that
(SUDC1) and (SUDC2) hold for every k � 1.

Then we repeat all steps of the proof of Theorem 3.8 starting from the set Y DED .
Since both (SUDC1) and (SUDC2) also hold along a subsequence obtained taking
further accelerations, this completes the proof.

Definition 7 (SUDC). We say that an IET T satisfies the Symmetric Uniform Dio-
phantine Condition, or SUDC for short, if it satisfies the UDC along an accelerating
sequence .nk/k�0 along which the cancellations (SUDC1) and (SUDC2) hold.

Theorem 5.6 above thus shows that the SUDC has full measure.

Proposition 5.7. Suppose that T satisfies the SUDC. For every ' 2 LSG.
F
˛2A I˛/

with g' D 0 and k � 1, we have gS.k/' 2 BV1.
F
˛2A I

.k/
˛ / and

kg0S.k/'ksup �
.M C 1/L.'/

minˇ2A jI
.k/

ˇ
j

:

Proof. The proof runs in the same way as the proof of [22, Proposition 3.2], only
replacing [22, Corollary 3.1] with (SUDC1).

Let �WA! A be the permutation given by Lemma 5.1. Then

g0S.k/'.x/ D S.k/'
0.x/ �

X
˛2A

CC˛

jI .k/j
®
x�l

.k/
˛

jI .k/j

¯ CX
˛2A

C�
�.˛/

jI .k/j
®
r
.k/
˛ �x

jI .k/j

¯ : (5.8)

Notice that S.k/'0.x/ D .'0/.Qˇ.k//.x/ if x 2 I .k/
ˇ

. Thus, (5.8), in view of (SUDC1)
and Remark 5.5, and remarking that (since Rokhlin towers give a partition)

Qˇ .k/min
˛2A
jI .k/˛ j � Qˇ .k/jI

.k/

ˇ
j �

X
˛2A

Q˛.k/jI
.k/
˛ j D jI j;

for every x 2 I .k/
ˇ

, we get that

jg0S.k/'.x/j �ML.'/
Qˇ .k/

jI j
C

L.'/

min˛ jI
.k/
˛ j

� .M C 1/
L.'/

min˛ jI
.k/
˛ j

:

Taking the supremum over x 2 I .k/ concludes the proof.

Proposition 5.8 (Key estimate in the symmetric case). If T satisfies the SUDC, then
for every k � 1 and for every ' 2 LSGBV.

F
˛2A I˛/, we have

LV
�
S.k/'

�
� 4M

jI .k/j

minˇ2A jI
.k/

ˇ
j

LV.'/ � 4M�LV.'/: (5.9)



K. Frączek and C. Ulcigrai 290

Proof. First suppose that g'D0. By Proposition 5.7, we then have that gS.k/' belongs
to the space BV1.

F
˛2A I

.k/
˛ / and

VargS.k/' D
Z
I .k/
jg0S.k/'.x/j dx

� kg0S.k/'ksupjI
.k/
j � .M C 1/L.'/

jI .k/j

minˇ2A jI
.k/

ˇ
j

:

If g' ¤ 0 then, by (5.2), we have Var.S.k/g'/ � Var g' . As g'�g' D 0, by (5.4), it
follows that

LV
�
S.k/'

�
D L

�
S.k/'

�
C VargS.k/'

D L.'/C Var
�
gS.k/.'�g'/ C S.k/g'

�
� L.'/C Var

�
gS.k/.'�g'/

�
C Var

�
S.k/g'

�
:

Therefore, by Proposition 5.7, we get

LV
�
S.k/'

�
� L.'/C .M C 1/

jI .k/j

minˇ2A jI
.k/

ˇ
j

L.' � g'/C Var.g'/

� 4M
jI .k/j

minˇ2A jI
.k/

ˇ
j

LV.'/:

5.3. Non-symmetric case

We now estimate (special) Birkhoff sums for the derivative '0 of a function ' which
belongs to LG.

F
˛2A I

.k/
˛ / with asymmetric logarithmic singularities. Birkhoff sums

of this type of function over rotations (which can be thought as IETs with d D 2)
were first estimated in the seminar work by Kochergin [34] (see also [35]). When the
base transformation is an IET, they were studied by the second author in [57] when
there is a unique logarithmic singularity and by Ravotti in [52] in the general case. A
crucial estimate in all these works is provided by the following Remark, which was
first used by Kochergin in [34].

Remark 5.9 (Inverses of an arithmetic progression). If the points .xi /NiD0 � Œ0; 1� are
such that, for some ı > 0, jxi � xj j � ı for every pair of i ¤ j , then

NX
iD0

1

xi
�

1

min0�i�N xi
C

NX
jD1

1

j ı
�

1

min0�i�N xi
C

logN C 1
ı

:
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Lemma 5.10. Suppose that T.�;�/ satisfies the Keane condition. Then for every ' 2
LG.

F
˛2A I˛/ with g0' D 0, any k � 1 and x 2 I .k/, we haveˇ̌̌̌
S.k/.'0/.x/ �

X
˛2A

CC˛

xl˛
C

X
˛2A

C�˛
xr˛

ˇ̌̌̌
� L.'/

1C log kQ.k/k

min˛2A jI
.k/
˛ j

: (5.10)

Proof. Notice first that it is enough to prove (5.10) in the special cases when

' D 'C˛ WD log
�
jI j¹.x � l˛/=jI jº

�
or ' D '�˛ WD log

�
jI j¹.r˛ � x/=jI jº

�
:

Indeed, taking the linear combinationX
˛2A

CC˛ '
C
˛ C C

�
˛ '
�
˛

then yields the general form of the result. Since the reasoning is analogous for func-
tions of the form 'C˛ or '�˛ we will only do the computations for 'C˛ .

For any x 2 I .k/
ˇ

, choose 0 � i0 < Qˇ .k/ such that the iterate T i0x is the closest
to l˛ among all iterates T jx with 0 � j < Qˇ .k/ belonging to the interval .l˛; jI j/.
Then xl˛ D T

i0.x/� l˛ . Since all points in the orbit segment ¹T kx; 0 � k < Qˇ .k/º
belong to separate floors of a Rokhlin tower on which T acts as an isometry on the
floors, we also have that

min
®
jT i .x/ � T j .x/j; 0 � i ¤ j < Qˇ .k/

¯
� min
˛2A
jI .k/˛ j:

Therefore, if we reorder the points in ¹T ix 0 � i < Qˇ .k/º so that l˛ < T i0x <

T i1x < T i2x < � � � ; we have

jI j
®
.T ij .x/ � l˛/=jI j

¯
� min
˛2A
jI .k/˛ jj for all 1 � j < Qˇ .k/:

Thus, since by definition of the special Birkhoff sum S.k/'0.x/ D .'0/.Qˇ.k//.x/;

if x 2 I .k/
ˇ

, ˇ̌̌
.'0/.Qˇ.k//.x/ �

1

xl˛

ˇ̌̌
�

X
0�i<Qˇ.k/;i¤i0

1

jI j¹.T ix � l˛/=jI jº

�

X
1�j<Qˇ.k/

1

j min˛2A jI
.k/
˛ j

�
1C logQˇ .k/

min˛2A jI
.k/
˛ j

;

were in the last inequality we have used the estimate given by Remark 5.9. This com-
pletes the proof.
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Proposition 5.11 (Key estimates in the asymmetric case). Suppose that T.�;�/ satis-
fies the Keane condition. Then for every ' 2 LGBV.

F
˛2A I˛/ and k � 1, we have

LV
�
S.k/'

�
�

jI .k/j

min˛2A jI
.k/
˛ j

LV.'/
�
3C log kQ.k/k

�
: (5.11)

Proof. First suppose that g' D 0. Then, by Lemma 5.1 and in view of Remark 5.5,
we can apply the derivative estimates given by Lemma 5.10, and for every x 2 I .k/,
we get that

jg0S.k/'.x/j D

ˇ̌̌̌
ˇS.k/'0.x/ �X

˛2A

CC˛

jI .k/j
®
x�l

.k/
˛

jI .k/j

¯ CX
˛2A

C�
�.˛/

jI .k/j
®
r
.k/
˛ �x

jI .k/j

¯
ˇ̌̌̌
ˇ

�
L.'/.2C log kQ.k/k/

min˛2A jI
.k/
˛ j

:

It follows that

VargS.k/' � kg0S.k/'ksupjI
.k/
j � L.'/

�
2C log kQ.k/k

� jI .k/j

min˛2A jI
.k/
˛ j

:

If g' ¤ 0, then by (5.2), we have Var.S.k/g'/ � Varg' . As g'�g' D 0, by (5.4),
it follows that

LV
�
S.k/'

�
� L.'/C Var

�
gS.k/.'�g'/

�
C Var

�
S.k/g'

�
� L.'/C

�
2C log kQ.k/k

� jI .k/j

min˛2A jI
.k/
˛ j

L.' � g'/C Var.g'/

�
�
3C log kQ.k/k

� jI .k/j

min˛2A jI
.k/
˛ j

LV.'/:

Since by definition of the Diophantine condition UDC (see Definition 2 (B1) and
Definition 3) the IETs obtained inducing on the subintervals I .k/ are all �-balanced,
i.e., jI .k/j � �min˛2A jI

.k/
˛ j, the conclusion of Proposition 5.11 immediately give the

following corollary.

Corollary 5.12. Let T be an IET satisfying the UDC. Then for all 0 � k � l and for
every function ' 2 LGBV.

F
˛2A I

.k/
˛ /, we have

LV
�
S.k; l/.'/

�
� �

�
3C log kQ.k; l/k

�
LV.'/: (5.12)

6. Correction operators

This section carries out Marmi–Moussa–Yoccoz’s strategy to obtain a piecewise con-
stant approximations, with the modifications needed to deal with the difficulties dis-
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cussed in the introduction (see Section 1.5). The section contains in particular the
statement and the proof of the key technical result of the paper (Theorem 6.1 below),
which, roughly, says that the normalizedL1-norm of special Birkhoff sums of correc-
ted cocycles with (asymmetric) logarithmic singularities grow subexponentially (see
Corollary 6.2), while in the symmetric case they do not grow (i.e., there is a uniform
bound).

6.1. Correction operator for cocycles with logarithmic singularities

Let ' be a function with logarithmic singularities and T an IET satisfying the Keane
condition. Let S.k/' be a sequence of special Birkhoff sums obtained by renormal-
ization, see Section 5.1. Consider the sequence

kS.k/'kL1.I .k//=jI
.k/
j; k 2 N; (6.1)

of L1-norms, normalized by jI .k/j. Notice that if S.k/' were bounded, the sequence
would simply be controlled by the sequence of sup norms kS.k/'kL1.I .k//, k 2 N.
Typically, the sequence in (6.1) grows exponentially with an exponent related to the
Lyapunov exponents of the cocycle AY .

Our goal is to eliminate this growth, by correcting the function ', namely by
subtracting a piecewise constant function (constant on the continuity intervals of T ).
This piecewise constant function, which we call the correction, can be defined for
IETs which satisfy the UDC and its values can be identified with a vector in H.�/.
The correction vector will be given by a correction operator

hWLG.
F
˛2A I˛/! H.�/:

We will call the correcting operator, the operator

P WD I � hWLG.
F
˛2A I˛/! LG.

F
˛2A I˛/;

which performs the correction, namely to ' associates the corrected cocycle P.'/ D
' � h.'/ obtained subtracting the correction h.'/. Under the assumption that T sat-
isfies the UDC, for every ' 2 LG.

F
˛2A I˛/, the correction h.'/ will be such that the

corrected function P.'/ D ' � h.'/ produces a sequence

kS.k/ ı P.'/kL1.I .k//=jI
.k/
j; k 2 N; (6.2)

which now has sub-exponential growth. This will then be the starting point to show the
existence of a full deviation spectrum for the L1-norm (see Section 7.2). Moreover,
if additionally T satisfies the SUDC and ' 2 LG.

F
˛2A I˛/ satisfies a stronger sym-

metry condition, A�.'/D 0, then the sequence (6.2) is bounded along a subsequence,
and it will play a crucial role in the proof of ergodicity (see Section 8).
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6.1.1. The main result on correction of logarithmic cocycles. The formal state-
ment of the result that we are going to prove is the following.

Theorem 6.1 (Existence of a correction operator). Assume that T D T.�;�/ satisfies
the UDC. There exists a bounded linear operator hWLG.

F
˛2A I˛/!H.�/ such that

for every ' 2 LG.
F
˛2A I˛/ with h.'/ D 0, we have

kS.k/ 'kL1.I .k//

jI .k/j
� C

�
C 0k.T /k'kLV C kQs.k/k

k'kL1.I /

jI j

�
; (6.3)

where C 0
k
.T / is the Diophantine series defined in Definition 4.

Furthermore, if additionally T satisfies the SUDC and A�.'/ D 0, then

kS.k/ 'kL1.I .k//

jI .k/j
� C

�
Ck.T /

�
LV.'/C k@�.0/.'/k

�
C kQs.k/k

k'kL1.I /

jI j

�
;

(6.4)
where Ck.T / is the other Diophantine series defined in Definition 4.

Combining Theorem 6.1 with the estimates on the Diophantine series given by
Proposition 3.9 (see, in particular, (3.23)), we have the following corollary.

Corollary 6.2 (Subexponential growth of special Birkhoff sums of corrected co-
cycles). Given T and h as in Theorem 6.1, for every ' 2LG.

F
˛2A I˛/with h.'/D0,

we have
kS.k/'kL1.I .k//

jI .k/j
D O.e�k/:

Notice that, in virtue of the definition of the Diophantine series Ck.T / and C 0
k
.T /,

the control for the symmetric case given by (6.4) is finer than that given by (6.3) since
C 0
k
.T / has an additional term which is logarithmic in the matrix cocycle norms (which

comes from the presence of K 0
l
.T / instead of Kl.T /, see Definition 4).

Remark 6.3. More precisely, we will show in the proof of Theorem 6.1 that for any
choice of a subspace F � H.�/ such that F ˚ �s.�/ D H.�/, where �s.�/ is the
stable space of T D T.�;�/, one can define a unique such operator h D hF such that
hF .h/ D h for any h 2 F .

The proof of Theorem 6.1 will take the rest of this section. We first of all com-
ment on the difficulties which motivate the change of strategy in comparison to [39]
and [22] and give an outline of the main steps.

6.1.2. Difficulties and outline of the proof. The idea of correction as well of the
strategy for proving of Theorem 6.1 are inspired by the seminal work by Marmi–
Moussa–Yoccoz on the cohomological equation in [39] (see also [43]). As we already
anticipated in the introduction, though, when considering functions with logarithmic
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singularities (or more in general BMO functions) and want to control the L1-norm
(which is the only one that can be controlled for functions with logarithmic singularit-
ies, which are unbounded), we need to modify substantially the original construction.
The construction presented here is a modification of the construction that we intro-
duced in [22] to prove an analogous result for IETs of hyperbolic periodic type.
Working with almost every T , it requires again some major changes in the basic steps
of construction. We comment here on the differences while giving an outline of the
steps in the proof of Theorem 6.1.

The procedure to build a correction, at a naive level, entails renormalizing Birkhoff
sums and at each step of renormalization process:

(1) finds the best approximation of the renormalized BS by a piecewise constant
observable;

(2) subtracts at the very beginning the preimage of this piecewise constant observ-
able (with the goal of implementing the heuristic strategy described in Section A.1 for
piecewise smooth cocycles, but replacing the uniform control of the error with control
in the norms introduced in Section 4).

For this approach to work, one needs to make sure that what is left after subtracting
the piecewise constant observable is not too large. A key technical point is given
by the preliminary estimates in Lemma 6.4. This is an enhanced version of (4.7) of
Proposition 4.3, which takes into account that it is more convenient to correct with a
piecewise constant observable that is in the absolute homology space of the Rauzy–
Veech cocycle. This requires further control of the boundary, which is achieved in
Proposition 4.6, which is an important technical addition contained in this article.

Let us now outline the steps of the construction of the correction operators in more
detail. First note that there is not a unique way to define a correction operator

hWLG
�F

˛2A I˛
�
! H.�/

with the desired properties (as in Theorem 6.1), since if we are given a function h.'/

that satisfies the desired estimates (namely (6.3) and (6.4) in Theorem 6.1) and add an
element from the stable space �s , we get a new function that still satisfies the same
estimates. On the other hand, if we compose with the projection U WRA! RA=�s to
the quotient by the stable space, the quotient operator

hU WD U ı hWLG
�F

˛2A I˛
�
! H.�/=�s

is uniquely defined and is the operator we are going to construct.
We will construct in fact a sequence of correcting operators with values in the

quotient by the stable space, namely

P .k/WLG
�F

˛2A I
.k/
˛

�
! LG

�F
˛2A I

.k/
˛

�
=�

.k/
s ; k 2 N
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(notice that if T satisfies the UDC the induced IET T .k/ satisfies the UDC for every
k � 1). For k D 0, the correcting operator P .0/ will have the form I � hU , where hU

is the sought correction operator with values in the quotient. We want the sequence of
operators P .k/; k 2 N, to be equivariant under the action of the renormalization, i.e.,
to commute with the operation of taking special Birkhoff sums (see Lemma 6.7 for a
precise statement).

The strategy to construct the sequence P .k/, k 2 N, of equivariant correcting
operators is the following:

(1) As first approximation of the correction operators, consider, for k 2 N, the
mean value projections M.k/WLG.

F
˛2A I

.k/
˛ /! �.k/, as defined in Section 4.4, and

the associated correcting operators P .k/0 WD I �M.k/, k 2 N;

(2) The correcting operators P .k/0 , k 2 N, are not equivariant and do not take
values in the quotient. Let us hence modify them by subtracting a term �.k/ and
composing with the projectionU .k/ to the quotient space �.k/=�.k/s , namely consider,
for each k 2 N, a operator of the form P .k/ WD U .k/ ı P

.k/
0 ��.k/;

(3) Following [39], one can see that for P .0/ defined as in .2/ to be equivariant,
one needs to define �.0/' so that the modified correction operator U ıM.0/ C�.0/

is the limit (if it exists) of the sequence U ı Q.k/�1 ıM.k/ ı S.k/.'/, which is
obtained by bringing back the correction of ' 2 LG.

F
˛2A I

.0/
˛ / at time k, namely of

the function S.k/.'/, to time 0 by applying Q.k/�1;

(4) Show that the sequence in .3/ converges, so that one can define the modific-
ation operator �.k/, then the correcting operator P .k/ D U .k/ ı P .k/0 ��.k/ has the
required equivariance and growths properties.

Thus, to obtain the desired correction operator one has to show that the sequence

U ıQ.k/�1 ıM.k/
ı S.k/.'/ 2 H

�
�.0/

�
=�.0/s ; k 2 N

obtained in .3/ converges for every ' 2 LG.
F
˛2A I

.0/
˛ /. Notice that when M.k/ takes

values in H.�.k// � �.k/, then Q.k/�1 composed with the projection on �=�s con-
tracts exponentially and this allows to prove the convergence. In [39] and [22], though,
the mean value projection M.k/, obtained taking mean values of the function over
every exchanged interval (see (6.5) below) takes values also outside H.�.k//. There-
fore, the contraction argument does not apply. To circumvent this problem, in [22] we
have used the projection on �=�cs , where �cs is the central stable space. Unfortu-
nately, though, this is not sufficient now, when we consider almost every IET.

One of the novelties in this part of the article in relations to the previous correction
operators constructions is that we consider initial corrections M

.k/
H obtained by com-

posing M.k/ with the projection pH.�.k// onto the space H.�.k// (see Section 6.2).
In view of the boundary operator estimate given by Lemma 3.4 (see Section 3.1.10),
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we can control the displacement between M
.k/
H and M.k/ in terms of the boundary

operator @�.k/ (see Section 6.2, in particular the proof of Lemma 6.4). It is starting
from this modified preliminary correction operators in step .1/ that allows to prove
convergence and hence leads to a good definition of correction (and correcting) oper-
ators in the more general setting of this paper, but also requires proving a series of
new inequalities and adding some new technical steps to the construction. The UDC
is devised exactly in order to guarantee convergence of this series. In fact, to show
that the series that gives �.k/ (which is written in (6.20)) converges, we will exploit
the exponential contraction provided by the condition (UDC1) and (3.4).

The final part of the proof is to show that any correction operator h defined choos-
ing a representative h.'/ for the equivalence class hU .'/ in H.�/=�s is such that
kS.k/.' � h.'//kL1.I .k//=jI

.k/j has sub-exponential growth. This part follows quite
closely the proof that we gave in [22], along the lines of [39].

6.2. Preliminary corrections

To define initial corrections, let us consider linear operators on LGBV.
F
˛2A I

.k/
˛ /,

k 2 N, obtained by considering mean value-projections (which we defined in Sec-
tion 4.4)

M.k/
WLGBV�F

˛2A I
.k/
˛

�
! �.k/; M.k/' D

P
˛2Am

�
'; I

.k/
˛

�
�
I
.k/
˛
: (6.5)

6.2.1. Initial corrections. The sequence of initial corrections that we want to use
is given by composing these mean value-projections with the projection onto the
space H.�.k//. Recall that pH.�.k//W �

.k/ ! H.�.k// is the orthogonal projection
on H.�.k//.

Definition 8 (Initial corrections). Consider the operator

M
.k/
H WLGBV�F

˛2A I
.k/
˛

�
! H

�
�.k/

�
; M

.k/
H WD pH.�.k// ıM.k/:

Set the corresponding initial approximation of the correction operator to be

P
.k/
0 WLGBV�F

˛2A I
.k/
˛

�
! LGBV�F

˛2A I
.k/
˛

�
;

' 7! P
.k/
0 ' WD ' �M

.k/
H ':

The following properties of the initial corrections follow almost directly from the
estimates on mean average corrections that we proved in Section 4.4 as preparatory
work, combined with the control of the projection through the boundary operator
(given by Lemma 3.4).
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Lemma 6.4 (Initial correction estimates). There exists a positive constant C such
that for every k 2 N, for every ' 2 LG.

F
˛2A I

.k/
˛ /, we have

kP
.k/
0 'kL1.I .k// � C jI

.k/
j
�
log kQ.k/kA�.'/CLV.'/C k@�.k/.'/k

�
; (6.6)

kP
.k/
0 'kL1.I .k// � 4dC jI

.k/
j log

�
2�kQ.k/k

�
k'kLV ; (6.7)

kM
.k/
H 'k �

�
p
d

jI .k/j
k'kL1.I .k//: (6.8)

Proof. To estimate P .k/0 , we will compare M.k/ with M
.k/
H , namely estimate

kP
.k/
0 'kL1.I .k// D k' �M

.k/
H 'kL1.I .k//

� k' �M.k/'kL1.I .k// C kM
.k/' �M

.k/
H 'kL1.I .k//: (6.9)

Let us estimate separately the two terms in (6.9), namely the mean-value correcting
operator and the difference of the mean value projections.

Estimating the mean-value correcting operator. By the construction of the mean pro-
jection operator (see (6.5) and the definition of m in Section 4.3), we have

kM.k/'kL1.I .k// D
X
˛2A

ˇ̌
m
�
'; I .k/˛

�ˇ̌
jI .k/˛ j

D

X
˛2A

ˇ̌̌̌Z
I
.k/
˛

'.x/ dx
ˇ̌̌̌
� k'kL1.I .k// (6.10)

and, by (4.7), we can therefore estimate the first term in (6.9) by

k' �M.k/'kL1.I .k// � 8jI
.k/
jLV.'/: (6.11)

Estimating the difference of the mean value projections. To estimate the second term
in (6.9), we recall that pH.�.k//, by Lemma 3.4, satisfies

kh � pH.�.k//hk � CGk@�.k/hk

for every k � 0 and h 2 �.k/. Thus,

kM.k/' � pH.�.k//M
.k/'kL1.I .k// � jI

.k/
j kM.k/' � pH.�.k//M

.k/'k

� CG jI
.k/
j k@�.k/M

.k/'k: (6.12)

Moreover, by Proposition 4.6,

k@�.k/M
.k/'k � k@�.k/.'/k C

�
1C log

2�

jI .k/j

�
A�.'/C 14d�LV.'/: (6.13)
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Proof of (6.6). Going back to (6.9) and combining the two separate estimates just
proved, namely (6.11), (6.12) and (6.13), it follows that

kP
.k/
0 'kL1.I .k// � jI

.k/
j

�
CGk@�.k/.'/k C CG

�
1C log

2�

jI .k/j

�
A�.'/

C .14d�CG C 8/LV.'/

�
:

By (3.3), we have
jI .k/j�1 � kQ.k/k;

so we get 1C log.2�=jI .k/j/ D O.kQ.k/k/, which yields (6.6).

Proof of (6.7). Recall now that, by the estimate (4.17) of k@�.k/.'/k and balance, we
have that

k@�.k/.'/k � 2d log
�
2�

jI .k/j

�
k'kLV � 2d log

�
2�dkQ.k/k

�
k'kLV :

Thus, as A�.'/ � LV.'/ � k'kLV , it follows from (6.6) that

kP
.k/
0 'kL1.I .k// � C jI

.k/
j
�
log kQ.k/k C 1C 2d log

�
2�kQ.k/k

��
k'kLV

� 4dC jI .k/j log
�
2�kQ.k/k

�
k'kLV :

This proves also (6.7).

Proof of (6.8). Finally, to prove (6.8), let us apply once more Lemma 3.4, which also
gives that, for every k � 0 and h 2 �.k/,

kpH.�.k//hk �
p
dkhk:

Using this combined with (6.10), we get

kM
.k/
H 'k D kpH.�.k//M

.k/'k �
p
dkM.k/'k

�
�
p
d

jI .k/j
kM.k/'kL1.I .k// �

�
p
d

jI .k/j
k'kL1.I .k//;

which proves also (6.8) and concludes the proof.

6.2.2. The series bringing back the corrections. We can now build the modifica-
tion �.k/ as a series (see (6.15) below), obtained by quotienting and pulling back the
preliminary corrections defined in the previous section.

Consider, for k 2 N, the projections U .k/ on the quotient by the stable space,
namely

U .k/WLGBV�F
˛2A I

.k/
˛

�
! LGBV�F

˛2A I
.k/
˛

�
=�

.k/
s :
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Since S.k; l/�.k/s D �
.l/
s and S.k; l/W �.k/ ! �.l/ is invertible, the quotient linear

transformation

S[.k; l/WLGBV�F
˛2A I

.k/
˛

�
=�

.k/
s ! LGBV�F

˛2A I
.l/
˛

�
=�

.l/
s

is well defined and S[.k; l/W�.k/=�
.k/
s ! �.l/=�

.l/
s is invertible. Moreover,

S[.k; l/ ı U
.k/' D U .l/ ı S.k; l/' for ' 2 LGBV�F

˛2A I
.k/
˛

�
: (6.14)

The following lemma shows that our Diophantine condition guarantees the conver-
gence of the series (6.15) obtained bringing back the corrections and hence it can be
used to define a modification operator �.k/. Furthermore, it provides estimates that
show that the modification operator is bounded.

Lemma 6.5 (Convergence of the modification series). Suppose that T satisfies the
UDC. For every function ' 2 LG.

F
˛2A I

.k/
˛ /, the following limit:

�.k/' D lim
l!1

U .k/ ı S.k; l/�1 ı
�
S.k; l/ ı P

.k/
0 � P

.l/
0 ı S.k; l/

�
' (6.15)

exists in H.�.k//=�.k/s , and

k�.k/'k � CK 0k
�
LV.'/C k@�.k/.'/k

�
: (6.16)

Moreover,�.k/�S.k/'� � CK 0k�LV.'/C k@�.'/k
�

for every ' 2 LG
�F

˛2A I˛
�
:

(6.17)
If additionally T satisfies the SUDC and ' 2 LG.

F
˛2A I˛/ with A�.'/ D 0, then

for every k � 1, we have

k�.k/
�
S.k/'

�
k � CKk

�
LV.'/C k@�.'/k

�
: (6.18)

Let us first show that the lemma implies that �.k/ is bounded.

Corollary 6.6 (Boundedness of the modification). For every k � N, the operator
�.k/WLG.

F
˛2A I

.k/
˛ /! H.�.k//=�

.k/
s defined by (6.15) is bounded.

Proof. In view of (6.16) and (4.17), for every ' 2 LG.
F
˛2A I

.k/
˛ /, we have

k�.k/'k � K 0k
�
1C 2d log

�
2�dkQ.k/k

��
k'kLV : (6.19)

This shows that �.k/WLG.
F
˛2A I

.k/
˛ /! H.�.k//=�

.k/
s is bounded.

The rest of this section is devoted to the proof of Lemma 6.5.
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Proof of Lemma 6.5. Exploiting the telescopic nature of the series, calculations sim-
ilar to those in [22] show that

U .k/ ı S.k; l/�1 ı
�
S.k; l/ ı P

.k/
0 � P

.l/
0 ı S.k; l/

�
D

X
k�r<l

�
S[.k; r C 1/

��1
ı U .rC1/ ıM

.rC1/
H ı S.r; r C 1/ ı P

.r/
0 ı S.k; r/:

It follows that we need to prove the convergence of the seriesX
r�k

�
S[.k; r C 1/

��1
ı U .rC1/ ıM

.rC1/
H ı S.r; r C 1/ ı P

.r/
0 ı S.k; r/' (6.20)

in H.�.k//=�.k/s .

Convergence of the series and the estimate (6.16). For any r � k, using (6.8), (5.1),
and (6.6), we obtain

kM
.rC1/
H ı S.r; r C 1/ ı P

.r/
0 ı S.k; r/'k

�
2�
p
d

jI .rC1/j
kS.r; r C 1/ ı P

.r/
0 ı S.k; r/'kL1.I .rC1//

�
2�
p
d

jI .rC1/j
kP

.r/
0 ı S.k; r/'kL1.I .r//

� C
jI .r/j

jI .rC1/j

�
A�

�
S.k; r/'

�
log kQ.r/kCLV

�
S.k; r/'

�
C
@�.r/�S.k; r/'��:

By the invariance of A� , LV and the boundary operator (see (5.12), (5.5) in Corol-
lary 5.3, (5.6)), (3.3) and (4.4), consecutively, we have

kM
.rC1/
H ı S.r; r C 1/ ı P

.r/
0 ı S.k; r/'k

� C
jI .r/j

jI .rC1/j

�
LV

�
S.k; r/'

�
C
@�.r/�S.k; r/'�CA�

�
S.k; r/'

�
log kQ.r/k

�
� C

jI .r/j

jI .rC1/j

�
�
�
3C log kQ.k; r/k

�
LV.'/C k@�.k/.'/k CA�.'/ log kQ.r/k

�
� C 0kZ.r C 1/k

�
LV.'/C k@�.k/.'/k

�
log kQ.r/k:

In view of (3.4), for 0 � k < l and h 2 H.�.l//, we have�S[.k; l/��1 ı U .l/.h/ � kQs.k; l/kkU .l/.h/k � kQs.k; l/kkhk: (6.21)

Since M
.rC1/
H ı S.r; r C 1/ ı P

.r/
0 ı S.k; r/' 2 H.�

.rC1//, by (6.21), the norm of
the r th element of the series (6.20) is bounded from above by

C 0kQs.k; r C 1/kkZ.r C 1/k
�
LV.'/C k@�.k/.'/k

�
log kQ.r/k:
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Since T satisfies the UDC, by Proposition 3.9, the seriesX
r�k

kQs.k; r C 1/kkZ.r C 1/k log kQ.r/k

is convergent and its sum is K 0
k

. As �.k/' is the sum of the series (6.20), it follows
that the operator �.k/ is well defined and (6.16) holds.

The estimates (6.17). If ' 2 LG.
F
˛2A I˛/, then we can repeat the above arguments

for S.k/' 2 LG.
F
˛2A I

.k/
˛ / instead of '. As

LV
�
S.k; r/

�
S.k/'

��
� C log kQ.r/kLV.'/;@�.r/�S.k; r/�S.k/'�� D k@�.'/k; A�

�
S.k; r/

�
S.k/'

��
D A�.'/;

now the norm of the r th element of the series (6.20), where ' is replaced by S.k/',
is bounded from above by

C 0kQs.k; r C 1/kkZ.r C 1/k
�
LV.'/C k@�.'/k

�
log kQ.r/k:

This gives also (6.17).

Symmetric singularities estimates. Now suppose that T satisfies the SUDC and ' 2
LG.

F
˛2A I˛/ with A�.'/ D 0. Using (5.9) and reasoning similarly to above, we

obtainP .r/0 ı S.k; r/
�
S.k/'

�
L1.I .r//

D
P .r/0

�
S.r/'

�
L1.I .r//

� C jI .r/j
�
LV

�
S.r/'

�
C
@�.r/�S.r/'��

� C 0kZ.r C 1/kjI .rC1/j
�
LV.'/C k@�.'/k

�
:

Thus,�S[.k; r C 1/��1 ı U .rC1/ ıM
.rC1/
H ı S.r; r C 1/ ı P

.r/
0 ı S.k; r/

�
S.k/'

�
� CkQs.k; r C 1/kkZ.r C 1/k

�
LV.'/C k@�.'/k

�
:

This gives (6.18).

6.2.3. The equivariant correction operators. Consider now the operator

P .k/WLG
�F

˛2A I
.k/
˛

�
! LG

�F
˛2A I

.k/
˛

�
=�

.k/
s

given by P .k/ D U .k/ ı P .k/0 ��.k/. As the operators U .k/ and P .k/0 (see (6.7)) are
bounded linear operators,P .k/ is also linear and bounded when LG.

F
˛2AI

.k/
˛ /=�

.k/
s

is equipped with the L1.I .k//=�.k/s -norm. We will now show that this modified cor-
recting operator satisfies the sough equivariance property, i.e., commutes with the
operation of considering special Birkhoff sums.
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Lemma 6.7 (Equivariance). Suppose that T satisfies the UDC. For all 0 � k � l , we
have

S[.k; l/ ı P
.k/
D P .l/ ı S.k; l/: (6.22)

Moreover, for every ' 2 LG.
F
˛2A I˛/, we have

1

jI .k/j

P .k/�S.k/'�
L1.I .k//=�

.k/
s
� ‚k.'/ WD CK

0
kk'kLV : (6.23)

If additionally, T satisfies the SUDC and ' 2 LG.
F
˛2A I˛/ with A�.'/ D 0,

then (6.23) holds with

‚k.'/ WD CKk
�
LV.'/C k@�.'/k

�
:

Proof. The condition (6.22) is a direct consequence of the definition of P .k/. Its proof
runs along similar lines as the proof of the first part of [22, Lemma 4.2].

In view of kU .k/k D 1, (6.6), (6.17), (5.11) and (5.6), we getP .k/�S.k/'�
L1.I .k//=�

.k/
s
�
P .k/0

�
S.k/'

�
L1.I .k//

C jI .k/j
�.k/�S.k/'�

� C jI .k/jK 0k
�
LV.'/C k@�.'/k

�
:

Moreover, using (6.7) and (6.19) instead of (6.6) and (6.17), we also haveP .k/�S.k/'�
L1.I .k//=�

.k/
s
� C jI .k/jK 0kk'kLV ;

which give (6.23).

Symmetric singularities case. We now suppose that T satisfies the SUDC and ' 2
LG.

F
˛2A I˛/ with A�.'/ D 0. Then, using (6.18) and (5.9) instead of (6.16) and

(5.11), we get (6.23) with ‚k.'/ D CKk.LV.'/C k@�.'/k/.

6.3. Proof of Theorem 6.1

Now we have built the correcting operator P .0/ with values in LG.
F
˛2A I

.0/
˛ /=�

.0/
s

and the desired equivariance properties (see Lemma 6.7), we want to check that any
choice of representative for the equivalence class P .0/' satisfies the desired growth
estimates and then to lift P .0/ to an operator I � h with values in LG.

F
˛2A I

.0/
˛ /.

We first prove a lemma that shows that any choice of representative of the equivalence
class P .0/.'/ satisfies the desired estimates hold (see Lemma 6.8 and in particular the
estimates in (ii)) and then use it to show that the correction is uniquely defined (see
Corollary 6.9). The proof of Theorem 6.1 then follows easily from this Lemma 6.8
and Corollary 6.9 and is given at the end of the section.
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Recall that we defined the equivariant correction operator P .0/ by setting

P .0/ D U .0/ ı P
.0/
0 ��

.0/:

We say that a map y' 2 LG.
F
˛2A I

.0/
˛ / is a correction of ' if it is a representative of

the corrected equivalence class P .0/', i.e.,

U .0/.y'/ D P .0/.'/:

With this in mind, the following lemma shows that any correction of ' satisfies the
desired estimates on the growth of Birkhoff sums. The constants Ck and C 0

k
which

appear in the estimates of Birkhoff sums of corrected functions (see part (ii) of the
lemma below) are given by the Diophantine series Ck.T / and C 0

k
.T / which we

defined for any k 2 N in Definition 4 and showed that they converge, and hence
are well defined under the assumption that T satisfies the UDC or SUDC.

Lemma 6.8 (Birkhoff sums estimates for corrected functions). Suppose that T satis-
fies the UDC. Assume that '; y' 2 LG.

F
˛2A I

.0/
˛ / and that U .0/ y' D P .0/'. Then

(i) y' � ' 2 H.�.0//;

(ii) for any k � 1, we have

kS.k/.y'/kL1.I .k//

jI .k/j
� C

�
C 0kk'kLV C C

00
k

ky'kL1.I .0//

jI .0/j

�
; (6.24)

and if T satisfies the SUDC and A�.'/ D 0, then

kS.k/.y'/kL1.I .k//

jI .k/j
� C

�
Ck
�
LV.'/C k@�.0/.'/k

�
C C 00k

ky'kL1.I .0//

jI .0/j

�
(6.25)

with Ck WD Ck.T /, C 0k WD C
0
k
.T / (refer to Definition 4 for the definition of

the Diophantine series Ck and C 0
k

) and C 00
k
WD kQs.k/k.

The lemma shows that every correction of ' is of the form ' � hwith h2H.�.0//.
Let us first show that the lemma also implies that the correction h is uniquely defined,
once we fix a complement to �.0/s in H.�.0//.

Corollary 6.9 (Uniqueness of the correction). Fix a subspace F �H.�.0// such that
F ˚ �

.0/
s D H.�

.0//. Suppose that h1; h2 2 F are two vectors such that

U .0/.' � h1/ D U
.0/.' � h2/ D P

.0/':

Then h1 D h2.
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Proof. In view of (6.24) of Lemma 6.8 combined with (3.23), we have

lim sup
k!C1

log.kS.k/.' � hi /kL1.I .k//=jI
.k/j/

k
� 0 for i D 1; 2:

Thus,

lim sup
k!C1

log kQ.k/.h1 � h2/k
k

� 0:

As h1 � h2 2 H.�.0//, by the condition (O) in Definition 3, it follows that

h1 � h2 2 �
.0/
s :

Since h1 � h2 2 F and �.0/s \ F D ¹0º, we have h1 D h2.

Let us now prove the lemma.

Proof of Lemma 6.8. Since by definition of the operators

U .0/ y' D P .0/' D U .0/ ı P
.0/
0 ' ��.0/' D U .0/' � U .0/ ıM

.0/
H ' ��.0/';

we have
U .0/.' � y'/ D U .0/ ıM

.0/
H ' C�.0/' 2 H.�.0//=�.0/s :

Therefore,
' � y' 2 H.�.0//C �.0/s � H.�

.0//:

In view of (6.14) and (6.22),

U .k/ ı S.k/y' D S[.k/ ı U
.0/
y' D S[.k/ ı P

.0/' D P .k/ ı S.k/':

Therefore, from (6.23), we have

kU .k/ ı S.k/y'k
L1.I .k//=�

.k/
s
D
P .k/�S.k/'�

L1.I .k//=�
.k/
s
jI .k/j � ‚k.'/:

It follows from the definition of k � k
L1.I .k//=�

.k/
s

on the quotient space that, for every
k�0, there exists 'k 2LG.

F
˛2A I

.k/
˛ / and sk 2 �

.k/
s such that

S.k/y' D 'k C sk and
k'kkL1.I .k//

jI .k/j
� ‚k.'/: (6.26)

Next note that

'kC1 C skC1 D S.k C 1/y' D S.k; k C 1/S.k/y'

D S.k; k C 1/'k CQ.k; k C 1/sk;
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so setting �skC1 D skC1 �Z.k C 1/sk (where �s0 D s0), we have

�skC1 D �'kC1 C S.k; k C 1/'k :

Moreover, by (5.1), for k � 0,

k�skC1k �
�

jI .kC1/j
k�skC1kL1.I .kC1//

D
�

jI .kC1/j
k'kC1 � S.k; k C 1/'kkL1.I .kC1//

�
�

jI .kC1/j

�
k'kC1kL1.I .kC1// C kS.k; k C 1/'kkL1.I .kC1//

�
� �

�
k'kC1kL1.I .kC1//

jI .kC1/j
C
jI .k/j

jI .kC1/j

k'kkL1.I .k//

jI .k/j

�
:

Next, by (6.26) and (3.3), it follows that

k�skC1k � �
�
kZ.k C 1/k‚k.'/C‚kC1.'/

�
for k � 0;

and

k�s0k � �
ks0kL1.I .0//

jI .0/j
D �
ky' � '0kL1.I .0//

jI .0/j
� �
ky'kL1.I .0//

jI .0/j
C �‚0.'/:

Since sk D
P
0�l�kQ.l; k/�sl and �sl 2 �

.l/
s , setting ‚�1 WD 0, we have

kskk �
X
0�l�k

kQ.l; k/�slk �
X
0�l�k

kQs.l; k/kk�slk

� �
X
0�l�k

kQs.l; k/k
�
‚l.'/C kZ.l/k‚l�1.'/

�
C �kQs.k/k

ky'kL1.I .0//

jI .0/j
:

In view of (6.26) and taking ‚k.'/ D CK 0kk'kLV , it follows that for k � 1,

kS.k/y'kL1.I .k//

jI .k/j
�
k'kkL1.I .k//

jI .k/j
C kskk � d�C

�
C 0kk'kLV C C

00
k

ky'kL1.I .0//

jI .0/j

�
:

If T satisfies the SUDC and A�.'/ D 0, then the same argument applied to

‚k.'/ D CKk
�
LV.'/C k@�.0/.'/k

�
shows also (6.25).

We have now all the elements to conclude the proof of Theorem 6.1.
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Proof of Theorem 6.1. Fix a subspace F � H.�.0// such that F ˚ �.0/s D H.�.0//.
Choose any y' 2 LG.

F
˛2A I˛/ with U .0/.y'/ D P .0/'. By item (i) of Lemma 6.8,

y' � ' 2 H.�.0//. Therefore, there exist h 2 F and h0 2 �.0/s such that

' � h D y' C h0:

As U .0/.y'/ D P .0/', it follows that

U .0/.' � h/ D U .0/.y' C h0/ D U .0/.y'/ D P .0/':

By Corollary 6.9, for every ' 2 LG.
F
˛2A I˛/, there exists a unique h D h.'/2F

such that
U .0/.' � h/ D P .0/':

Thus, there exists a unique linear operator hW LG.
F
˛2A I˛/ ! F (the correction

operator) such that
U .0/.' � h.'// D P .0/.'/: (6.27)

As the operator P .0/W LG.
F
˛2A I˛/! LG.

F
˛2A I˛/=�

.0/
s is bounded, by the

closed graph theorem, the operator h is also bounded. Indeed, if 'n ! ' in LG and
h.'n/! h in F then we have both

P .0/'n ! P .0/' D U .0/
�
' � h.'/

�
;

P .0/'n D U
.0/
�
'n � h.'n/

�
! U .0/.' � h/:

It follows that h.'/� h 2 F and at the same time h.'/� h 2 �
.0/
s , so hD h.'/. Since

the vector norm and the L1-norm are equivalent on �.0/, we get that the operator is
bounded.

Suppose now that h.'/ D 0. Then

U .0/.'/ D U .0/
�
' � h.'/

�
D P .0/.'/:

Therefore, (6.3) and (6.4) follow directly from (6.24) and (6.25) of Lemma 6.8 (ii),
respectively. This concludes the proof and proves as well the statement of Remark 6.3.

7. Deviations of Birkhoff sums and integrals

In this section we prove the main results on the deviation spectrum of locally Hamilto-
nian flows, by first reducing the study of integrals along a locally Hamiltonian flow to
the study of Birkhoff sums (see Section 7.1), then exploiting the correction operator
built in Section 6 to build (in the spirit of Bufetov functionals and Bufetov work [6])
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the cocycles which correspond to pure power behaviour, see Section 7.2. An important
technical hurdle, which is new and specific to the cocycles with logarithmic singular-
ities, is that the error term after corrections is only controlled in the L1-sense (see,
e.g., Corollary 6.2) and not, as for piecewise smooth cocycles, with respect to the sup
norm. While the L1-norm still controls the sup norm on large sets, is it then necessary
to control the measure of the tails. The strategy to achieve this control is described in
Section 7.1.3.

7.1. Estimates of Birkhoff integrals through Birkhoff sums

In this section we provide an effective estimate for the growth of Birkhoff integrals
(Proposition 7.8), which can be applied when the roof function g is unbounded. The
section is structured as follows. We first exploit the special flow representation of the
flow as a suspension flow over an IET under a roof function with logarithmic singular-
ities (refer to Section 2.3) to reduce to estimates of Birkhoff sums, see Section 7.1.1.
We then exploit a standard decomposition of Birkhoff sums in special Birkhoff sums,
see Section 7.1.2. Notice that the estimates relies on the speed of decay of the tails
of g; the new technical ingredients, which allow to control the tails, are explained in
Section 7.1.3. The main result of this section, namely Proposition 7.8, is then proved
in Section 7.1.4.

7.1.1. Reduction of integrals along the flow to Birkhoff sums. Let T W I ! I be
an ergodic IET and let gW I ! R>0 [ ¹C1º be an integrable function such that

g D inf
x2I

g.x/ > 0:

Following Section 2.2.2, we denote by T gR W I
g ! I g the special flow over T under

the roof g. For every integrable function f W I g ! R let 'f W I ! R be given by

'f .x/ D

Z g.x/

0

f .x; r/ dr:

By Fubini’s theorem, 'f is well defined for a.e. x 2 I , is integrable andZ
I

'f .x/ dx D
Z
Ig
f .x; r/ dx dr:

For every .x; r/ 2 I g and s > 0, denote by n.x; r; s/ � 0 the number of times the
orbit segment ¹T gt .x; r/ W t 2 Œ0; s�º crosses the interval I (identified with I � ¹0º),
i.e., the unique non-negative integer number such that

g.n.x;r;s//.x/ � r C s < g.n.x;r;s/C1/.x/: (7.1)

Then 0 � n.x; r; s/ � s=g C 1.
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Definition 9. For every c � g, let Ic � I be a sublevel set, this is

Ic � ¹x 2 I W g.x/ � cº:

Given s � 0, let Asc � I
g denote the following thickening of the set Ic in I g :

Asc WD ¹.x; r/ 2 I
g
W x 2 Icº n ¹T

g
�t .x; 0/ W x 2 I n Ic ; 0 � t � sº:

The following elementary lemma relates the Birkhoff integrals of f for the flow
T
g
R with the Birkhoff sums of 'f for the IET T .

Lemma 7.1. Suppose that f W I g ! R is bounded. For every s > 0 and c � g,
if .x; r/ 2 Asc , then T ix 2 Ic for all 0 � i � n.x; r; s/, andˇ̌̌̌Z s

0

f
�
T
g
t .x; r/

�
dt
ˇ̌̌̌
�
ˇ̌
'
.n.x;r;s//

f
.x/
ˇ̌
C 2ckf kL1 :

Proof. For every .x; r/ 2 Asc we decompose the orbit segment ¹T gt .x; r/ W t 2 Œ0; s�º
into n.x; r; s/C 1-pieces using its meeting points with I � ¹0º � I g , i.e., along cross-
ing times

0 < t1 < � � � < tn < s;

where n WD n.x; r; s/ and ti WD g.i/.x/� r for 1 � i � n. Then T gti .x; r/ D .T
ix; 0/

for 0 � i � n, with t0 WD �r . As .x; r/ 2 Asc , it follows that

g.T ix/ � c for 0 � i � n;

which proves the first part of the lemma. As tiC1 � tiDg.iC1/.x/� g.i/.x/D g.T ix/,
according to the decomposition we obtainZ s

0

f
�
T
g
t .x; r/

�
dt

D

Z t0

0

f
�
T
g
t .x; r/

�
dt C

X
0�j<n

Z tjC1

tj

f
�
T
g
t .x; r/

�
dt C

Z s

tn

f
�
T
g
t .x; r/

�
dt

D

X
0�j<n

Z g.T jx/

0

f .T jx; t/ dt �
Z r

0

f .x; t/ dt C
Z s�tn

0

f .T nx; t/ dt

D '
.n/

f
.x/ �

Z r

0

f .x; t/ dt C
Z s�tn

0

f .T nx; t/ dt:

Since r < g.x/ � c and s � tn < g.T nx/ � c, we also haveˇ̌̌̌Z r

0

f .x; t/ dt
ˇ̌̌̌
�

Z g.x/

0

jf .x; t/j dt � ckf kL1
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and ˇ̌̌̌Z s�tn

0

f .T nx; t/ dt
ˇ̌̌̌
�

Z g.T nx/

0

jf .T nx; t/j dt � ckf kL1 :

Therefore, ˇ̌̌̌Z s

0

f
�
T
g
t .x; r/

�
dt
ˇ̌̌̌
�
ˇ̌
'
.n.x;r;s//

f
.x/
ˇ̌
C 2ckf kL1

for every .x; r/ 2 Asc .

7.1.2. Decomposition of Birkhoff sums in special Birkhoff sums. In this sub-
section we estimate '.n/.x/ by decomposing the sum into special Birkhoff sums
introduced by Zorich in [67]. Let T W I ! I be an arbitrary IET satisfying Keane’s
condition. For every x 2 I and n � 0, set

m.x; n/ D m.x; n; T / WD max
®
l � 0 W #¹0 � k � n W T kx 2 I .l/º � 2

¯
:

Proposition 7.2 (see [67] or [64]). For every x 2 I and n > 0, we have

min
˛2A

Q˛.m/ � n � d max
˛2A

Q˛.mC 1/ D dkQ.mC 1/k;

where m D m.x; n/.

Since the sequence .min˛2AQ˛.m//m�0 increases to the infinity

m.n/ D m.n; T / WD max¹m.x; n/ W x 2 I º

is well defined. If T additionally satisfies the UDC then, by (UDC3) and (3.13), for
every � > 0, we have

e�1m.n/ � O
�
kQ.m.n//k

�
� O

�
min
˛2A

Q˛.m.n//
1C�

�
D O.n1C� /: (7.2)

Proposition 7.3. For every s > 0 and c � g if .x; r/ 2 Asc , then

ˇ̌
'
.n.x;r;s//

f
.x/
ˇ̌
� 2

m.n.x;r;s//X
kD0

kZ.k C 1/kkS.k/'f kL1.I .k/.c//; (7.3)

with
I .k/.c/ WD

[
˛2A

¹x 2 I .k/˛ W 80�j<Q˛.k/T
jx 2 Icº:

Proof. Fix s > 0 and c > 0. For each point .x; r/ 2 I g , we will decompose the orbit
segment

x; T x; : : : ; T n�1x with n WD n.x; r; s/
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into segments. Letm WDm.x;n/, so I .m/ is hit by the orbit segment at least twice and
I .mC1/ at most once. For each 0 � k � m, let

nC
k
D min¹j � 0 W T jx 2 I .k/º; n�k D min¹j � 1 W T n�jx 2 I .k/º:

For 0 � k < m, we also have

T n
C

kC1x D .T .k//b
C

k T n
C

k x; T n�n
�
kC1x D .T .k//�b

�
k T n�nkx

with
0 � bC

k
; b�k < kZ.k C 1/k: (7.4)

Moreover,

.T .m//bmT n
C
mx D T n�n

�
mx with 1 � bm � kZ.mC 1/k: (7.5)

Here T n
C
mx, T n�n

�
mx are the first and the last visit of the orbit segment in I .m/. Thus,

'
.n/

f
.x/ D

m�1X
kD0

b
C

k
�1X

jD0

�
S.k/'f

��
.T .k//jT n

C

k x
�
C

bm�1X
jD0

�
S.m/'f

��
.T .m//jT n

C
mx
�

C

m�1X
kD0

b�
k
�1X

jD0

�
S.k/'f

��
.T .k//jT n�n

�
kC1x

�
:

If .x; r/ 2 Acs , then, by the first part of Lemma 7.1, T lx 2 Ic for all 0� l � n. Hence,

.T .k//jT n
C

k x; .T .k//jT n�n
�
kC1x 2 I .k/.c/:

In view of (7.4) and (7.5), it follows that

j'
.n/

f
.x/j � 2

mX
kD0

kZ.k C 1/kkS.k/'f kL1.I .k/.c//;

which proves (7.3).

7.1.3. Control of the tail behaviour. In order to prove a deviation spectrum, the
error obtained after correcting special Birkhoff sums is still allowed to grow subex-
ponentially. We seek a way of choosing sets .Ek/k2N , whose measure tends to 1 as k
grows, on which special Birkhoff sums at time k are pointwise controlled by their L1-
norm in a satisfactory way. A subtle point is quantify what satisfactory way means
in comparison to special Birkhoff sums and their averages. This is the goal of the
estimates proved in this subsection (in particular Lemma 7.4).
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Let gW I ! R>0 [ ¹C1º be an integrable roof map with g D minx2I g.x/ > 0.
For every roof function with logarithmic singularities, we construct a family of sub-
level sets Ic for c � g, this is Ic � I is such that g.x/ � c for x 2 Ic . Recall the
notation T gR for the special flow over T under the roof g (see Section 2.2.2), as well
as the definition of the set Asc given by Definition 9.

Lemma 7.4 (Tail decay). For any roof function g 2 LG.
F
˛2A I˛/, there exists a

family of sublevel set ¹Ic W c � gº and a map s 7! c.s/ such that the measure of the
tails sets I g n As

c.s/
decays with the polynomial speed in s, i.e., there exists ˛ > 0

such that
Leb.I g n Asc.s// D O.s

�˛/:

The proof of the lemma will follow as a corollary from an auxiliary result (Lem-
ma 7.6), which estimates the measure of the tails sets for the sublevel sets that we now
define.

Remark 7.5. Note that from the form of g 2 LG.
F
˛2A I˛/, it follows that there exist

two positive constants C; b > 0 such that for every s � g, we have

g.x/ � s for all x 2
[
˛2A

�
l˛ C Ce

�bs; r˛ � Ce
�bs

�
:

Let us define the following sublevel sets:

Is WD
[
˛2A

�
l˛ C Ce

�bs; r˛ � Ce
�bs

�
for any s � g: (7.6)

Consider the map �W Œg;C1/! R�0 given by

�.s/ WD Leb.I n Is/: (7.7)

Denote by Fg WR�0 ! R�0 the tail distribution function of g, i.e.,

Fg.s/ WD Leb
�
¹x 2 I W g.x/ > sº

�
for s � 0:

By definition,

¹x 2 I W g.x/ > sº � I n Is and Fg.s/ � �.s/ for s � g: (7.8)

Lemma 7.6. Suppose that �W Œg;C1/!R�0 is decreasing integrable and of class
C 1-map with lims!C1 s�.s/ D 0. Let us consider „W Œg;C1/! R�0 given by

„.s/ D

Z C1
s

�.t/ dt

for s � g. Then for every s > 0 and c � g, we have

Leb.I g n Asc/ � s�.c/C 2c�.c/C„.c/:
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Proof. By the definition of „ and (7.8), using integration by parts, we haveZ
¹x2I Wg.x/�cº

g.x/ dx D �
Z 1
c

t dFg.t/ D cFg.c/C
Z 1
c

Fg.t/ dt

� c�.c/C„.c/:

Therefore,Z
InIc

g.x/ dx �
Z
¹x2I Wg.x/�cº

g.x/ dx C
Z
¹x2InIc Wg.x/�cº

g.x/ dx

� 2c�.c/C„.c/:

It follows that for every c � g and s � 0, we have

Leb.I g n Asc/ �
Z
InIc

g.x/ dx C s Leb.I n Ic/ D s�.c/C 2c�.c/C„.c/;

which completes the proof.

Remark 7.7. Note that, by definition, „ is a decreasing C 2-map and

lim
s!C1

„.s/ D 0:

We can now deduce Lemma 7.4.

Proof of Lemma 7.4. We deal with the family of sublevel sets given by (7.6). Then

�.s/ D 2dCe�bs and „.s/ D
2dC

b
e�bs;

so they satisfy the assumptions of Lemma 7.6. For any a > 1, we take the function
c.s/ D a

b
log s. Then, in view of Lemma 7.6,

Leb.I g n Asc.s// � s2dCs
�a
C 4

a

b
.log s/dCs�a C

2dC

b
s�a

D O.s�.a�1//; (7.9)

which gives the polynomial decay of the measure of I g n As
c.s/

.

7.1.4. Estimates of integrals and tails. We can now combine the results on the two
previous subsections, i.e., the reduction of integrals along the flow to Birkhoff sums
(Lemma 7.1) and the decomposition of Birkhoff sums into special Birkhoff sums
(Proposition 7.3), to get the following estimate of ergodic integrals in terms of special
Birkhoff sums.



K. Frączek and C. Ulcigrai 314

Proposition 7.8. Let �WR�0 ! Œg;C1/ be an increasing C 1-map. Let f W I g ! R

be a measurable bounded map. Then, for every s 2 R�0,

Leb.I g n As�.s// � s�.�.s//C 2�.s/�.�.s//C„.�.s//;

where �. � / is defined by (7.7) and „. � / is given by Lemma 7.6, and for every
.x; r/ 2 As

�.s/
, we haveˇ̌̌̌Z s

0

f
�
T
g
t .x; r/

�
dt
ˇ̌̌̌
� 2

X
k�0

kZ.k C 1/kkS.k/'f kL1.I .k/.�.s/// C 2kf kL1�.s/:

(7.10)

Proof. The result follows by combining Lemma 7.1, Proposition 7.3 and Lemma 7.6
with c D �.s/.

7.2. Deviation spectrum and asymptotic behaviour of ergodic integrals

We present in this section the proof of Theorem 1.4 and the first part of Theorem 1.3,
namely the existence of the asymptotic spectrum for ergodic integrals both in the
minimal and non-minimal case. We first define, in Section 7.2.1, the cocycles that
will govern the asymptotic behaviour of the ergodic integrals. Notice that, since we
are proving at the same time the existence of the expansions in Theorems 1.3 and 1.4,
we will define cocycles u� parametrized by � 2 Fix. R/ \M

0 also when consider-
ing the restriction of a typical  R 2U:min to a minimal componentM 0 (even if these
do not appear explicitly in the statement of Theorem 1.4, where they are absorbed
in err.f; T; �/). We then estimate the error term and show that it exhibits subpolyno-
mial deviations, see Section 7.2.4 and then we prove in Section 7.2.5 that the cocycles
that we build have the desired pure power behaviour, i.e., each has oscillations of
the order of T �i where �i is one of the g distinct exponents in the power spectrum.
Finally, in Section 7.2.6 we conclude the proof.

7.2.1. Definition of the distributions and the cocycles. Assume that T D T.�;�/
satisfies the UDC. Then, in view of the Oseledets genericity property (O) of the UDC
condition (refer to Definition 3), there exists vectors h1; : : : ; hg 2 H.�.0// such that

lim
k!C1

1

k
kQ.k/hik D �i for 1 � i � g; (7.11)

and furthermore span¹h1; : : : ; hgº ˚ �
.0/
s D H.�.0//. We will now use these vec-

tors hi to define the distributions and the cocycles which appear in the asymptotic
expansion.
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The distributions. By Theorem 6.1 (in view of Remark 6.3) and Corollary 6.2 app-
lied to F WD span¹h1; : : : ;hgº, there exists a bounded operator hWLG.

F
˛2A I˛/!F ,

such that h.h/ D h for every h 2 F and for every � > 0 if ' 2 LG.
F
˛2A I˛/ and

h.'/ D 0, then
kS.k/'kL1.I .k//

jI .k/j
D O.e�k/:

Let di WLG.
F
˛2A I˛/! R, i D 1; : : : ; g be bounded operators such that

h.'/ D

gX
iD1

di .'/hi for every ' 2 LG.
F
˛2A I˛/: (7.12)

We can then define bounded operatorsDi WC 2C�.M/! R for i D 1; : : : ; g, by using
the map f 7! 'f (see Proposition 4.1 for its basic properties) which associates to an
observable f WM ! R the cocycle which arise in the skew-product representation of
the Poincaré map described in Section 2.3.3 and setting

Di .f / WD di .'f /; 1 � i � g: (7.13)

We will prove in Section 7.2.6 that these are the distributions which enter in the
asymptotic expansion.

7.2.2. The power growth cocycles. To construct the cocycles we exploit the follow-
ing lemma, proved in [10].

Lemma 7.9 ([10, Lemma 7.4]). For every h 2 H.�/, there exists a C1-function
f WM ! R, which vanishes on a neighbourhood Fix. R/, such that 'f D h.

Let fi 2 C1.M/ be the observable such that 'fi D hi , given by Lemma 7.9
applied to h D hi . Let us now define

ui .T; x/ WD

Z T

0

fi
�
 s.x/

�
ds for 1 � i � g:

7.2.3. The singular cocycles. For every � 2 Fix. R/ \M
0, to define u� , we let

x�� WM ! R be any C1-map which is equal to 1 on an open neighbourhood of � and
equal to zero on an open neighbourhood of all other fixed points. Let �� WM ! R be
a C1-map given by

�� WD x�� �

gX
iD1

Di .x�� /fi :

Then, since each fi given by Lemma 7.9 vanishes on a neighbourhood of Fix.'R/

(see Lemma 7.9), �� is also equal to 1 on an open neighbourhood of � and equal to
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zero on an open neighbourhood of all other fixed points. Moreover, by linearity of the
operator h, the definition (7.13) of Di and (7.12),

h.'�� / D h.'x�� / �

gX
iD1

Di .x�� /h.'fi / D h.'x�� / �

gX
iD1

di .'x�� /hi D 0: (7.14)

Finally, the cocycle u� WR �M ! R is defined by

u� .T; x/ WD

Z T

0

��
�
 s.x/

�
ds:

We will show in Section 7.2.5 that each ui , in view of (7.11), displays the desired
deviation behaviour and in Section 7.2.6 that they are indeed the desired asymptotic
cocycles. We first estimate the error term though.

7.2.4. Subpolynomial deviation case. The following proposition provides subpoly-
nomial estimates for the growth of corrected ergodic integrals (in light of Corol-
lary 6.2) and will be used in Section 7.2.6 to control the error term in the asymptotic
expansion.

Proposition 7.10 (Subpolynomial deviation). Suppose that the IET T WI! I satisfies
the UDC. Assume that g; 'f 2 LG.

F
˛2A I˛/ and

1

jI .k/j
kS.k/'f kL1.I .k// D O.e

�k/ for every � > 0:

Then for a.e. .x; r/ 2 I g , we have

lim sup
s!C1

log j
R s
0
f .T

g
t .x; r// dt j

log s
� 0: (7.15)

Moreover, for every p � 1, we have

lim sup
s!C1

log k
R s
0
f ı T

g
t dtkLp.Ig/

log s
� 0: (7.16)

Proof. By Remark 7.5, there exist two positive constants C; b > 0 such that for every
s � g, we have

g.x/ � s for all x 2 Is WD
[
˛2A

�
l˛ C Ce

�bs; r˛ � Ce
�bs

�
:

Then
�.s/ D Leb.I n Is/ D 2dCe�bs and „.s/ D .2dC=b/e�bs:
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Take any a > 2 and set �.s/ D a
b

log s. By the description of C; b > 0, we have�
0; Ce�b�.s/

�
� I n I�.s/:

Hence, if jI .k/j � Ce�b�.s/ D C=sa, then I .k/.�.s// D ;. By condition (UDC3)
and (3.10), it follows that

I .k/.�.s// ¤ ; ) jI .k/j > C=sa ) kQ.k/k < �sa=C ) k �
a

�1
log.C 0s/:

Moreover, if x 2 I .k/.�.s// \ I .k/˛ , then

x 2
�
l .k/˛ C Ce

�b�.s/; r .k/˛ � Ce
�b�.s/

�
D
�
l .k/˛ C C=s

a; r .k/˛ � C=s
a
�
:

In view of (4.11), (5.12) and (UDC3), it follows that for every x 2 I .k/.�.s//,ˇ̌�
S.k/'

�
.x/
ˇ̌
� 2�

kS.k/'kL1.I .k//

jI .k/j
CLV

�
S.k/'

��
1C log

�
jI .k/jsa=C

��
D O.e�k/CO.log s/:

Therefore, by (7.10), for every .x; r/ 2 As
�.s/

, we haveˇ̌̌̌Z s

0

f
�
T
g
t .x; r/

�
dt
ˇ̌̌̌
� O.log s/CO

� X
0�k� a

�1
log.C 0s/

kZ.k C 1/ke�k
�

CO

�
log s

X
0�k� a

�1
log.C 0s/

kZ.k C 1/k

�
� O.log s/CO.s2a�=�1/CO.sa�=�1 log s/

D O.s2a�=�1/:

Moreover, by (7.9), we have Leb.I g nAs
�.s/

/DO.1=sa�1/with a� 1> 1. Therefore,
for every � > 0 and a > 2, there exists C�;a > 0 such that for every s > 0, we have

Leb
²
.x; r/ 2 I g W

ˇ̌̌̌Z s

0

f
�
T
g
t .x; r/

�
dt
ˇ̌̌̌
> C�;as

2�a=�1

³
� Leb.I g n As�.s//

<
C�;a

sa�1
: (7.17)

It follows that for a.e. .x; r/ 2 I g , we have

lim sup
s!C1

log j
R s
0
f .T

g
t .x; r// dt j

log s
� 2�a=�1:

This gives (7.15).
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Finally, the inequality (7.16) also follows directly from (7.17). Indeed, if a �
p C 1, thenZ s

0

f ı T
g
t dt

p
Lp.Ig/

�

Z
As
�.s/

ˇ̌̌ Z s

0

f ı T
g
t .x; r/ dt

ˇ̌̌p
dx dr

C Leb.I g n As�.s//s
p
kf k

p
L1

D O.s2pa�=�1/CO.spC1�a/ D O.s2pa�=�1/:

Corollary 7.11. Suppose that T is an IET satisfying the UDC and ' 2LG.
F
˛2A I˛/.

If h.'/ D 0, then Z
I

'.x/ dx D 0:

Proof. Let us consider any roof function gW I ! R>0 such that ' 2 LG.
F
˛2A I˛/

and j'.x/j � g.x/ for x 2 I . Let f W I g ! R be given by

f .x; r/ D '.x/=g.x/ for .x; r/ 2 I g :

Then f is bounded and 'f D '. In view of Theorem 7.10 and the ergodicity of T , for
every 0 < � < 1, for a.e. x 2 I and a.e. r 2 Œ0; g�, we have

g.n/.x/ D O.n/ and
Z g.n/.x/

0

f
�
T
g
t .x; r/

�
dt D O

��
g.n/.x/

���
:

Since ˇ̌̌̌
'.n/.x/ �

Z g.n/.x/

0

f
�
T
g
t .x; r/

�
dt
ˇ̌̌̌

D

ˇ̌̌̌Z g.n/.x/

0

f
�
T
g
t .x; 0/

�
dt �

Z g.n/.x/

0

f
�
T
g
t .x; r/

�
dt
ˇ̌̌̌

�

ˇ̌̌̌Z r

0

f
�
T
g
t .x; 0/

�
dt
ˇ̌̌̌
C

ˇ̌̌̌Z r

0

f
�
T
g
t .T

nx; 0/
�

dt
ˇ̌̌̌

� 2gkf ksup;

it follows that '.n/.x/ D O.n� /. On the other hand, for a.e. x 2 I , we have

'.n/.x/=n!

Z
I

'.x/ dx:

This gives Z
I

'.x/ dx D 0:
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7.2.5. Pure power deviation case. We consider first a function f such that 'f D h,
where h has exponential growth rate �.

Proposition 7.12 (Pure deviation). Suppose that the IET T WI ! I satisfies the UDC.
Assume that the roof function g 2 LG.

F
˛2A I˛/ and f W I g ! R is a bounded func-

tion such that there exists K > 0 for which f .x; r/ D 0 for r � K and 'f 2 L1.I /.
Suppose that for some � � 0, we have

lim sup
k!C1

log kS.k/.'f /kL1.I .k//
k

� �:

Then

lim sup
s!C1

log k
R s
0
f ı T

g
t dtkL1

log s
�
�

�1
: (7.18)

If, additionally, 'f D h D .h˛/˛2A 2 H.�/, � > 0 and

lim
k!C1

log kQ.k/hk
k

D �;

then

lim sup
s!C1

log k
R s
0
f ı T

g
t dtkL1

log s
D

�

�1
: (7.19)

Proof. Let us consider the trimmed roof function

gK W I ! Œ0;K�; gK.x/ D min¹g.x/;Kº:

Taking � D K and I�.s/ D IK D I , we have As
�.s/
D I gK . Note that, by assump-

tion, the map 'f does not change after passing to the trimmed roof function. In view
of (7.10), for every regular point .x; r/ 2 I gK , we haveˇ̌̌̌Z s

0

f
�
T
gK
t .x; r/

�
dt
ˇ̌̌̌
� 2

m.nK.x;r;s//X
kD0

kZ.k C 1/kkS.k/'f kL1.I .k// C 2kf kL1K;

where nK.x; r; s/ is defined by (7.1) for the roof gK . Then

0 � nK.x; r; s/ � n.x; r; s/ � s=g C 1:

By assumption, for every � > 0, we have

kS.k/'f kL1.I .k// D O
�
e.�C�/k

�
:

Moreover, by (7.2),

e�1m.nK.x;r;s// D O
�
nK.x; r; s/

1C�
�
D O.s1C� /:
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Therefore, by (3.12), it follows thatˇ̌̌̌Z s

0

f
�
T
gK
t .x; r/

�
dt
ˇ̌̌̌

� O

�m.nK.x;r;s//X
kD0

kZ.k C 1/kkS.k/'f kL1.I .k// C kf kL1K

�

D O

�m.nK.x;r;s//X
kD0

e.�C2�/k C kf kL1K

�
D O

�
e.�C2�/m.nK.x;r;s// C kf kL1K

�
D O

�
s
.�C2�/.1C�/

�1

�
:

By assumption and the definition of gK , for every regular .x; r/ 2 I g and s > 0 there
exists 0 � s0 D s0.x; r; s/ � s such thatˇ̌̌̌Z s

0

f
�
T
g
t .x; r/

�
dt
ˇ̌̌̌
D

ˇ̌̌̌Z s0

0

f
�
T
gK
t .x; r/

�
dt
ˇ̌̌̌

D O
�
.s0/

.�C2�/.1C�/
�1

�
D O

�
s
.�C2�/.1C�/

�1

�
:

This gives (7.18) and proves one inequality (namely the upper bound) in (7.19).
To prove the inverse inequality, and therefore (7.19), note that for every x 2 I .k/˛ ,

we haveZ S.k/g.x/

0

f
�
T
g
t .x; 0/

�
dt D

Z g.Q˛.k//.x/

0

f
�
T
g
t .x; 0/

�
dt

D '
.Q˛.k//

f
.x/ D S.k/'f .x/ D

�
Q.k/h

�
˛
:

Moreover, by assumption, for every � > 0 there exists c > 0 such that for every k � 0,
we have X

˛2A

ˇ̌�
Q.k/h

�
˛

ˇ̌
D kQ.k/hk � ce�.1��/k :

As g is positive, by (B1), (3.3) and (UDC3), we have

m
�
S.k/g; I .k/˛

�
�
jI .k/j

jI
.k/
˛ j

m
�
S.k/g; I .k/

�
�
�m.g; I /

jI .k/j

� �m.g; I /kQ.k/k � �m.g; I /Ce�1.1C�/k :

For every k � 0, choose ˛ 2 A such thatˇ̌�
Q.k/h

�
˛

ˇ̌
�
1

d
kQ.k/hk;
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and then we take any x.k/ 2 I .k/˛ such that

sk WD S.k/g.x
.k// � �m.g; I /Ce�1.1C�/k :

Then Z sk

0

f ı T
g
t dt


L1
�

ˇ̌̌̌Z S.k/g.x.k//

0

f
�
T
g
t .x

.k/; 0/
�

dt
ˇ̌̌̌

D
ˇ̌�
Q.k/h

�
˛

ˇ̌
�
1

d
kQ.k/hk �

c

d
e�.1��/k

�
c

d.�m.g; I /C /
�
�1

1��
1C�

.sk/
�
�1

1��
1C�

k
:

It follows that for every � > 0, we have

lim sup
s!C1

log k
R s
0
f ı T

g
t dtkL1

log s
�
�

�1

1 � �

1C �
;

which gives (7.19).

To have uniform control over the asymptotics of the error growth, we also need
the following corollary.

Corollary 7.13. Let T W I ! I be an IET satisfying the UDC and g 2 LG.
F
˛2A I˛/

be a roof function. Suppose that f WI g!R is a bounded function such that 'f ; 'jf j 2
L1.I /. Then for every � � 0,

lim sup
k!C1

log kS.k/.'f /kL1.I .k//
k

� �

) lim sup
s!C1

log k
R s
0
f ı T

g
t dtkL1

log s
�
�

�1
: (7.20)

Proof. For any K > 0, let us consider the bounded map fK W I g ! R given by

fK.x; r/ D

8̂̂<̂
:̂
f .x; r/ if g.x/ � K;

'f .x/=K if g.x/ > K and r � g.x/;

0 if g.x/ > K and r > g.x/:

Then fK satisfies the assumptions of the first part of Proposition 7.12 and 'fK D 'f .
Hence,

lim sup
s!C1

log k
R s
0
fK ı T

g
t dtkL1

log s
�
�

�1
: (7.21)
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Note that for every x 2 I in the interior of exchanged intervals and any pair 0 � r1 <
r2 � g.x/, we haveˇ̌̌̌Z r2

r1

f .x; r/ dr
ˇ̌̌̌
�

Z r2

r1

jf .x; r/j dr �
Z g.x/

0

jf .x; r/j dr

D 'jf j.x/ � k'jf jksup;ˇ̌̌̌Z r2

r1

fK.x; r/ dr
ˇ̌̌̌
� 'jfK j.x/j � 'jf j.x/ � k'jf jksup:

Since Z g.x/

0

fK.x; r/ dr D 'fK .x/ D 'f .x/ D
Z g.x/

0

f .x; r/ dr;

it follows that for every regular point .x; r/ 2 I g and any s > 0, we haveˇ̌̌̌Z s

0

f
�
T
g
t .x; r/

�
dt �

Z s

0

fK
�
T
g
t .x; r/

�
dt
ˇ̌̌̌
� 4k'jf jksup:

Together with (7.21) this yields (7.20).

7.2.6. Power deviation spectrum. Combining the results in the two previous sub-
sections, we can now prove the full deviation spectrum result stated in Theorem 1.4
as well as the existence of the asymptotic expansion in Theorem 1.3.

Proof of Theorem 1.4 and of the first part of Theorem 1.3. Let Di for 1 � i � g, ui
for 1 � i � g, and u� , � 2 Fix. R/ \M

0 be, respectively, the distributions and the
cocycles defined in Section 7.2. One can see that, for each 1 � i � g, ui displays
the desired power behaviour (1.5), by the pure deviation Theorem 7.12 proved in
Section 7.2.5, which can be applied to f D fi since by construction 'fi D hi and hi
has exponential growth rate �i , see (7.11).

The error term function. Let us consider fe 2 C 2C�.M/ given by

fe WD f �

gX
iD1

Di .f /fi :

By the definition of fi , i D 1; : : : ; g,

fe.�/ D f .�/ for every � 2 Fix. R/ \M
0: (7.22)

Then we set

err.f; T; x/ WD
Z T

0

fe
�
 s.x/

�
ds:
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Let 'fe be the cocycle associated to fe (refer to Section 2.3.3). We can then check
that h.'fe / D 0, since

h.'fe / D h.'f / �

gX
iD1

Di .f /h.'fi /

D h.'f / �

gX
iD1

Di .f /h.hi / D h.'f / �

gX
iD1

di .'f /hi D 0: (7.23)

We now show that for every non-zero � 2 C 2C�.M/ such that h.'�/D 0, we have

lim sup
T!C1

log j
R T
0
�
�
 t .x/

�
dt j

logT
D 0 for a.e. x 2M 0;

lim sup
T!C1

log k
R T
0
� ı  t dtkLp.M 0/

logT
D 0 for any p � 1:

(7.24)

As h.'�/ D 0, in view of Corollary 6.2, we can apply the subpolynomial deviation
Theorem 7.10 to f D � and prove both inequalities � in (7.24).

Almost everywhere error estimates. Suppose now that the upper equality in (7.24)
does not hold. Then there exists a subset B �M 0 with positive area such that

lim
T!C1

Z T

0

�
�
 t .x/

�
dt D 0 for all x 2 B:

By the ergodicity of the flow, for �-a.e. x 2M 0, the limit

�.x/ D lim
T!C1

Z T

0

�
�
 t .x/

�
dt (7.25)

exists. Then �WM 0 ! R is a measurable map such that �.x/ D 0 for any x 2 B and

�.x/ � �. sx/ D

Z s

0

�
�
 t .x/

�
dt for every s > 0 and a.e. x 2M 0: (7.26)

Note that � � 0. Indeed, by (7.25) and (7.26), we have lims!C1 �. sx/ D 0 for
a.e. x 2M 0. Since  R is ergodic, this gives � � 0. Therefore,

1

s

Z s

0

�
�
 t .x/

�
dt D

1

s

�
�.x/ � �. sx/

�
D 0 for every s > 0 and a.e. x 2M 0:

As � is continuous, it follows that for a.e. x 2M 0, we have

�.x/ D lim
s!0

1

s

Z s

0

�
�
 t .x/

�
dt D 0;

contrary to the assumption � is non-zero.
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Error estimates in Lp-norm. Suppose now that the lower equality in (7.24) does not
hold. Then

lim
T!C1

Z T

0

� ı  t dt D 0 in Lp:

Hence, for every s > 0, we haveZ s

0

� ı  t dt D lim
T!C1

Z TCs

0

� ı  t dt � lim
T!C1

Z T

0

� ı  t ı  s dt D 0 in Lp .

It follows that

1

s

Z s

0

�
�
 t .x/

�
dt D 0 for every s > 0 and a.e. x 2M 0.

The final contradiction argument is the same as above. This completes the proof
of (7.24).

In view of (7.14) and (7.23),

h.'�� / D 0 and h.'fe / D 0;

so we can apply (7.24) to � D �� and � D fe . This yields (1.6) in Theorem 1.3, as
well as (1.11) and (1.12) in Theorem 1.4.

Uniform estimates of errb . Let us consider feb 2 C 2C�.M/ given by

feb D fe �
X

�2Fix. R/\M
0

f .�/�� : (7.27)

ThenZ T

0

feb. tx/ dt D
Z T

0

fe. tx/ dt �
X

�2Fix. R/\M
0

f .�/

Z T

0

�� . tx/ dt

D err.f; T; x/ �
X

�2Fix. R/\M
0

f .�/u� .T; x/ D errb.f; T; x/:

Since fe.�/ D f .�/ and �� .� 0/ D ı�;� 0 , for every � 2 Fix. R/ \M
0, we have

feb.�/ D fe.�/ �
X

� 02Fix. R/\M
0

f .� 0/�� 0.�/ D 0: (7.28)

In view of Proposition 4.1, 'fbe 2 AC.
F
˛2A I˛/. As h.'�� /D 0 and h.'fe /D 0, we

also have
h.'feb / D h.'fe / �

X
�2Fix. R/\M

0

f .�/h.'�� / D 0: (7.29)
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In view of (4.12), property (B1) of the UDC, (5.2) and Corollary 6.2, it follows that,
for every � > 0, we have

kS.k/'febksup �
jI .k/j

min˛2A jI
.k/
˛ j

kS.k/'febkL1.I .k//

jI .k/j
C Var

�
S.k/'feb

�
� �
kS.k/'febkL1.I .k//

jI .k/j
C Var.'feb / D O.e

�k/:

By (7.28) and Proposition 4.1 (see, in particular, property (i)), the map 'jf jW I ! R

is bounded. In view of Corollary 7.13, this gives (1.10).
This completes the proof of Theorem 1.4 as well as the proof of the first part of

Theorem 1.3.

The second part of the statement of Theorem 1.3, namely the equidistribution
statement for the error term (which is a consequence of ergodicity) and the uniform
estimates on errb will be proved at the end, in Section 8.2.4.

8. Ergodicity of extensions

The goal of this section is to prove the Main Theorem 1.2 and complete the proof
of the Main Theorem 1.3. In view of the reduction explained in Section 2.3.3 and
the equivalence between ergodicity of the extension ˆfR on M � R and of the skew
product T'f on I � R obtained via a Poincaré first return, we treat first the case
of skew products of this form. The main result on ergodicity of skew products is
Theorem 8.1 stated in Section 8.1 below. In Section 8.1.1 we state the ergodicity
criterion that we will use to prove it (see Proposition 8.2). Theorem 8.1 is then proved
in Section 8.1.2. Finally, in Section 8.2 we prove the Main Theorem 1.2, by combining
the ergodicity result for skew products with a discussion on reducibility.

8.1. Ergodicity of skew products over IETs with logarithmic singularities

We state in this section the ergodicity result for skew-products over IETs with cocycles
with logarithmic singularities. We also show that the ergodicity result for locally
Hamiltonian flows (Main Theorem 1.2) can be reduced to it.

Theorem 8.1 (Ergodicity of skew-products with log-singularities over IETs). Sup-
pose that T W I ! I satisfies the SUDC. Let ' 2 LG.

F
˛2A I˛/ be a cocycle with

logarithmic singularities of geometric type, so that

L.'/ > 0; A�.'/ D 0; g0' 2 LG
�F

˛2A I˛
�
:

Assume, furthermore, that ' is corrected, namely h.'/D 0. Then the skew product T'
on I �R is ergodic.
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The proof of the theorem will take most of the section, from Section 8.1 to the
end. We first state the ergodicity criterion which will be exploited (see Section 8.1.1)
and proceed with the proof, which will take Section 8.1.2.

8.1.1. An ergodicity criterion. We now formulate a quite classical criterion (Pro-
position 8.2) for ergodicity of a special flow. It shows that one can deduce the exist-
ence of essential values (a classical tool to prove ergodicity; see, e.g., [1, 55]) from
the presence of rigidity sets for the base transformation on which Birkhoff sums (up
to the time which gives rigidity) are tight. The criterion was in particular used (and
proved) in [22]. For simplicity in this section we constantly assume that jI j D 1.

We first give the definition of rigidity sequence for IETs (which are the base trans-
formations in the special flow).

Definition 10 (Rigidity sequences for an IET). Let T W I ! I be an IET. Let .„n/n�1
be a sequence of towers of intervals of the form „n D ¹T

iJn W 0 � i < pnº. We say
that .„n/n�1 is a rigid sequence of towers if there exists a strictly increasing sequence
.qn/n�1, called the rigidity sequence, and ı > 0 such that

Leb.„n/ � ı and sup
x2„n

jT qnx � xj ! 0:

The following proposition is the ergodicity criterion that we will exploit. It was
proved in [22] (using [22, Proposition 2.3 and the end of the proof of Proposition 5.2]).

Proposition 8.2 (Ergodicity criterion, see [22]). Assume that T W I ! I is an ergodic
IET and 'W I ! R a measurable map. Suppose that .„n/n�1 is a rigid sequence of
tower and .qn/n�1 its rigidity sequence. If, for all jsj � s0, we haveZ
„n

j'.qn/.x/j dx D O.1/;
Z
„n

e2�s'
.qn/.x/ dx D

2

3
Leb.„n/CO

�
jsj�1

�
; (8.1)

then the skew product T' on I �R is ergodic.

Remark 8.3. Suppose that T satisfies the SUDC. For every k � 1, let J .k/ � I .k/˛k be
a sequence of intervals such that lim inf jJ .k/j=jI .k/˛k j > 0. In view of (B1) and (B2),

„k D ¹T
iJ .k/ W 0 � i < pkº is a rigid sequence of Rokhlin towers

with the rigidity times qk WD Q˛k .k/.
(8.2)

Since T qkJ .k/ � I .k/, for every 0 � l � qk , we have that

T l„k D ¹T
lCiJ .k/ W 0 � i < pkº

is also a tower of intervals.



On Birkhoff integrals for locally Hamiltonian flows 327

Specializing the ergodicity criterion to our setting, we have the following propos-
ition, that shows that to prove ergodicity (and Theorem 8.1) it is sufficient to verify
the assumptions in the statement.

Proposition 8.4. Suppose that T satisfies the SUDC and let .J .k//k�1 be a sequence
of intervals such that J .k/ � I .k/˛k and lim inf jJ .k/j=jI .k/˛k j > 0. Let .„k/k�1 and
.qk/k�1 be a sequence of rigid Rokhlin towers and its rigidity sequence given by (8.2).
Let ' 2 LG.

F
˛2A I˛/ be a map such that g0' 2 BV.

F
˛2A I˛/. We additionally

assume that there exists c > 0 such that

(i) the sequence 1

jI .k/j
kS.k/'kL1.I .k// is bounded;

(ii) dist.
Sqk
iD0 T

i„k;End.T // � c=qk;

(iii) for every 0 � j < pk there exists an interval J .k/j � T jJ .k/ such that

jJ
.k/
j j � jJ

.k/j=3 and j.'0/.qk/.x/j � cqk for all x 2 J .k/j .

Then the skew product T' on I �R is ergodic.

The proof is a variation on arguments from [22]. We present it for completeness
in Section A.2.

Remark 8.5. One can see from the proof presented in Section A.2 that the same con-
clusion about the ergodicity of the skew product can be deduced under the assumption
that conditions (i), (ii) and (iii) hold along any subsequence.

8.1.2. Proof of ergodicity of skew products. We will now prove Theorem 8.1 by
showing that the assumptions of the criterion for ergodicity of skew products with
logarithmic singularities over IETs (namely Proposition 8.4) hold.

For every ' 2 LG.
F
˛2A I˛/ such that A�.'/D 0 and L.'/ > 0 (using the defini-

tions introduced in Section 4), we want to construct a sequence of rigid Rokhlin towers
as in Remark 8.3 for which the condition (ii) and (iii) in Proposition 8.4 hold. In view
of (B2) and [22, Lemma 5.1], we have the following result.

Lemma 8.6. Let ' 2 LG.
F
˛2A I˛/ be such that A�.'/ D 0 and L.'/ > 0. There

exists a sequence .˛k/k�1 in A and a sequence on natural number .jk/k�1 such that
pk � jk < Q˛k .k/ and at least one of the following cases hold:

(L) CC˛0 ¤ 0 and T jk l .k/˛k D l˛0; or

(R) C�˛0 ¤ 0 and yT jk r .k/˛k D r˛0 .

Moreover, the closures of the intervals T j I .k/˛k for Q˛k .k/ � j < Q˛k .k/C pk do
not intersect End.T /.
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Definition 11. For any 0 � xc < 1=2 we define the base J .k/ � I .k/˛k D Œa; b/ of the
tower „k as follows:

J .k/ D
�
aC
xc

2
�.k/˛k ; aC xc�

.k/
˛k

�
in case (L)I

J .k/ D
�
b � xc�.k/˛k ; b �

xc

2
�.k/˛k

�
in case (R):

Lemma 8.7. Let ' 2 LG.
F
˛2A I˛/ be such that A�.'/ D 0 and L.'/ > 0 and

g0' ; g
00
' 2 AC.

F
˛2A I˛/. Let .„k/k�1 be a sequence of rigid towers defined in Defin-

ition 11 with

xc D

s
jC˙˛0 j

2.6L.'/C Varg0'/
: (8.3)

Then

j.'00/.qk/.x/j �
c

.�
.k/
˛k /

2
for all x 2 „k , and where c D 6L.'/C Varg0' :

Proof. We present the proof only in the case (L). The other case is similar.
Suppose that x 2 T lJ .k/ for some 0 � l < pk . By assumption,

jCC˛0 j

¹T jk�lx � l˛0º
2
�
jCC˛0 j

xc2.�
.k/
˛k /

2
;

the elements of the orbit T jx for 0 � j < pk are distant from each other at least �.k/˛k ,
and for j ¤ jk � l we have ¹T jx � l˛0º � �

.k/
˛k . It follows that

X
0�j<pk ;
j¤jk�l

jCC˛0 j

¹T jx � l˛0º
2
�
jCC˛0 j

.�
.k/
˛k /

2

pkX
jD1

1

j 2
�
�2

6

jCC˛0 j

.�
.k/
˛k /

2
� 2
jCC˛0 j

.�
.k/
˛k /

2
:

Since, for every 0 � j < pk , we have

¹T jx � l˛º � �
.k/
˛k

for ˛ ¤ ˛k and ¹r˛ � T
jxº � �.k/˛k =2 for all ˛ 2 A;

the same arguments show that for all ˛ 2 A, we haveX
0�j<pk

jC�˛ j

¹r˛ � T jxº2
� 6
jC�˛ j

.�
.k/
˛k /

2
and

X
0�j<pk

jCC˛ j

¹T jx � l˛º2
� 2
jCC˛ j

.�
.k/
˛k /

2
if ˛¤˛k :

Moreover, for every x 2 I , we have

j.g00'/
.qk/.x/j � qkkg

00
'ksup �

Varg0'
.�
.k/
˛k /

2
:
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As

'00.x/ D
X
˛2A

CC˛
¹x � l˛º2

C

X
˛2A

C�˛
¹r˛ � xº2

C g00'.x/;

it follows that, for every x 2 „k , we have

j.'00/.qk/.x/j �
jCC˛0 j

xc2.�
.k/
˛k /

2
�
6L.'/

.�
.k/
˛k /

2
�

Varg0'
.�
.k/
˛k /

2

D

�
jCC˛0 j

xc2
� 6L.'/ � Varg0'

�
1

.�
.k/
˛k /

2
D

c

.�
.k/
˛k /

2
:

The following elementary lemma will help us choose the subintervals J .k/
l
�

T lJ .k/ satisfying Proposition 8.4 (iii).

Lemma 8.8. Let f WI !R be a C 1-map defined on a closed interval I and such that
jf 0.x/j � c > 0 for all x 2 I . Then there exists a closed subinterval J � I such that
jJ j � jI j=3 and jf .x/j � cjI j=6 for all x 2 I .

Proof of Theorem 8.1. Recall that ' 2 LG.
F
˛2A I˛/ is a cocycle such that

L.'/ > 0; A�.'/ D 0; h.'/ D 0; g0' 2 LG
�F

˛2A I˛
�
:

By definition, ' D '0 C g' , where

'0.x/ D �
X
˛2A

CC˛ log¹x � l˛º �
X
˛2A

C�˛ log¹r˛ � xº;

and g' 2AC.
F
˛2A I˛/with g0' 2 LG.

F
˛2A I˛/. By Proposition 8.9, g' is cohomo-

logous to a piecewise linear map  2 AC.
F
˛2A I˛/ with h. / D h.g'/. It follows

that ' is cohomologous to x' WD '0 C  . Then x' 2 LG.
F
˛2A I˛/ is such that

L.x'/ D L.'0/ D L.'/ > 0; A�.x'/ D A�.'0/ D A�.'/ D 0;

h.x'/ D h.'0/C h. / D h.'0/C h.g'/ D h.'/ D 0;

and gx' D  , so g0
x' ; g
00
x' 2 AC.

F
˛2A I˛/. As ' is cohomologous to x', the skew

products T' and Tx' are isomorphic, so it is sufficient to show the ergodicity of Tx' .
Let .„k/k�1 be a sequence of rigid towers defined in Definition 11 with xc given

by (8.3) for that function x'. In view of (B2) and (3.11), this sequence satisfies

dist
� qk[
iD0

T i„k;End.T /
�
�
1

2
xc�.k/˛k �

ıxc

2�qk
;

so Proposition 8.4 (ii) holds. Moreover, by Lemma 8.7,

j.x'00/.qn/.x/j �
c

.�
.k/
˛k /

2
for every x 2 T lJ .k/, 0 � l < pk :
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Since jT lJ .k/j D jJ .k/j D xc
2
�
.k/
˛k , by Lemma 8.8, for every 0 � l < pk there exists

an interval J .k/
l
� T lJ .k/ such that

jJ
.k/

l
j � jJ .k/j=3

and
j.x'0/.qn/.x/j �

c

.�
.k/
˛k /

2

xc

12
�.k/˛k �

cxc

12
qk for every x 2 J .k/

l
;

so Proposition 8.4 (iii) holds.
Since A�.x'/ D 0 and h.x'/ D 0, by Theorem 6.1 and (3.22) in Proposition 3.9,

kS.rn/x'kL1.I .rn//

jI .rn/j

is bounded, so Proposition 8.4 (i) holds along a subsequence. In view of Proposi-
tion 8.4 together with Remark 8.5, this gives the ergodicity of Tx' , and hence the
ergodicity of T' .

8.2. Reducibility and final arguments

The main goal of this section is to prove the Main Theorem 1.2, in particular the dicho-
tomy between ergodicity and reducibility for typical extensions with observables in a
suitable subspace of smooth functions. We also deduce from the Main Theorem 1.2
the second and final part of the Main Theorem 1.3. We first need to state an auxiliary
result, which we call cohomological reduction.

8.2.1. Cohomological reduction. The following result allows to reduce the study
of cocycles whose derivatives have logarithmic singularities (up to coboundaries and
hence cohomological equivalence) to piecewise linear cocycles (whose derivative is
piecewise-constant). An analogous result was proved also in [22], but only in the
special measure zero class of self-similar IETs considered there.

Theorem 8.9. Assume that T satisfies the UDC. Then every ' 2 AC.
F
˛2A I˛/ with

'0 2 LG.
F
˛2A I˛/ is cohomologous (via a bounded transfer function) to a piecewise

linear cocycle  2 AC.
F
˛2A I˛/ with h. / D h.'/, @�. / D @�.'/ and where

kS.k/.' �  /ksup tends to 0 exponentially.

The proof of the theorem, which generalizes the proof in [22] to full measure, is
included in Section A.3. In view of [39, Theorem A], if T is a Roth-type IET and ' 2
AC.

F
˛2A I˛/ is such that s.'/D 0 and '0 2 BV.

F
˛2A I˛/, then ' is cohomologous

(via a bounded transfer function) to a piecewise constant map h and kS.k/.' � h/ksup

tends to 0 exponentially.
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Assume additionally that ' in Theorem 8.9 satisfies s.'/ D 0. Then

s. / D
X

O2†.�/

�
@�. /

�
O
D

X
O2†.�/

�
@�.'/

�
O
D s.'/ D 0:

So, by [39, Theorem A], it follows that is cohomologous to piecewise constant map.
As the UDC implies Roth-type (see Remark 3.7), this gives the following important
corollary, which gives a generalization of [39, Theorem A].

Corollary 8.10. Assume that T satisfies the UDC. Then every ' 2AC.
F
˛2A I˛/with

s.'/ D 0 and '0 2 LG.
F
˛2A I˛/ is cohomologous (via a bounded transfer function)

to a piecewise constant map h and kS.k/.' � h/ksup tends to 0 exponentially.

The importance of this result is that in view of Proposition 4.1 it applies to solve
cohomological equations for a.e.  R 2 Umin and for functions f 2 C 2C�.M/ van-
ishing on Fix. R/. Recall that [39, Theorem A] applies only when f vanishes on an
open neighbourhood of Fix. R/.

Classical Gottschalk–Hedlund-type arguments, first applied in the context of IETs
in [39, §3.4], show the following result.

Lemma 8.11 ([39]). Suppose that T WI ! I is a minimal IET and ' 2AC.
F
˛2A I˛/.

The following conditions are equivalent:

(i) the sequence k'.n/ksup, n 2 N, is bounded;

(ii) ' D g � g ı T , where gW I ! R is bounded;

(iii) ' D g � g ı T , where gW I ! R is bounded and has at most countably many
discontinuities.

Proof. The implications follow from the classical Gottschalk–Hedlund theorem, that
can be applied to IETs by extending them to a homeomorphism to a Cantor space,
see [39, §3.4]. The only non-classical implication, (iii)) (i), is also proved in [39,
§3.4], where the authors show that the transfer map g exists and is the composition
of a continuous map and a monotonic map, so is bounded and has at most countably
many discontinuities.

8.2.2. Reduction to coboundaries. Now that we reduced to the study of cocycles
which are piecewise absolutely continuous (i.e., to ' 2 AC.

F
˛2A I˛/), we can prove

reducibility exploiting the following result on coboundaries.

Proposition 8.12. Assume that T satisfies the UDC. Then every ' 2 AC.
F
˛2A I˛/

with @�.'/ D 0, h.'/ D 0 and '0 2 LG.
F
˛2A I˛/ is a coboundary with a bounded

transfer map having at most countably many discontinuities.
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Proof. By Corollary 8.10, there exists h 2 � and a bounded map gW I ! R such that
' D hC g � g ı T . Moreover, kS.k/.' � h/ksup tends to 0 exponentially. As

k@�.' � h/k D
@�.k/�S.k/.' � h/� � 2dkS.k/.' � h/ksup;

it follows that @�.h/ D @�.'/ D 0, so h 2 H.�/. Moreover, as

kS.k/.' � h/kL1.I .k//

jI .k/j
� kS.k/.' � h/ksup ! 0;

by the definition of the operator h and Corollary 6.2, we have

h.' � h/ D 0:

It follows that
h.h/ D h.'/ D 0;

so h 2 �s . Therefore, h is also a coboundary with a bounded transfer map. As the
sum of two coboundaries, ' D hC g � g ı T is also a coboundary with a bounded
transfer map. Finally, in view of Lemma 8.11, the transfer map has at most countably
many discontinuities.

8.2.3. Proof of the dichotomy for extensions. We have now all ingredients needed
for the proof of the dichotomy in the Main Theorem 1.2.

Proof of the Main Theorem 1.2. Let us say that a locally Hamiltonian flows  R sat-
isfies the SUDC condition if and only if  R has a section I � M such that the
corresponding IET T satisfies the condition SUDC. Then, since the SUDC has full
measure by Theorems 3.8 and 5.6, one can show by definition of the measure class
on Umin (see for example [59]) that the set of locally Hamiltonian flows satisfying the
condition SUDC has full measure in Umin (in the sense of Section 2.1.2).

In view of Propositions 2.4 and 2.5, we equivalently need to prove the dicho-
tomy between ergodicity and reducibility for the skew product map T'f . Furthermore,
we know from Proposition 4.1 that the cocycle 'f is such that 'f 2 LG.

F
˛2A I˛/,

@�.'f / D 0, g0'f 2 LG.
F
˛2A I˛/ and A�.'f / D 0.

Definition of the subspace K. Let us consider the linear operator

HWC 2C�.M/! F ' Rg

given by H.f / D h.'f /. As the composition of two bounded operators, it is also
bounded. LetK WD kerH�C 2C�.M/. ThenK is a closed subspace of codimension g
(the genus of M ).
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Ergodicity. Suppose that f 2 K andX
�2Fix. R/

jf .�/j > 0:

By Proposition 4.1,

' 2 LG
�F

˛2A I˛
�
; L.'f / > 0; g0'f 2 LG

�F
˛2A I˛

�
; and A�.'f / D 0:

As f 2 K, we additionally have h.'f / D 0. In view of Theorem 8.1, this gives the
ergodicity of the skew product T'f . By Proposition 2.4, we have the ergodicity of the
extended flow ˆ

f
R.

Reducibility. Suppose that f 2 K andX
�2Fix. R/

jf .�/j D 0:

By Proposition 4.1,

' 2 AC
�F

˛2A I˛
�

with @�.'f / D 0 and '0
f
2 LG

�F
˛2A I˛

�
:

As f 2K, we additionally have h.'f /D 0. In view of Theorem 8.12, 'f is a cobound-
ary with a bounded transfer map having at most countably many discontinuities. By
Proposition 2.5, this gives the reducibility of the extended flow ˆ

f
R.

8.2.4. Equidistribution of the error in the symmetric case. We can now conclude
also the proof of Theorem 1.3, by proving that in this case errb is uniformly bounded
and deducing from ergodicity the equidistribution statement for the singular cocycles
as well as the error term.

Proof of the second part of the Main Theorem 1.3. Suppose that  R 2 Umin is min-
imal and satisfies the SUDC. Let f WM ! R be any C 2C�-observable.

Boundedness of the error. Let febWM ! R be the map defined in (7.27). By con-
struction (see (7.28) and (7.29)), feb is a C 2C�-map such that

feb.�/ D 0

for all � 2 Fix. R/ and h.'feb / D 0. By Proposition 4.1, we know furthermore that

'feb 2 AC
�F

˛2A I˛
�
; '0

feb
2 LG

�F
˛2A I˛

�
; and @�.'feb / D 0:

In view of Proposition 8.12, 'feb is a coboundary with a bounded transfer map having
at most countably many discontinuities. By Proposition 2.5, this gives the reducibility
of the extended flow ˆ

feb
R , so there exists a continuous map uWM ! R such thatZ t

0

feb. sx/ ds D u.x/ � u. tx/:
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It follows that for every regular x 2M and t > 0, we have

j errb.f; t; x/j D
ˇ̌̌̌Z t

0

feb. sx/ ds
ˇ̌̌̌
� 2kuksup;

which completes the proof.

Equidistribution of the singular cocycles and the error term. Assume now in addition
that f 2 C 2C�.M/ is not identically zero on Fix. R/. We will prove at the same time

err.f; t; x/ D
Z t

0

fe. �x/ d� and u� .t; x/ D

Z t

0

�� . �x/ d�

are equidistributed on R, in the sense of (1.8).
Let � be, respectively, � D fe or � D �� . We want to show that the assumptions of

Theorem 8.1 hold for '� so that we can deduce that the skew product T'� on I �R is
ergodic. In both cases, by Proposition 4.1,

'� ; g
0
'�
2 LG

�F
˛2A I˛

�
;

and (by property (ii), since 'R 2 Umin)

A�.'�/ D 0; @�.'�/ D 0:

We claim, furthermore, that we also haveX
�2Fix. R/

j�.�/j > 0;

and therefore, also by Proposition 4.1, L.'�/ > 0. To see this for � D fe , recall that
in view of (7.22), X

�2Fix. R/

jfe.�/j D
X

�2Fix. R/

jf .�/j > 0:

Furthermore, in view of (7.23), h.'fe /D 0. For � D �� , on the other hand, recall that,
by the definition of �� and (7.14), for every � 2 Fix. R/, we have �� .�/ D 1 and
h.�� / D 0. Thus, since T satisfies the SUDC, all assumptions of Theorem 8.1 hold
and we conclude that the skew product T'� on I � R is ergodic. It follows that also
the skew product flow .ˆ

�
t /t2R on M �R given by

ˆ
�
t .x; r/ D

�
 tx; r C

Z t

0

�. �x/ d�
�

is ergodic.
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We now apply the ratio ergodic theorem to the ergodic flow .ˆ
�
t /t2R and to the

characteristic functions of the sets I � J1 and I � J2. Then for a.e. .x; r/ 2 I �R,
for any pair of finite intervals J1; J2 � R, we have

Leb¹t 2 Œ0; T � W
R t
0
�. �x/ d� 2 J1º

Leb¹t 2 Œ0; T � W
R t
0
�. �x/ d� 2 J2º

D

R T
0
�I�.J1Cr/.ˆ

�
t .x; r// dtR T

0
�I�.J2Cr/.ˆ

�
t .x; r// dt

!
jJ1 C r j

jJ2 C r j
D
jJ1j

jJ2j
:

Since

err.f; t; x/ D
Z t

0

fe. �x/ d� and u� .t; x/ D

Z t

0

�� . �x/ d�;

this gives the equidistribution of cocycles t 7! err.f; t; x/ and t 7! u� .t; x/ for a.e.
x 2M .

A. Heuristics and the proofs of ergodic criterion and cohomological
reduction

In the following appendix, we first include some heuristic explanations of the fun-
damental results on deviations and corrections of cocycles over IETs (see the first
part, Section A.1). We then present the proofs of two auxiliary results used in the
main text, namely the ergodicity criterion (Proposition 8.4) in Section A.2 and the
cohomological reduction to piecewise linear cocycles (Theorem 8.9) in Section A.3.

A.1. Heuristics of corrections and deviations phenomena

In this subsection, we first explain the heuristics of the deviation phenomenon for
piecewise constant cocycles (see Section A.1.1), summarizing the main Zorich’s ideas
from [68]. We then present a sketch of the basic idea behind the work [39] by Marmi–
Moussa–Yoccoz (see Section A.1.2). This simplified overview was presented to us by
the referee. We included here (with the referee permission) believing it may be useful
to some readers.

A.1.1. Heuristic idea behind deviations of piecewise-constant cocycles. For co-
cycles which are piecewise constant, more precisely constant on continuity intervals
of T , the existence of a power deviation spectrum (a discretized version of the phe-
nomenon described in the introduction in Section 1.2) follows from the existence
of Lyapunov exponents for the Zorich–Kontsevich cocycle. We hereby present the
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heuristic explanation of this phenomenon (first proved by Zorich for characteristic
functions of an interval in [67] and then fully in [68]).

Let us first of all recall that a function � which is piecewise constant on each
interval I˛ , ˛ 2 A, can be identified with a vector v 2 RA, namely the vector v D
.v˛/˛2A whose entry v˛ is the constant value v˛ D �.x/ taken by � on any x 2 I˛ .
Conversely, we will write � D �.v/ for the piecewise constant function associated to
the vector v 2 RA. By the definition of Rauzy–Veech induction and special Birkhoff
sums, we then have, for any k 2 N, that

S.k/�.v/ D �.v.k//; where v.k/ WD Q.k/v;

i.e., S.k/�.v/ is again a piecewise constant cocycle (with constant values on each
interval I .k/˛ ; ˛ 2 A), whose values v.k/˛ , ˛ 2 A are the entries of the vector obtained
by applying the cocycle product matrix Q.k/ to the vector v. It then follows by the
Oseledets multiplicative theorem that, for almost every IET, we can find a decompos-
ition25 of RA as

RA
D �s ˚ �c ˚ �u;

where �s (resp. �u, �c) is the stable (resp. the unstable, central) space for the action
of the cocycle Q (see also Section 3.1.7).

In the special case when T is of periodic type, these Oseledets spaces simply
reduce to the direct sum of eigenspaces corresponding to eigenvalues which are resp-
ectively greater, smaller or equal to 1 in modulus. For almost every IET, �u has
dimension g and corresponds to positive (distinct) Lyapunov exponents

�1 > �2 > � � � > �g > 0:

Given a vector v which belongs (or has non-zero projection onto) �u, there exists �i
with 1 � i � g such that

lim
k!1

log kQ.k/vk
k

D �i > 0:

We claim that this implies that the Birkhoff sums

�.n/ WD

n�1X
iD0

� ı T i

25Note that the direct sum decomposition is not unique. It becomes unique only when also
the past of the cocycle is assigned, in particular when a suspension datum � for the IET .�; �/
(i.e., a triple .�; �; �/) is assigned, see Sections 3.1.6 and 3.1.7. When only .�; �/ are given,
only �s and a filtration �s � z�c � z�u is uniquely determined.
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of the associated piecewise constant function � WD �.v/ have power deviations with
exponent �i WD �i=�1, which means informally that �.n/ is of order O.n�i /, or, more
formally, that

lim sup
n!1

log�.n/.x/
logn

D �i D
�i

�1

for all x 2 I . To see this where this phenomenon comes from, one can remark that for
special points and times which correspond to special Birkhoff sums, i.e., if we take
x 2 I

.k/
˛ for some k 2 N and ˛ 2 A and

n D Q˛.k/ D
X
ˇ2A

Q˛ˇ .k/

(i.e., for the time corresponding to the height of the Rokhlin tower over I .k/˛ ), we have
that (by definition of special Birkhoff sums; see, e.g., Section 7.1.2) that �.n/.x/ D
.S.k/�/.x/ D v

.k/
˛ , i.e., these Birkhoff sums are given by the entries of the vector

v.k/DQ.k/v. One can show, moreover (see [68] for details), that eachQ˛.k/ (sum of
entries of the ˛-column ofQ.k/) grows like the norm kQ.k/k, which in turn satisfies

lim
k!1

log kQ.k/k=k D �1

(e.g., by Perron–Frobenius-type arguments,26 since the matrices Q.k/ are eventually
positive). Thus, taking a sequence .xk/k of such points with corresponding ˛k 2 A

such that xk 2 I
.k/
˛k and nk D Q˛k .k/, we have that

lim sup
nk!1

log�.nk/.xk/
lognk

D lim sup
k!1

log v.k/˛k
logQ˛.k/

D

�
lim sup
k!1

log v.k/˛k
k

��
lim
k!1

k

logQ˛k .k/

�
D �i

1

�1
D �i ;

which proves that �.nk/.xk/ display the claimed power deviation of order O..nk/�i /.
Birkhoff sums �.n/.x/ of other x 2 Œ0; 1� and n 2 N can then be approximated by
Birkhoff sums of this special form by a standard interpolation argument, expressing
them as sum of Birkhoff sums of this special form (see, e.g., [39, 68] or [25, §2.6.4]).
Thus, one shows that functions �.v/ corresponding to vectors v which project to �u

26When T is self-similar, the cocycle Q.k/ is periodic, i.e., there exists a k0 such that
Q.`k0/DQ

`
0

for some strictly positive matrixQ0>0 and every ` 2N, see for example [56]. In
this case one can apply directly Perron–Frobenius theorem to deduce that the largest eigenvalue
is exactly kQ0k1=k0 and the largest eigenvector has strictly positive entries. In general, one can
show that the positive cone is contracted by Q.k/.
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display power deviations of order O.n�/ with � 2 ¹�1; : : : ; �gº, thus explaining the
power deviations spectrum and its link with Lyapunov exponents.

We conclude remarking that if v 2 �c ˚ �s , special Birkhoff sums grow subexpo-
nentially, from which one can derive that deviations are subpolynomial; if furthermore
v 2 �s , one can show hat �.v/ has uniformly bounded Birkhoff sums27 and is a
coboundary for T .

A.1.2. Heuristic idea behind corrections of smooth cocycles. We recall the main
result proved in [39]: For a full measure set of (Roth-type) IETs, for any piecewise
smooth cocycle 'W I ! R (whose derivative is of zero mean), continuous on each
continuity interval of T , one can find a piecewise constant function � (the correction),
constant on continuity intervals of T , such that the Birkhoff sums

.' � �/.n/ D

n�1X
kD0

.' � �/.T kx/

of the corrected cocycle ' � � are uniformly bounded in n and x. To prove this res-
ult, Marmi, Moussa and Yoccoz show that special Birkhoff sums S.k/', as k tends
to infinity, look more and more like piecewise constant observables. An heuristic
explanation of this phenomenon is that, if x; y both belong to the same continuity
interval I .k/˛ of S.k/'.x/ (so that, in particular, jx � yj � jI .k/j), then, by the mean
value theorem, we can estimate the difference between S.k/'.x/ and S.k/'.y/ by

jS.k/'.x/ � S.k/'.y/j �
ˇ̌�
S.k/'

�0
.z/
ˇ̌
jI .k/j D

ˇ̌̌̌n�1X
iD0

'0
�
T i .z/

�ˇ̌̌̌
jI .k/j; (A.1)

where z is a point between x and y and n D n.k; z/ 2 N is the first return time of z
to I .k/.

We can now remark that:

(1) the length jI .k/j of I .k/ is roughly kQ.k/k�1;

(2) by definition, n is the sum of the elements of a column of Q.k/, more pre-
cisely

Q˛.k/ D
X
ˇ2A

Q˛ˇ .k/

(see Section 3.1.4), where ˛ 2A is such that z 2 I˛ , and therefore n�kQ.k/k.

27In this latter case, although special Birkhoff sums S.k/� decrease exponentially, but when
one needs to control all Birkhoff sum, the interpolation argument, leads to the study of a geo-
metric series which, under the assumption that the IET satisfy a Diophantine-like condition, is
only bounded.
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In particular, applying Birkhoff ergodic theorem combined with unique ergodicity
to '0, one can show that if '0 has mean 0, then we have thatˇ̌̌̌n�1X

iD0

'0
�
T i .z/

�ˇ̌̌̌
D o.n/;

and therefore by (2),
jS.k/'0.z/j D o

�
kQ.k/k

�
:

It then follows by .1/ that the right-hand side of (A.1) tends to zero; furthermore,
one can show that the convergence is uniform.28 Thus, for an observable ' whose
derivative has mean zero (since the left-hand side of (A.1) goes to zero uniformly as k
grows), we can write

S.k/' D vk C �k;

where vk is a piecewise constant function, constant on each continuity interval of the
kth renormalization of T , and �k a small error that uniformly tends to zero as k tends
to infinity. In [39] the authors show that vk is actually of the form S.k/v0 for a certain
piecewise constant function v0.

We give now some intuition on how this is achieved exploiting the hyperbolicity
of the Zorich–Kontsevich cocycle Q. Take k0 so large so that �k0 is small. A good
candidate for v0 would then be Q.k0/�1vk0 . Notice that Q.k0/�1vk0 is also a piece-
wise constant function, with constant values on each of the continuity intervals of T .
Thus, if v0 WDQ.k0/�1vk0 then S.k0/v0 D vk0 and S.k0/' D S.k0/v0C �k0 . If one
continues iterating the renormalization process, we get

S.k0 C `/' D S.k0 C `/v0 C S.`/�k0 :

If after iterating ` times, S.`/�k0 has become too big, since �k0 is piecewise smooth
whose derivative has zero mean, we know that S.`/�k0 can be written as a piecewise
constant observable vk0C` plus a very small mistake �k0C`, i.e.,

S.`/�k0 D vk0C` C �k0C`

is close to a piecewise constant function. In that case, we can replace v0 with

v0 CQ.k0 C `/
�1vk0C`:

28One can indeed assume that T is uniquely ergodic (since, as shown by Masur and Veech
in the 1980s, almost every IET is uniquely ergodic). The observables considered can then be
seen as (restrictions of) continuous observables after extending the IET to a homeomorphism of
a Cantor set, see [39] for details.
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If we choose vk0C` so that it does not project to the central-stable space of the
cocycle Q.n/, the vector Q.k0 C `/�1vk0Ck is roughly of size ��.k0C`/kvk0C`k,
where � > 1 is related to the smallest positive Lyapunov exponent of Q.

The term v0 CQ.k0 C `/
�1vk0Ck provides the second step to the desired cor-

rection. The crucial point is that the increment is exponentially small in k0 C `,
therefore one can continue making successive corrections to the initial piecewise con-
stant observable in a similar way and add them up to obtain a series which, under
the Diophantine-type conditions assumed, is convergent. The sum of this series gives
the vector v0 whose associated piecewise constant function � WD �.v0/ is such that
S.k/.' � �/ D S.k/' � S.k/v0 tends to 0 exponentially fast. Notice that this expo-
nential decay is crucial to conclude that the initial claim, namely that the Birkhoff
sums S.k/.' � �/ of the corrected cocycle ' � � stay bounded, holds (and from here
that ' � � is a coboundary, see footnote 14 in Section 1.5). Indeed, the control for
intermediate Birkhoff sums times (which do not correspond to special Birkhoff sums)
is done by an interpolation argument, using again the Diophantine-like condition on
the IET to guarantee that each special Birkhoff sum enter in the approximation only
subexponentially many times.

To deduce a deviation spectrum result, on the other hand, it suffices to show that
the special Birkhoff sums S.k/.' � �/ of the corrected cocycle stay bounded (or even
grow subexponentially), since this is enough (again under a suitable Diophantine-like
condition) to compare the initial observable to a piecewise constant one, for which
the deviation phenomenon was proved by [68] along the lines explained above in
Section A.1.1.

A.2. Ergodicity criterion

In this section, we prove the ergodicity criterion stated as Proposition 8.4. The proof
repeats arguments from the proofs of [22, Propositions 5.1 and 5.2] and is included
for convenience.

Proof of Proposition 8.4. For simplicity, assume that jI j D 1. First we show that there
exists C > 0 such that

j'.qk/.x/ � '.qk/.Tmx/j � C for all 0 � m < pk , x 2 J .k/: (A.2)

Note that

j'.qk/.x/ � '.qk/.Tmx/j D j'.m/.x/ � '.m/.T qkx/j

�

ˇ̌̌̌Z T qkx

x

j.'0/.m/.y/j dy
ˇ̌̌̌
:
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Assume that g' D 0. In view of (SUDC2) in Proposition 5.6, for every y 2 I .k/, we
have

j.'0/.m/.y/j �
X
˛2A

�
jCC˛ j

min0�i<m jT iy � l˛j
C

jC�˛ j

min0�i<m jT iy � r˛j

�
CML.'/kQ.k/k:

As x 2 J .k/, by assumption (ii), there exists c > 0 such that

jT ix � l˛j � c=qk; jT ix � r˛j � c=qk;

jT i .T qkx/ � l˛j � c=qk; jT
i .T qkx/ � r˛j � c=qk

for all ˛ 2 A and 0 � i < pk .
As x; T qkx 2 I .k/, it follows that

jT iy � l˛j � c=qk; jT
iy � r˛j � c=qk for all y 2 Œx; T qkx�:

In view of (3.10), this givesˇ̌̌̌Z T qkx

x

j.'0/.m/.y/j dy
ˇ̌̌̌
� jx � T qkxjL.'/

�
qk=c CMkQ.k/k

�
� jI .k/jkQ.k/k.M C 1=c/L.'/ � �.M C 1=c/L.'/:

Suppose that g' ¤ 0. As x; T qkx 2 I .k/, we have that ¹T i Œx; T qkx� W 0 � i < mº is
a tower of intervals. Hence,

jg.m/' .x/ � g.m/' .T qkx/j �
X
0�i<m

ˇ̌
g'.T

ix/ � g'
�
T i .T qkx/

�ˇ̌
� Varg' :

This gives (A.2). Therefore, for every 0 � i < pk , we haveZ
T iJ .k/

j'.qk/.x/j dx �
Z
J .k/
j'.qk/.x/j dx C jJ .k/jC

D

Z
J .k/
jS.k/'.x/j dx C jJ .k/jC:

Hence, Z
„k

j'.qk/.x/j dx � pk

Z
I .k/
j'.qk/.x/j dx C pkjJ .k/jC

D
1

jI .k/j

Z
I .k/
jS.k/'.x/j dx C C:

In view of assumption (i), this gives the left condition in (8.1).
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For every 0 � l < pk , let Œal ; bl � D J
.k/

l
. Repeating some integration by parts

arguments from the proof of [22, Proposition 5.2], we haveˇ̌̌̌Z
J
.k/

l

e2�s'
.qk/.x/ dx

ˇ̌̌̌
�
1

jsj

�
2

minx2Œal ;bl � j.'0/.qk/.x/j
C Var jŒal ;bl �

1

.'0/.qk/

�
:

In view of (iii), it follows thatˇ̌̌̌Z
J
.k/

l

e2�s'
.qk/.x/ dx

ˇ̌̌̌
�
1

jsj

�
2

cqk
C

1

c2q2
k

Var jŒal ;bl �.'
0/.qk/

�
�
1

jsj

�
2

cqk
C

1

c2q2
k

X
0�i<qk

Var jT i Œal ;bl �'
0

�
:

By (ii), ¹T i Œal ;bl � W 0� i < qkº is a tower of intervals and each level interval T i Œal ;bl �
is distant from the set End.T / by at least c=qk . Recall that

'0.x/ D �
X
˛2A

CC˛
¹x � l˛º

C

X
˛2A

C�˛
¹r˛ � xº

C g0'.x/:

Moreover, X
0�i<qk

Var jT i Œal ;bl �
1

¹x � l˛º
D VarŒc=qk ;1�

1

x
�
qk

c
;

X
0�i<qk

Var jT i Œal ;bl �
1

¹r˛ � xº
D VarŒ0;1�c=qk ;1�

1

1 � x
�
qk

c
;

and X
0�i<qk

Var jT i Œal ;bl �g
0
' � Varg0' :

It follows that, for every 0 � l < pk ,ˇ̌̌̌Z
J
.k/

l

e2�s'
.qk/.x/ dx

ˇ̌̌̌
�
1

jsj

�
2

cqk
C

1

c2q2
k

�
L.'/

qk

c
C Var.g0'/

��
:

Leb
�
„k n

[
0�l<pk

J
.k/

l

�
D

X
0�l<pk

Leb
�
T lJ .k/ n J

.k/

l

�
�
2

3

X
0�l<pk

jT lJ .k/j D
2

3
Leb.„k/;

this yieldsˇ̌̌̌Z
„k

e2�s'
.qk/.x/ dx

ˇ̌̌̌
�
2

3
Leb.„k/C

1

jsj

�
2

c
C
1

c2

�L.'/

c
C Var.g0'/

��
;
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which gives the right condition in (8.1). By Proposition 8.2, we have the ergodicity
of T' .

A.3. Cohomological reduction

In this section, we present the proof of the cohomological reduction stated as The-
orem 8.9. We will assume throughout that T satisfies the UDC. For simplicity, we
also assume that jI j D 1. Let us denote by

ACh
�F

˛2A I˛
�
WD
®
' 2 AC

�F
˛2A I˛

�
W '0 2 LG

�F
˛2A I˛

�
and h.'0/ D 0

¯
:

Outline of the proof. We will show first of all that every ' 2 AC.
F
˛2A I˛/ with

'0 2 LG.
F
˛2A I˛/ can be modified by a piecewise linear map such that its modific-

ation is in ACh.
F
˛2A I˛/, by showing that one can subtract a map whose derivative

is h.'0/ (see Steps 1 and 2 of the proof of Theorem 8.9 below).
The next step of the proof is to apply the correction by a piecewise constant func-

tion described in Section 6 (see Step 3 of the proof of Theorem 8.9). We then show
that, after this further correction, the resulting map z' is a coboundary. We will show
more precisely that kS.k/z'ksup decays exponentially (see Theorem A.1). Then stand-
ard arguments based on decompositions of Birkhoff sums (see Section 7.1.2) and the
Gottschalk–Hedlund theorem yield that z' is a coboundary (see Step 4 of the proof of
Theorem 8.9).

The proof of Theorem A.1 (namely of exponential decay of kS.k/z'ksup) is similar
to the proof of Theorem 6.1 in Section 6, or more precisely to the proof of sub-
exponential growth of kS.k/z'kL1.I .k//=jI

.k/j (see, in particular, (6.4) in the statement
of Theorem 6.1). One of the key arguments in this proof was showing that LV.S.k/'/

was bounded (or had sub-exponential growth in the non-symmetric case). Here, we
will have a stronger input, namely the exponential decay of LV.S.k/'/: indeed, for
every ' 2 ACh.

F
˛2A I˛/, since ' is piecewise absolutely continuous, we have that

LV
�
S.k/'

�
D Var

�
S.k/'

�
and therefore, in view of Theorem 6.1 (applied to '0) and the control of the L1-norm
via k � kLV given by (4.2), for every k � 1,

LV
�
S.k/'

�
D Var

�
S.k/'

�
D kS.k/.'0/kL1.I .k// � C jI

.k/
jC 0k.T /k'

0
kLV : (A.3)

Since jI .k/j decays exponentially, this shows that LV.S.k/'/ decays exponentially.
Exploiting this exponential decay, analyzing its effect on all inequalities used in Sec-
tion 6, we will prove the exponential decay of kS.k/z'ksup. Differently than in Sec-
tion 6, though, instead of the L1-norm, we have now to always use the sup-norm.
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This requires a detailed and patient analysis of all steps used in Section 6 in this new
context, which is performed for example in the proofs of Lemmas A.2 and A.3 below.

We begin by stating and proving the following exponential decay result.

Theorem A.1. Assume that T satisfies the UDC. Suppose that ' 2 ACh.
F
˛2A I˛/,

@�.'/ D 0 and h.'/ D 0. Then

kS.k/'ksup D O.e
��k/:

The proof of Theorem A.1 will follow from combining the following three lem-
mas (Lemmas A.2, A.3, and A.4). The first is an improved estimate of the growth
of the image P .k/' of the correcting operators P .k/ (introduced in Section 6) when
' 2 ACh.

F
˛2A I

.0/
˛ / and @�.0/.'/ D 0.

Lemma A.2. The correcting operator

P .k/WAC
�F

˛2A I
.k/
˛

�
! AC

�F
˛2A I

.k/
˛

�
=�

.k/
s

is such that, for every ' 2 ACh.
F
˛2A I

.0/
˛ / with @�.0/.'/ D 0,P .k/�S.k/'�sup =�.k/s

� Ck'0kLV Wk; (A.4)

where
Wk WD

X
r�k

kQs.k; r C 1/kkZ.r C 1/kjI
.r/
jC 0r.T /:

Proof. Recall that P .k/ is given by

P .k/ D U .k/ ı P
.k/
0 ��.k/:

Let us first give a preliminary estimate for the modifying operator

�.k/WAC
�F

˛2A I
.k/
˛

�
! H.�.k//=�

.k/
s ;

starting with the definition of �.k/ as the series given by (6.20). We then let ' 2
ACh.

F
˛2A I

.0/
˛ / with @�.0/.'/ D 0.

Step 1. Estimates of�.k/'. To estimate the series (6.20) (with S.k/.'/ instead of '),
for each fixed r � k, we need to estimate�

S[.k; r C 1/
��1
ı U .rC1/ ıM

.rC1/
H ı S.r; r C 1/ ı P

.r/
0 ı S.r/.'/:

Let us start from right to left: we first estimate the action of P .r/0 on S.r/.'/, then of
M
.rC1/
H ı S.r; r C 1/, and finally applying and estimating .S[.k; r C 1//�1 ıU .rC1/.
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Step 1 (i). The action of P .r/0 . Recall that (by Definition 8)

P
.r/
0 D I � pH.�.r// ıM.r/;

where I is the identity operator and M.r/ the preliminary correction given by subtract-
ing the mean in each I .r/˛ . Since S.r/.'/ 2 AC.

F
˛2A I

.r/
˛ / is piecewise absolutely

continuous, S.r/.'/ �M.r/
�
S.r/.'/

�
sup � Var

�
S.r/.'/

�
:

Using first the above estimate together with the control of the projection by the
boundary operator

kh � pH.�.r//hk � CGk@
.r/
� hk

given by Lemma 3.4 (see, in particular, (3.9)), then the comparison between @�.r/ and
@�.r/ ıM

.r/ given by (4.21), and finally the estimate (A.3) of the variation together
with the invariance of the boundary (5.6) and the assumption that

@�.r/
�
S.r/'

�
D @�.0/.'/ D 0;

we get the following chain of inequalities:

kP
.r/
0 ı S.r/.'/ksup �

S.r/.'/ �M.r/
�
S.r/.'/

�
sup

C
M.r/

�
S.r/.'/

�
� pH.�.r//M

.r/
�
S.r/.'/

�
sup

� Var
�
S.r/.'/

�
C CG

@�.r/M.r/
�
S.r/.'/

�
� .1C 2dCG /Var

�
S.r/.'/

�
C CG

@�.r/�S.r/'�
� C 0jI .r/jC 0r.T /k'

0
kLV : (A.5)

Step 1 (ii). The action of M
.rC1/
H ı S.r; r C 1/. In view of the initial correction estim-

ates of Lemma 6.4 (in particular, (6.8)), the L1-norm of special Birkhoff sums estim-
ate (5.1) and the interval length control in terms of cocycle matrix norms given by
inequality (3.3), for every � 2 AC.

F
˛2A I

.r/
˛ /,

kM
.rC1/
H ı S.r; r C 1/�k �

�
p
d

jI .rC1/j
kS.r; r C 1/�kL1.I .rC1//�

�
p
d

jI .rC1/j
k�kL1.I .r//

� �
p
d
jI .r/j

jI .rC1/j
k�ksup � �

p
dkZ.r C 1/kk�ksup:

Step 1 (iii). The action of .S[.k; r C 1//�1 ı U .rC1/. Since kU .rC1/k D 1, by (A.5),
this gives (when applied to � D P .r/0 ı S.r/.'/)�S[.k; r C 1/��1 ı U .rC1/ ıM

.rC1/
H ı S.r; r C 1/ ı P

.r/
0 ı S.k; r/

�
S.k/'

�
� �
p
dC 0kQs.k; r C 1/kkZ.r C 1/kjI

.r/
jC 0r.T /k'

0
kLV :
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As �.k/.S.k/'/ is the sum of the series (6.20), it follows that�.k/�S.k/'�sup =�.k/s
� �
p
dC 0Wkk'

0
kLV : (A.6)

Step 2. Estimates of P .k/'. We can now estimate the operator

P .k/ D U .k/ ı P
.k/
0 ��.k/:

As kU .k/k D 1, in view of (A.5), if ' 2 ACh.
F
˛2A I˛/ and @�.'/ D 0, thenU .k/ ı P .k/0

�
S.k/'

�
sup =�.k/s

� kP
.k/
0 ı S.k/.'/ksup

� C 0jI .k/jC 0k.T /k'
0
kLV � C

0Wkk'
0
kLV :

Together with (A.6), this gives the desired estimate and proves the lemma.

Lemma A.3. Under the assumptions of Theorem A.1, if additionally h.'/ D 0 then
for any k � 0,

kS.k/'ksup � C
�
k'0kLVVk C kQs.k/kk'ksup

�
;

where Vk is given by the following series

Vk D
X
0�l�k

kQs.l; k/k
�
Wl C kZ.l/kWl�1

�
;

in whichW�1 WD 0 by convention and the seriesWl for l � 0 is defined in Lemma A.2.

Proof. By the definition of the operator h (see (6.27)), since h.'/ D 0, we have that

U .0/.'/ D P .0/.'/:

In view of the equivariance described by Lemma 6.7, it follows that

U .k/ ı S.k/' D S[.k/ ı U
.0/' D S[.k/ ı P

.0/' D P .k/ ı S.k/':

Therefore, by Lemma A.2, we have

kU .k/ ı S.k/'ksup =�.k/s
D
P .k/�S.k/'�sup =�.k/s

� CWkk'
0
kLV :

It follows that, for every k � 0, there exists 'k 2 AC.
F
˛2A I

.k/
˛ / and sk 2 �

.k/
s such

that
S.k/' D 'k C sk and k'kksup � CWkk'

0
kLV : (A.7)
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Setting s0 WD �s0 and �skC1 D skC1 � Z.k C 1/sk for any k � 1, since for
sk 2 �

.k/ we have that S.k; k C 1/sk D Z.k C 1/sk , we get

�skC1 D skC1 � S.k; k C 1/sk

D
�
S.k C 1/' � 'kC1

�
� S.k; k C 1/

�
S.k/' � 'k

�
D �'kC1 C S.k; k C 1/'k :

Therefore, by (A.7),

k�skC1ksup D k'kC1 � S.k; k C 1/'kksup

� k'kC1ksup C kS.k; k C 1/'kksup

� k'kC1ksup C kZ.k C 1/kk'kksup

� C
�
WkC1 C kZ.k C 1/kWk

�
k'0kLV

and, since by definition �s0 D s0 D ' � '0,

k�s0ksup D k' � '0ksup � k'ksup C CW0k'
0
kLV :

Since
sk D

X
0�l�k

Q.l; k/�sl and �sl 2 �
.l/
s ;

setting W�1 D 0, we have

kskksup �
X
0�l�k

kQ.l; k/�slksup

�

X
0�l�k

kQs.l; k/kk�slksup

� kQs.k/kk'ksup C C
X
0�l�k

kQs.l; k/k
�
Wl C kZ.l/kWl�1

�
k'0kLV :

In view of (A.7), it follows that

kS.k/'ksup � k'kksup C kskksup

� kQs.k/kk'ksup C 2C
X
0�l�k

kQs.l; k/k
�
Wl C kZ.l/kWl�1

�
k'0kLV ;

which completes the proof.

Lemma A.4. Suppose that T satisfies the UDC. Then, for every 0 < � < .�1 � �/=5,
we have Vk D O.e��k/.
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Proof. In view of (3.23) in Proposition 3.9 and jI .r/j � �kQ.r/k�1 DO.e��1r/ (see
(3.10) and (UDC3)), we have

Wk D O

�X
r�k

kQs.k; r C 1/kkZ.r C 1/kjI
.r/
jC 0r.T /

�
D O

�X
r�k

e��.rC1�k/e4� re��1r
�

D O

�
e�.�1�4�/k

X
r�k

e�.�C�1�4�/.r�k/
�
D O

�
e�.�1�4�/k

�
:

By the definition of Vk , it follows that,

Vk D O

� X
0�l�k

kQs.l; k/k
�
e�.�1�4�/l C kZ.l/ke�.�1�4�/.l�1/

��
D O

� X
0�l�k

e��.k�l/e�le�.�1�4�/l
�
D O

�
e��k

X
0�l�k

e�.�1���5�/l
�

D O
�
e��k

�
:

Proof of Theorem A.1. The proof follows immediately by combining Lemma A.3 and
Lemma A.4, which show that

kS.k/'ksup � C
0
�
k'0kLV e

��k
C kQs.k/kk'ksup

�
:

Since also kQs.k/k D O.e��k/ by the UDC (see (UDC1) of Definition 3), we get
that kS.k/'ksup D O.e

��k/.

We can now also prove the cohomological reduction.

Proof of Theorem 8.9. Assume that T satisfies the UDC and that ' 2 AC.
F
˛2A I˛/

and '0 2 LG.
F
˛2A I˛/. Fix any 0 < � < min¹.�1 � �/=5; �º.

Step 1. First correction for the derivative to be in the kernel of h. If we let h1 D
h.'0/ 2 H.�/, and take any piecewise linear ' 2 AC.

F
˛2A I˛/ such that '0 D h1,

then
h
�
.' � '/0

�
D 0:

Step 2. Correction to be in ACh.
F
˛2A I˛/. Since h..' � '/0/ D 0 by Step 1, Corol-

lary 7.11 shows that the sum of jumps

s.' � '/ D

Z
I

.' � '/0.x/ dx D 0:
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By (4.1), it follows that X
O2†.�/

�
@�.' � '/

�
O
D 0:

Since the image @�.RA/ consists of all vectors .xO/O such thatX
O2†.�/

xO D 0

(see (3.8)), there exists h2 2 � such that

@�.h2/ D @�.' � '/:

We claim that ' � ' � h2 belongs to ACh.
F
˛2A I˛/. To see this, notice first that

' � ' � h2 2 AC.
F
˛2A I˛/, and that .' � ' � h2/0 D '0 � h1 2 LG.

F
˛2A I˛/.

Furthermore,

@�.' � ' � h2/ D 0; h..' � ' � h2/
0/ D h..' � '/0/ D 0;

so ' � ' � h2 2 ACh.
F
˛2A I˛/.

Step 3. Last correction to be in the kernel of h. Let h3 D h.' � ' � h2/ 2 H.�/ and
set

z' WD ' � ' � h2 � h3:

Then z' 2ACh.
F
˛2A I˛/with h.z'/D 0 and @�.z'/D @�.' � ' � h2/� @�.h3/D 0.

Step 4. Proof that z' is a coboundary. Given any every bounded function 'W I ! R

and n > 0, by decomposing the Birkhoff sums '.n/ into special Birkhoff sums (see,
for example, [39, §2.2.3]), we can get the estimate

k'.n/ksup � 2
X
l2N

kZ.l C 1/kkS.l/'ksup:

As 0 < � < �, in view of the UDC (in particular, the estimate of kZ.l/k) and The-
orem A.1, which gives that kS.l/z'ksup D O.e

��l/, it follows that

kz'.n/ksup D O

�X
l2N

kZ.l C 1/ke��l
�

D O

�X
l2N

e�.���/l
�
D O.1/:

Applying Gottschalk–Hedlund-type arguments (see [39, §3.4]), we obtain that z' is a
coboundary with a bounded transfer map.
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Step 5. Conclusive arguments. Let us now define  WD ' � z'. By Step 4,  and '
differ by a coboundary, so they are cohomologous. Furthermore, since by definition
of  and of z' (see Step 3),

 D ' � z' D ' C h2 C h3;

and ', h2 and h3 are all piecewise linear (actually piecewise constant in the case of h2
and h3) functions (by construction, see Step 1 and Step 2), we see that  is piecewise
linear. Furthermore, since by construction h.z'/ D 0 and @�.z'/ (in view of Step 3),
we have that

h. / D h.'/ � h.z'/ D h.'/ and @�. / D @�.'/ � @�.z'/ D @�.'/:

Finally, Theorem A.1 shows that kS.k/.' �  /ksup D kS.k/z'ksup decays exponen-
tially. This completes the proof.
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