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On the existence of global solutions for the 3D
chemorepulsion system

Tomasz Cieślak, Mario Fuest, Karol Hajduk, and Mikołaj Sierżęga

Abstract. In this paper, we give sufficient conditions for global-in-time existence of classical solu-
tions for the fully parabolic chemorepulsion system posed on a convex, bounded three-dimensional
domain. Our main result establishes global-in-time existence of regular nonnegative solutions pro-
vided that r

p
u 2 L4.0; T IL2.�//. Our method is related to the Bakry–Émery calculation and

appears to be new in this context.

1. Introduction

In this paper, we study the problem of global existence of solutions for the fully parabolic
chemorepulsion system. The two-dimensional case was solved in [5]. Unlike in the more
widely known chemoattraction case, 2D chemorepulsion leads to the global-in-time exist-
ence of classical solutions regardless of the size of the initial data. The question of global
existence in three and higher dimensions remains open. In the present paper, we look into
the 3D case and establish a conditional global regularity result for this model. First, we
introduce the model.

Let � � Rn be an open, bounded domain with a sufficiently smooth boundary. We
consider the following fully parabolic chemorepulsion system´

@tu D r � .ruC urv/

@tv D �v � v C u
in .0;1/ ��; (1.1)

with homogeneous Neumann boundary conditions (no flux through the boundary)

@u

@�

ˇ̌̌̌
@�

D 0;
@v

@�

ˇ̌̌̌
@�

D 0; (1.2)

where � is the unit outward normal to the boundary, and with nonnegative initial condi-
tions

u.0; x/ D u0.x/ � 0; v.0; x/ D v0.x/ � 0: (1.3)
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The functions u and v describe densities of some living organisms and of a chemical
substance which repels them, respectively. The “C” sign on the right-hand side of the
first equation in (1.1) corresponds to the repulsion mechanism. The opposite phenomenon
appears in the widely studied chemoattraction case described by the Keller–Segel system.
For an overview of results for such systems, we refer to the surveys [2, 12]. The latter
survey contains a chapter concerning the construction of solutions, including the irregular
ones, to the fully parabolic chemorepulsion system.

Three- and higher-dimensional cases of the chemorepulsion system are still far from
being understood. While we know that global weak solutions exist (see [5]), it is unclear
whether regular bounded solutions exist for all t > 0. Some results concerning the per-
turbation of the parabolic-elliptic case are known, see [4]. Moreover, for the problem with
nonlinear, sufficiently strong diffusion, see the global existence result in [7]. Similarly, it is
known that nonlinear, sufficiently weak chemorepulsion leads to global-in-time solutions,
see [17]. However, the main basic problem lacks a definitive answer. In the present note,
we establish a conditional result.

We emphasise that our result is rather of methodological meaning. On the one hand,
our method applied to the 3D chemorepulsion yields only a conditional result. Moreover,
as communicated to us by M. Winkler and one of the referees, this result can be improved,
see Appendix B. Indeed, the result in Appendix B covers our Theorem 1.1 and is applic-
able also in non-convex domains. Notice, however, that our method of estimating the
Fisher information along the solution for a system of partial differential equations seems
promising with other types of problems. The inequality from Appendix A turns out to
be very helpful in such an approach. Indeed, in [3], Fisher’s information together with
inequality (A.1) was successfully applied to obtain global-in-time unique regular solutions
to the 1D thermoelasticity problem. Very recently, another application yielding progress in
1D combustion theory was performed in [13]. Last, but not least, notice that our approach
gives also a qualitative conditional result, namely, it implies that concavity of v is suffi-
cient to obtain global solution to (1.1), see Section 6.

The problem (1.1)–(1.3) captured attention of groups of researchers, in particular, due
to its role in the attraction-repulsion competition, which appears to play a role in the mod-
eling of, among other things, Alzheimer’s disease, see, for instance, [15]. The biological
meaning of the attraction-repulsion competition was widely investigated, see, for instance,
the contributions in [14, 16, 18].

Let us formulate our main result.

Theorem 1.1. Let��R3 be a convex, smooth bounded domain and let u0;v02W 1;p.�/

for some p > 3 with 0 6� u0 � 0 and v0 � 0 in �. Suppose that Tmax 2 .0;1� is the
maximal existence time of the classical solution to the system (1.1)–(1.3), constructed
in [5, Theorem 2.1] (cf. Lemma 3.1 below). Ifr

p
u2L4.0; TmaxIL

2.�//, then TmaxD1.

The paper is organised as follows: In Section 2, we introduce some technical tools such
as the Winkler version of the Bernis-type inequality, Bochner’s formula, the behaviour of
the normal derivative of the gradients of regular functions at the boundaries of convex
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domains and further preparatory inequalities. In Section 3, we then recall well-known
properties of solutions to (1.1)–(1.3).

Section 4 is devoted to our entropy estimate. It is a core and the main novelty of our
approach. We estimate the time derivative of the entropy production term occurring in the
Lyapunov functional. The latter entropy production term resembles the Fisher information
along the heat flow and we utilise this similarity. Having this estimate established, in
Section 5, we proceed with the proof of Theorem 1.1.

In Appendix A, we prove a new functional inequality, which we arrived at as a bypro-
duct of our investigations. It seems interesting in its own right. Appendix B is devoted to
the proof of an observation due to M. Winkler and one of the anonymous referees, which
improves the conditional result.

2. Preliminaries

In this section, we collect some computations and known results which will be useful in
the sequel.

We begin with the flat case of the well-known Bochner formula.

Proposition 2.1. Let � � Rn, n 2 N, be a smooth domain and let u 2 C 3.x�/. Then

1

2
�jruj2 D r.�u/ � ruC jD2uj2 in x�: (2.1)

Proof. This can be checked by a direct calculation.

The following lemma informs us about the normal derivative of the square of the
gradient of a function on the boundary of a convex set, provided the function’s normal
derivative vanishes.

Lemma 2.2. Let � � Rn, n 2 N, be a convex bounded domain with smooth boundary.
Suppose that a function u 2 C 2.x�/ satisfies @u

@�
D 0 on @�. Then

@jruj2

@�

ˇ̌̌̌
@�

� 0:

Proof. See [6, page 95].

We will use a higher-dimensional version of the Bernis-type inequality given by Wink-
ler [20, Lemma 3.3] (with h.'/ D ').

Lemma 2.3. Let � � Rn, n 2 N, be a smooth, bounded domain. For all positive ' 2
C 2.x�/ with @'

@�
D 0 on @�, we have the following inequality:Z

�

jr'j4

'3
� .2C

p
n/2

Z
�

'jD2 log'j2: (2.2)
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Next, we prove two estimates holding in three-dimensional domains. The first one
relates the Hessian of a function ' withr�' (in contrast to the full third-order derivative).

Lemma 2.4. Let��R3 be a smooth, bounded domain. Then, there is a positive constant
C such that for every ' 2 C 3.x�/ with @'

@�
D 0 on @� we have

kD2'kL6.�/ � Ckr�'kL2.�/:

Proof. According to [8, Theorem 19.1], there is c1 > 0 such that

kD2'kL6 � c1k�'kL6 C c1k' � x'kL6

for every ' 2 C 2.x�/ with @'
@�
D 0 on @�, where x' D 1

j�j

R
�
'. As W 1;2.�/ ,! L6.�/,

we can further estimate

kD2'kL6 � c2.kr�'k
2
L2
C k�'k2

L2
/1=2 C c2.kr'k

2
L2
C k' � N'k2

L2
/1=2

for every ' 2 C 3.x�/ with @'
@�
D 0 on @� for some c2 > 0. The statement then follows by

the Poincaré inequality. See, for example, [9, Lemma A.1] which states that there exists a
constant c > 0 such that

k' � N'k2
L2
� ckr'k2

L2
; kr'k2

L2
� ck�'k2

L2
; k�'k2

L2
� ckr�'k2

L2

for all ' 2 C 3.x�/.

Finally, we combine several of the lemmata above to obtain an estimate required in
the proof of our main result.

Lemma 2.5. Let�� R3 be a convex, smooth bounded domain and let " > 0 andM > 0.
Then, there exists C > 0 such that for every 0 < ' 2 C 2.x�/ with

R
�
' D M > 0 and

 2 C 3.x�/ that satisfy @�' D @� D 0 on @� we haveZ
�

j.r
p
'/TD2 .r

p
'/j

� C

�Z
�

jr
p
'j2
�3
C C C "

Z
�

'jD2 log'j2 C "
Z
�

jr� j2: (2.3)

Proof. By Hölder’s inequality, we haveZ
�

j.r
p
'/TD2 .r

p
'/j

�
1

2

Z
�

jr
p
'jjD2 j

jr'j

'3=4
'1=4

�
1

2
kr
p
'kL2.�/kD

2 kL6.�/





r'
'
3
4






L4.�/

k'1=4kL12.�/ (2.4)

for all 0 < ' 2 C 2.x�/ and  2 C 3.x�/.
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Since W 1;2.�/ ,! L6.�/ and
R
�
' DM , there is c1 > 0 such that

k'1=4kL12.�/ D k'
1=2
k
1=2

L6.�/
� c1k'

1=2
k
1=2

W 1;2.�/

� c1kr'
1=2
k
1=2

L2.�/
C c1k'

1=2
k
1=2

L2.�/
D c1.kr

p
'k

1=2

L2.�/
CM 1=4/

for all 0 < ' 2 C 2.x�/ with
R
�
' DM . In combination with (2.4), Lemma 2.4, Winkler’s

inequality (2.2), the elementary estimate

a.
p
aC
p
b/ � 2.aC b/

p
aC b for a; b � 0

and Young’s inequality, we see that by taking aDkr
p
'kL2.�/, bDM 1=2 and with some

c2 > 0 and C > 0, we haveZ
�

j.r
p
'/TD2 r.

p
'/j

� c2kr
p
'kL2.�/kr� kL2.�/

�Z
�

'jD2 log'j2
�1=4

.kr
p
'k

1=2

L2.�/
CM 1=4/

� 2c2.kr
p
'kL2 CM

1=2/
3
2

�Z
�

'jD2 log'j2
�1=4
kr� kL2

� Ckr
p
'k6
L2
C C C "

Z
�

'jD2 log'j2 C "kr� k2
L2

for all 0 < ' 2 C 2.x�/ and  2 C 3.x�/ with
R
�
' DM and @�' D @� D 0 on @�.

3. Known properties of the solutions

Next, we list some known properties of the solutions to (1.1)–(1.3) constructed in [5].

Lemma 3.1. Let

� � Rn; n 2 N; be a smooth, bounded domain; (3.1)

and let

u0; v0 2 W
1;p.�/ for some p > n with 0 6� u0 � 0 and v0 � 0 in �: (3.2)

Then, the system (1.1)–(1.3) has a maximal unique classical solution

.u; v/ 2 C 0.Œ0; Tmax/IW
1;p.�// \ C1.x� � .0; Tmax//; (3.3)

and if Tmax <1, then

lim sup
t%Tmax

.ku.�; t /kL1.�/ C kv.�; t /kL1.�// D1:

Moreover, u and v are positive in x� � .0; Tmax/.
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Proof. The existence of aC1.x�� .0;Tmax// solution that is nonnegative has been proved
in [5, Theorem 2.1]. Applying the Hopf lemma to each of the equations in (1.1) separately
(in view of the regularity (3.3),�v is bounded on x�� Œ�; T � for every 0 < � < T < Tmax),
due to zero Neumann boundary data (1.2), we arrive at the positivity of u and v for each
t 2 .0; Tmax/.

As noted in [5, equation (3)], integrating both equations in (1.1) immediately ensures
that both solution components are uniformly in time bounded in L1.�/.

Lemma 3.2. Suppose that the assumptions of Lemma 3.1 hold. Then, the solution .u; v/
of (1.1)–(1.3) given by Lemma 3.1 fulfills

ku.�; t /kL1.�/ D ku0kL1.�/;

kv.�; t /kL1.�/ D e�t .kv0kL1.�/ � ku0kL1.�//C ku0kL1.�/

for all t 2 .0; Tmax/.

Moreover, [5] has identified a Lyapunov functional, which served as the main ingredi-
ent for solving the question of global existence the two-dimensional case.

Lemma 3.3. Under the assumptions of Lemma 3.1 the solution .u; v/ satisfies

d
dt

�Z
�

u loguC
1

2

Z
�

jrvj2
�
D �

�Z
�

j�vj2 C

Z
�

jrvj2 C

Z
�

jruj2

u

�
(3.4)

for all t 2 .0; Tmax/. In particular,Z Tmax

0

�Z
�

j�vj2 C

Z
�

jrvj2 C

Z
�

jruj2

u

�
<1: (3.5)

Proof. The differential inequality (3.4) is entailed in [5, Lemma 2.2], upon which (3.5)
results by an integration in time as the Lyapunov functional is bounded from below.

4. The main estimate

This section contains our main contribution, a calculation of the evolution of the Fisher
information along the trajectories of (1.1)–(1.3). It is related to the Bakry–Émery calcula-
tion, see [1], applied however to a system of equations.

Throughout this section, we fix a domain and initial data fulfilling (3.1) and (3.2)
as well as the solution .u; v/ of (1.1)–(1.3), with maximal existence time Tmax given by
Lemma 3.1. Moreover, we denote

d
dt

�Z
�

j�vj2 C

Z
�

jrvj2 C

Z
�

jruj2

u

�
DW

d
dt
I.t/: (4.1)

Our aim is to obtain an estimate of I . Notice that I is an extended version of the Fisher
information. Indeed, in the case of a single heat equation, the quantity

R
�
jruj2

u
is called

Fisher’s information. The following remark explains our strategy.
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Remark 4.1. We note that the inequality PI � cI 2 would imply boundedness of I due
to (3.5). Indeed, using Ladyzhenskaya’s trick (see [11]), we would have

d
dt
.I.t/e�

R t
0 cI.s/ ds/ � 0:

Below, we formulate and prove our main contribution. It extends the calculation con-
trolling the evolution of the Fisher information to the case of a system of equations.

Lemma 4.2. For all t 2 .0; Tmax/, the estimate

PI.t/ � �2

Z
�

ujD2 loguj2 C 8
Z
�

.r
p
u/TD2v.r

p
u/

� 2

Z
�

jr�vj2 � 4

Z
�

j�vj2 � 2

Z
�

jrvj2 C 2

Z
�

ru � rv

holds.

Proof. We notice that

d
dt

Z
�

j�vj2 D 2

Z
�

�vt�v in .0; Tmax/:

From the second equation in (1.1), we can substitute �v D vt C v � u (equivalently, we
can take the inner product of the second equation in (1.1) with �vt ) to get

d
dt

Z
�

j�vj2 D 2

Z
�

�vt .vt C v � u/ D �2

Z
�

rvt � .rvt Crv � ru/

D �2

Z
�

jrvt j
2
�

d
dt

Z
�

jrvj2 C 2

Z
�

rvt � ru in .0; Tmax/: (4.2)

From (4.2), we get

d
dt

�Z
�

j�vj2 C jrvj2
�
D �2

Z
�

jrvt j
2
C 2

Z
�

rvt � ru in .0; Tmax/; (4.3)

and from (4.1) and (4.3), we obtain

PI.t/ D �2

Z
�

jrvt j
2
C 2

Z
�

rvt � ruC
d
dt

Z
�

jruj2

u
for all t 2 .0; Tmax/: (4.4)

Next, we compute the last term on the right-hand side,

d
dt

Z
�

jruj2

u
D 4

d
dt

Z
�

jr
p
uj2 D 8

Z
�

r%t � r% in .0; Tmax/; (4.5)

where we applied the substitution % WD
p
u. From the first equation in (1.1) we have

%t D
ut

2
p
u
D
�uCru � rv C u�v

2
p
u

D
�u

2
p
u
Cr% � rv C

1

2
%�v; (4.6)
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where

�% D div.r%/ D div
�
ru

2
p
u

�
D

�u

2
p
u
�
jruj2

4u3=2
D

�u

2
p
u
�
jr%j2

%
(4.7)

in � � .0; Tmax/. So, by plugging (4.7) into (4.6), we find that

%t D �%C
jr%j2

%
Cr% � rv C

1

2
%�v in � � .0; Tmax/:

Hence, (4.5) becomes

d
dt

Z
�

jruj2

u
D 8

Z
�

r% � r

�
�%C

jr%j2

%
Cr% � rv C

1

2
%�v

�
D 8

�Z
�

r% � r.�%/C

Z
�

2
.r%/TD2%.r%/

%
�

Z
�

jr%j4

%2

�
C 8

�Z
�

.r%/TD2%.rv/C

Z
�

.r%/TD2v.r%/

�
C 4

Z
�

r.%�v/ � r% in .0; Tmax/: (4.8)

Due to the Bochner formula (2.1),

r% � r.�%/ D �jD2%j2 C
1

2
�.jr%j2/ in � � .0; Tmax/;

we get Z
�

r% � r.�%/C

Z
�

2
.r%/TD2%.r%/

%
�

Z
�

jr%j4

%2

D �

Z
�

ˇ̌̌̌
D2% �

r%˝r%

%

ˇ̌̌̌2
C
1

2

Z
�

�.jr%j2/ in .0; Tmax/:

We note that the boundary condition

@u

@�

ˇ̌̌̌
@�

D 0

implies that
@%

@�

ˇ̌̌̌
@�

D

@u
@�

2
p
u

ˇ̌̌̌
@�

D 0

so that an integration by parts and an application of Lemma 2.2, which is possible thanks
to the convexity of the domain �, yieldZ

�

�.jr%j2/ D

Z
@�

@.jr%j2/

@�
� 0 in .0; Tmax/:
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Plugging the above into (4.8), we obtain

d
dt

Z
�

jruj2

u
� �2

Z
�

ujD2 loguj2

C 8

�Z
�

.r%/TD2%.rv/C

Z
�

.r%/TD2v.r%/

�
C 4

Z
�

r.%�v/ � r% in .0; Tmax/; (4.9)

where we also used the relationsZ
�

ˇ̌̌̌
D2% �

r%˝r%

%

ˇ̌̌̌2
D

Z
�

%2jD2 log %j2 D
1

4

Z
�

ujD2 loguj2

in the first term on the right-hand side.
We now focus on the last term in (4.9),

4

Z
�

r.%�v/ � r% D 4

Z
�

jr%j2�v C 4

Z
�

%r% � r.�v/: (4.10)

Integration by parts yields

4

Z
�

jr%j2�v D �4

Z
�

r.jr%j2/ � rv D �8

Z
�

.r%/TD2%.rv/ (4.11)

in .0;Tmax/. For the second term in (4.10) we substitute�v D vt C v � u from the second
equation in (1.1) to obtain

4

Z
�

%r% � r.�v/ D 2

Z
�

r%2 � r.vt C v � u/

D 2

Z
�

ru � rvt C 2

Z
�

ru � rv � 2

Z
�

jruj2 in .0; Tmax/: (4.12)

Inserting (4.11) and (4.12) in (4.9) gives

d
dt

Z
�

jruj2

u
� �2

Z
�

ujD2 loguj2 C 8
Z
�

.r%/TD2v.r%/

C 2

Z
�

ru � rvt C 2

Z
�

ru � rv � 2

Z
�

jruj2 in .0; Tmax/:

Therefore, going back to (4.4), we have

PI.t/ � �2

Z
�

ujD2 loguj2 C 8
Z
�

.r
p
u/TD2v.r

p
u/

� 2

Z
�

jrvt j
2
C 4

Z
�

rvt � ruC 2

Z
�

ru � rv � 2

Z
�

jruj2
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for all t 2 .0; Tmax/. Since

� 2

Z
�

jrvt j
2
C 4

Z
�

rvt � ru � 2

Z
�

jruj2

D �2

Z
�

jr.vt � u/j
2
D �2

Z
�

jr.�v � v/j2

D �2

Z
�

jr�vj2 � 4

Z
�

j�vj2 � 2

Z
�

jrvj2 in .0; Tmax/;

we obtain the desired estimate.

Next, we simplify the previous differential inequality, which will allow us to argue in
a more straightforward manner in the sequel.

Lemma 4.3. Throughout .0; Tmax/, it holds that

d
dt

�
4

Z
�

jr
p
uj2 C

Z
�

j�vj2
�

� �2

Z
�

ujD2 loguj2 � 2
Z
�

jr�vj2 � 2

Z
�

j�vj2

C 8

Z
�

.r
p
u/TD2vr

p
u:

Proof. This follows immediately from Lemma 4.2 and the fact that

d
dt

Z
�

jrvj2 D �2

Z
�

�vvt D �2

Z
�

j�vj2 � 2

Z
�

jrvj2 C 2

Z
�

rv � rv

in .0; Tmax/.

5. Proof of the main theorem

We are now in a position to utilise our calculation from Lemma 4.2 and complete the
proof of the announced result. As in the previous section, we fix a domain � and initial
data u0; v0 satisfying (3.1) and (3.2) as well as the solution .u; v/ of (1.1)–(1.3) given by
Lemma 3.1. Moreover, as the solution is unique by Lemma 3.1, Tmax is infinite if and only
if the solution with initial data .u.�; t0/; v.�; t0// for some t0 2 .0; Tmax/ exists globally.
Thus, by switching to the solution with these initial data and recalling (3.3), we may
assume u; v 2 C1.x� � Œ0; Tmax//.

The following lemma is the first step in a bootstrapping procedure yielding the required
regularity of the solution.

Lemma 5.1. Suppose that n D 3 and that � is convex. Let T 2 .0; Tmax� \ .0;1/ and
suppose that r

p
u 2 L4.0; T IL2.�//. Then, there is C > 0 such thatZ

�

u3.�; t / � C for all t 2 .0; T /:
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Proof. We define

J.t/ WD 4

Z
�

jr
p
uj2 C

Z
�

j�vj2:

Taking ' D u,  D v and " D 1
4

in Lemma 2.5 and making use of Lemma 4.3, we arrive
at

PJ.t/ � c1

�Z
�

jr
p
uj2
�3
C c1 � c1

�Z
�

jr
p
uj2
�2
J.t/C c1

in .0; T / for some c1 > 0. Thus, with

K.t/ WD c1

Z t

0

�Z
�

jr
p
uj2
�2
; t 2 .0; T /;

we have

J.t/ � eK.t/J.0/C c1

Z t

0

eK.t�s/ ds � eK.T /J.0/C c1T eK.T /

for all t 2 .0;T /. SinceK.T / <1 by assumption, we obtain boundedness of the quantity
supt2.0;T / kr

p
u.�; t /kL2.�/, which, in conjunction with Lemma 3.2, implies the desired

estimate as W 1;2.�/ embeds continuously into L6.�/.

Next, we show the higher regularity of the obtained solution.

Lemma 5.2. Under the assumptions of Lemma 5.1 there is C > 0 such that

ku.�; t /kL1.�/ C kv.�; t /kL1.�/ � C for all t 2 .0; T /:

Proof. We fix 3 < r < q <1. Making use of well-known semigroup estimates (cf. [19,
Lemma 1.3 (ii) and (iii)]), we obtain

krv.�; t /kLq.�/

� kret.��1/v0kLq.�/ C
Z t

0

ke.t�s/.��1/u.�; s/kLq.�/ ds

� c1e�tkrv0kLq.�/ C c2

Z t

0

�
1C .t � s/

� 12�
3
2 .
1
3�

1
q /

�
e�.t�s/ku.�; s/kL3.�/ ds

� c1krv0kLq.�/ C c2 sup
s2.0;T /

ku.�; s/kL3.�/

Z T

0

�
1C s

� 12�
3
2 .
1
3�

1
q /
�

ds

for all t2.0;T / and some c1; c2>0. Since�1
2
�
3
2
.1
3
�
1
q
/ >�1 and recalling Lemma 5.1,

we conclude that there is c3 > 0 such that

krv.�; t /kLq.�/ � c3 for all t 2 .0; T /:

Since q > 3, W 1;q.�/ embeds continuously into L1.�/, and so, the above estimate in
conjunction with Lemma 3.2 implies that supt2.0;T / kv.�; t /kL1.�/ is finite as well.
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Relying on the maximum principle and again on well-known semigroup estimates (cf.
[19, Lemma 1.3 (iv)]), we further estimate

ku.�; t /kL1.�/

� ket�u0kL1.�/ C
Z t

0



e.t�s/�r � .urv/.�; s/ ds



L1.�/

� ku0kL1.�/ C c4

Z t

0

�
1C .t � s/�

1
2�

3
2 .
1
r �

1
1
/
�
k.urv/.�; s/kLr .�/ ds

� ku0kL1.�/ C c4 sup
s2.0;t/

k.urv/.�; s/kLr .�/

Z T

0

�
1C s�

1
2�

3
2r
�

ds

for all t 2 .0; T / and some c4 > 0. Since with � WD rq
q�r

and � WD ��1
�
2 .0; 1/, we have

k.urv/.�; s/kLr .�/ � ku.�; s/kL�.�/krv.�; s/kLq.�/

� ku.�; s/k�L1.�/ku.�; s/k
1��
L1.�/

krv.�; s/kLq.�/

for all s 2 .0; T /, we see that there is c5 > 0 such that

ku.�; t /kL1.�/ � c5 C c5 sup
s2.0;t/

ku.�; s/k�L1.�/

for all t 2 .0;T /. For t 2 .0;T /, we set A.t/ WD sups2.0;t/ ku.�; t /kL1.�/. Since � 2 .0; 1/,
by means of Young’s inequality we obtain A.t/ � c5 C c5A� .t/ � c6 C 1

2
A.t/ for some

c6 > 0 (not depending on t ) and hence also A.t/ � 2c6 for all t 2 .0; T /. Taking t % T

shows that also u remains bounded in � � .0; T /.

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that Tmax <1, then Lemma 5.2 asserts boundedness of u
and v in�� .0; Tmax/. However, this contradicts the extensibility criterion in Lemma 3.1.

6. Conclusion

On the one hand, we obtained a condition which guarantees global existence of solutions
for the chemorepulsion system in three-dimensional space. This result can be improved, as
suggested to us by M. Winkler and an anonymous referee, see Appendix B. On the other
hand, we notice from our computations that the concavity of the function v would greatly
simplify our argument. It would lead to boundedness of the function I.t/, and hence to
the global existence of solutions, as shown in this paper. Indeed, we see from (2.3) that if
the function v is concave, i.e., its Hessian is negative-semidefinite,

xT D2v x � 0 for every x 2 Rn;
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we have the following differential inequality for I.t/:

PI.t/ � 0:

From equation (1.1), we see that v is not far from being concave. Taking a simplified
version of the equation for v [assuming vt D 0 and neglecting v on the right-hand side of
the second equation in (1.1)], we have

�v D �u � 0;

which would also hold if the Hessian of v was negative-semidefinite.
Verifying the concavity of a solution of a parabolic boundary value problem posed

on a convex domain has been studied before. In the context of one parabolic equation of
certain type, some positive results can be found in [10], for example. However, we are not
aware of any result in this direction for systems of equations.

A. A new inequality

As a byproduct of our arguments, we discovered a differential inequality relating the
second norm of the Hessian of the square-root of a positive function with the dissipation
of the Fisher information along the heat flow. Due to the fact that both of these quantities
appear in the calculation of the evolution of the Fisher information along the heat flow,
the following inequality is interesting in its own right and may have further applications.
In particular, it was used by the first author in [3], where global-in-time regular unique
solution to a 1D thermoelasticity system is obtained. Next, a very recent application of the
inequality (A.1) led to the interesting result in the theory of 1D combustion, see [13].

Lemma A.1. Let � � Rn be a smooth bounded domain. For every positive function u 2
C 2.x�/ with the boundary condition @u

@�

ˇ̌
@�
D 0, we haveZ

�

jD2
p
uj2 � C

Z
�

ujD2 loguj2; (A.1)

where C D 1C
p
n

2
C

n
8

.

Remark A.2. We note that the inequality (A.1) does not hold pointwise, i.e., there is no
constant C > 0 such that, for every positive u 2 C 2.x�/,

jD2
p
uj2 � CujD2 loguj2 in x�:

Proof of Lemma A.1. We first note that

ŒD2
p
u�2ij D

�
@xixj u

2u1=2
�
@xiu@xj u

4u3=2

�2
D
1

4

�
@xixj u

u1=2
�
1

2

@xiu@xj u

u3=2

�2
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and

uŒD2 logu�2ij D u
�
@xixj u

u
�
@xiu@xj u

u2

�2
D

�
@xixj u

u1=2
�
@xiu@xj u

u3=2

�2
in x�. Using the simple fact that .aC b/2 � 2.a2 C b2/, we get

ŒD2
p
u�2ij D

1

4

�
@xixj u

u1=2
�
@xiu@xj u

u3=2
C
1

2

@xiu@xj u

u3=2

�2
�
1

4

�
2

�
@xixj u

u1=2
�
@xiu@xj u

u3=2

�2
C
1

2

�
@xiu@xj u

u3=2

�2�
D
1

2
uŒD2 logu�2ij C

1

8

�
@xiu@xj u

u3=2

�2
:

Therefore, we obtain

jD2
p
uj2 D

nX
i;jD1

ŒD2
p
u�2ij �

nX
i;jD1

�
1

2
uŒD2 logu�2ij C

1

8

�
@xiu@xj u

u3=2

�2�
D
1

2
ujD2 loguj2 C

1

8

jruj4

u3
in x�: (A.2)

Applying Lemma 2.3 to (A.2), we getZ
�

jD2
p
uj2 �

�
1

2
C
1

8
.2C

p
n/2

�Z
�

ujD2 loguj2;

as required.

B. Alternative proof

This section is devoted to the presentation of the result communicated to us by M. Wink-
ler as well as one of the anonymous referees. It gives an alternative conditional result,
extending our Theorem 1.1. On the one hand, no convexity of the domain is required, on
the other hand, only a zero-order estimate of u is required.

The proof is based on the well-known fact that in dimension 3, bounding the L1..0;
Tmax/IL

p.�// norm of u for any p > 3
2

allows prolongation of a solution to (1.1), see,
for instance, [2].

Lemma B.1. Let � � R3 be a smooth, bounded domain and let u0; v0 be as in (3.2).
Suppose that the maximal existence time Tmax of the solution .u; v/ to (1.1)–(1.3) given by
Lemma 3.1 is finite. Then Z Tmax

0

ku.t/k2
L3.�/

dt D1: (B.1)

In particular, Z Tmax

0

kr
p
u.t/k4

L2.�/
dt D1:
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Proof. In view of the Gagliardo–Nirenberg inequality and conservation of mass, we only
need to verify (B.1). To this end, we suppose that (B.1) does not hold, which allows us to
first apply maximal Sobolev regularity theory to the second equation in (1.1) to see thatZ Tmax

Tmax
2

k�v.t/k2
L3.�/

dt <1: (B.2)

Then, we use the first equation in (1.1) along with an integration by parts to get

1

2

d
dt

Z
�

u2 C

Z
�

jruj2 C

Z
�

u2 �
1

2

Z
�

u2�v C

Z
�

u2

�
1

2
kuk2

L3.�/
k�vkL3.�/ C

Z
�

u2

in .0;1/. Next, applications of the Gagliardo–Nirenberg interpolation and Young’s in-
equality give for all t 2 .0; Tmax/,

1

2

d
dt

Z
�

u2 C

Z
�

jruj2 C

Z
�

u2

�

Z
�

.jruj2 C u2/C c1.k�vk
2
L3.�/

C 1/kuk2
L2.�/

for some constant c1 > 0.
Writing

y.t/ WD

Z
�

u2.�; t / and h.t/ WD 2c1.k�v.�; t /k
2
L3.�/

C 1/ for t 2 .0; Tmax/;

we arrive at a differential inequality

Py.t/ � h.t/y.t/ for all t 2 .0; Tmax/: (B.3)

Since h 2 L1.Tmax
2
; Tmax/ by (B.2), integration in time of (B.3) shows boundedness of u

in L1..0; Tmax/IL
2.�//, contradicting the finiteness of Tmax.
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