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The Dirichlet problem of
translating mean curvature equations

Hengyu Zhou

Abstract. In this paper, we study the Dirichlet problem of translating mean cur-
vature equations over a domain via topological restrictions. Its main difficulty is
the non-existence of a C 0 a priori estimate for their classical solutions except few
cases. Inspired by the work of Miranda and Giusti, we define a generalized solution
of these Dirichlet problems and establish its general existence. We propose a non-
closed-minimal (NCM) condition on the underlying domain. When the domain is
mean convex and NCM, the generalized solution with continuous boundary data is
the classical smooth solution. Moreover, the NCM assumption cannot be removed by
a hemisphere example.

1. Introduction

There are intimate connections between the Dirichlet problem of many nonlinear elliptic
equations and the geometry of the domain�. For example, see [11,12] on their geometric
assumptions on � to solve the Dirichlet problem of a class of prescribed mean curvature
equations. In this paper we add one more example into these connections in the case of
translating mean curvature equations.

Fix ˛ � 0. Let � be a bounded Lipschitz domain in an n-dimensional complete Rie-
mannian manifold N with a metric � . Suppose the graph of a C 2 function u is minimal in
the conformal product manifold N �R with the metric e2˛r=n.� C dr2/. Then u satisfies
the following equation:

(1.1) H˛.u/ D 0 on �; where H˛.u/ D �div
� Dup

1C jDuj2

�
C

˛p
1C jDuj2

:

Here, div and D are the divergence and the gradient on N , respectively. We call (1.1) a
translating mean curvature equation (TMCE).

The word “translating” comes from the fact that when N is the Euclidean space Rn,
the graph of u satisfying Hn.u/ D 0 is a translating soliton to the mean curvature flow
in RnC1.
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To describe the Dirichlet problem of a TMCE on general Riemannian manifolds, we
propose a topological condition upon the domain as follows.

Definition 1.1. Fix n� 2. Suppose� is an n-dimensional bounded Riemannian manifold
with Lipschitz boundary. We say that� has the non-closed-minimal (NCM) property if its
closure does not contain any Caccioppoli set E such that its (essential) boundary @E is a
closed, embedded and minimal hypersurface with a singular set S of Hausdorff dimension
at most n � 8. For n D 8, we require that S is a collection of isolated points.

By Theorem 28.1 in [22], the description of S coincides with the singular set in
.ƒ; �/-minimizing perimeter (almost minimizing currents with codimension one). By the
maximum principle of stationary varifolds [17], all bounded domains in Euclidean spaces,
Hyperbolic spaces, all domains in the hemisphere (except itself) have the NCM property.
Some nontrival examples of domains with the NCM property can be found in the works of
Kasue [19] and Agostiniani, Fogagnolo and Mazzieri [1]. The NCM assumption is similar
to the assumptions in Theorem 2.5 of [29] by White, and in Assumption 2.8 of [5] by De
Lellis and Ramic.

We say that a C 2 domain is mean convex if the mean curvature of its boundary is
nonnegative, i.e., div.Ev/ � 0 for its outward normal vector Ev. The main result of this paper
is stated as follows.

Theorem 1.2. Suppose � is a C 2 bounded mean convex domain with the NCM property
in an n-dimensional .n � 2/ Riemannian manifold, and fix ˛ > 0. Then the Dirichlet
problem of the TMCE

(1.2) H˛.u/ D 0 on �; u D  in @�;

admits a unique solution in C 2.�/ \ C. N�/ for any continuous function  on @�.

Remark 1.3. By Serrin [25], the mean convex assumption cannot be removed if we want
to solve (1.2) for any continuous boundary data even in the case of ˛ D 0.

The NCM assumption also cannot be removed. In Theorem 6.1 of [10], we showed that
when� is the upper hemisphere SnC and ˛ � n� 2, no classical C 2 solution to (1.2) exists
for any continuous boundary data. The boundary of SnC is a closed embedded minimal
hypersurface. We call such example the hemisphere example. See also Theorem B.4 in
Appendix B.

An advantage of the NCM assumption is that it is independent of the choice of ˛.
Thus, it is much better than the assumption that there is a C 2 subsolution to (1.2) for
each ˛. But in Euclidean spaces (see Theorem 10 in [30]), such existence of the global
subsolution in RnC1 can be easily obtained by ODE and thus it makes the derivation of
Theorem 1.2 much easier.

Remark 1.4. Theorem 1.2 plays an very important role in the study of the minimal graph
and the area minimizing problem in general conformal product manifolds given by N �
.�1; A/ with the metric �2.r/.� C dr2/. See [10].

Remark 1.5. In the case n D 1, the Dirichlet problem (1.2) is essentially different from
the one for n � 2. We need more restrictions on ˛ to get the conclusion in Theorem 1.2
when n D 1. Moreover, the NCM assumption is not well-defined on the real line R. For
more details, see Appendix C.
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Let Q˛ be the set N � R equipped with the metric e2˛r=n.� C dr2/. We say that the
set � �R in Q˛ is a conformal cone. The main motivation of this paper comes from the
Plateau problem, that is, the search of surfaces taking least area in Riemannian manifolds
with prescribed boundary data. In the setting ofQ˛ , the first step is to find minimal graphs
with prescribed graphical boundary in @� �R, which is equivalent to solve the Dirichlet
problem (1.2).

In the case ˛D 0, the Dirichlet problem (1.2) is completely solved when� is bounded
and mean convex (see [2,11,14,18,25], etc.) without the NCM restriction. When N is the
Euclidean space Rn, the Dirichlet problem (1.2) was easily solved for bounded mean con-
vex domains by White [28] and Wang [28] (see also Ma [21]). This is related to translating
solitons and the type II singularity of mean curvature flows [16]. A much more general
form of (1.2) was already considered by Casteras, Heinonen and Holopainen in Theo-
rem 1.1 of [4] with a lower bound restriction on the Ricci curvature of �.

In view of the hemisphere example in Theorem B.4, the main difficulty in Theorem 1.2
is the unknown L1 bound of its classical solution in C 2.�/ \ C. N�/. On the other hand,
by calibration, the graph of such classical solution takes the least area among smooth
hypersurfaces in N� � R with respect to the metric e2˛r=n.� C dr2/. As a result, we use
the idea of the generalized solution theory to the Dirichlet problem of minimal surface
equations by Miranda [23,24] and Giusti [12–14]. Such theory does not require an a priori
estimate of the solution, and makes use of the area minimizing property via a minimizing
process of a functional on bounded variation (BV) functions.

The idea to conclude Theorem 1.2 can be described in the following four steps.
(1) Define an area functional F˛.u;�/ among BV functions with respect to the metric

e2˛r=n.� C dr2/ (see Definition 3.1).

(2) Establish the equivalence between the minimizing problem of F˛.u; �/ and the
minimizing perimeter problem (see Theorem 4.7).

(3) Find a graph of a BV function which minimizes the perimeter of the boundary
¹.x;  .x// W x 2 @�º in the closed set N� � Œ�k; k�. Then, letting k ! C1, we
define a generalization solution to the Dirichlet problem (1.2) with boundary data
 .x/ (see Definition 5.1). Such solution may take the infinity value over �.

(4) Study the property of the set when the generalized solution takes infinity values.
In particular, when � is mean convex and  is continuous, the boundary of those
infinity sets are minimal embedded hypersurfaces with a singular set S of Hausdorff
dimension at most n � 8. In the case n D 8, S is a collection of isolated points. See
Theorem 6.8. By the NCM assumption, we conclude the proof of Theorem 1.2.

The paper is organized as follows. In Section 2, we collect some preliminary facts
on BV functions. In Section 3, we discuss various properties of the conformal area func-
tional F˛.u; �/. In Section 4, we show the relationship between the perimeter of sub-
graphs inQ˛ and the area functional F˛.u;�/. In Section 5, we establish the existence of
generalized solutions to the Dirichlet problem of the TMCE (1.2). In Section 6, we inves-
tigate the properties of the infinity sets of generalized solutions. In Section 7, we prove
Theorem 1.2.
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In Appendix A, we record a decomposition result for Radon measures in Riemannian
manifolds. This is used to prove the C1 approximation of F˛.u; �/ (Theorem 3.5). In
Appendix B, we record some results on mean curvature equations in sufficiently small
balls and the hemisphere example.

2. BV functions in Riemannian manifolds

In this section, we discuss BV functions and related definitions in Riemannian manifolds.
We define the convolution of functions and vector fields in an open ball for later use. The
main references are [3], [8], [14], [22] and Chapter 1 of [26].

2.1. BV functions

Let .M; g/ be a Riemannian manifold. Let h � ; � i be its inner product. Write div and dvol
for the divergence and the volume of M , respectively. Suppose � is an open set in M .
Let T0� be the collection of smooth vector fields with compact support in �. Let Hk

denote the k-dimensional Hausdorff measure on M .

Definition 2.1. Let u 2 L1.�/. We define

jDujM .�/ WD sup
° Z

�

u div.X/ dvol; X 2 T0�; hX;Xi � 1
±
:

If jDujM .�/ <1, we say that u has bounded variation or u 2 BV.�/.

Remark 2.2. If u 2 C 1.�/, the divergence theorem implies thatZ
�

u div.X/ dvol D �
Z
�

hX;rui dvol

for any X 2 T0�, where ru is the gradient of u in M .
The definition in (2.1) induces a Radon measure on �. If there is no confusion con-

cerning the ambient manifold, we usually omit the lower index in jDujM .�/ and just write
it as jDuj.�/.

Now we continue to define the perimeter as follows.

Definition 2.3. For a Borel set E, let �E be its characteristic function. We call jD�E j.�/
the perimeter of E in �, written as P.E;�/.

If E has locally finite perimeter in �, that is, P.E;�0/ <1 for each bounded open
set �0 �� � (i.e., �E 2 BVloc;M .�/), then E is called a Caccioppoli set.

The following two classical theorems on BV functions are very useful.

Theorem 2.4. Suppose ¹uj º1jD1 2 BV.�/ converges to u in L1.�/ as j !C1. Then

jDuj.�/ � lim
j!C1

inf jDuj j.�/:
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Theorem 2.5. Suppose that � is a bounded Lipschitz boundary in N and that there is a
sequence ¹uiº1iD1 in BV.�/ satisfyingZ

�

jui j dvolC jDui j.�/ � c for any i ;

where c is a fixed constant. Then there is a u.x/ in BV.�/ such that a subsequence of
¹uiº

1
iD1 converges to u in L1.�/.

2.2. Radon measures

Now we record the connection between BV functions and Radon measures. For more
details we refer to [26], Chapter 1.

Definition 2.6. Let X be a locally compact Hausdorff measure. A Radon measure on X
is an outer measure � on X having the following three properties:
(1) � is Borel regular and �.K/ <1 for any compact set K � X ,
(2) �.A/ D inf¹�.U / W U open; A � U º for each subset A � X ,
(3) �.U / D sup¹�.K/ W K compact; K � U º for each open U in X .

For any set X , we denote the set of non-negative continuous functions f WX ! Œ0;1/

with compact support by KC.X/.

Theorem 2.7 (Remark 4.3 in [26]). Suppose X is a locally compact Hausdorff space and
�WKC.X/! Œ0;1/ satisfies �.cf /D c�.f /, �.f C h/D �.f /C �.h/ for any constant
c � 0 and f; g 2 KC.�/. Then there is a Radon measure � on X , given by

(2.1) �.U / WD sup
®
�.f /; f 2 KC.X/; supp.f / �� U; f � 1

¯
for all open U � X;

such that

(2.2) �.f / D

Z
X

f d� for all f 2 KC.�/:

Here supp.f / is the closure of ¹x W f .x/ > 0º.

Suppose u.x/ 2 BV.�/. We set a nonnegative functional �uWKC.�/! Œ0;C1/ as

�u.h/ D sup
° Z

u div.X/ dvol; X 2 T0�; hX;Xi � h2
±

for every h 2 KC.�/. It is clear that

�u.ch/ D c�u.h/; �u.hC h1/ D �u.h/C �u.h1/;

where c is any positive constant and h; h1 2 KC.�/.

Theorem 2.8. Let � be an open set in a Riemannian manifold M . Suppose that u 2
BVloc;M .�/. Let jDuj be the Radon measure induced by the variation of u.
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(1) If f is a bounded non-negative measurable function in L1.jDuj; �/, thenZ
�0
f d jDuj D sup

° Z
�0
u div.X/ dvol; X 2 T0�0; hX;Xi � f 2

±
for any open set �0 �� �.

(2) We have that Z
�

u div.X/ dvol D �
Z
�

hX; �i djDuj;

where h�; �i D 1 a.e. jDuj for any X 2 T0�.

Proof. The existence and definition of jDuj are from Theorem 2.7. Then jDuj is a Radon
measure. Similar to the proof of Theorem 5.10 in [26], Chapter 1, there is a monotone non-
negative increasing sequence ¹fj º1jD1 such that each fj 2 KC.�/, fj � f and ¹fj ºj�1
converges to f in L1.jDuj; �/. Let �0 be any open set satisfying �0 �� �. By (2.2),Z

�0
fj djDuj D sup

° Z
�0
u div.X/ dvol; X 2 T0�0; hX;Xi � f 2j

±
:

Letting j ! C1 on both sides yields the conclusion (1). The conclusion (2) is from the
Riesz representation theorem (see Theorem 4.1 in [26]).

Next we define the trace of BV functions.

Definition 2.9. Suppose � is a Lipschitz domain in M . There is a bounded linear map
T WBV.�/! L1.@�/ such that for any u 2 BV.�/,Z

�

u div.X/ dvol D �
Z
�

h�;Xi djDuj C
Z
@�

T uhX; 
i dHn:

Here dimM D n C 1, and 
 is the inward normal vector of @�. We call T u the trace
of u.x/ on @�.

Remark 2.10. The proof of the existence of T u is exactly the same as that of Lemma 2.4
in [14] with the application of the C1 approximation of BV functions in Theorem 3.5 (3).

The trace is very useful to compute the variation of BV functions on the boundary of
Lipschitz domains. A direct application of the above definition yields the following.

Lemma 2.11. Let �1 and �2 be two Lipschitz domains in M and let � be a measurable
set in @�1 \ @�2. We denote �1 [�2 by �. Suppose u.x/ 2 BVloc;M .�/. Then

jDuj.�/ D
Z
�

jT1u � T2uj dHn:

Here dimM D nC 1, and Ti is the trace of u in �i on � for i D 1; 2.

A conformal manifold is defined as follows.

Definition 2.12. Let .M; g/ be a Riemannian manifold. Let '.x/ > 0 be a smooth pos-
itive function on M . A conformal manifold M' is the smooth manifold M with the
metric '2.x/g.



The Dirichlet problem of translating mean curvature equations 7

Theorem 2.13. Suppose � is an open set in M and u 2 BVloc;M .�/. Then

(2.3) jDujM' .�/ D

Z
�

'n djDuj;

where dimM D nC 1, and jDujM' and jDuj are the Radon measures induced in Theo-
rem 2.8 in the manifolds M' and M , respectively.

Remark 2.14. Note that the metric g of M can be written as '�2'2g. A consequence of
Theorem 2.13 is that u 2 BVloc;M .�/ if and only if u 2 BVloc;M' .�/.

It is easy to see that the formula in (2.3) holds for any Borel set A � �.

Proof. Let div' and dvol' be the divergence and the volume of M' , respectively. Then
dvol' D 'nC1 dvol, where dvol is the volume form of M . By the definition of the diver-
gence, see [20], p. 423, we have

div'.X/ dvol' D d.Xx dvol'/ D .'nC1 div.X/C .nC 1/'nhX;r'i/ dvol(2.4)

D div.'nC1X/ dvol;

where r' is the gradient of ' in M . By Theorem 2.8 (2), we have

jDujM' .�/ D sup
° Z

�

u div'.X/ dvol' W '2hX;Xi � 1;X 2 T0�
±

D sup
° Z

�

u div.X 0/ dvol W hX 0; X 0i � '2n; X 0 2 T0�
±

D

Z
�

'n djDuj:

The proof is complete.

Remark 2.15. Indeed, from (2.4), we obtain

div'.X/ D
1

'nC1
div.'nC1X/:

2.3. The convolution of functions and vector fields

Now we consider how to approximate a function and a smooth vector field in a sufficiently
small normal embedded ball in a Riemannian manifold.

Definition 2.16. Fix any point p in a Riemannian manifold M . Let expp be the exponen-
tial map near p. In the following, we identify TpM with Rn. There is a Euclidean ball
Br .0/ centered at 0 in Rn such that exppWBr .0/! Br .p/ �M is a diffeomorphism. Via
the exponential map, we can identify Br .p/ with Br .0/. Moreover, the metric of M is
represented as

g D gij dxi dxj ;

with the coordinates in Rn. Such ball Br .p/ is called a normal (open) ball.
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Let '.x/ be a symmetric smooth mollifier in Rn, i.e., '.x/ D '.�x/, '.x/ has a
compact support in the Euclidean unit ball Bn.1/ andZ

Rn

'.x/ dx D 1;

where dx is the standard Euclidean volume in Rn.
Suppose W is an open set in Rn. Let h.x/ denote a measurable function on W and

let X denote a tangent vector field on W , written as

(2.5) X D X i
@

@xi
;

where ¹@=@xiºniD1 is the standard orthonormal coordinate vector fields in Rn.

Definition 2.17. Let � > 0 be a sufficiently small positive constant. Then '� � h.x/, the
convolution of h.x/, is given by

(2.6) '� � h.x/ D

Z
Rn

1

�n
'
�x � y

�

�
h.y/ dy; x 2 W;

where we extend h.x/ outside W as h.x/ D 0 for x … W . For X in (2.5), '� � X.x/ is
defined as

'� �X.x/ WD '� �X
i @

@xi
; x 2 W:

A useful property about the convolution isZ
Rn

u.x/'� � h.x/ dx D
Z

Rn

h.x/'� � u.x/ dx:

Theorem 2.18. Let B be a normal open ball in a Riemannian manifold with a metric
g D gij dxi dxj. Let f be a nonnegative continuous function on B . Let h be a continuous
function on B and let X be a smooth vector field satisfying

h2 C hX;Xi � f 2 in B;

where h � ; � i is the inner product determined by g. Then, for any " > 0 and any compact
set K � B , there exists �0 D �0.f;K; g; "/ such that for all � < �0,

h02.x/C hY; Y i.x/ � .f .x/C "/2; x 2 K;

where det.g/ WD det.gij /, and

h0 WD
1p

det.g/
'� �

�p
det.g/ h

�
;(2.7)

Y WD
1p

det.g/
'� �

�p
det.g/X

�
:(2.8)
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Proof. Let �1 be a positive constant less than the Euclidean distance between @� and K.
Since K is compact, for all � < �1=2, the function h0 in (2.7) and the tangent vector Y
in (2.8) are well defined for x 2 K � B .

Let "0 be a small constant, to be determined later. For any x0 2 K, there is a positive
constant �2 D �2.f; g;K; "0/ < �1 such that for all � < �2=2 and y; y0 2 Bx0.2�/,

1

1C "0
gij .y

0/ � gij .y/ � .1C "
0/gij .y

0/;(2.9)

max
y;y02B2� .x0/

p
det.g/.y0/p
det.g/.y/

� 1C "0;(2.10)

f .y/ � f .y0/C "0 for y; y0 2 B2� .x0/:(2.11)

HereB2� .x0/ is the Euclidean ball of x0 with radius 2� inB . By Definition 2.17 and (2.5),
we have

(2.12) Y i D
1p

det.g/
'� � .

p
det.g/X i / and Y D Y i

@

@xi
�

Fix any point y 2 Bx0.�/. With a rotation we can assume that gij .y/ D �ik �kj , where
.�ik/ is a positive definite matrix. By (2.8), (2.9), (2.10) and (2.12), for any � < �1=2, we
have

gij .y/Y
iY j .y/ D

1

det.g/.y/
.'� � .

p
det.g/ �ikX i //2.y/(2.13)

� .1C "0/2 .'� � .�ikX
i /2/.y/

D .1C "0/2 .'� � .gij .y/X
iXj /.y/

� .1C "0/3'� � .gijX
iXj /.y/:

By (2.7), a similar derivation implies that

(2.14) .h0/2.y/ � .1C "0/3'� � h
2:

Combining (2.13) with (2.14) and using (2.11), we obtain

.h0/2.y/C gijY
iY j .y/ � .1C "0/2'� � .h

2
C gijX

iXj /.y/

� .1C "0/3'� � f
2.y/

� .1C "0/3 .f .y/C "0/2:

BecauseK is compact, we can choose "0 small enough such that .1C "0/3.f .y/C "0/2 �
.f .y/C "/2 for all y 2 B� .x0/ and x0 2K. For such fixed "0, define �0 D �2.f; g;K; "0/.
Thus, for any x0 2 K, y 2 B� .x0/ and � < �0=2, we have

.h0/2.y/C gijY
iY j .y/ � f .y/C ":

The proof is complete.

The following technical result will be very useful in the next section.
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Lemma 2.19. Let B be a normal open ball with a metric g D gij dxi dxj. Suppose u is
in BV.B/ and q.x/ is a smooth function with compact support in B . Let X be a smooth
vector field on B satisfying hX;Xi � 1. Then for any " > 0, there is a positive constant
�0 D �0.u; g; q/ > 0 such that for all � 2 .0; �0/,

(2.15)
Z
B

'� � .qu/ div.X/ dvol �
Z
B

u div.qY� / dvol �
Z
B

uhX;rqi dvolC ";

where
Y� D

1p
det.g/

'� � .
p

det.g/X/

and rq denotes the gradient of q on B . And we assume X D 0 outside B .

Proof. Note that dvol D
p

det.g/ dx, where dvol and dx are the volume form of B with
respect to g and the Euclidean metric, respectively. Moreover,

div.X/ dvol D divRn.
p

det.g/X/ dx;

where div and divRn are the divergence of B and Rn, respectively. We also view B as
an open set in the Euclidean space Rn. Thus, '� � .qu/ is well defined if we choose
sufficiently small � . ThenZ

B

'� � .qu/ div.X/ dvol D
Z

Rn

'� � .qu/ divRn.
p

det.g/X/ dx

D

Z
Rn

q.x/u.x/ divRn.'� � .
p

det.g/X//.x/ dx

D

Z
B

u.x/ div.qY� / dvol �
Z
B

uhY� ;rqi dvol;

where
Y� D

1p
det.g/

'� � .
p

det.g/X/:

As a result, we haveZ
B

uhY� ;rqi dvol D
Z

Rn

ugij '� � .
p

det.g/X i /rj q dx

D

Z
Rn

X i'� � .ugijr
j q/

p
det.g/ dx:

Since the set ¹X 2 TB W hX;Xi � 1º is a compact set, there is a �0 D �0.u; g; q/ > 0,
independent of any X satisfying hX;Xi � 1, such that

�

Z
Rn

X i'� � .ugijr
j q/

p
det.g/ dx � �

Z
Rn

X iugijr
j q
p

det.g/ dxC "

D �

Z
B

uhX;rqi dvolC "

for all � 2 .0; �0/. Combining the above two inequalities together, we obtain (2.15). The
proof is complete.
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3. Area functionals and their C 1 approximation

In this section, we define product area functionals and conformal area functionals. Then
we obtain their C1 approximation properties in Theorem 3.5. Our proof depends on a
decomposition result of Radon measures from the Besicovitch covering theorem in Rie-
mannian manifolds (see Theorem A.4).

3.1. The conformal area functional

Throughout this section let .N;�/ denote a complete Riemannian manifold. For any ˛ > 0,
we denote .N �R; e2˛r=n.� C dr2// by Q˛ and .N �R; � C dr2/ by Q.

We write div and dvol for the divergence and volume form ofN , respectively. Let� be
an open bounded set in N . Let C0.�/ and T0.�/ denote the sets of all smooth functions
and smooth vector fields with compact supports in �, respectively.

Definition 3.1. Let u.x/ be a measurable function on �. The product area functional
F.u;�/ is defined by

F.u;�/ W� sup
° Z

�

.hC u div.X// dvol W(3.1)

h 2 C0.�/;X 2 T0�; h
2
C hX;Xi � 1

±
:

Let ˛ > 0 be a fixed a constant. The conformal area product functional F˛.u; �/ is
defined by

F˛.u;�/ W� sup
° Z

�

e˛u
�
hC

1

˛
div.X/

�
dvol W

h 2 C0.�/;X 2 T0�; h
2
C hX;Xi � 1

±
:

The geometric motivation of the above two functionals is to generalize the area of the
graph of C 1 functions in corresponding manifolds.

Remark 3.2. If u is a C 2 function on � that is the critical point of F˛.u; �/, then u
satisfies the translating mean curvature equation H˛.u/ D 0 on �, where

H˛ WD �div
� Dup

1C jDuj2

�
C

˛p
1C jDuj2

�

SetKC.�/ as the set of all nonnegative functions with compact support in�. For any
f 2 KC.�/, we define two nonnegative functionals:

�u;0.f / W� sup
° Z

�

.hC u div.X// dvol W(3.2)

h 2 C0.�/;X 2 T0�; h
2
C hX;Xi � f 2.x/

±
;

�u;˛.f / W� sup
° Z

�

e˛u
�
hC

1

˛
div.X/

�
dvol W(3.3)

h 2 C0.�/;X 2 T0�; h
2
C hX;Xi � f 2.x/

±
;
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for any ˛ > 0. It is clear that both �u;0. �/ and �u;˛. �/ are linear onKC.�/. Rewriting the
definitions of F.u;�/ and F˛.u;�/, we obtain the following equivalent definitions:

F.u;�/ W� sup¹�u;0.f / W f 2 KC.�/; f � 1º;

F˛.u;�/ W� sup¹�u;˛.f / W f 2 KC.�/; f � 1º:

In fact, the above two formulas are true for any open set in �.
By Theorem 2.7, as in the case of BV functions, the above two formulas naturally

induce two Radon measures.

Theorem 3.3. Let� be an open set inN . Suppose u is in BVloc;N .�/ such that F.u;�0/
is finite for any bounded open set �0 �� �. Then

(1) there is a unique Radon measure �0 on � such that �0.�0/ D F.u;�0/;

(2) there is a unique Radon measure �˛ on � such that �˛.�0/ D F˛.u;�
0/:

Proof. Applying Theorem 2.7 on �u;0. �/ in (3.2) and �u;˛. �/ in (3.3), we obtain the exis-
tence of �0 and �˛ . The two conclusions follow from (2.1).

Similar to the case of BV functions, the semicontinuous property is also valid for
F.u;�/ and F˛.u;�/.

Theorem 3.4. Let � be a bounded open domain in N . Let u be in L1.�/ such that
F.u;�/ and F˛.u;�/ are finite. Let ¹ukº1kD1 be a sequence in L1.�/.

(1) Suppose ¹ukº1kD1 converges to u in L1.�/. Then

F.u;�/ � lim
k!1

inf F.uk ; �/:

(2) Suppose ¹e˛uk º1
kD1

converges to e˛u in L1.�/. Then

F˛.u;�/ � lim
k!1

inf F˛.uk ; �/:

(3) Suppose u is in BV.�/. Then the following estimate holds:

max¹jDuj.�/; vol.�/º � F.u;�/ � vol.�/C jDuj.�/;

where vol.�/ denotes the volume of N .

Proof. The conclusion (1) and (2) follow from the definitions of F.u;�/ and F˛.u;�/,
respectively. The left inequality in (3) is obtained by letting h � 0 or X � 0 and taking
the supremum in (3.1). The right inequality in (3) is directly from the definition of BV
functions.

3.2. The C 1 approximation

In this subsection, we show the C1 approximation property of jDuj.�/, F.u; �/ and
F˛.u;�/ as follows.

Theorem 3.5. Let � be a bounded domain in N and suppose u.x/ is in BV.�/.
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(1) Then there is a sequence ¹ukº1kD1 in C1.�/ such that ¹ukº1kD1 converges to u in
L1.�/ and

lim
k!1

jDukj.�/ D jDuj.�/:

(2) There is a sequence ¹ukº1kD1 in C1.�/ such that uk converges to u in L1.�/ and

lim
k!1

F.uk ; �/ D F.u;�/:

(3) In addition, suppose ˛ > 0 and that F˛.u; �/ is finite. Then there is a sequence
¹ukº

1
kD1

in C1.�/ such that ¹e˛uk º1
kD1

converges to e˛u in L1.�/ and

lim
k!1

F˛.uk ; �/ D F˛.u;�/:

Remark 3.6. The proof in Theorem 1.17 in [14] requires the existence of a well-defined
symmetric mollifiers on �. See, for example, the definition of �k and (1.12)–(1.14)
in [14], p. 15. Such existence needs that the domain is contained in a large simply con-
nected domain in Euclidean spaces to define the distance function. This is not true for
arbitrary bounded domains in Riemannian manifolds. For the construction the sequence
of smooth functions converging to u.x/, we need Theorem A.4 to decompose a bounded
domain into sufficiently small domains with a reasonable decomposition of jDuj.

Proof of Theorem 3.5. Our proof is divided into three cases.
The case of F.u;�/.
Because u is in BV.�/ and� is bounded, F.u;�/ is finite. According to Theorem 3.3,

there is a Radon measure �0 in� satisfying �0.�0/DF.u;�0/ for any open set�0 ��.
By Theorem A.4, there is a collection of normal open balls ¹Biº1iD1 such that � �S1

iD1Bi , and there is an integer �."/ > 0 such that ¹B1; : : : ; Bnº�."/iD1 is a pairwise disjoint
collection satisfying the estimate

(3.4) �0.�/ � " �

�."/X
iD1

�0.Bi / � �0.�/;

1X
iD�."/C1

�0.Bi / � ":

Thus, there is a partition of unity ¹qi .x/º1iD1 subordinate to the above open cover. Namely,
qi 2 C

1
0 .Bi /, 0 � qi � 1 and

P1
iD1 qi D 1 on �. Fix any smooth function Qh and any

vector field X with compact supports in � satisfying

(3.5) Qh2 C hX;Xi � 1 on �:

By the definition of the open normal ball, we can viewBi as an open set in Rn with the
metric g D gkl dxk dxl. With the coordinate frame ¹@=@xkºnkD1 on Rn, X can be written
as Xk @=@xk on each Bi . Moreover, on Bi , we have

Qh2 C gklX
kX l � 1:

Choose any fixed positive number ". For each i > 0, one can choose �i > 0 such that the
support of '�i � .uqi / (the convolution in (2.6)) is contained in Bi and in such a way that

(3.6)
Z
Bi

j'�i � .uqi / � uqi j dvol �
"

2i
;
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that

.qi Qh/
2
C .qi /

2
hY�i ; Y�i i � 1C "(3.7)

(by Theorem 2.18), and that

(3.8)
Z
Bi

'�i � .uqi / div.X// dvol �
Z
Bi

u div.qiY�i / dvol �
Z
Bi

uhX;rqi i dvolC
"

2i

(by Lemma 2.19). Here,

Y k�i D
'�i � .

p
det.g/Xk/p

det.g/
and Y�i D Y

k
�i
@k :

Define u" as

u" D

1X
iD1

'�i � .uqi /:

Now (3.6) implies that

(3.9)
Z
�

ju" � uj dvol �
1X
iD1

Z
Bi

j'�i � .uqi / � uqi j dvol � ":

Thus, (3.8) impliesZ
Bi

. Qhqi C '�i � .uqi / div.X// dvol

�

Z
Bi

. Qhqi C u div.qiY�i // dvol �
Z
Bi

uhX;rqi i dvolC
"

2i

� .1C "/�0.Bi / �

Z
Bi

uhX;rqi i dvolC
"

2i
�

Combining the partition of unity with (3.4) yieldsZ
�

. QhC u" div.X// dvol � .1C "/
1X
iD1

�0.Bi /C " � .1C "/.�0.�/C "/C ":(3.10)

Here,
1X
iD1

Z
Bi

uhX;rqi i dvol D 0;

because
P1
iD1 qi .x/ D 1 on �. Taking the supremum for all Qh; X satisfying (3.5), we

conclude that

(3.11) F.u"; �/ � .1C "/.F.u;�/C "/C ":

Now take a sequence "k! 0 as k!1. By (3.9) and (3.11), we obtain a smooth sequence
¹u"k º

1
kD1

such that ¹u"k º
1
kD1

converges to u in L1 and

lim
k!1

sup F.u"k ; �/ � F.u;�/:

By Theorem 3.4, we have limk!1 inf F.u"k ; �/ � F.u; �/. Therefore, the limit holds
and ¹u"k º

1
kD1

is the desirable sequence. We obtain the conclusion (1).
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The case of jDuj.�/.
The proof of the conclusion (1) is similar to that of the conclusion (2) if in the whole

derivation we take Qh � 0. From Definition 2.1, we obtain the conclusion.
The case of F˛.u;�/.
The idea to derive the conclusion (3) is also similar to the proof of the conclusion (2)

except from the construction of the approximating sequence.
By Theorem 3.3, there is a unique Radon measure �˛ on � such that �˛.�0/ D

F˛.u;�
0/ for any open�0 ���. Moreover, �˛.�/ is finite. Fix " > 0. By Theorem A.4,

there is a collection of open sets ¹Biº1iD1 such that each Bi is an open normal ball in �,
with � �

S1
iD1 Bi , and there is an integer N."/ such that ¹B1; : : : ; Bnº

N."/
iD1 is a pairwise

disjoint collection with the estimate

(3.12) �˛.�/ � " �

N."/X
iD1

�˛.Bi / � �˛.�/;

1X
iDN."/C1

�˛.Bi / � ":

Choose h in C0.�/ and X in T0� satisfying

h2 C hX;Xi � 1:

Each Bi can be viewed as an open set in Rn with the metric g D gkl dxk dxl .
On each Bi assume X D Xk@k . Then

h2 C gklX
kX l � 1:

Let ¹qi .x/º1iD1 be a partition of unity subordinate to the cover ¹Biº1iD1. For each i > 0,
we can choose �i > 0 such thatZ

Bi

j'�i � .e
˛uqi / � e

˛uqi j dvol �
"

2i
;(3.13)

.qih
0/2 C .qi /

2gklY
k
�i
Y l�i � 1C ";(3.14) Z

Bi

'�i � .e
˛uqi / div.X// dvol(3.15)

�

Z
Bi

e˛u div.qiY�i / dvol �
Z
Bi

e˛uhX;rqi i dvolC
"

2i
�

Here,

Y k�i D
'�i � .

p
det.g/Xk/p

det.g/
; h0 D

'�i � .
p

det.g/h/p
det.g/

and Y�i D Y
k
�i
@k :

The proof of the above arguments is similar to that of the case of F.u;�/, just replacing u
with e˛u. In particular, (3.15) is from Lemma 2.19.

Now we define u" as

e˛u" D

1X
iD1

'�i � .e
˛uqi /:
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This is well defined because the right-hand is a finite positive summation at any point x
in �. According to (3.13), we haveZ

�

je˛u" � e˛uj dvol �
1X
iD1

Z
Bi

j'�i � .e
˛uqi / � e

˛uqi j dvol � ":

Replacing u with e˛u in (3.8) and repeating the same reasoning, we obtain

(3.16)
Z
Bi

'�i � .e
˛uqi / div.X// dvol D

Z
Rn

.e˛u div.qiY�i / � e
˛u
hY�i ;rqi i/ dvol:

On the other hand,

(3.17)
Z
Bi

'�i � .e
˛uqi /h dvol D

Z
Bi

'�i � .e
˛uqi /h

p
det.g/ dx D

Z
Bi

'ie
˛vh0 dvol;

where h0 D  �i �.
p

det.g/h/
p

det.g/
. By (3.16) and (3.17), we computeZ

�

e˛u"
�
hC

1

˛
div.X/

�
dvol D

1X
iD1

Z
Bi

'�i � .e
˛uqi /

�
hC

1

˛
div.X/

�
dvol

�

1X
iD1

° Z
Bi

e˛u
�
qih
0
C
1

˛
div.qiY�i /

�
dvol �

1

˛

Z
Bi

e˛uhX;rqi idvolC
1

˛

"

2i

±
� .1C "/

1X
iD1

�˛.Bi /C
"

˛
�

The first term in the last inequality comes from (3.14) and the definition of F˛.u;Bi /. The
second term is due to (3.15) and the fact

P1
iD1 qi � 1 on�. Putting the assumption (3.12)

into the above estimate yields thatZ
�

e˛u"
�
hC

1

˛
div.X/

�
dvol� .1C "/.�˛.�/C "/C

"

˛
D .1C "/.F˛.u;�/C "/C

"

˛
�

Now we arrive at a similar position as in (3.10) when we show the conclusion (1). Thus, a
similar derivation yields the conclusion (1).

The proof of Theorem 3.5 is complete.

4. Miranda’s observation

In this section, we study the relationship between area functionals and the corresponding
perimeter in conformal product manifolds.

We still assume that .N; �/ is a complete Riemannian manifold. For any ˛ > 0, Q˛
denotes .N �R; e2˛r=n.� C dr2// and Q denotes .N �R; � C dr2/. For a function u.x/
over a domain �, its subgraph is the set ¹.x; t/ W x 2 �; t < u.x/º.

Our purpose is to show Miranda’s observation, which says that the conformal func-
tional F˛.u; �/ corresponds to the perimeter and if a BV function locally minimizes
F˛. � ; �/, its subgraph locally minimizes its perimeter in � �R.
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4.1. Some conventions on the perimeter

Recall that the perimeter of a Borel set E in any open domain is jD�E j.�/, where �E is
the characteristic function of E. In the following we also write it as P.E;�/ with some
lower index.

The perimeter and other properties of a Caccioppoli set are unchanged if we make
alternations of Lebesgue measure zero. In other words, we only concern about the equiv-
alence classes of a Caccioppoli set.

The following result extends Proposition 3.1 in [14] with exactly the same proof via
the Nash embedding theorem.

Proposition 4.1. Let M be a complete Riemannian manifold with dimension n .n � 2/.
For any x in M , let Br .x/ be the ball in M centered at x with radius r . Let inj.x/ denote
the injectivity radius of x, i.e., the supremum of r such that Br .x/ is an embedded normal
ball in M . If E is a Borel set in M , there exists a Borel set QE equivalent to E (that is,
differs only by a set of Hn measure zero) such that

(4.1) 0 < Hn. QE \ B�.x// < vol.B�.x//

for all x in @ QE and � in .0; inj.x//. Here Hn is the n-dimensional Hausdorff measure.

In the remainder of this paper, we always assume (4.1) holds for any Caccioppoli set.

4.2. The perimeter of subgraphs

The following result extends Theorem 14.6 of [14] in Euclidean space into Q and Q˛ . It
is the first fact of Miranda’s observation.

Theorem 4.2. Suppose� is a bounded Lipschitz domain. Let u.x/ be a measurable func-
tion on � and let U be its subgraph.

(1) If u is in BV.�/, then F.u;�/ D P.U;� �R/.

(2) If ˛ > 0 and e˛u is in BV.�/, then F˛.u;�/ D P˛.U;� �R/.

Here P and P˛ denote the perimeter of Q and Q˛ , respectively.

One side of the equality above is easily obtained via the semicontinuous property.

Lemma 4.3. Take the assumptions and notation in Theorem 4.2. Then

P˛.U;� �R/ � F˛.u;�/ and P.U;� �R/ � F.u;�/:

Proof. We only show the case of Q˛ for ˛ > 0 because the same derivation will yield the
case of Q.

Assume u is in C 1.�/. Thus, its subgraph U has a C 1 boundary. By [14], the perime-
ter of a Caccioppoli set is just the volume of its boundary. Namely,

P˛.U;� �R/ D

Z
�

e˛u
p
1C jDuj2 dvol:

This gives that
P˛.U;� �R/ D F˛.u;�/:
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Next suppose e˛u belongs to BV.�/. Thus, F˛.u;�/ is bounded. By Theorem 3.5, there
exists a smooth sequence ¹uiº1iD1 in C1.�/ such that ¹e˛ui º1iD1 converges to e˛u.x/

in L1.�/ with
lim
i!1

F˛.ui ; �/ D F˛.u;�/:

Let Ui be the subgraph of ui for any i . It is easy to see that ¹�Ui º
1
iD1 locally converges

to �U in L1.� �R/. By the semicontinuity in Theorem 2.4, we obtain

P˛.U;� �R/ � lim
i!1

inf P˛.Uj ; � �R/ D lim
i!C1

inf F˛.ui ; �/ D F˛.u;�/:

The proof is complete.

Now we are ready to show Theorem 4.2. Our proof is similar to that of Theorem 14.6
in [14].

Proof. Our proof is divided into two cases: (a) u.x/ is uniformly bounded and (b) u.x/
is in the general case. In the following, ˛ � 0.

Suppose we are in the first case. There is a T > 0 such that �T � u.x/ � T on �.
Choose h 2 C0.�/ and X 2 T0.�/ satisfying

(4.2) e�2˛.TC1/=n.h2 C hX;Xi/ � 1;

where h ; i is the inner product on N .
Let �.r/ be a smooth function on R with its support in Œ�.T C 1/; sup� uC 1� such

that �� 1 in Œ�T; sup� u� and j�.r/j � 1. Let �1.r/ be a smooth function with a compact
support on R satisfying �1.r/ D e�˛.rCTC1/=n on Œ�.T C 1/; .T C 1/�. Now we define a
smooth vector field

X 0 D �1.r/�.r/.h@r CX/;

with compact support on Q˛ . Moreover, X 0 satisfies

hX 0; X 0iQ˛ D e
�2˛.TC1/=n�2.r/.h2 C hX;Xi/ � 1:

Here h � ; � iQ˛ is the inner product of Q˛ .
Let dvol˛ and dvolN be the volume forms ofQ˛ andN , respectively. They are related

as follows:

(4.3) dvol˛ D e˛.nC1/r=n dvolN dr:

We denote the subgraph of u.x/ by U . Note that X 0 has compact support in��R. Thus,
the definition of the perimeter implies

(4.4) P˛.U;� �R/ �

Z
��R

�U div˛.X 0/ dvol˛:

From the definition of �1.r/ and �.r/, we have

(4.5) X 0x dvol˛ D e�˛.TC1/=n�.r/ e˛r ..�1/nh.x/ dvolN CXx dvolN dr/:
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This yields that

div˛.X 0/ dvol˛ D d.X 0xdvol˛/ D e�˛.TC1/=n .�.r/ e˛r /0 h.x/ dvolN dr(4.6)

C e�˛.TC1/=ne˛r�.r/ div.X/ dvolN dr:

We observe that Z u.x/

�1

.�.r/ e˛r /0 dr D e˛u.x/:

Therefore, we concludeZ u.x/

�1

�.r/e˛r dr D

´
e˛u.x/=˛ C C; ˛ > 0;

u.x/C C; ˛ D 0;

where C is a fixed constant. Denoting

Fin D

Z
��R

�U div˛.X 0/ dvol¸;

we obtain

Fin D

8̂̂<̂
:̂
Z
�

e�˛.TC1/=n
�
e˛u.x/h.x/C e˛u.x/

˛
div.X/

�
dvolN ; ˛ > 0;Z

�

.h.x/C u.x/ div.X// dvolN ; ˛ D 0:

Combining (4.4) with (4.2), we conclude that

P˛.U;� �R/ � sup
h;X satisfying (4.2)

Fin D F˛.u;�/; ˛ � 0;

and P.U; � � R/ � F.u; �/ for juj � T . By Lemma 4.3, we conclude Theorem 4.2 in
the case that u is uniformly bounded .

Next we show the general conclusion when u.x/ is not bounded. For any T > 1, define

uT .x/ WD max¹min.u.x/; T /;�T º:

Since u 2L1.�/ and� is bounded, uT converges to u.x/ inL1.�/ as T !C1. Let UT
be the subgraph of uT . By Proposition 2.8 in [14], there are two important facts about these
subgraphs. By Lemma 2.11, the variation of �UT in Q and Q˛ take the following forms:

jD�UT jQ.� � ¹˙T º/ D
Z
�T

dvolN ;(4.7)

jD�UT jQ˛ .� � ¹˙T º/ D
Z
�T

e˛u.x/dvolN :(4.8)

Here�T is the set ¹x 2 � W ju.x/j � T º. In the case ofQ, the fact that u 2 L1.�/ and�
is bounded implies that vol.�T / converges to 0 as T !C1. A similar derivation yields

lim
T!1

Z
�T

e˛u.x/ dvolN D 0
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because e˛u.x/ belongs to L1.�/. Notice that

P˛.U;� � .�T; T // D P˛.UT ; � � .�T; T //:

By (4.8), the decomposition of P˛.UT ; � �R/ implies that

lim
T!1

P˛.UT ; � �R/ D P˛.U;� �R/:

Thus, applying the first case, we arrive at

P˛.U;� �R/ D lim
T!C1

P˛.UT ; � �R/ D lim
T!C1

F˛.uT ; �/ � F˛.u;�/:

By Lemma 4.3, we conclude

P˛.U;� �R/ D F˛.u;�/

whenever e˛u.x/ is in BV.�/. This is the conclusion (2).
The proof of the conclusion (1) also follows a similar derivation via (4.7). Our proof

is complete.

As an application, a comparison result between F˛.u; �/ and jDuj.�/ is stated as
follows.

Corollary 4.4. Suppose u is a measurable function on� with juj � T such that F˛.u;�/

is finite. Then
F˛.u;�/ � e

�˛T max¹vol.�/; jDuj.�/º:

Proof. Let U denote the subgraph of u in � �R. By Theorem 2.13 and Theorem 4.2, we
have

F˛.u;�/ D P˛.U;� �R/ D

Z
��R

e˛r djD�U jQ

� e�˛T P.U;� �R/ D e�˛TF.u;�/:

For the inequality, we use the fact that the support of the Radon measure jD�U jQ is
contained in the graph of u. The conclusion follows from Theorem 3.4 (3).

4.3. The minimizing perimeter property

In this subsection, we will show the second fact of Miranda’s observation. According to
Giusti [13], Miranda [23] first observes this phenomenon in the case of product manifolds.
Now we generalize it into the case of Q˛ .

The following result is similar to Theorem 14.8 in [14].

Lemma 4.5. Let� be an open domain in N . Let F �Q˛ be a Caccioppoli set satisfying
for a.e. x in �, �F .x; t/ D 0 for all t > Tx and �F .x; t/ D 1 for all t < �Tx , where Tx
is a positive constant depending on x. Then the function !.x/ satisfying

e˛!.x/ D ˛ lim
k!C1

� Z k

�k

e˛t�F .x; t/ dt
�
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is well defined and
F˛.w;�/ � P˛.F;� �R/:

Here P˛ denotes the perimeter of Q˛ .

Proof. By the assumption, w.x/ is well defined a.e. on �.
Suppose h 2 C0.�/ and X 2 T0.�/ satisfy

(4.9) h2 C hX;Xi � 1;

where h � ; � i is the inner product in N .
Let �.r/ be a smooth function such that 0 � �.r/ � 1 with compact support in R.

Set X 0 D e�˛r=n�.r/.X C h.r/@r /. Then hX 0; X 0i˛ � 1, where h � ; � i˛ denotes the inner
product of Q˛ . By Definition 2.1, we have

(4.10) P˛.F;� �R/ �

Z
��R

�F .x; r/ div˛.X 0/ dvol˛;

where div˛ and dvol˛ are the divergence and the volume form of Q˛ , respectively. Argu-
ing as in (4.3), (4.4), (4.5) and (4.6), we obtain

div˛.X 0/ dvol˛ D
®
.e˛r�.r//0h.x/C e˛r�.r/ divN .X/

¯
dvolN dr;

where divN is the divergence of �. Thus, expanding (4.10) gives

P˛.F;� �R/ �

Z
�

h.x/
° Z 1
�1

.e˛r�.r//0�F .x; r/ dr
±

dvolN

C

Z
�

div.X/
° Z 1
�1

e˛r�.r/�F .x; r/ dr
±

dvolN :

Replacing �.t/ with a sequence®
�k.t/ W 0 � �k � 1 with compact support

¯1
kD1

which converges locally uniformly to the constant function 1 on R as k!C1, we obtain

P˛.F;� �R/ �

Z
�

h.x/
° Z 1
�1

˛e˛r�F .x; r/ dr
±

dvolN

C

Z
�

div.X/
° Z 1
�1

e˛r�F .x; r/ dr
±

dvolN

D

Z
�

e˛!.x/
�
h.x/C

1

˛
div.X/

�
dvolN :

Here we use the condition of �F . Now taking the supremum of all h andX satisfying (4.9)
and applying the definition of F˛. � ; �/, one sees that

P˛.F;� �R/ � F˛.!;�/:

The proof is complete.
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Definition 4.6. Let I be any fixed open interval in R and let � �� B be two bounded
Lipschitz domains in N . We say that a Caccioppoli set E in B � I has the least perimeter
in N� � I if for any Caccioppoli F subject to F�E �� N� � I , i.e., there is a closed
interval Œa; b� �� I such that F�E � N� � Œa; b�, we have that

P˛.E;B � I / � P˛.F;B � I /:

Here P˛ is the perimeter of Q˛ .

Now we can conclude the second conclusion of Miranda’s observation in Q˛ men-
tioned in the introduction as follows. For the case ˛ D 0, see Lemma 14.7 in [14].

Theorem 4.7. Let � �� B be two open domains and ˛ > 0 a fixed positive constant.
Let I be a bounded open interval. Let u be a measurable function on B satisfying u.x/2 I
for each x 2 B. Suppose F˛.u;B/ is finite, satisfying

(4.11) F˛.u;B/ � F˛.v;B/

whenever their subgraphs U and V have the relation U�V �� N� � I . Then U has the
least perimeter in N� � I .

Proof. Let F be a Caccioppoli set satisfying F�U �� � � I . Since U is a subgraph
of u.x/, F should satisfy the condition in Lemma 4.5. Let w.x/ be the function defined
as in Lemma 4.5. Thus, w.x/ is contained in I for any x in B. Let W be the subgraph
graph of w.

Due to the definition of F , we have W�U �� N� � I . By (4.11), we conclude that

P˛.U;B �R/ D F˛.u;B/ � F˛.w;B/ � P˛.F;B �R/:

Since F�U �� N� � I , we obtain

P˛.U;B � I / � P˛.F;B � I /:

By Definition 4.6, U has the least perimeter in N� � I .
This proof is complete.

5. Existence of the generalized solutions

In this section, we propose a generalized solution to the Dirichlet problem of the TMCE
in (1.2). Our idea is to extend the Miranda–Giusti generalized solution theory in [14] into
the translating mean curvature equation case.

Throughout this section let .N; �/ be a Riemannian manifold and let Q˛ be the con-
formal product manifoldN �R with the metric e2˛r=n.� C dr2/. Here n is the dimension
of N . The definition of the generalized solution in our setting is given as follows.

Definition 5.1. Suppose� and B are two bounded Lipschitz domains inN with���B.
Let u and  be two functions which may take infinity values, and let U and @si be their
subgraphs over B, respectively. Suppose @si is a Caccioppoli set in Q˛ .

We say that u is a generalized solution to the Dirichlet problem of the TMCE in (1.2)
with boundary data ifU coincides with @si outside��R andU has the least perimeter
in N� �R.
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Remark 5.2. For the term “the least perimeter”, see Definition 4.6. In the following, we
always call the above u.x/ a generalized solution for short if there is no confusion.

The main result of this section is stated as follows.

Theorem 5.3. Let � �� B be two bounded, Lipschitz open domain in N . Let  be any
measurable function which may take infinity values in B such that its subgraph @si is
a Caccioppoli set in B � R � Q˛ . Then there is a generalized solution to the Dirichlet
problem (1.2) with the boundary data  .

Remark 5.4. The restriction on  .x/ is not restrictive.
Suppose  .x/ 2 L1.@�/ and @� is Lipschitz. With a similar derivation as in Propo-

sition 2.15 of [14], there is a function, still denoted by  .x/, in BV.B/ such that its trace
on @� from � and B n N� are  .x/. Thus, its subgraph @si is a Caccioppoli set in Q˛ .

Another interesting fact is that if  .x/ is continuous in @�, the construction in Propo-
sition 2.15 of [14] implies that  .x/ is continuous in B n�.

Note that the proof for the above facts in the case of Riemannian manifolds does not
give essential differences since all of them hold in the local sense.

Proof of Theorem 5.3. For any k > 0, we set

 k.x/ WD min¹k;max¹ .x/;�kºº:

Let @sik be the subgraph of  k . Let P˛ denote the perimeter of Q˛ .
From our definition, it is easy to see that

P˛.@sik ;B � .�k; k// D P˛.@si;B � .�k; k// <1

for any k > 0. By Proposition 2.8 in [14], we have the following estimate:

jD�@sik jQ˛ .B � ¹˙kº/ � e
˛kvolN .B/:

Here volN is the volume of N . Let �E denote the characteristic function for any Borel
set E. Because �@sik is a constant outside B � Œ�k; k�,

P˛.@sik ;B �R/ D jD�@sik jQ˛ .B � ¹˙kº/C P˛.@sik ;B � .�k; k// <1

is finite.
By Theorem 4.2 (2), this implies that F˛. k ;B/ is finite. By Corollary 4.4, the fact

that j k.x/j � k yields  k 2 BV.B/.
We consider the following minimizing problems for each positive integer k:

(5.1) ˛k WD min
®
F˛.u;B/ W u 2 BV.B/; juj � k; u D  k on B n N�

¯
:

By Corollary 4.4, ˛k is finite for each k. Let ¹uj;kº1jD1 be the sequence in BV.�/ satisfy-
ing juj j � k, u D  k on B n� such that

lim
j!C1

F˛.uj;k ;B/ D ˛k :
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Again by Corollary 4.4, we have

max¹jDuj;kj.B/ W j D 1; : : : ;1º � C.k; ˛k/:

By the compactness of BV functions, there is a subsequence of ¹uj;kº1jD1, still denoted
¹uj;kº

1
jD1, such that uj;k ! uk in L1.B/ as j ! C1. Note that ¹e˛uj;k º1jD1 also con-

verges to e˛uk in L1.B/. By the semicontinuous property of F˛.u;B/, we have

˛k � F˛.uk ;B/ � lim
j!1

inf F˛.uj ;B/ D ˛k ;

with the property
jukj � k; uk D  k on B n�:

Then we conclude that for each positive integer k,

F˛.uk ;B/ D ˛k :

Now let Uk be the subgraph of uk in B �R � Q˛ for each k. Combining (5.1) with
Theorem 4.7, we conclude that Uk has the least perimeter in N� � .�k; k/.

Fix any T > 0. LetEk be the set @sik [�� .�T;T /. Thus,Ek�Uk �� N�� .�k;k/
whenever T < k. Consequently,

P˛.Uk ;B � .�T; T // � P˛.Uk ;B � .�k; k//
� P˛.Ek ;B � .�T; T //C vol˛.@.� � .�T; T ///
D P˛.@hi;B � .�T; T //C vol˛.@.� � .�T; T ///:

Here vol˛ is the volume of Q˛ .
Notice that the last line above is a positive constant only depending on T . Thus, the

perimeter of the sequence ¹Ukº1kD1 is uniformly bounded on each open B � .�T; T / for
each T > 0. Arguing as in Lemma 16.3 of [14], we can extract a subsequence, still denoted
by uk , converging almost everywhere to a measurable function u.x/ in B. Note that u.x/
may take the infinity value. Let U be the subgraph of u.x/. It is clear that U coincides
with @si , the subgraph of  .x/ outside N� �R.

Fix any k0 > 0. By the definition of uk and  k , for any k > k0, Uk coincides with U
in .B n N�/ � .�k0; k0/, which is @si . Thus, the condition (b) of Lemma 5.5 below is
satisfied. Moreover, the condition (a) and (c) are obviously satisfied. By Lemma 5.5, U
has the least perimeter in N� � .�k0; k0/. Because we chose arbitrary k0 > 0, U has the
least perimeter in N� �R.

It follows that u.x/ is the desirable generalized solution of the Dirichlet problem (1.2)
subject to the boundary data  .x/. The proof is complete.

We say that a sequence of Borel sets ¹Ukº1kD1 converges locally to U as k !C1 in
an open set � if limk!C1

R
A
j�Uk � �U j dvol D 0 for any compact set A in �. Here �

denotes the characteristic function.

Lemma 5.5. Let�;B be two bounded domains with the property���B. Let I be any
bounded open interval. Suppose the following hold:
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(a) ¹uk.x/º1kD1 is a sequence of measurable functions on B which takes possible infinity
values such that their subgraphs ¹Ukº1kD1 converge locally to U in B�I .

(b) In Q˛ , limk!C1 P˛.Uk ; .B n N�/ � I / D P˛.U; .B n N�/ � I /:
(c) For each k>0,Uk has the least perimeter with respect to the variation in N��I�Q˛ .

Then U has the least perimeter in N� � I � Q˛ .

Proof. From conditions (a) and (b), Theorem 2.11 in [14] implies that for any compact
set A in @� �R,

(5.2) lim
k!C1

Z
A

jT1Uk � T1U j dHn
D 0:

Here Hn is the n-dimensional Hausdorff measure in Q˛ , and T1 is the trace on @� � R
from .B n N�/ �R.

We write I for .a; b/. Suppose F is a Caccioppoli set satisfying F�U �� N�� .a; b/.
Then there is a sufficiently small "0 > 0 such that F�U �� N� � .aC "0; b � "0/,

(5.3) jD�Uk jQ˛ .B � ¹�º/ D 0; jD�U jQ˛ .B � ¹�º/ D 0

and (by condition (a))

(5.4) lim
k!C1

Z
��¹�º

jT2Uk � T2U j dHn
D 0;

where T2 is the trace on � � ¹�º, � is equal to aC "0 or b � "0. By (5.3), there is no dif-
ference on the trace on � � ¹�º from its upper side or its down side. Moreover, with (5.3)
the condition (b) gives that

(5.5) lim
k!C1

P˛.Uk ; .B n N�/� .aC "0; b � "0//D P˛.U; .B n N�/� .aC "0; b � "0//:

For a proof, see Proposition 1.13 in [14]. Now define Fk as

(5.6) Fk D

´
F in � � .aC "0; b � "0/;
Uk outside � � .aC "0; b � "0/:

The above definition implies that Fk�Uk �� N� � I . By condition (c), we have

P˛.Uk ;B � I / � P˛.Fk ;B � I /:

Let T3 be the trace on @� � I from � � I . By Lemma 2.11 and (5.3), we have

P˛.Uk ;B � .aC "0; b � "0//

� P˛.F;� � .aC "0; b � "0//C P˛.Uk ; .B n N�/ � .a � "0; b C "0//

C

Z
@��.aC"0;b�"0/

jT1�Uk � T3�F j dHn

C

X
�DaC"0;b�"0

Z
��¹�º

jT2�Uk � T2�U j dHn:
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We consider the limit as k!1. By (5.4), the limit of the fourth term above is 0. By (5.2),
the limit of the third term isZ

@��.aC"0;b�"0/

jT1�U � T3�F j dHn:

With the above conclusions, applying (5.5) and (5.6), the semicontinuous property gives
that

P˛.U;B � .aC "0; b � "0// � P˛.F;� � .aC "0; b � "0//

C P˛.U; .B n N�/ � .a � "0; b C "0//

C

Z
@��.aC"0;b�"0/

jT1�U � T3�F j dHn

D P˛.F;B � .aC "0; b � "0//:

Because F�U �� N� � .aC "0; b � "0/, we have

P˛.U;B � I / � P˛.F;B � I /:

Recall that we choose F arbitrarily satisfying F�U �� N� � I . Thus, U has the least
perimeter in N� � I . The proof is complete.

6. Regularity of the infinity sets

After obtaining the existence of a generalized solution in (1.2), it is necessary to describe
the regularity of sets that the generalized solution takes infinity values. Such regularity is
a preliminary to deduce the NCM condition under which those generalized solutions give
the classical solutions as those in [13, 14] in the next section.

6.1. Almost minimal set

We shall recall some basic facts on almost minimal sets for later use which generalize
the concept of minimal sets. We shall see both of them share many important regularity
properties. The papers of Duzzar–Steffen [6], Tamanini [27] and the book of Maggi [22]
are our main references. Although their results are discussed in the Euclidean space, most
of their results hold in Riemannian manifolds without any essential modification of their
proofs. For example, see [26].

Definition 6.1. LetW be an open set in an .nC 1/-dimensional Riemannian manifoldM .
Suppose the injectivity radius ofW inM is positive, written as injW . Let E be a Cacciop-
poli set in W . We say E is a .c; ˇ/-almost minimal set in W if

P.E;B�.x// � P.F; B�.x//C c�nC2ˇ

for every point x in any compact set A � W , any Caccioppoli set F�E �� B�.x/ and
any � < min¹injW ; dist.x;M nW /º. Here ˇ 2 .0; 1=2� is a given constant, c is a positive
constant depending on W and P is the perimeter of M .

The boundary @E (see Proposition 4.1) is called almost minimal boundary. If c D 0,
@E is called the minimal boundary and E is a minimal set.
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Remark 6.2. We always take the convention in Proposition 4.1. That is, for any Cacciop-
poli setE and all x 2 @E, we have 0 <Hn.E \B�.x// < vol.B�.x// for any sufficiently
small � such that B�.x/ is an embedded ball.

One important example of almost minimal boundaries is the boundary of smooth
domains in their sufficiently small neighborhood. Our proof is essentially due to Exam-
ple A.1 in Appendix A of [7] by Eichmair, and applies the fact that a C 2 boundary has
locally bounded mean curvature.

Lemma 6.3. Let � be an open set in a Riemannian manifold M . Suppose � � @� is
a C 2 connected hypersurface in M . For each point x0 in � , there exists an open set W
near x0 such that � is a .c; 1=2/-almost minimal set in W . Here c is a positive constant
determined by x and � .

Proof. Our proof is exactly the same as that of Example A.1 in [7] by Eichmair, based on
the following two reasons. First, since � is C 2, we can construct a C 2 foliation near �
and � is one of its slices. This gives a vector field with a bounded divergence. Second, we
notice that

MW .@ŒŒU ��/ D P.U;W /;

where U is any Caccioppoli set and W is any open set, and M denotes the mass of an
integral current @ŒŒU �� induced by U .

Next we define the regular set of the boundary of a Caccioppoli set.

Definition 6.4. Suppose F is a Caccioppoli set in a Riemannian manifold G. Define the
regular set

reg.@F / WD ¹x 2 @F W 9� > 0 such that @F xB�.x/ is a C 1;ˇ graph for some ˇ 2 .0; 1/º:

The singular set of @F is its complement in @F , written as sing.@F /.

The following two facts about almost minimal boundaries are standard.

Theorem 6.5. Fix n � 2. Let F be a .c; ˇ/-almost minimal set in an open domain� with
dimension nC 1.

(1) (See Theorem 1 in [27], Theorem 5:6 in [6], and Theorem 28:1 in [22]). The Haus-
dorff dimension of sing.@F / is at most n � 7. In the case n D 7, sing.@F / consists
of isolated points.

(2) For any compact setK � F , there exists r0 WD r0.K/ > 0 such that for all r 2 .0; r0/,
we have Br0.x/ � � and

HnC1.F \ Br .x// � Cr
nC1 for all x 2 K \ @F;

where C is a positive constant only depending on r0 and the metric g on K. Here
HnC1 is the .nC 1/-dimensional Hausdorff measure in �.

The proof of the conclusion (2) above is exactly the same as that of Proposition 5.14
in [14] if we take r0 as small as possible. Thus, we skip the details here.
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6.2. The property of the infinity sets

Recall that the mean curvature of a smooth boundary is defined as follows.

Definition 6.6. Let W be an C 2 open domain in a Riemannian manifold M . Let Ev be the
outward normal vector of @W . The mean curvature of @W , H@W , is div.Ev/. If H@W � 0
we say that W is mean convex.

With the above convention, the mean curvature of the unit sphere in RnC1 with respect
to the normal vector is n.

For a generalized solution, we define the infinity sets as follows.

Definition 6.7. Let � �� B be two bounded open Lipschitz domains in a Riemannian
manifold N satisfying � �� B and let  .x/ be a measurable function taking possible
infinity values on B such that its subgraph @si is a Caccioppoli set in Q˛ . Let u.x/ be a
generalized solution to the Dirichlet problem (1.2) with boundary data  .x/. Define the
infinity set PC and P� in � as follows:

PC WD ¹x 2 � W u.x/ D C1º;

P� WD ¹x 2 � W u.x/ D �1º:

Under the mean convex condition, the infinity sets have the minimal property in Q˛
as follows.

Theorem 6.8. Fix n � 2. Suppose �;B;  .x/ and u.x/ are as given in Definition 6.7.
Moreover, assume  .x/ is continuous on B, � is an n-dimensional C 2 mean convex
bounded domain. Then in the closure of �, PC and P� are two Caccioppoli sets such
that their boundaries are closed, embedded and minimal hypersurfaces with a singular
set of which the Hausdorff dimension is at most n � 8. In the case n D 8, such singular
set is a collection of isolated points.

Remark 6.9. The above result is similar to that in [13] when Giusti considered the exis-
tence of graphs with prescribed mean curvature function. This indicates that if P˙ is not
empty, then � does not satisfy the NCM condition in Definition 1.1 (Definition 7.1). As a
result, we shall expect the NCM assumption will exclude the existence of P˙ in the above
setting.

Proof of Theorem 6.8. Since the proof of the conclusions about PC and P� are the same,
we only present the details for PC.

Because � is C 2 bounded and  .x/ 2 C.@�/, from Remark 5.4, we can assume
that  .x/ is uniformly bounded on B n �. For any j 2 R, define uj .x/ D u.x/ � j

on B and let Uj denote the subgraph of uj .x/ in B �R. Next we define u1.x/ on B as
u1.x/ D C1 on PC and u1.x/ D �1 on B n PC. It is easy to see that the subgraph
of u1, written as U1, is the set PC �R.

Fix any bounded open interval I . Letting j !C1, a direct computation yields that
(i) Uj locally converges to U1 in B �R,
(ii) limj!C1 P˛.Uj ; .B n N�/ � I / D 0 and P˛.U1; .B n N�/ � I / D 0.
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For any fixed constant c, consider the map Tc WQ˛ ! Q˛ given by

Tc.x; r/ D .x; r C c/:

We denote the metric e2r˛=n.� C dr2/ by g. Observe that

T �c g D e
2˛c=ng:

As a result, for any open set and any Caccioppoli set F ,

(6.1) e j̨P˛.F;W / D P˛.TjF; TjW / for each j .

Recall that the subgraphU of u.x/ has the least perimeter in N��R. Fix any bounded open
interval I . By the fact that Tj .U / coincides with Uj and from (6.1), a direct verification
shows that

(iii) for sufficiently large j , Uj has the least perimeter in N� � I .
From conditions (i)–(iii), Lemma 5.5 gives that U1 has the least perimeter in N� � I .

This implies that the setU1, PC �R, has the least perimeter (with respect to the metric g)
in N� �R.

Since � is bounded, C 2 and mean convex, there is a positive constant � such that for
the mean curvature of @�, we have jH@�j � � on @�. By Lemma 3.3 in [31], we have

H˛@��R.x; r/ D e
�˛r=n H@�.x/:

Here H˛ means the mean curvature of � �R in Q˛ .
Fix any point p in @� � R. By Lemma 6.3, there is a bounded neighborhood Wp

of p such that � � R is a .�; 1=2/-almost minimal set in Wp . Here � is a constant only
depending on the mean curvature of @��R. Choose any open ballBr inWp with radius r
and any Caccioppoli set F satisfying F�.PC �R/ �� Br . Then

(6.2) P˛.� �R; Br / � P˛.F [ .� �R/; Br /C �r
nC1:

Since PC �R has the least perimeter in N� �R, we obtain that

(6.3) P˛.PC �R; Br / � P˛.F \ .� �R/; Br /:

By Lemma 15.1 in [14], the above two inequalities give that

(6.4) P˛.PC �R; Br / � P˛.F; Br /C �rnC1:

As a result PC �R is a .�; 1=2/-almost minimal set inWp for any p in .@�\ @PC/�R.
Recall that PC �R is a minimal set in��R. Applying Theorem 6.5 (1), the singular

set of @PC �R, sing.@PC �R/, has Hausdorff dimension at most n � 7.
Moreover, in the case n D 7, sing.@PC �R/ should consist of isolated points. In this

case, if sing.@PC/ contains a point p, then the line ¹pº � R belongs to sing.@PC � R/.
This is impossible. Thus, for n D 7, sing.@PC �R/ is also an empty set.

Define the projection � WN �R! N as �.x; r/ D x. We have

�.sing.@PC �R// D sing.@PC/ and �.reg.@PC �R// D reg.@PC/:

By the Fubini theorem, sing.@PC/ is empty for n � 7 and has Hausdorff dimension at
most n � 8.
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Now we discuss the case of n D 8. The Hausdorff dimension of sing.@PC/ is zero.
We follows the proof of [22], Section 28.5. Suppose there is a sequence of points ¹xiº1iD1
in sing.@PC/ that converges to x 2 sing.@PC/. Fix any px D .x; 0/ in sing.@PC � R/.
Near x, we can view @PC as an open set in R8, and thus @PC � .�"; "/, for a small
positive ", is contained in R9. Let rj D d.x; xj /, where d is the distance of N and Ej D
¹.p � px/=rj 2 @PC � Rº. It is well known that, as j ! C1, Ej will converge to a
singular minimizing cone K in R9 up to possibly choosing a subsequence. Now write
R9 D ¹.x; r/ W x 2 R8; r 2 Rº. Let @r be the vector field in R9 along the r-direction. In
the regular part ofEj , we have hEv;@ri D 0with respect to the Euclidean space. As a result,
in the regular part of K we also have hEv; @ri D 0. Therefore, K is K 0 �R, where K 0 is a
singular minimizing cone in R8. Moreover, ..xj ; 0/� .x; 0//=rj converges to .z; 0/ inK 0

with z ¤ 0 2 K. Thus, there is a line in K 0 in R8. By Theorem 28.11 in [22], there exists
a singular minimizing cone in R7. This is a contradiction. Thus, for n D 8, sing.@PC/
consists of isolated points.

In summary, the singular set of @PC has Hausdorff dimension at most n � 8. In the
case n D 8, it is a collection of isolated points.

The remainder of the proof is to show that the regular part of @PC �R is minimal. Let
p 2 reg.@PC �R/. First, we assume p D .x; r/ is in � �R. Thus, H˛

@PC�R D 0 near p,
where H˛ is the mean curvature in Q˛ . On the other hand,

(6.5) H˛@PC�R.p/ D e
˛rH@PC.x/:

Thus, the regular part of @PC in � is embedded and minimal.
Second, assume p is in @� � R. Let Sa be the local scaling centering at p, that is,

Sa.z/ D p C .z � p/=a for any z in some ball Br .p/, a > 0. By Theorem 9.2 in [14],
Sa..PC � R/ \ Br .p// will converge locally to a minimizing cone with vertex at p in
RnC1 as a ! 0. On the other hand, @� � R is C 2 and PC � R is contained in � � R.
Thus, such minimizing cone is contained a half space in RnC1. By Theorem 15.5 in [14],
it is a half space. From the Allard regularity theorem, @PC �R is a C 1;1=2 graph near p.

The least perimeter property of PC � R implies that H˛
@PC�R � 0 with respect to the

outward normal vector of PC � R in the Lipschitz sense. By the mean convexity of �,
H˛
@��R � 0 near p with respect to the outward normal vector of � � R. Since @PC � R

is tangent to @��R at p, the classical maximum principle (for example, see Appendix A
in [10]) implies that H˛

@PC�R � 0 near p. As a result, @PC �R is smooth near p. By (6.5)
we obtain that @PC is embedded and minimal near x in @�. This indicates that the regular
part of @PC is embedded and minimal. The closeness is obvious.

Thus, we obtain the conclusion. The proof is complete.

7. Existence of classical solutions

In this section, we define the NCM assumption and obtain classical solutions from a
generalized solution to the Dirichlet problem of (1.2) under the mean convex and this
assumption.

Definition 7.1. Suppose � is an n-dimensional bounded Riemannian manifold with Lip-
schitz boundary. We say that� has the non-closed-minimal (NCM) property if its closure
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does not contain any Caccioppoli set E such that its (essential) boundary @E is a closed
embedded minimal hypersurface with a singular set S of which the Hausdorff dimension
is at most n � 8. For n D 8, we require that S is a collection of isolated points.

Recall that
H˛.u/ WD �div

� Dup
1C jDuj2

�
C

˛p
1C jDuj2

;

and that the main result of this paper is Theorem 1.2.

7.1. The interior regularity

First, we show the interior regularity of locally bounded generalized solutions to the
Dirichlet problem in (1.2).

Theorem 7.2. Fix ˛ > 0. Suppose u is a locally bounded generalized solution to the
Dirichlet problem in (1.2) on� with continuous boundary data in @�. Then u is smooth
on � satisfying H˛.u/ D 0 .

Remark 7.3. Notice that we cannot apply Theorem 14.13 in [14] because the area func-
tional F˛.u; �/ is not convex among BV functions. Note also that changing the value
of u.x/ on a measure zero set does not change the property of the perimeter and general-
ized solutions. Here we choose a representative in the equivalent class of u (different with
the value in a zero-measure set) which is smooth.

Proof. Notice that our conclusion is not affected by the boundary data. Without loss of
generality, we assume that

(7.1) ju.x/j � � on �,

for some positive constant �.
Let U be the subgraph of u.x/ in Q˛ . By definition, U locally minimizes perimeter

in � �R � Q˛ . Let n be the dimension of �.
Let sing.@U / be the closed singular set of @U in��R. Then, by Theorem 6.5 (1), the

Hausdorff dimension of sing.@U / is at most n � 7. Thus, the regular part of @U is a con-
nected, open smooth hypersurface in � � R. Here the smoothness follows the regularity
of minimal hypersurfaces.

Let S be the projection of sing.@U / into�. Set�1 D� n S . Let†1 be the restriction
of @U on �1 �R. Then †1 is minimal, embedded and therefore smooth.

Lemma 7.4. Take the assumptions as above. Then u.x/ is inC1.�1/ and†1 is a smooth
minimal graph over �1 of u.x/ in Q˛ .

Proof. For the convenience of computations, we work in the product manifoldQ with the
metric � C dr2 instead of the conformal product manifoldQ˛ . Let Ev be the upward normal
vector of †1 in Q. Since u.x/ locally minimizes the functional F˛.v;�1/, arguing as in
Lemma 2.2 of [31], on †1, ‚ D hEv; @ri � 0 satisfies

�‚C .jAj2 C NRic.Ev; Ev//‚ � ˛hr‚; @ri D 0:
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Here NRic is the Ricci curvature of Q, � is the Laplacian operator on †1, and r is the
covariant derivative of†1. It is easy to see that†1 is connected. By the Harnack principle,
‚ � 0 or ‚ > 0 on the whole †1.

Now assume‚� 0 on†1. Let � W��R!R be the standard projection �.x; r/D x.
Fix a point p on †1 and let V be an open neighborhood of p. Then Hn�1.�.V // > 0.
Because hEv; @ri D 0 on V , @r is a vector field in the tangent bundle of V . Let 
.t/ be
the parameterized curve of @t passing through p. This is a part of the vertical line passing
through ¹.�.p/; r/ W r 2Rº. Since u is bounded,†1 is also bounded. Thus, this line cannot
be contained completely in †1. This means �.p/ should belong to S , the projection of
sing.@U /. We choose p arbitrarily. Thus, �.V / � S . This means Hn�1.S/ > 0. This is a
contradiction because the Hausdorff dimension of S is at most n � 8.

As a result, ‚ > 0 on the whole †1. Since †1 is smooth, u.x/ belongs to C1.�1/.
The proof is complete.

Fix any x0 in S . We choose r0 > 0 sufficiently small such that Theorem B.1 holds for
any r in .0; r0�. Here r satisfies thatBr .x0/�� is a mean convex embedded ball centered
at x0 with radius r .

Let T u be the trace of u.x/ in @Br0.x0/ both from Br0.x0/ and � n Br0.x0/.
Notice that the closed set S in � satisfies that H t .S/ D 0 for any t > n � 8. Since

u.x/ is smooth over �1 D � n S , T u is a C 1 function on @Br0.x0/ n S . Let ¹Siº1iD1
be a sequence of closed sets in @Br0.x0/ such that SiC1 � Si for all i D 1; : : : ;1 andT1
iD1 Si D S . By (7.1), we construct a sequence of smooth functions  i .x/ on @Br0.x0/

such that
 i D T u in @Br0.x0/ n Si ; sup

@Br0 .x0/

j i j � 2�:

By Theorem B.1, let ¹uiº1iD1 be the solution of the Dirichlet problem (1.2) with boundary
data ¹ iº1iD1 on @Br0.x0/ in C 2.Br0.x0// \ C. NBr0.x0//.

By Lemma B.2 and (7.1), there is a uniformly constant C such that

max
x2K;iD1;2;:::

jDui .x/j � C

on any compact set K in Br0.x0/. By the classical Schauder estimate, so is the second
derivative of ui ; i D 1; 2; : : : . Then ¹uiº1iD1 converges to a C 2 function v on Br0.x0/ in
the C 2 norm up to possibly a subsequence. Moreover, v satisfies H˛.v/ D 0 in Br0.x0/.
This convergence implies that v is a BV function on Br0.x0/ and ¹uj º1jD1 also converges
to v in Br0.x0/ in the sense of BV functions. By Theorem 2.11 in [14], their traces
¹T .uj /º

1
jD1 will converge to T .v/ in L1.@Br0.x0//. That is,

(7.2) T .v/ D T u in L1.@Br0.x0//.

Let Tt WN �R! N �R be the vertical translation

Tt .x; r/ D .x; r C t /:

Let Ev be the upward normal vector of the graph of v in Br0.x0/ with respect to the metric
in Q˛ . Define a unit vector field

X.x; v.x/ � t / D et˛=n T �t .Ev/
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for any x 2 Br0.x0/ and t 2 R. Let div˛ be the divergence of Q˛ . Then

div˛.X/ D 0:

Let W be the domain in � �R enclosed by †u, †v (the graphs of v) and @Br0.x0/ �R.
By (7.2),

@W D †u �†v:

Applying the divergence theorem on W , we have

0 D

Z
W

div˛.X/ dvol˛ D
Z
†ru

hX; Evui˛ dHn
�

Z
†v

dvol˛(7.3)

� Hn�1.†ru/ �Hn�1.†v/:

Here Hn�1 is the .n� 1/-dimensional Hausdorff measure inQ˛ , vol˛ is the volume form
of Q˛ , †ru is the restriction of the regular part of †u in NBr0.x0/ � R and Evu is the upper
normal vector field of †u in Q˛ .

Define the function

(7.4) Qv D

²
v on Br0.x0/;
u otherwise:

Let QV be the subgraph of Qv. By (7.4) and the fact that u.x/ is locally bounded in NBr0.x0/,
we have that U� QV is contained in a compact set in N� �R. Because u.x/ is a generalized
solution, we obtain

P˛.U;� �R/ � P˛. QV ;� �R/:

By Theorem 4.4 in [14], the above inequality gives that

Hn�1.†ru/ � Hn�1.†v/:

Thus, the equality in (7.3) holds. As a result, X D Evu on †ru in the open set Br0.x0/ �R.
By the uniqueness of the integral distribution of X , ¹Tt .†v/ºt2R, †ru � Tt0.†v/ for
some t0. Because of @†ru, t0 has to be 0 and u � v on Br0.x0/ n S . Since S is a zero-
measure set, we conclude that u.x/ D v.x/ in Br0.x0/. Thus, u is smooth on Br0.x0/.

Notice that x0 is arbitrarily chosen in S . This means u is smooth over �. The proof is
complete.

7.2. The proof of Theorem 1.2

Notice that @� isC 2. Then, by Remark 5.4, we can extend .x/ as a bounded BV function
(still written as  .x/) on a larger bounded open set B such that���B, its subgraph is a
Caccioppoli set inQ˛ and its trace on @� is  .x/. By Theorem 5.3, there is a generalized
solution u.x/ with the continuous boundary data  .x/.

Our proof is divided into two steps. The first step is to show that u.x/ is locally
bounded. The second step is to show the boundary continuity of u.x/.

Lemma 7.5. Take the assumption of Theorem 1.2. The generalized solution u.x/ on N� is
locally bounded with the bounded boundary data  .x/ .
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Proof. Recall that P˙ are the sets ¹x 2 N� W u.x/D˙1º. Let n be the dimension of�. By
Theorem 6.8, P˙ are two Caccioppoli sets such that their boundaries are closed embedded
minimal hypersurfaces with a closed singular set S of Hausdorff dimension at most n� 8.
In the case n D 8, S is a collection of isolated points. By the NCM property of �, P˙
are equivalent to an empty set. Namely, P˙ are Lebesgue measure zero sets in the closure
of �.

Now assume PC is not empty. Let x0 be a point in PC. Then u.x/ is not locally
bounded in a neighborhood of x0. Moreover, there is a sequence ¹xj º1jD1 in � con-
verging to x0 in N� such that u.xj / > j for each positive integer j . For each positive
integer j , define uj .x/ D u.x/ � j on B. Let Uj be the subgraph of uj .x/ in B � R.
Since ¹uj .x/º1jD1 is a decreasing sequence, the following holds:
(i) �Ui locally converges to �U1 in B � R. Here U1 is a subgraph of the measurable

function which takesC1 on PC and �1 on B n PC.
Fix any bounded open interval I . Since  .x/ is uniformly bounded on B n N�, there is a
j0 > 0 such that for all j � j0,

(ii) Uj \ .. NB n�/ � I / D . NB n�/ � I .
Because Uj is T�j .U /, arguing as in (iii) in the proof of Theorem 6.8, we have

(iii) Uj has the least perimeter in N� � I .
Since uj .xj / D u.xj /� j > 0, we have .xj ; 0/ in Uj for each j . There are two cases

to be discussed: x0 in � or x0 in @�.
Assume we are in the first case: x0 in �. There is an r1 > 0 such that Br1..x0; 0//

is contained in � � .�1; 1/. Thus, ¹Uj º1jD1 are minimal sets in Br1..x0; 0//. By Theo-
rem 6.5 (2), we have

vol.Uj \ Br ..xj ; 0/// > crnC1

for some c > 0 and for all r < r1=2, where c is a positive constant depending on the metric
in Br1..x0; 0//. Now, letting j !C1, by (i), we obtain

(7.5) vol..PC �R/ \ Br ..x0; 0/// > cr
nC1:

This gives a contradiction since PC is a Lebesgue zero measure set. Therefore, PC is the
empty set.

Assume we are in the second case: x0 in @�. By Lemma 6.3, there is a sufficiently
small r2 > 0 such that � � .�1; 1/ is a .�; 1=2/-almost minimal set in Br2..x0; 0//.
Arguing similarly, as in (6.2), (6.3) and (6.4), ¹Uj º1jDj0 is a sequence of .�; 1=2/-almost
minimal sets in Br2..x0; 0//. Now applying Theorem 6.5 (2) and arguing as in the first
case, we will obtain the same contradiction as in (7.5). Thus, in this case, we still obtain
that PC is the empty set.

A similar derivation yields that P� is also an empty set in �. Thus, u.x/ is locally
bounded.

By Theorem 7.2, the generalized solution in Lemma 7.5 is smooth on �. Now we
conclude the boundary continuity of u.x/ when  .x/ is continuous on @�.

Lemma 7.6. The generalized solution u.x/ is continuous on N�, and it is equal to  .x/
on @�.
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Proof. Suppose that x0 2 @� and that

� D lim sup
x2�;x!x0

u.x/ >  .x0/:

Then there exist a sequence ¹xj º in � converging to x0 and � > 0 such that

lim
j!C1

u.xj / D � >  .x0/:

Let z0 be the point .x0;�/ in @��R. By Remark 5.4, we can extend .x/ as a continuous
function in B n �. Here B is a large open set strictly containing �. There is an R > 0

such that the normal ball BR.z0/ in Q˛ does not intersect the graph of  .x/.
We can view BR.z0/ as an open set in RnC1 with the induced metric from Q˛ . Now

we blow up U \ BR.z0/ in RnC1 as follows:

Uj D ¹z 2 RnC1 W j�1z C z0 2 U \ BR.z0/º:

Arguing similarly, as the derivation in Theorem 37.4 of [26], Uj will converge weakly
to an area minimizing cone C in RnC1. Notice that � � R is a C 2 domain. Then C is
contained in a half space in RnC1. By Theorem 15.5 in [14], C is just a closed half-space
in RnC1. By the Allard regularity theorem, @U is C 1;1=2 near z0 and can be written as a
graph of a C 1;1=2 function over @� �R near z0.

Since � is mean convex, by Lemma 3.3 in [31], we have

H˛@��R.x; r/ D e
�˛r=n H@�.x/ � 0;

with respect to the outward normal vector of @� � R in Q˛ . Let Ev0 be the normal vec-
tor of @U near z0 which points outward to .B n N�/ � R at z0. The fact that U locally
minimizes the perimeter in N� �R � Q˛ yields that the mean curvature of @U in Q˛ is

H˛@U D divQ˛ .Ev
0/ � 0

near z0 in the Lipschitz sense. Note that @U is tangent to @� � R at z0. By the classical
maximum principle (see Theorem 8.19 in [11] and Appendix A in [10]) @U coincides with
@� �R near z0. This contradicts the fact � D lim supx2�;x!x0 u.x/. Thus, we conclude

lim
x!x0

supu.x/ �  .x0/:

With a similar argument, limx!x0 infu.x/ �  .x0/. As a result,

lim
x!x0

u.x/ D  .x0/:

Thus, u.x/ is continuous until the boundary and u.x/ D  .x/ for each x in @�.

The existence part of Theorem 1.2 is proved by combining Lemma 7.5 and Lemma 7.6
together. The uniqueness is obvious from the maximum principle. Hence, the proof of
Theorem 1.2 is complete.
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A. A decomposition result of Radon measures

Now we consider a decomposition of Radon measures on Riemannian manifolds. The
reason we derive it here is that bounded domains in Riemannian manifolds may not be
contained in a simply connected domain. Thus, no existence of smooth mollifiers as in
Euclidean spaces is available here (see Remark 3.6). The main references of this section
are Chapter 1 of [26] and Section 2.8 of [9].

Throughout this section, let N be a complete Riemannian manifold with dimN D n.
For every point x in N , we denote the open (closed) embedded normal ball (see Defini-
tion 2.16) centered at x with radius r by Br .x/ ( NBr .x/).

Definition A.1. Let F be a collection of closed normal balls such that their radius is
uniformly bounded. Let A denote the set of all centers of those balls. We say that F

covers A finely if the infimum of the radius of balls containing every point in A is 0.

The following theorem is a statement of Theorem 2.8.14 in [9] by Federer in the case
of Riemannian manifolds.

Theorem A.2 (Besicovitch’s covering theorem). Let��N be a bounded open set. There
is a positive constant � D �.n;�/ such that the following property holds. Let F be a col-
lection of closed embedded normal balls in� with uniformly bounded radius. LetA be the
set of all centers of these balls in F . If F covers A finely, then there are � subcollections
¹Fiº

�
iD1 of F such that the balls in each Fi are pairwise disjoint andA�

S�
iD1

S
NB2Fi

NB .

Using Theorem A.2, it is straightforward to prove the following result.

Corollary A.3. Suppose � is a bounded open set in N . Let � be a Radon measure on �
with �.�/ < 1. Let F be a collection of closed normal balls covering � finely. Then
there is a countable pairwise disjoint collection of closed normal balls ¹ NBrj .xj / 2 F W

j D 1; : : : ;1º with �.� n
S1
jD1
NBrj .xj // D 0.

Next, we obtain a useful decomposition of Radon measures in Riemannian manifolds.

Theorem A.4. Let � be an open bounded set in an n-dimensional Riemannian mani-
foldN . Fix any " > 0 and r0 > 0. Suppose� is a Radon measurable satisfying�.�/ <1.
Then there is a collection of countable open normal balls in �, defined by

B D
®
Bk D Brk .xk/ W k D 1; : : : ;1; xk 2 �; rk � r0; �.@Bk/ D 0

¯
;

and a positive integer �0 D �0."; n;�/ such that � �
S
Bk2B Bk and

(1) ¹B1; : : : ; B�0º is a pairwise disjoint subcollection of B with

�.�/ � " �

�0X
kD1

�.Bk/ D �
� �0[
kD1

Bk

�
� �.�/;

(2) the subcollection ¹Bk W k D �0 C 1; : : : ;1º of B satisfies
1X

kD�0C1

�.Bk/ � �";

where � D �.n;�/ is the positive integer given in Theorem A.2.
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Proof. Let d be the distance given by the metric on �. We define a collection of closed
normal balls as follows:

(A.1) F D
®
NBr .x/ W x 2 �; r < min¹r0; d.x; @�/º; �.@ NBr .x// D 0

¯
:

Since �.�/ <1, Fubini’s theorem implies that �.@ NBr .x// D 0 a.e. for any x 2 � and
r 2 .0;min¹r0; d.x; @�/º/. Thus, F covers � finely.

Fix " > 0. By Corollary A.3, there is �0 D �0."; n;�/ and a pairwise disjoint subcol-
lection of closed balls ¹ NBri .xi /º in F such that

�.�/ �
"

4
�

�0X
kD1

�.Brk .xk// D �
� �0[
kD1

Brk .xk/
�
� �.�/;

because �.@ NBr .x// D 0 for each NBr .x/ in F .
Namely, there is a pairwise disjoint collection of finite open balls

(A.2) ¹Br1.x1/; : : : ; Br�0 .x�0/º

satisfying

(A.3) �
�
� n

�0[
kD1

NBrk .xk/
�
�
"

4
:

Now define an open set �� as

�� W�
°
x 2 � W d.x;� n

�0[
kD1

NBrk .xk// < �
±
;

where � is a sufficiently small positive constant such that �.��/ � "=2. Similarly, as
in (A.1), we define a collection of closed normal balls in �� as

F� D
®
NBr .x/ W x 2 ��; r < min¹r0; d.x; @��/º; �.@ NBr .x// D 0

¯
:

By Theorem A.2, there are � D �.�; n/ subcollections ¹F�;kº�kD1 such that the closed
balls in each F�;k are pairwise disjoint and

�� �

�[
kD1

[
NBr .x/2F�;k

NBr .x/:

Moreover, for each k D 1; : : : ; �,X
NBr .x/2F�;k

�. NBr .x// � �.��/ �
"

2
:

Note that there are only countable closed normal balls in each subcollection F�;k . Each
ball NBr .x/ in each collection F�;k can be replaced with a large open ball Brx .x/ with
rx < min¹r0; d.x; @��/; 1:5rº so that

(A.4)
X

NBr .x/2F�;k

�. NBr .x// �
X

NBr .x/2F�;k

�.Brx .x// � ":



H. Zhou 38

This gives � collections of open normal balls as follows:

F 0�;k WD
®
Brx .x/ W

NBr .x/ 2 F�;k ; NBr .x/ � Brx .x/ � ��
¯
;

with the condition (A.4) for k D 1; : : : ; �. Now we relabel all open balls in ¹F�;kº�kD1 and
list them as follows:

(A.5) ¹Brk .xk/ W k D �0 C 1; : : : ;1º D ¹Brx .x/ W Brx .x/ 2 F 0�;k ; k D 1; : : : ; �º:

Obviously,

�� �

1[
kD�0C1

Brk .xk/;

according to our definition. Condition (A.4) yields

(A.6)
1X

kD�0C1

�.Brk .xk// � �":

Combining the open balls in (A.2) with the property (A.3) and the open balls in (A.5) with
the property (A.6) together, we obtain the desirable collection of open normal balls. The
proof is complete.

B. Some PDE results

In this section, we collect some PDE results on mean curvature equations. Let M be
a Riemannian manifold with dimension n � 2 and let Br .x/ denote an embedded ball
centered at x with radius r .

Fix x0 inM . When take r sufficiently small, the metric in Br .x0/ is much close to the
Euclidean metric. A well-known fact is that the mean curvature of @Br .x0/ satisfies the
estimate

H@Br .x0/ D
n

r
CO.r/:

And the Sobolev inequality also holds in Br .x0/ when r is sufficiently close to 0. Thus,
following the derivations in Theorem 16.10 of [11], we have the following theorem.

Theorem B.1. Fix ˛ > 0. Suppose x0 2M . Then there is a sufficiently small r0 > 0 such
that, for any r 2 .0; r0�, the Dirichlet problem8<:div

�Du
!

�
D ˛ x 2 Br .x0/;

u.x/ D  .x/; x 2 @Br .x0/;

is uniquely solved in C 2.Br .x0// \ C. NBr .x0// for any continuous data  .x/ on @�.
Here ! D

p
1C jDuj2.

The following interior curvature of mean curvature equations is classical.
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Lemma B.2 (Theorem 1.10 in [15]). For any r > 0 and x inM , let u.x/ be a C 2 function
on Br .x/ satisfying div.Du=!/ D ˛=!. Then

max
Br=2.x/

jDuj � C;

where C is a constant depending only on ˛ and maxBr .x/juj.

Note that the proof of Gui, Jian and Ju [15] is also valid in any Riemannian manifolds.
Assume  .x/ is in C 3.@Br .x0//. It is easy to see that the C 0 estimate and the bound-

ary gradient estimate for the solution in (B.1) is from the comparison with the solution
to (B.1). The interior gradient estimate is from Lemma B.2. By the classical continuous
method [11], we obtain the existence in Corollary B.3 when  .x/ is in C.@Br .x//. The
general case is from the standard approximation process. In summary, as an application,
we obtain the following.

Corollary B.3. Let x0, ˛ and r0 be given as in Theorem B.1. For any r in .0; r0/ and
 .x/ 2 C.@Br .x0//, the Dirichlet problem of the TMCE

(B.1)

8<:div
�Du
!

�
D
˛

!
; x 2 Br .x0/;

u.x/ D  .x/; x 2 @Br .x0/;

is uniquely solved in C 2.Br .x0// \ C. NBr .x0//.

Next we give an example to illustrate that the NCM property is necessary. Let SnC
be the n-dimensional upper hemisphere with the standard metric �n. Note that @SnC is an
.n � 1/-dimensional unit sphere that is minimal in Sn. Thus, by Definition 7.1, SnC does
not have the NCM property.

Theorem B.4 (Theorem 6.1 in [10]). For any ˛ � n� 2, there is no solution in C 2.SnC/\
C. NSnC/ to the Dirichlet problem8<:div

�Du
!

�
D
˛

!
; x 2 �; ! D

p
1C jDuj2;

u.x/ D  .x/; x 2 @�;

for any  .x/ in C.@�/.

We refer to the above example as the hemisphere example.

C. The difference between dimension one and higher dimensions

In this section, we point out the essential difference in the Dirichlet problem of (1.2)
between the case of n D 1 and n � 2.

In the real line R (i.e., n D 1), � is an open interval. With a direct computation, the
Dirichlet problem (1.2) becomes

(C.1)
urr

1C jur j2
D ˛ on �; u D  on @�:
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Here ˛ is a fixed positive constant and ur ; urr denote the first and second derivatives of u
with respect to r 2 R. Let j�j denote the length of �. Integrating on both sides of (C.1),
we have the following non-existence result.

Theorem C.1. If ˛j�j > � , there is no solution to the Dirichlet problem (C.1) when �
is an open interval and  is any two-point function.

In the case n � 2, the solvability of the Dirichlet problem (1.2) corresponds a totally
different geometry. We just take the Dirichlet problem of (1.2) on a special class of warped
product manifolds.

Fix n � 2. Let Sn�1 be the standard sphere and consider a conical metric �n�1.
Let �.r/ be an strictly increasing smooth function on Œ0; �/ such that

�.0/ D 0; �0.0/ D 1; lim
r!C1

.log�/0.r/ � ˇ;

for some positive ˇ > 0. We consider a warped product manifold Q� given as follows:

Q� WD .S
n�1
� .0;1/; �2.r/�n�1 C dr2/:

Note that the condition at � implies thatQ� is complete when r ! 0C. For �.r/D r and
�.r/D sinh.r/,Q� is the Euclidean space Rn and the hyperbolic space Hn, respectively.

Fix any ˛ > 0. Suppose u D u.r/ is a C 2 function on Q� which only depends on the
parameter r 2 .0;1/. Then u.r/ satisfies H˛.u/ D 0 (see (1.2)) on the open set Sn�1 �
.0;C1/ if and only if

(C.2)
urr

1C u2r
C .n � 1/.log�/0.r/ur D ˛;

with ur .0/ D 0 and u.0/ D C . Here C is any given constant. For more details on compu-
tations, see the proof of Theorem A.1 in [31]. It is not hard to see that the equation (C.2)
has a smooth solution u.r/ in .0;1/. For any bounded mean convex domain � in Q� ,
by applying the maximum principal, we obtain a uniformly bound of the solution us.x/
to the Dirichlet problem

�div
� Dup

1C jDuj2

�
C

s˛p
1C jDuj2

D 0 on �; u D s on @�;

for any continuous function s 2 C.@�/. Here s 2 Œ0; 1�. Applying the canonical contin-
uous method in Dirichlet problems will yield the following existence result.

Theorem C.2. Fix n � 2. Suppose � is a mean convex bounded C 2 domain in the
Euclidean space Rn or the Hyperbolic space Hn. The Dirichlet problem (1.2) has a unique
solution in C 2.�/ \ C. N�/ for any continuous boundary data.

In summary, when n � 2, the existence of the Dirichlet problem (1.2) in Euclidean
spaces depends on the solution to (C.2). Except from ˛ > 0, the existence of the latter
problem does not put any requirement upon ˛.
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