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Existence and ergodicity for the two-dimensional
stochastic Allen–Cahn–Navier–Stokes equations

Aristide Ndongmo Ngana and Theodore Tachim Medjo

Abstract. We study in this article a stochastic version of a coupled Allen–Cahn–Navier–Stokes
model in a two-dimensional bounded domain. The model consists of the Navier–Stokes equations
for the velocity, coupled with an Allen–Cahn model for the order (phase) parameter, both endowed
with suitable boundary conditions. We prove the existence of solutions via a semigroup approach.
We also obtain the existence and uniqueness of an invariant measure via coupling methods.

1. Introduction

We study the existence and ergodicity of the stochastic Allen–Cahn–Navier–Stokes equa-
tions (AC-NSEs)8̂̂̂̂

<̂
ˆ̂̂:

duC Œ���uC .u � r/uCrp� dt DK�r� dt C
p
Q1 dW1.t/;

div u D 0;

d� C Œu � r� C �� dt D
p
Q2 dW2.t/;

� D ���� C f̨ .�/

(1.1)

in .0;C1/ �O, subject to the boundary and initial conditions´
u D 0; @�

@�
D 0 on .0;C1/ � @O;

u.0; x/ D u0.x/; �.0; x/ D �0.x/ in O;
(1.2)

where � is the unit outward normal to the boundary @O. Model (1.1) is an example of
a diffuse interface model, and it is well accepted that diffuse interface models are well-
known tools to describe the dynamics of complex (e.g., binary) fluid [1]. For instance, this
approach is used in [4] to describe cavitation phenomenon in a flowing liquid. The model
consists of the Navier–Stokes equation coupled with the phase-field system [8,17,18,25].
In (1.1)–(1.2), O � R2 is a bounded, open, and simply connected domain with smooth
boundary @O, and u D .u1; u2/ denotes the fluid velocity field, � is the order (phase)
parameter, which represents the relative concentration of one of the fluids, p stands for the
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pressure, �, K is the kinematic viscosity of the fluid and the capillarity (stress) coefficient,
respectively, and �; ˛ > 0 are two physical parameters describing the interaction between
the two phases. In particular, � is related to the thickness of the interface separating the
two fluids, provided that the diffuse interface between the phases has a small but non-zero
thickness. The quantity �, also called chemical potential, is the variational derivative of
the following free energy functional:

F .�/ D

Z
O

� �
2
jr�j2 C ˛F.�/

�
dx; (1.3)

where, e.g., F.r/D
R r
0
f .�/d�.W1 andW2 are independent cylindrical Wiener processes

defined in a filtered space .�;F ;Ft ; P / taking value in appropriate Hilbert spaces H1,
H2, respectively. Finally,Q1 andQ2 are linear continuous, positive, and symmetric oper-
ators on H1 and H2, respectively (see (2.8) below).

Herein, we prove the existence and uniqueness of a solution .u.t;u0; �0/;�.t;u0; �0//
of the stochastic AC-NSEs (1.1)–(1.2) and of the corresponding invariant measure on
the space H1 �H2 defined in Section 2 below. The deterministic version of the Allen–
Cahn–Navier–Stokes system (1.1)–(1.2) was extensively studied in the literature (see,
e.g., [18, 25], and the references therein). As noted in [6, 23, 24], stochastic partial dif-
ferential equations (SPDE) can be used to describe systems that are too complex to be
described deterministically, e.g., a flow of a chemical substance in a river subjected to
wind and rain, an airflow around an airplane wing perturbed by the random state of the
atmosphere and weather, etc. With the development of the theory of stochastic processes,
systems such as the Navier–Stokes equations perturbed by noises have been widely inves-
tigated with the goal of better understanding the complex phenomenon of turbulent flow.
The mathematical theory of the stochastic Navier–Stokes equations is very rich, covering
a broad area of deep results on existence of solutions, dynamical system features (i.e., how
the system behaves and evolves over time, including stability, attractors, long-time behav-
ior of the solutions, etc.), ergodicity, and many more. Let us recall that the presence of
noise in a model can lead to new and important phenomena. For instance, contrary to the
deterministic case, it is known that the 2D Navier–Stokes system driven with a sufficiently
non-degenerate noise has a unique invariant measure and hence exhibits ergodic behavior
in the sense that the time average of a solution is equal to the average over all possible
initial data [6]. Recently, instead of stochastic Navier–Stokes equation, many authors have
also studied ergodicity for the solutions of the stochastic magneto-hydrodynamics equa-
tions (see [2]), the solution of the stochastic Boussinesq equations (see [15, 20, 21] and
the references therein), and the solutions of the stochastic magneto-hydrodynamics alpha
model (see [31]); and this list is not exhaustive.

Let us mention that although we drew our inspiration from [2, 21], the problem we
treat here does not fall into the framework of these references. Besides the usual nonlinear
term of the conventional Navier–Stokes system, the model (1.1)–(1.2) contains another
(stronger) nonlinear term that results from the coupling of the convective Allen–Cahn
equation and the Navier–Stokes system. Because of this fact, the analysis of the existence
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and uniqueness of invariant measures of the 2D stochastic AC-NSEs driven by degenerate
additive noise tend to be more complicated and subtle than of the same study done in [2]
or [21]. For more details, see, for instance, the proof of Proposition 3.1 in Section 3, or
the derivation of the estimates (3.12), (3.28), and (3.34), just to cite a few. Furthermore,
the technical method used here to derive the proof of Lemma 4.2 in Section 4 is different
from that used in [2, 21], primarily due to the presence of the term f in the system
of equations, which is difficult to control. This makes the mathematical analysis of the
problem very challenging.

The paper is organized as follows. In Section 2, we gather all the necessary tools for the
operator formulation of problem (1.1)–(1.2). In Section 3, we provide the main existence
and uniqueness result for (1.1)–(1.2), which is proven via an approximating regularizing
scheme. In Section 4, we establish the existence of an invariant measure �� corresponding
to the stochastic flow t 7! .u.t/; �.t// and its uniqueness via coupling methods, following
[2, 13, 27]. Furthermore, the uniqueness of the invariant measure implies that the flow is
ergodic, i.e.,

lim
T!1

1

T

Z T

0

‰.u.t/; �.t// dt D
Z

Y
‰ d��

for all ‰ 2 L2.Y I��/ (Y is defined in (2.3) below), which agrees with some physical
hypotheses on the AC-NSEs, which model the flow of two fluids (for instance, oil and
water).

2. Functional setting and formulation of the problem

We introduce necessary definitions of functional spaces frequently used in this work.
Given two Banach spaces E1; E2, L.E1; E2/ is the space of bounded linear operators
from E1 to E2. If X is real Hilbert space with inner product .�; �/X , then we denote
the induced norm by k � kX , while X 0 will indicate its (topological) dual. If E1 and X1
are separable Hilbert spaces, then by L2.E1; X1/ we will denote the Hilbert space of all
Hilbert–Schmidt operators fromE1 toX1 endowed with the canonical norm k � kL2.E1;X1/.
For any p 2 Œ1;1/ and s 2R, we denote by Lp.O/ andW s;p.O/ the usual Lebesgue and
Sobolev spaces of scalar functions, respectively. If p D 2, we simply write W s;2.O/ D

H s.O/. We denote by H 1
0 .O/ the closure of C10 .O/ in H 1.O/. We use the notations

Lp.O/, W s;p.O/, and Hs.O/ to denote the spaces ŒLp.O/�2, ŒW s;p.O/�2, and ŒH s.O/�2,
respectively.

We introduce the following spaces:

V D ¹v 2 ŒC10 .O/�
2 such that div v D 0º;

H1 D the closure of V in L2.O/;

V1 D the closure of V in ŒH 1
0 .O/�

2:

We denote by .�; �/ and j � j the inner product and the norm induced by the inner product
and the norm in L2.O/ on H1, respectively. We endow H1 with the scalar product and
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norm of L2.O/. As usual, we equip the space V1 with the gradient-scalar product and the
gradient-norm jr � j WD k � k, which is equivalent to the ŒH 1

0 .O/�
2-norm (due to Poincaré’s

inequality).
We now define the operator A0 by

A0u D �P�u 8u 2 D.A0/ D H2.O/ \ V1;

where P is the Leray–Helmholtz projector in L2.O/ onto H1. Then, A0 is a self-adjoint
positive unbounded operator in H1 which is associated with the scalar product defined
above. Furthermore, A�10 W H1 ! H1 is a self-adjoint linear compact operator on H1 and
jA0 � j is a norm on D.A0/ that is equivalent to the H2.O/-norm.

We introduce the linear nonnegative unbounded operator on L2.O/

A1� D ��� 8� 2 D.A1/ D ¹� 2 H
2.O/; @�� D 0; on @Oº; (2.1)

and we endow D.A1/ with the norm jA1 � j C jh�ij, which is equivalent to the usual
H 2.O/-norm. For a fixed  > 0, we define the following operator:

A� D ��� C � 8� 2 D.A / WD ¹� 2 H
2.O/; @�� D 0; on @Oº:

Note also that A�1 is a compact linear operator on L2.O/ and jA � j is a norm on D.A /
that is equivalent to the H 2.O/-norm.

Hereafter, we set

H2 D L
2.O/; V2 D D.A

1=2
 /; H D H1 �H2; V D V1 � V2: (2.2)

In order to define the variational setting for the Allen–Cahn–Navier–Stokes equations
(1.1)–(1.2), we also need to introduce the bilinear operators B0; B1 (and their associ-
ated trilinear forms b0; b1) as well as the coupling mapping R0 which are defined, from
V1 �D.A0/ into H1, V1 � D.A / into H2, and H2 � D.A

3=2
 / into H1, respectively.

More precisely, we set

.B0.u; v/;w/ D

Z
O

.u � r/v �w dx D b0.u; v;w/ 8u; v;w 2 D.A0/;

.B1.u; '/;  / D

Z
O

Œ.u � r/'� dx D b1.u; ';  / 8u 2 V1; ';  2 D.A /;

.R0.�; '/;w/ D

Z
O

�Œr' �w� dx D b1.w; '; �/ 8w 2 V1; � 2 H2; ' 2 D.A
3=2
 /:

Let us point out that
R0.�; '/ D P�r':

Now, we define the Hilbert spaces Y and V by

Y D H1 � V2; V D V1 �D.A /; (2.3)
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endowed with the scalar products whose associated norms are, respectively,

j.u; �/j2Y DK�1juj2 C �.jr�j2 C  j�j2/; .u; �/ 2 Y ;

k.u; �/k2V D �K�1kuk2 C �2jA�j
2

8.u; �/ 2 V :
(2.4)

We recall that B0, B1, and R0 satisfy the following estimates (see, for instance, [14, 18,
25]):

kB0.u; v/kV 01 � cjuj
1=2
kuk1=2jvj1=2kvk1=2 8u; v 2 V1;

kB0.u;u/k
2
� ckukjA0uj

3
8u 2 D.A0/;

jB1.u; �/jL2 � cjuj
1=2
kuk1=2jA1=2 �j1=2jA�j

1=2
8u 2 V1; � 2 D.A /;

kR0.A�; �/kV 01 � cjA
1=2
 �j1=2jA�j

1=2
jA�j 8�; � 2 D.A /

(2.5)

for some positive constant c D c.O; /.
Using the previous notations, the problem (1.1)–(1.2) can be formally written in the

following abstract form:8̂̂̂̂
<̂
ˆ̂̂:

duC Œ�A0uC B0.u;u/ �KR0.�A�; �/� dt D
p
Q1 dW1.t/ in V 01;

d� C ŒB1.u; �/C � � dt D
p
Q2 dW2.t/ in V 02;

� D �A� C f̨ .�/;

u.0/ D u0; �.0/ D �0;

(2.6)

with f .r/ D f .r/ � ˛�1�r , � � ˛.
Hereafter, we will denote by � > 0 and ` > 0 two positive constants such that

�jvj2 � kvk2; `jA1=2 �j2 � jA�j
2
8.v; �/ 2 V : (2.7)

Remark 2.1. Since rF .�/ D f .�/r�, then

�r� D �A�r� C ˛rF .�/:

The term rF .�/ can be incorporated into the pressure gradient. Hence, we could replace
R0.� ; �/ by R0.�A�; �/.

Let .�;F ; F D ¹Ftºt�0;P / be a filtered probability space satisfying the usual con-
ditions (namely, it is complete, right-continuous and F0 contains all null sets). Let ˇi

k

(k D 1; 2; : : : ; i D 1; 2) be a sequence of real-valued one-dimensional standard Brownian
motions mutually independent on .�;F ;P /. Let

Q1 D A
�s0
0 ; Q2 D A

�s0
1 ; 1=2 < s0 < 1 (2.8)

be a nonnegative define symmetric operator on H1 (resp., H2), ¹e1
k
ºk�1, ¹e2

k
ºk�1 two

complete orthonormal basis of eigenfunctions of A0, respectively, A1 diagonalizing Q1
and Q2, respectively, and ¹�i

k
ºk�1, i D 1; 2 be the corresponding eigenvalues so that

Q1e
1
k D �

1
ke
1
k ; Q2e

2
k D �

2
ke
2
k 8k � 1:
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Since Q1 (resp., Q2) is of trace-class, it follows that

TrQ1 D
1X
kD1

.Q1e
1
k ; e

1
k/L2 D

1X
kD1

�1k <1;

TrQ2 D
1X
kD1

.Q2e
2
k ; e

2
k/L2 D

1X
kD1

�2k <1:

(2.9)

We suppose furthermore that

ƒ WD

1X
kD1

jr.Q
1
2
2 e

2
k/j

2
L2
D

1X
kD1

�2kjre
2
kj
2
L2
<1: (2.10)

The cylindrical Wiener process W D .W1; W2/ on H D H1 �H2 has the following rep-
resentation:

Wi D

C1X
kD1

ˇike
i
k ; i D 1; 2:

Note that the dependence on the variables is as follows:

Wi .t; x; !/ D

C1X
kD1

ˇik.t; !/e
i
k.x/; .t; !; x/ 2 RC �� �O:

Now, we consider the stochastic convolution that is the mild solution of the problem´
dWA.t/CAWA.t/ dt D

p
Q dW.t/;

WA.0/ D 0;
(2.11)

given by

WA.t/ D

Z t

0

e�.t�s/A
p
Q dW.s/ WD .WA0.t/;WA .t//;

where

A D

�
�A0 0

0 �A

�
; Q D

�
Q1 0

0 Q2

�
:

In the rest of the paper, we will assume thatp
Q1.A0/

ı and
p
Q2.A /

ı are bounded operators: (2.12)

Then,

ke��.t�s/A
p
Q2k

2
L2.H2;D..A /� //

� k
p
Q2.A /

ı
k
2
L.H2;H2/

k.A /
��ıe��A .t�s/k2L2.H2;H2/

D k
p
Q2.A /

ı
k
2
L.H2;H2/

1X
kD1

.�2k/
2.��ı/e�2��

2
k
.t�s/; (2.13)
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where e2
k

is the orthonormal basis of eigenvectors of A D A1 C I and �2
k

are the eigen-
values.

Note that by Itô’s isometry property of stochastic integral, we have

EkWA .t/k
2
D..A /� /

D E

 Z t

0

e��A .t�s/
p
Q2 dW2.s/

2
D..A /� /

D E

Z t

0

ke��A .t�s/
p
Q2k

2
L2.H2;D..A /� //

ds

D

Z t

0

ke��A .t�s/
p
Q2k

2
L2.H2;D..A /� //

ds:

Now, sinceZ t

0

1X
kD1

.�2k/
2.��ı/e�2�.�

2
k
/.t�s/ ds D

1

2�

1X
kD1

.�2k/
2.��ı/�1.1 � e�2�.�

2
k
/t / and �2k � ck;

we infer that the Gaussian process WA lives in D..A /� / provided that

ı > �:

By arguing similarly as in the proof of Proposition 34 (see [10, Section 5.3] for more
details), it can be shown that, in this case,

WA 2 C.Œ0; T �ID..A /
� //; P -a.s.

Hereafter, we fix
� 2 ¹1=4I 1I 3=2º and ı > 3=2:

By the Gagliardo–Nirenberg inequality, i.e.,

kxkL4.O/ � cjxj
1=2

L2.O/
kxk

1=2

H1.O/
� cjxj

1=2

L2.O/
jA1=2 xj

1=2

L2.O/
; x 2 D.A1=2 /;

and the embedding of D.A1=4 / in L4.O/, we deduce that WA is a Gaussian process in
L4.O/. More precisely, we have

EkWA .t/k
2
L4.O/

<1: (2.14)

Analogously, we find

WA0 2 C.Œ0; T �IH1/ � L
4.Œ0; T � �O/; P -a.s. (2.15)

Now, arguing similarly as previously and by making use of the Burkholder–Davis–Gundy
inequality, we obtain

E sup
t2Œ0;T �

kWA .t/k
4
D..A /� /

� c

�Z t

0

ke��.t�s/A
p
Q2k

2
L2.H2;D..A /� //

ds
�2
:
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Consequently,

E sup
t2Œ0;T �

kWA .t/k
4
D..A /� /

<1 iff (2.12) holds with ı > 3=2: (2.16)

In particular, for � D 1, we have

E sup
t2Œ0;T �

kWA .t/k
4
D.A /

<1: (2.17)

Also thanks to the embedding of D..A /1=4/ in L4.O/, we deduce that, for � D 1=4,

E sup
t2Œ0;T �

kWA .t/k
4
L4.O/

<1: (2.18)

As a direct consequence of (2.16), we infer that, for � D 3=2,

E sup
t2Œ0;T �

kWA .t/k
4

D.A
3=2
 /

<1: (2.19)

Analogously, we find
E sup
t2Œ0;T �

kWA0.t/k
4
D.A0/

<1; (2.20)

provided that (2.12) holds and ı > 3=2.
From now on,A0 andA will satisfy (2.15) and (2.20), (2.17), and (2.19), respectively.

Assumption on f

(H1) We assume that f 2 C2.R/ satisfies´
limjrj!C1 f 0.r/ > 0;

jf .i/.r/j � cf .1C jr j
2�i / 8r 2 R; i D 0; 1; 2;

(2.21)

where cf is some positive constant.

(H2) We also assume that

.f .�/; A1�/ � �1jA
1=2
1 �j2 8� 2 D.A

1=2
1 / (2.22)

for some constant 1 > 0.

Let us point out that (2.22) is satisfied if there exists a positive constant 2 such that

f 0.r/ � �2 8r 2 R: (2.23)

3. Existence and uniqueness result for problem (2.6)

With the above framework in place, we now define the notion of local weak solutions of
the stochastic Allen–Cahn–Hilliard–Navier–Stokes equations (2.6) that we will work with
in this work.
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Definition 3.1. Let the assumptions on f be satisfied, and let

S D ¹�;F ; ¹Ftºt�0;P ; ¹ˇ
i
k.t/; t � 0; k D 1; 2; 3; : : : I i D 1; 2ºº

be a given stochastic basis and .u0; �0/ 2 H1 � V2. By the solution to problem (2.6), we
mean a pair of functions .u.t/; �.t// 2 L2W .0; T IV / such that P -a.s.8̂̂̂<̂
ˆ̂:

u.t/C
R t
0
Œ�A0uC B0.u;u/ �KR0.�A�; �/� ds D u0 C

p
Q1W1.t/;

�.t/C
R t
0
ŒB1.u; �/C � � ds D �0 C

p
Q2W2.t/;

� D �A� C f̨ .�/:

(3.1)

With the above definition in mind, we are now ready to formulate our main existence
result in the following theorem.

Theorem 3.1. Let T > 0 be a fixed positive time. Problem (2.6) has a unique solution
.u; �/ in the sense of Definition 3.1. Moreover,

(i) .u.t/; �.t// 2 C.0; T IH1 � V2/, P -a.s;

(ii) the mapH1�H2! L1.0; T IH1�V2/\L
2.0; T IV /, .u0; �0/ 7! .u.t/; �.t//

is continuous P -a.s.

To prove Theorem 3.1, we introduce the following translated unknown processes:

v.t/ D u.t/ �WA0.t/;  .t/ D �.t/ �WA .t/;

where .u; �/ is the solution to (2.6).
One can easily check that the deterministic functions v and  satisfy8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

v0 C �A0vC B0.v; v/C B0.v; WA0/C B0.WA0 ; v/ �KR0.�A ; /

D �B0.WA0 ; WA0/CKR0.�AWA ;  /CKR0.�A ;WA /

CKR0.�AWA ; WA /;

 0 C B1.v;  /C B1.v; WA /C B1.WA0 ;  /C �A C �WA

D �B1.WA0 ; WA / � f̨ . CWA /;

v.0/ D u0;  .0/ D �0;

(3.2)

where the derivatives v0 and  0 are taken in the sense of vectorial V 01 (resp., V 02) valued
distributions on .0; T / or, equivalently, a.e. on Œ0; T �.

We will now prove that problem (3.2) is well defined, and it is taking a considerable
part of this paper.

Proposition 3.1. Let T > 0 be a fixed positive time. Suppose that .u0; �0/ 2 H1 � V2.
Then, there is a unique solution .v;  / 2 L2W .0; T IV / to (3.2) such that P -a.s. .v;  / W
Œ0; T �! V 0 is absolutely continuous on Œ0; T � and P -a.s.

(i) dv.t/
dt 2 L

2.0; T IV 01/,
d .t/

dt 2 L
2.0; T I .D.A //

0/,
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(ii) v 2 C.0; T IH1/ and  2 C.0; T IV2/.

Proof of Proposition 3.1. Let "> 0 be fixed. We consider the following approximate prob-
lem: 8̂̂̂̂

ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

v0" C �A0v" C‰
1
" .v"/C B0.v"; WA0/C B0.WA0 ; v"/

�K‰2" .v";  "/ �KR0.�AWA ;  "/ �KR0.�A "; WA /

D �B0.WA0 ; WA0/CKR0.�AWA ; WA /;

 0" C �A " C‰
3
" .v";  "/C B1.v"; WA /C B1.WA0 ;  "/

D � f̨ . " CWA / � B1.WA0 ; WA / � �WA ;

v".0/ D u0;  ".0/ D �0;

(3.3)

P -a.s. and a.e. t 2 Œ0; T �. Here,

‰1" .v/ D

8<:B0.v; v/ if kvk � 1=";
B0.v;v/
"2kvk2 if kvk > 1=";

‰2" .v;  / D

8<:R0.�A ; / if kvk C jA j � 1=";
R0.�A ; /

"2.kvkCjA j/2
if kvk C jA j > 1=";

‰3" .v;  / D

8<:B1.v;  / if kvk C jA j � 1=";
B1.v; /

"2.kvkCjA j/2
if kvk C jA j > 1=":

Now, in order to prove that (3.3) is well defined, we will use the standard Galerkin method
used in the deterministic case (see, for instance, [25]). Since the injectionH1 �H 1.O/ �

V1 �D.A / is compact, let ¹.wi ; �i /; i D 1; 2; 3; : : :º � V1 �D.A / be an orthonormal
basis of H1 � H 1.O/, where ¹wi ; i D 1; 2; : : :º, ¹�i ; i D 1; 2; : : :º are eigenvectors of
A0 and A , respectively. We set Vn D span¹.w1; �1/; : : : ; .wn; �n/º, and we look for
.vn" ;  

n
" / 2 Vn solution to the ordinary differential equations8̂̂̂̂

ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

dvn"
dt C A0v

n
" CP 1

n‰
1
" .v

n
" /CP 1

nB0.v
n
" ; WA0/CP 1

nB0.WA0 ; v
n
" /

�P 1
n‰

2
" .v

n
" ;  

n
" / �P 1

nR0.AWA ;  
n
" / �P 1

nR0.A 
n
" ; WA /

D �P 1
nB0.WA0 ; WA0/CP 1

nR0.AWA ; WA /;

d n"
dt C A 

n
" CP 2

n‰
3
" .v

n
" ;  

n
" /CP 2

nB1.v
n
" ; WA /CP 2

nB1.WA0 ;  
n
" /

D �f . 
n
" CWA / �P 2

nB1.WA0 ; WA / � P 2
nWA ;

vn" .0/ D P 1
nu0;  n" .0/ D P 2

n�0;

(3.4)

where .P 1
n ;P

2
n / W H1 � L

2.O/! Vn is the orthogonal projection; and for the sake of
simplicity, we set � D K D � D ˛ D 1. It is classical that, P -a.s., there exists a unique
.vn" ;  

n
" / in C.0; T I Y / and by taking the scalar product in H1 of (3.4)1 with vn" , then
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taking the scalar product in L2.O/ of (3.4)2 with A n" ,

1

2

d
dt
.jvn" j

2
C jA1=2  n" j

2/C kvn"k
2
C jA 

n
" j
2
C .B0.v

n
" ; WA0/; v

n
" /

� .R0.AWA ;  
n
" /; v

n
" /C .B1.WA0 ;  

n
" /; A 

n
" /

D �.B0.WA0 ; WA0/; v
n
" /C .R0.AWA ; WA /; v

n
" / � .A

1=2
 f . 

n
" CWA /; A

1=2
  n" /

� .B1.WA0 ; WA /; A 
n
" / � .WA ; A 

n
" /: (3.5)

Now, by making use of the Hölder, Ladyzhenskaya, and suitable Young inequalities, we
find

j.B0.v
n
" ; WA0/; v

n
" /j D j � .B0.v

n
" ; v

n
" /;WA0/j

� kvn"kL4.O/kv
n
"kkWA0kL4.O/

� c.O/jvn" j
1
2 kvn"k

3
2 kWA0kL4.O/

�
1

6
kvn"k

2
C c.O/kWA0k

4
L4.O/jv

n
" j
2: (3.6)

By the Hölder, the Gagliardo–Nirenberg, and the Young inequalities together with the
embedding of H1.O/ in L4.O/, we obtain

j.R0.AWA ;  
n
" /; v

n
" /j � jAWA jkr 

n
" kL4.O/kv

n
"kL4.O/

� c.O/jAWA jjA 
n
" jjv

n
" j

1
2 kvn"k

1
2

�
1

6
kvn"k

2
C

1

10
jA 

n
" j
2
C c.O/jAWA j

4
jvn" j

2: (3.7)

Using the Hölder and the Gagliardo–Nirenberg inequalities once again, we have

j.B1.WA0 ;  
n
" /; A 

n
" /j � kWA0kL4.O/kr 

n
" kL4.O/jA 

n
" j

� c.O/kWA0kL4.O/jr 
n
" j

1
2 jA 

n
" j

3
2

�
1

10
jA 

n
" j
2
C c.O/kWA0k

4
L4.O/jr 

n
" j
2; (3.8)

where we used the Young inequality.
Thanks to the Hölder and the Young inequalities, we find

j.�B0.WA0 ; WA0/; v
n
" /j C j.R0.AWA ; WA /; v

n
" /j

D j.B0.WA0 ; v
n
" /;WA0/j C j.R0.AWA ; WA /; v

n
" /j

� c.O/kWA0k
2
L4.O/kv

n
"k C c.O/jAWA j

2
kvn"k

�
1

6
kvn"k

2
C c.O/kWA0k

4
L4.O/ C c.O/jAWA j

4: (3.9)
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Using the Hölder and the Young inequalities in conjunction with the embedding of H1.O/

in L4.O/, we obtain

j.B1.WA0 ; WA /; A 
n
" /j � c.O/kWA0kL4.O/jAWA jjA 

n
" j

�
1

10
jA 

n
" j
2
C c.O/kWA0k

2
L4.O/jAWA j

2

�
1

10
jA 

n
" j
2
C c.O/kWA0k

4
L4.O/ C c.O/jAWA j

4: (3.10)

Thanks to the Cauchy–Schwarz and the Young inequalities, we infer that

j.WA ; A 
n
" /j �  jWA jjA 

n
" j �

1

10
jA 

n
" j
2
C c2jWA j

2

�
1

10
jA 

n
" j
2
C c jA1=2 WA j

2: (3.11)

Let us proceed to the third term on the right-hand side of (3.5). One has

� ..A1=2  n" C A
1=2
 WA /f

0
 . 

n
" CWA /; A

1=2
  n" /

D �..A1=2  n" C A
1=2
 WA /f

0. n" CWA /; A
1=2
  n" /

C .A1=2  n" C A
1=2
 WA ; A

1=2
  n" /:

Using the Cauchy–Schwarz and the Young inequalities, we deduce that

.A1=2  n" C A
1=2
 WA ; A

1=2
  n" / �  jA

1=2
  n" j

2
C  jA1=2  n" jjA

1=2
 WA j

�
3

2
jA1=2  n" j

2
C


2
jA1=2 WA j

2:

In light of (2.23), we have

�.A1=2  n" f
0. n" CWA /;A

1=2
  n" /D�

Z
O

f 0. n" CWA /jA
1=2
  n" j

2 dx� 2jA1=2  n" j
2:

From (2.21)2 together with the Gagliardo–Nirenberg inequality, we infer that

j � .A1=2 WAf
0. n" CWA /; A

1=2
  n" /j

�

Z
O

jf 0. n" CWA /jjA
1=2
 WA jjA

1=2
  n" j dx

� cf

Z
O

.1C j n" CWA j/jA
1=2
 WA jjA

1=2
  n" j dx

� cf jA
1
2
WA jjA

1
2
  

n
" j C cf .k 

n
" kL3.O/ C kWA kL3.O//kA

1
2
WA kL3.O/kA

1=2
  n" kL3.O/

� cf jA
1=2
 WA jjA

1=2
  n" j

C cf 
� 13 .1C �1/

1
2 c.O/jA1=2  n" j

5
3 jA1=2 WA j

2
3 jAWA j

1
3 jA 

n
" j

1
3

C cf 
� 13 .1C �1/

1
2 c.O/jA1=2 WA jjAWA j

1
3 jA1=2  n" j

2
3 jA 

n
" j

1
3 :
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Using now the Young inequality, we find

j � .A1=2 WAf
0. n" CWA /; A

1=2
  n" /j

�
1

10
jA 

n
" j
2
C
cf

2
jA1=2  n" j

2
C
cf

2
jA1=2 WA j

2

C c.O/c
6
5

f
�

2
5 .1C �1/

3
5 jA1=2 WA j

4
5 jAWA j

2
5 jA1=2  n" j

2

C c
6
5

f
�

2
5 .1C �1/

3
5 c.O/jA1=2 WA j

6
5 jAWA j

2
5 jA1=2  n" j

4
5

�
1

10
jA 

n
" j
2
C
cf

2
jA1=2 WA j

2
C c2f 

� 23 .1C �1/jA1=2 WA j
2
jAWA j

2
3

C

�
2 C

cf

2
C c.O/c

6
5

f
�

2
5 .1C �1/

3
5 jA1=2 WA j

4
5 jAWA j

2
5 C c.O/

�
jA1=2  n" j

2:

Consequently,

� .A1=2 f . 
n
" CWA /; A

1=2
  n" /

�
1

10
jA 

n
" j
2
C
 C cf

2
jA1=2 WA j

2
C c2f 

� 23 .1C �1/jA1=2 WA j
2
jAWA j

2
3

C

�
2 C

3

2
C
cf

2
C c.O/c

6
5

f
�

2
5 .1C �1/

3
5 jA1=2 WA j

4
5 jAWA j

2
5 C c.O/

�
� jA1=2  n" j

2: (3.12)

Collecting now the estimates (3.6)–(3.12) and inserting all of them in (3.5), we obtain the
following differential inequality:

d
dt
.jvn" j

2
C jA1=2  n" j

2/C kvn"k
2
C jA 

n
" j
2

� ckWA0k
4
L4.O/ C cjAWA j

4
C c.cf C 1/jA

1=2
 WA j

2
C cc2f jA

1=2
 WA j

2
jAWA j

2
3

C c.kWA0k
4
L4.O/ C jAWA j

4/jvn" j
2

C c
h
1C kWA0k

4
L4.O/ C cf C c

6
5

f
jA1=2 WA j

4
5 jAWA j

2
5

i
jA1=2  n" j

2 (3.13)

for some positive constant c D c.O; ; 2/.
Integrating (3.13) in time over Œ0; t �, where t 2 Œ0; T �, we deduce that

jvn" .t/j
2
C jA1=2  n" .t/j

2
C

Z t

0

kvn" .s/k
2 ds C

Z t

0

jA 
n
" .s/j

2 ds

� cc1 C

Z t

0

k.s/.jvn" .s/j
2
C jA1=2  n" .s/j

2/ ds (3.14)

for some positive constant c D c.O; ; 2; cf /. We note that the constant c is independent
of " and n. Here,

c1 D ju0j
2
C jA1=2 �0j

2
L2
C

Z T

0

.kWA0.s/k
4
L4.O/ C jAWA .s/j

4
C jA1=2 WA .s/j

2/ ds

C

Z T

0

jA1=2 WA .s/j
2
jAWA .s/j

2
3 ds;
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k.s/ D c.1C kWA0.s/k
4
L4.O/ C jAWA .s/j

4
C jA1=2 WA .s/j

4
5 jAWA .s/j

2
5 /:

Hence, by the generalized Gronwall–Bellman lemma (see, for instance, [26, Corollary 1]),
we get

jvn" .t/j
2
C jA1=2  n" .t/j

2
� cc1 exp

�Z t

0

k.�/ d�
�
8t 2 Œ0; T �: (3.15)

Furthermore, from (3.14) and (3.15), we infer thatZ t

0

kvn" .s/k
2 ds C

Z t

0

jA 
n
" .s/j

2 ds � cc1 exp
�Z t

0

k.�/ d�
�
8t 2 Œ0; T �: (3.16)

As a direct consequence of (3.15) and (3.16), we can say that (for a fixed ") .vn" ;  
n
" / is

P -a.s. uniformly bounded in

L1.0; T IH1 � V2/ \ L
2.0; T IV1 �D.A //:

It then follows from the Banach–Alaoglu theorem that there exists a subsequence of
.vn" ;  

n
" /, still denoted by .vn" ;  

n
" /, such that

.vn" ;  
n
" /! .v";  "/ weak-star in L1.0; T IH1 � V2/;

.vn" ;  
n
" /! .v";  "/ weak in L2.0; T IV1 �D.A //;

where .v";  "/ 2 L1.0; T IH1 � V2/ \ L2.0; T IV1 �D.A // P -a.s.
Furthermore, since the injection H1 � V2 � V1 �D.A / is compact, we have

.vn" ;  
n
" /! .v";  "/ strongly in L2.0; T IH1 � V2/;

.vn" ;  
n
" /! .v";  "/ a.e., in .0; T / �O;

(3.17)

P -a.s. Now, since the weak convergence in L2.0; T IV1 �D.A // is not enough to ensure
that

‰1" .v
n
" /! ‰1" .v"/ as n!1;

‰2" .v
n
" ;  

n
" /! ‰2" .v";  "/ as n!1;

‰3" .v
n
" ;  

n
" /! ‰3" .v";  "/ as n!1I

(3.18)

we need to derive stronger a priori estimates. For this, we take the inner product in H1 of
(3.4)1 with 2A0vn" , the inner product in L2.O/ of (3.4)2 with 2A2 

n
" , and obtain, after

adding up the corresponding equalities

d
dt
Œkvn"k

2
C jA 

n
" j
2�C 2jA0v

n
" j
2
C 2jA3=2  n" j

2

D �2.‰1" .v
n
" /; A0v

n
" / � 2.B0.v

n
" ; WA0/; A0v

n
" / � 2.B0.WA0 ; v

n
" /; A0v

n
" /

C 2.‰2" .v
n
" ;  

n
" /; A0v

n
" /C 2.R0.AWA ;  

n
" /; A0v

n
" /

C 2.R0.A 
n
" ; WA /; A0v

n
" / � 2.‰

3
" .v

n
" ;  

n
" /; A

2
 

n
" /
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� 2.A1=2 B1.v
n
" ; WA /; A

3=2
  n" / � 2.A

1=2
 B1.WA0 ;  

n
" /; A

3=2
  n" /

� 2.B0.WA0 ; WA0/; A0v
n
" /C 2.R0.AWA ; WA /; A0v

n
" /

� 2.A1=2 f . 
n
" CWA /; A

3=2
  n" /

� 2.A1=2 B1.WA0 ; WA /; A
3=2
  n" / � 2.A

1=2
 WA ; A

3=2
  n" /: (3.19)

If kvn"k �
1
"

, one has

j.‰1" .v
n
" /; A0v

n
" /j � cjv

n
" j
1=2
jA0v

n
" j
3=2
kvn"k

� ckvn"k
1=2
jA0v

n
" j
3=2
kvn"k

� c"�1kvn"k
1=2
jA0v

n
" j
3=2;

and if kv"k > "�1, one has

j.‰1" .v
n
" /; A0v

n
" /j �

c

"2kvn"k
2
jvn" j

1=2
jA0v

n
" j
3=2
kvn"k

�
c

"2kvn"k
2
kvn"k

1=2
jA0v

n
" j
3=2
kvn"k

� c"�1kvn"k
1=2
jA0v

n
" j
3=2:

Thus, in both cases, we have

j.‰1" .v
n
" /; A0v

n
" /j � c"

�1
kvn"k

1=2
jA0v

n
" j
3=2
�
1

18
jA0v

n
" j
2
C c"�4kvn"k

2; (3.20)

where c is a positive constant which is independent of " and n.
Observe now that

j.B0.v
n
" ; WA0/; A0v

n
" /j � ckv

n
"k
1=2
jA0v

n
" j
3=2
krWA0 jL2.O/

�
1

18
jA0v

n
" j
2
C ckrWA0 j

4
L2.O/kv

n
"k
2; (3.21)

j.B0.WA0 ; v
n
" /; A0v

n
" /j � c.O/kWA0kL4.O/krvn"kL4.O/jA0v

n
" j

� c.O/kWA0kL4.O/kv
n
"k
1=2
jA0v

n
" j
3=2

�
1

18
jA0v

n
" j
2
C c.O/kWA0k

4
L4.O/kv

n
"k
2: (3.22)

Owing to the Gagliardo–Nirenberg inequality, we have

j.‰2" .v
n
" ;  

n
" /; A0v

n
" /j � c.O/jA0v

n
" jkr 

n
" kL6.O/kA 

n
" kL3.O/

� c.O/jA0v
n
" jjA 

n
" j

5
3 jA3=2  n" j

1
3

� c.O/"�1jA0v
n
" jjA 

n
" j

2
3 jA3=2  n" j

1
3 ;

which holds if kvn"k C jA 
n
" j � "

�1.
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Now, if kvn"k C jA 
n
" j > "

�1, we obtain

j.‰2" .v
n
" ;  

n
" /; A0v

n
" /j �

c.O/

"2.kvn"k C jA 
n
" j/

2
jA0v

n
" jkr 

n
" kL6.O/kA 

n
" kL3.O/

�
c.O/

"2.kvn"k C jA 
n
" j/

2
jA0v

n
" jjA 

n
" j

5
3 jA3=2  n" j

1
3

� c.O/"�1jA0v
n
" jjA 

n
" j

2
3 jA3=2  n" j

1
3 :

In conclusion, when kvn"k C jA 
n
" j � "

�1 or kvn"k C jA 
n
" j > "

�1, we get

j.‰2" .v
n
" ;  

n
" /; A0v

n
" /j � c.O/"

�1
jA0v

n
" jjA 

n
" j

2
3 jA3=2  n" j

1
3

�
1

18
jA0v

n
" j
2
C c.O/"�2jA 

n
" j

4
3 jA3=2  n" j

2
3

�
1

18
jA0v

n
" j
2
C

1

18
jA3=2  n" j

2
C c.O/"�3jA 

n
" j
2; (3.23)

where we have also used the Young inequality with exponents .2; 2/ firstly and secondly
with exponents .3=2; 3/.

By the Hölder and the Gagliardo–Nirenberg inequalities, we infer that

j.R0.AWA ;  
n
" /; A0v

n
" /j � c.O/jA0v

n
" jjA 

n
" jjAWA j

1=2
jA3=2 WA j

1=2

�
1

18
jA0v

n
" j
2
C c.O/jAWA jL2.O/jA

3=2
 WA jjA 

n
" j
2:

(3.24)

By the Hölder, the Gagliardo–Nirenberg, and suitable Young’s inequalities, together with
the embedding of H1.O/ in L6.O/, we find

j.R0.A 
n
" ; WA /; A0v

n
" /j � jA 

n
" jL3.O/krWA kL6.O/jA0v

n
" j

� c.O/jA0v
n
" jjAWA jjA 

n
" j
1=2
jA3=2  n" j

1=2

�
1

18
jA0v

n
" j
2
C

1

18
jA3=2  n" j

2
C c.O/jAWA j

4
jA 

n
" j
2:

(3.25)

In the case kvn"k C jA 
n
" j � "

�1, we get

j.‰3" .v
n
" ;  

n
" /; A

2
 

n
" /j

D j.A1=2 B1.v
n
" ;  

n
" /; A

3=2
  n" /j

� c.O/kvn"k
1
2 jA0v

n
" j

1
2 jA 

n
" jjA

3=2
  n" j C c.O/kv

n
"kjA 

n
" j

1
2 jA3=2  n" j

3=2

� c.O/"�1kvn"k
1
2 jA0v

n
" j

1
2 jA3=2  n" j C c.O/"

�1
jA 

n
" j

1
2 jA3=2  n" j

3=2:
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Now, if kvn"k C jA 
n
" j > "

�1, we obtain

j.‰3" .v
n
" ;  

n
" /; A

2
 

n
" /j

D
1

"2.kvn"k C jA 
n
" j/

2
.jB1.v

n
" ;  

n
" /; A

2
 

n
" /j

D
1

"2.kvn"k C jA 
n
" j/

2
j.A1=2 B1.v

n
" ;  

n
" /; A

3=2
  n" /j

� c.O/kvn"k
1
2 jA0v

n
" j

1
2 jA 

n
" jjA

3=2
  n" j C c.O/kv

n
"kjA 

n
" j

1
2 jA3=2  n" j

3=2

� c.O/"�1kvn"k
1
2 jA0v

n
" j

1
2 jA3=2  n" j C c.O/"

�1
jA 

n
" j

1
2 jA3=2  n" j

3=2:

So, for both cases, we derive the following estimate:

j.‰3" .v
n
" ;  

n
" /; A

2
 

n
" /j

� c.O/"�1kvn"k
1
2 jA0v

n
" j

1
2 jA3=2  n" j C c.O/"

�1
jA 

n
" j

1
2 jA3=2  n" j

3=2

�
1

18
jA0v

n
" j
2
C

1

18
jA3=2  n" j

2
C c.O/"�4kvn"k

2
C c.O/"�4jA 

n
" j
2: (3.26)

Thanks to the Agmon inequality (as found in, for example, [30, p. 52]) along with the
Young inequality, we see that

j.A1=2 B1.v
n
" ; WA /; A

3=2
  n" /j

� c.O/kvn"k
1
2 jA0v

n
" j

1
2 jAWA jjA

3=2
  n" j

�
1

18
jA0v

n
" j
2
C

1

18
jA3=2  n" j

2
C c.O/jAWA j

4
kvn"k

2: (3.27)

Once more, using the Agmon and the Gagliardo–Nirenberg inequalities, we obtain

j.A1=2 B1.WA0 ;  
n
" /; A

3=2
  n" /j � c.O/krWA0kL2.O/jA

1=2
  n" j

1=2
jA3=2  n" j

3=2

C c.O/kWA0kL4.O/jA 
n
" j
1=2
jA3=2  n" j

3=2

� c.O/krWA0kL2.O/jA 
n
" j
1=2
jA3=2  n" j

3=2

C c.O/kWA0kL4.O/jA 
n
" j
1=2
jA3=2  n" j

3=2

�
1

18
jA3=2  n" j

2
C c.O/krWA0k

4
L2.O/jA 

n
" j
2

C c.O/kWA0k
4
L4.O/jA 

n
" j
2: (3.28)

By combining the Hölder, the Gagliardo–Nirenberg, and the Young inequalities, we de-
duce that

j.B0.WA0 ; WA0/; A0v
n
" /j � c.O/jA0WA0 j

2
kvn"k

� c.O/C c.O/jA0WA0 j
4
kvn"k

2; (3.29)
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j.R0.AWA ; WA /; A0v
n
" /j � c.O/jA0v

n
" jjAWA j

3=2
jA3=2 WA j

1=2

�
1

18
jA0v

n
" j
2
C c.O/jAWA j

3
jA3=2 WA j; (3.30)

j.A1=2 B1.WA0 ; WA /; A
3=2
  n" /j � c.O/krWA0 jL2.O/jAWA j

1
2 jA

3
2
WA j

1
2 jA

3
2
  

n
" j

C c.O/kWA0kL4.O/jAWA j
1
2 jA

3
2
WA j

1
2 jA

3
2
  

n
" j

�
1

18
jA3=2  n" j

2
Cc.O/krWA0 j

2
L2.O/jAWA jjA

3
2
WA j

C c.O/kWA0k
2
L4.O/jAWA jjA

3
2
WA j; (3.31)

 j.A1=2 WA ; A
3=2
  n" /j �  jA

3=2
  n" jjA

1=2
 WA jL2

�
1

18
jA3=2  n" j

2
C
9

2
2jA1=2 WA j

2: (3.32)

We will now estimate the sixth term on the right-hand side of (3.19). We recall that
f .r/ D f .r/ � ˛

�1�r , for all r 2 R. Thus,

.A1=2 f . 
n
" CWA /; A

3=2
  n" / D ..A

1=2
  n" C A

1=2
 WA /f

0
 . 

n
" CWA /; A

3=2
  n" /

D ..A1=2  n" C A
1=2
 WA /f

0. n" CWA /; A
3=2
  n" /

� ˛�1�.A1=2  n" C A
1=2
 WA ; A

3=2
  n" /:

Now, by Cauchy–Schwarz’s and Young’s inequalities, we obtain

j � ˛�1�.A1=2  n" C A
1=2
 WA ; 2A

3=2
  n" /j

� ˛�1�.jA1=2  n" j C jA
1=2
 WA j/jA

3=2
  n" j

� .jA1=2  n" j C jA
1=2
 WA j/jA

3=2
  n" j

�
1

54
jA3=2  n" j

2
C c2.jA1=2  n" j

2
C jA1=2 WA j

2/: (3.33)

Thanks to the Hölder inequality together with (2.21), we deduce that

j..A1=2  n" C A
1=2
 WA /f

0. n" CWA /; A
3=2
  n" /j

�

Z
O

jf 0. n" CWA /jjA
1=2
  n" jjA

3=2
  n" j dx

C

Z
O

jf 0. n" CWA /jjA
1=2
 WA jjA

3=2
  n" j dx

� cf

Z
O

.1C j n" CWA j/jA
1=2
  n" jjA

3=2
  n" jdx

C cf

Z
O

.1C j n" CWA j/jA
1=2
 WA jjA

3=2
  n" j dx

� cf jA
1=2
  n" jjA

3=2
  n" j C cf jA

1=2
 WA jjA

3=2
  n" j

C cf .k 
n
" kL1.O/ C kWA kL1.O//jA

1=2
  n" jjA

3=2
  n" j

C cf .k 
n
" kL1.O/ C kWA kL1.O//jA

1=2
 WA jjA

3=2
  n" j:
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The Young inequality implies

cf jA
1=2
  n" jjA

3=2
  n" j C cf jA

1=2
 WA jjA

3=2
  n" j

�
1

54
jA3=2  n" j

2
C cc2f jA

1=2
  n" j

2
C cc2f jA

1=2
 WA j

2

for some positive constant c independent of n and ".
Owing to the embedding of D.A / in L1.O/, we obtain

cf .k 
n
" kL1.O/ C kWA kL1.O//jA

1=2
  n" jjA

3=2
  n" j

C cf .k 
n
" kL1.O/ C kWA kL1.O//jA

1=2
 WA jjA

3=2
  n" j

� c.O/cf jA 
n
" jjA

1=2
  n" jjA

3=2
  n" j C c.O/cf jA 

n
" jjA

1=2
 WA jjA

3=2
  n" j

C c.O/cf jAWA jjA
1=2
  n" jjA

3=2
  n" j C c.O/cf jAWA jjA

1=2
 WA jjA

3=2
  n" j

�
1

54
jA3=2  n" j

2
C c.O/c2f jA

1=2
  n" j

2
jA 

n
" j
2
C c.O/c2f jA

1=2
 WA j

2
jA 

n
" j
2

C c.O/c2f jAWA j
2
jA1=2  n" j

2
C c.O/c2f jAWA j

2
jA1=2 WA j

2;

where we used the Young inequality. Hence,

j.A1=2 f . 
n
" CWA /; A

3=2
  n" /j

�
1

18
jA3=2  n" j

2
C cjA1=2  n" j

2
C cjA1=2 WA j

2

C c.jA1=2  n" j
2
C jA1=2 WA j

2/jA 
n
" j
2

C cjAWA j
2
jA1=2  n" j

2
C cjAWA j

2
jA1=2 WA j

2; (3.34)

where c D c.O; ; cf / is a positive constant which is independent of n and ".
Plugging (3.20)–(3.34) into the right-hand side of (3.19), we arrive at

d
dt
Œkvn"k

2
C jA 

n
" j
2�C jA0v

n
" j
2
C jA3=2  n" j

2

� c C c."�4 C jrWA0 j
4
C kWA0k

4
L4.O/ C jA0WA0 j

4
C jAWA j

4/kvn"k
2

C c
�
"�3 C "�4 C jAWA jjA

3=2
 WA j C jAWA j

4
C jrWA0 j

4

C kWA0k
4
L4.O/ C jA

1=2
  n" j

2
C jA1=2 WA j

2
�
jA 

n
" j
2

C cjAWA j
3
jA3=2 WA j C cjAWA j

2
jA1=2  n" j

2
C cjAWA j

2
jA1=2 WA j

2

C cjrWA0 j
2
jAWA jjA

3
2
WA j C ckWA0k

2
L4.O/jAWA jjA

3
2
WA j

C cjA1=2  n" j
2
C cjA1=2 WA j

2
C cjA1=2 WA j

2 (3.35)

for some c D c.O; ; cf /.
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Let us set

Yn;".t/ D kv
n
" .t/k

2
C jA 

n
" .t/j

2;

Y1.t/ D c."
�4
C jrWA0.t/j

4
C kWA0.t/k

4
L4.O/ C jA0WA0.t/j

4
C jAWA .t/j

4/

C c
�
"�3 C "�4 C jAWA .t/jjA

3=2
 WA j C jAWA .t/j

4
C jrWA0.t/j

4

C kWA0.t/k
4
L4.O/ C jA

1=2
  n" .t/j

2
C jA1=2 WA .t/j

2
�
;

Y2.t/ D c
�
1C jAWA .t/j

3
jA3=2 WA .t/j C jAWA .t/j

2
jA1=2  n" .t/j

2

C jAWA .t/j
2
jA1=2 WA .t/j

2
C jrWA0.t/j

2
jAWA .t/jjA

3=2
 WA .t/j

C kWA0.t/k
2
L4.O/jAWA .t/jjA

3=2
 WA .t/j

C jA1=2  n" .t/j
2
C jA1=2 WA .t/j

2
C jA1=2 WA j

2
�
:

Hence, we can rewrite (3.35) as follows:

dYn;"

dt
C jA0v

n
" j
2
C jA3=2  n" j

2
� Y1Yn;" C Y2: (3.36)

Notice that

k.vn" ;  
n
" /.0/kV D k.P

1
nu0;P

2
n�0/kV � k.u0; �0/kV < C1

provided that .u0; �0/ 2 V . Hence, by assuming also that .u0; �0/ 2 V , and since (2.19),
(2.20), and (3.16) hold true, we then derive from (3.36) by an application of the Gronwall
lemma that the sequence .un" ;  

n
" / satisfies

kvn" .t/k
2
C jA 

n
" .t/j

2
� C";

Z T

0

.jA0v
n
" .s/j

2
C jA3=2  n" .s/j

2/ ds � C"; P -a.s.;

(3.37)
which proves that (for a fixed positive number ") the sequence .vn" ;  

n
" / is uniformly

bounded in L1.0; T IV / \ L2.0; T ID.A0/ �D.A
3=2
 //, P -a.s.

Furthermore, using (3.37), we can check that�
dvn"
dt
;

d n"
dt

�
is bounded in L2.0; T IY / P -a.s. (3.38)

SinceD.A0/�D.A
3=2
 /� V � Y with compact injections, by [22, Theorem 5.1, Chapter

1], there exists .v"; "/ 2L1.0;T IY /\L2.0;T ID.A0/�D.A
3=2
 //, and a subsequence

of .vn" ;  
n
" / (still) denoted by .vn" ;  

n
" / such that for all T > 0, we have P -a.s.

.vn" ;  
n
" /! .v";  "/ strongly in L2.0; T IV /;

.vn" ;  
n
" /! .v";  "/ a.e., in .0; T / �O;

.vn" ;  
n
" /! .v";  "/ weak-star in L1.0; T IV /;

.vn" ;  
n
" /! .v";  "/ weakly in L2.0; T ID.A0/ �D.A3=2 //;

d
dt
.vn" ;  

n
" /!

d
dt
.v";  "/ weakly in L2.0; T IY /:

(3.39)
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Furthermore, since .vn" ;  
n
" /! .v";  "/ as n!C1 in L2.0; T IV / for all T > 0, there

exists a subsequence (still) denoted by .vn" ;  
n
" / (see [5, Theorem 4.9]) such that

k.vn" .!/;  
n
" .!//kV ! .v".!/;  ".!// a.e. in O (3.40)

and for a fix ! 2 �. With these convergences (3.39)–(3.40) in hand, we derive (3.18).
From (3.18) and (3.39), we can take limits in (3.4) exactly as in [9], with reference to

the proof of Theorem 7, and we obtain that .v";  "/ is a solution to (3.3).
The case where the initial data .u0; �0/ belongs to YnV can be done similarly as

in [25] in order to prove that .v";  "/ is a solution to problem (3.3).

3.1. Uniform estimates in "

Multiplying the first and second equations of (3.3) by K�1v" and �A ", respectively,
adding side by side the corresponding equalities, we obtain

1

2

d
dt
ŒK�1jv"j

2
C �jA1=2  "j

2�C �K�1kv"k
2
C �2jA "j

2

D �K�1.B0.v"; WA0/; v"/C .R0.�AWA ;  "/; v"/ � .B1.WA0 ;  "/; �A "/

� .K�1B0.WA0 ; WA0/; v"/C .R0.�AWA ; WA /; v"/

� ˛.A1=2 f . " CWA /; �A
1=2
  "/ � .B1.WA0 ; WA /; �A "/

� �.WA ; �A "/: (3.41)

Drawing on the same reasoning as in the proof of estimates (3.6)–(3.12), we find

jK�1.B0.v"; WA0/; v"/j �
�K�1

6
kv"k

2
C c.O; �;K/kWA0k

4
L4.O/jv"j

2;

j.R0.�AWA ;  "/; v"/j �
�K�1

6
kv"k

2
C
�2

10
jA "j

2
C c.O; �;K/jAWA j

4
jv"j

2;

j.B1.WA0 ;  "/; �A "/j �
�2

10
jA "j

2
C c.O; �/kWA0k

4
L4.O/jr "j

2;

j.B1.WA0 ; WA /; �A "/j �
�2

10
jA "j

2
C c.O/kWA0k

4
L4.O/ C c.O/jAWA j

4;

j�.WA ; �A "/j �
�2

10
jA "j

2
C c�2jA1=2 WA j

2;

j.�K�1B0.WA0 ; WA0/; v"/j C j.R0.�AWA ; WA /; v"/j

�
�K�1

6
kv"k

2
C c.O; �;K/kWA0k

4
L4.O/ C c.O; �/jAWA j

4;

� ˛..A1=2  " C A
1=2
 WA /f

0
 . " CWA /; �A

1=2
  "/

�
�2

10
jA "j

2
C C jA1=2 WA j

2
C C jA1=2 WA j

2
jAWA j

2
3

C C
�
1C jA1=2 WA j

4
5 jAWA j

2
5
�
jA1=2  "j

2

for some positive constant C D C.O; cf ; ; ˛/.
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Consequently,

d
dt
ŒK�1jv"j

2
C �jA1=2  "j

2�C �K�1kv"k
2
C �2jA "j

2

� ckWA0k
4
L4.O/ C cjAWA j

4
C cjA1=2 WA j

2

C cjA1=2 WA j
2
C cjA1=2 WA j

2
jAWA j

2
3

C c.kWA0k
4
L4.O/ C jAWA j

4/jv"j
2

C c
�
1C jA1=2 WA j

4
5 jAWA j

2
5 C kWA0k

4
L4.O/

�
jA1=2  "j

2; (3.42)

where c D c.O; ˛; ;K; �; �; 2; cf / is a positive constant which is independent of ".
Integrating (3.42) in time over Œ0; t �, where t 2 Œ0; T �, we arrive at

j.v".t/;  ".t//j
2
Y C

Z t

0

k.v".s/;  ".s//k
2
V ds

� j.u0;  0/j
2
Y C c

Z T

0

.kWA0.s/k
4
L4.O/ C jAWA .s/j

4
C jA1=2 WA .s/j

2/ ds

C c

Z T

0

jA1=2 WA .s/j
2
C jA1=2 WA .s/j

2
jAWA .s/j

2
3 ds

C c

Z t

0

�
1CjA

1
2
WA j

4
5 jAWA j

2
5CkWA0k

4
L4.O/CjAWA j

4
�
.jv"j

2
CjA1=2  "j

2/ ds

(3.43)

for all t 2 Œ0; T � and with c D c.O; ˛; ;K; �; �; 2; cf /. It then follows by an application
of the generalized Gronwall–Bellman lemma (see [26]) that

j.v".t/;  ".t//j
2
Y C

Z t

0

k.v".s/;  ".s//k
2
V ds � cc2 exp

�Z T

0

k1.s/ ds
�
; (3.44)

P -a.s., where c D c.O; ˛; ;K; �; �; 2; cf /,

c2 D j.u0;  0/j
2
Y C c

Z T

0

.kWA0.s/k
4
L4.O/ C jAWA .s/j

4
C jA1=2 WA .s/j

2/ ds

C c

Z T

0

jA1=2 WA .s/j
2
C jA1=2 WA .s/j

3
jAWA .s/j ds;

k1.s/ D c.1C jA
1
2
WA .s/j

2
3 jAWA .s/j

2
3 C kWA0.s/k

4
L4.O/ C jAWA .s/j

4/:

We note that the constant c is independent of " and ! 2 �.
Now, we fix ! 2 � and select a sub-sequence " D ".!/ such that

.v";  "/.t/! .v;  /.t/ weakly in L2.0; T IV /; weak-star in L1.0; T IY /;

A0v".t/! A0v.t/ weakly in L2.0; T IV 01/;

A ".t/! A .t/ weakly in L2.0; T IV 02/;

(3.45)
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and
B0.v"; WA0/! B0.v; WA0/ weakly in L2.0; T IV 01/;

B0.WA0 ; v"/! B0.WA0 ; v/ weakly in L2.0; T IV 01/;

R0.�A "; WA /! R0.�A ;WA / weakly in L2.0; T IV 01/;

B1.v"; WA /! B1.v; WA / weakly in L2.0; T IV 02/;

B1.WA0 ;  "/! B1.WA0 ;  / weakly in L2.0; T IV 02/;

f . " CWA /! f . CWA / weakly in L2.0; T IH2/:

(3.46)

Moreover, using the Hölder and the Gagliardo–Nirenberg inequalities, we obtain

k 1" .v"/kV 01 � cjv"jkv"k;

k 2" .v";  "/kV 01 � c�jA
1=2
  "j

1=2
jA "j

3=2;

k 3" .v";  "/kV 02 � ckv"kjA
1=2
  "j:

Hence, in light of (3.44), we see that
R T
0
k 1" .v".s//k

2
V 01

ds,
R T
0
k 2" .v".s/; ".s//k

4=3

V 01
ds,

and
R T
0
k 3" .v".s/;  ".s//k

2
V 02

ds are uniformly bounded with respect to ".
Once more, we fix ! 2 �. Then, we select a sub-sequence " D ".!/ such that

 1" .v".t//! z1.t/ weakly in L2.0; T IV 01/;

 2" .v".t/;  ".t//! z2.t/ weakly in L4=3.0; T IV 01/;

 3" .v".t/;  ".t//! z3.t/ weakly in L2.0; T IV 02/:

(3.47)

Hence, we have8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

v0.t/C �A0v.t/C z1.t/C B0.v.t/;WA0.t//C B0.WA0.t/; v.t//

�Kz2.t/ �KR0.�AWA .t/;  .t// �KR0.�A .t/;WA .t//

D �B0.WA0.t/;WA0.t//CKR0.�AWA .t/;WA .t//;

 0.t/C �A .t/C z3.t/C B1.v.t/;WA .t//C B1.WA0.t/;  .t//

D � f̨ . .t/CWA .t// � B1.WA0.t/;WA .t// � �WA .t/;

v.0/ D u0;  .0/ D �0;

(3.48)

a.e. t 2 Œ0; T �. Moreover, since v0" and  0" are uniformly bounded in L4=3.0; T I V 01/ and
L2.0; T IV 02/, respectively, we also have that for "! 0 (see [22, Theorem 5.1])

v".t; !/! v.t; !/ strongly in L2.0; T IH1/;

 ".t; !/!  .t; !/ strongly in L2.0; T ID.A1=2 //:
(3.49)

As in [21, p. 6], we can check thatZ T

0

.‰1" .v".t//; y.t// dt !
Z T

0

b0.v.t/; v.t/; y.t// dt 8y 2 C.Œ0; T �ID.A0//;Z T

0

.‰3" .v".t/;  ".t//; �.t// dt !
Z T

0

b1.v.t/;  .t/; �.t// dt 8� 2 C.Œ0; T �ID.A //

(3.50)
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as "! 0. Then, by (3.47)1 and (3.47)3, it follows that z1.t/D B0.v.t/;v.t// and z3.t/D
B1.v.t/;  .t// a.e. t 2 Œ0; T �.

We will now prove that

z2.t/ D R0.�A .t/;  .t// a.e. t 2 Œ0; T �:

Observe now thatZ T

0

.‰2" .v".t/;  ".t//; y.t// dt

D

Z
t2Œ0;T �Wkv"kCjA "j�1="

b1.y.t/;  ".t/; �A ".t// dt

C

Z
t2Œ0;T �Wkv"kCjA "j>1="

b1.y.t/;  ".t/; �A ".t//

"2.kv"k C jA "j/2
dt

WD J 1" C J
2
"

for all y 2 C.Œ0; T �ID.A0//.
In light of (3.44) and (3.49)1, we deduce that

b1.y.t/;  ".t/; �A ".t//! b1.y.t/;  .t/; �A .t// a.e. t 2 Œ0; T �

due to

jb1.y.t/;  ".t/; �A ".t// � b1.y.t/;  .t/; �A .t//j

� jb1.y.t/;  ".t/ �  .t/; �A ".t//j C jb1.y.t/;  .t/; �A . ".t/ �  .t///j

� c�jA ".t/jky.t/kL1 jr. ".t/ �  .t//j

C c�jA1=2 . ".t/ �  .t//jjA
1=2
  .t/jL6 jry.t/jL3

C c�ky.t/kL1 jA
1=2
 . ".t/ �  .t//jjA .t/j

� c�jA0y.t/jŒjA ".t/j C jA .t/j�jA
1=2
 . ".t/ �  .t//j:

Furthermore, as

jb1.y.t/;  ".t/; �A ".t//j � c�ky.t/kL1.jA ".t/jjA
1=2
  ".t/j/;

we infer from the Lebesgue dominated convergence theorem that

J 1" !

Z T

0

b1.y.t/;  .t/; �A .t// dt as "! 0:

On the other hand, from (3.44), we have

sup
t2Œ0;T �

®
kv".t/k C jA ".t/j > 1="

¯
� c"2 P -a.s.
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Consequently,

jJ 2" j � c�

Z
t2Œ0;T �Wkv"kCjA "j>1="

jA
1=2
  ".t/j

1=2jA ".t/j
3=2ky.t/k

"2.kv".t/k C jA ".t/j/2
dt

� c�

Z
t2Œ0;T �Wkv"kCjA "j>1="

jA
1=2
  ".t/j

1=2jA ".t/j
3=2ky.t/k

"2jA ".t/j2
dt

� c�

Z
t2Œ0;T �Wkv"kCjA "j>1="

jA
1=2
  ".t/j

1=2ky.t/k

"2jA ".t/j1=2
dt

� c�
p
"! 0 as "! 0:

By (3.47), it follows therefore that z2.t/ D R0.�A .t/;  .t// a.e. t 2 Œ0; T �.
Hence, the pair .v;  / is a solution to (3.2) (for a fixed ! 2 �). Furthermore, for

each ! 2 �, we can check that (3.48) with z1 D B0.v; v/, z2 D R0.�A ; /, and z3 D
B1.v;  / has at most one solution .v;  / with the above properties. Indeed, if .v1;  1/
and .v2;  2/ are two solutions to (3.48), then we can easily check that v D v1 � v2 and
 D  1 �  2 satisfy

1

2

d
dt
ŒK�1jvj2 C �jA1=2  j2�C �K�1kvk2 C �2jA j

2
CK�1.B0.v; v1/; v/

CK�1.B0.v; WA0/; v/ � .R0.�A 2;  /; v/ � .R0.�AWA ;  /; v/

C .B1.v2;  /; �A /C .B1.WA0 ;  /; �A /

D �˛Œ.f . 1 CWA / � f . 2 CWA /; �A /�:

By the Hölder and the Young inequalities, we obtain

jK�1.B0.v; v1/; v/j � c.O/K
�1
jvjkvkkv1k �

�

8K
kvk2 C c.O; �;K/kv1k

2
jvj2;

jK�1.B0.v; WA0/; v/j � c.O/K
�1
kWA0kL4.O/jvj

1=2
kvk3=2

�
�

8K
kvk2 C c.O; �;K/kWA0k

4
L4.O/jvj

2;

j.R0.�A 2;  /; v/j � c.O/�jA 2jkA
1=2
  kL4.O/kvkL4.O/

� c.O/�jA 2jjA
1=2
  j1=2jA j

1=2
jvj1=2kvk1=2

�
�

8K
kvk2 C

�2

10
jA j

2

C c.O; �;K; �/jA 2j
2.jvj2 C �jA1=2  j2/:

Analogously, we find

j.R0.�AWA ;  /; v/j �
�

8K
kvk2 C

�2

10
jA j

2

C c.O; �;K; �/jAWA j
2.jvj2 C �jA1=2  j2/:
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Thanks to the Hölder and the Young inequalities, we derive that

j.B1.v2;  /; �A /j � c.O/�jv2j
1=2
kv2k

1=2
jA1=2  j1=2jA j

3=2

�
�2

10
jA j

2
C c.O; �/jv2j

2
kv2k

2.�jA1=2  j2/;

j.B1.WA0 ;  /; �A /j � �c.O/kWA0kL4.O/jA
1=2
  j1=2jA j

3=2

�
�2

10
jA j

2
C c.O; �/kWA0k

4
L4.O/.�jA

1=2
  j2/:

Applying the Lagrange mean value theorem to f 0 (see [28, Corollary 2]), using also the
second assumption of f (cf. (2.21)), we infer that

˛j.f . 1 CWA / � f . 2 CWA /; �A /j

D ˛�j. f 0 .� 1 C .1 � �/ 2 CWA /; A /j

� ˛�

Z
O

jf 0 .� 1 C .1 � �/ 2 CWA /jj jjA j dx

� cf ˛�

Z
O

.1C j� 1 C .1 � �/ 2 CWA j/j jjA j dx C ˛�j jjA j

� ˛�.cf C 1/j jjA j C ˛�cf .j 1jL4.O/ C j 2jL4.O/ C jWA jL4.O//j jL4.O/jA j

� ˛�.cf C 1/j jjA j

C ˛�cf 
�1=2.�1 C 1/1=2c.O/.jA1=2  1j C jA

1=2
  2j C jA

1=2
 WA j/jA

1=2
  jjA j:

It then follows that

˛j.f . 1 CWA / � f . 2 CWA /; �A /j

�
�2

10
jA j

2
C c˛2.cf C 1/

2
j j2 C c.O/˛2c2f 

�1.�1 C 1/ŒjA1=2  1j
2

C jA1=2  2j
2
C jA1=2 WA j

2�jA1=2  j2;

where we used the Young inequality.
From the above estimates, we derive that

1

2

d
dt
j.v;  /j2Y C

1

2
k.v;  /k2V

� c.1C jA1=2  1j
2
C jA1=2  2j

2
C jA1=2 WA j

2
C kv1k

2

C kWA0k
4
L4.O/ C jA 2j

2
C jAWA j

2
C jv2j

2
kv2k

2/j.v;  /j2Y ;

where c D c.O; cf ; ; �; ˛/ is a positive constant. Now, by applying the Gronwall lemma,
we deduce that j.v;  /j2Y D 0, i.e., .v1;  1/ D .v2;  2/. This implies that, for "! 0,

v".t/! v.t/;  ".t/!  .t/ (3.51)

weakly in L2.0; T I V1/ and L2.0; T ID.A //, respectively, P -a.s. By (3.51), it follows
that v and  (and v0 and  0) with respect to the filtration Ft (because it is the case for v"
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and  ") and therefore .v;  / 2 L2W .0; T IV / and .v0;  0/ 2 L2W .0; T IV
0
1 �D.A /

0/. The
proof of Proposition 3.1 is now complete.

Let us now proceed to the proof of Theorem 3.1.

Proof of Theorem 3.1. Note that u" D v" CWA0 and �" D  " CWA satisfy8̂̂̂̂
<̂
ˆ̂̂:

du" C Œ�A0u" C‰
1
" .u"/ �K‰2" .u"; �"/�dt D

p
Q1 dW1.t/;

d�" C‰3" .u"; �"/ dt C �" dt D
p
Q2 dW2.t/;

�" D �A�" C f̨ .�"/;

u".0/ D u0; �".0/ D �0;

(3.52)

P -a.s. and a.e. t 2 Œ0; T �.
By applying Itô’s formula to the process ju".t/j2 (see, for instance, [12, Theorem

4.32]), integrating the resulting equality between 0 and t , and then taking the mathematical
expectation, we derive that

Eju".t/j
2
C 2E

Z t

0

�ku"k
2 ds � 2KE

Z t

0

h‰2" .u"; �"/;u"ids D ju0j
2
C t TrQ1: (3.53)

Once more, by applying the Itô formula to the process j�".t/j2, we obtain

Ej�".t/j
2
C 2E

Z t

0

.�" ; �"/ ds C 2E
Z t

0

.‰3" .u"; �"/; �"/ ds D j�0j2 C t TrQ2: (3.54)

Applying again the Itô formula to jr�".t/j2, we further obtain

Ejr�".t/j
2
C 2E

Z t

0

.�" ; A1�"/ ds C 2E
Z t

0

.‰3" .u"; �"/; A1�"/ ds D jr�0j2 C tƒ:

(3.55)

Now, multiplying (3.54) by � and (3.55) by �, respectively, adding up side by side the
resulting equations, we arrive at

EŒ�.jr�".t/j
2
C  j�".t/j

2/�C 2E

Z t

0

.�" ; �A�"/ ds C 2E
Z t

0

.‰3" .u"; �"/; �A�"/ ds

D �Œjr�0j
2
C  j�0j

2�C � t TrQ2 C �tƒ: (3.56)

It then follows from (3.53) and (3.56) that

Ej.u".t/; �".t//j
2
Y C 2

Z t

0

k.u"; �"/k
2
V ds

D j.u0; �0/j
2
Y C tK

�1 TrQ1 C � t TrQ2

C �tƒ � 2�˛E

Z t

0

.f .�".s//; A�".s// ds; (3.57)
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where we used (3.52)3 together with the fact that

�h‰2" .u"; �"/;u"i C .‰
3
" .u"; �"/; �A�"/ D 0:

Let us proceed to estimate the nonlinear term on the right-hand side of (3.57). Indeed,
from the definition of the map f , we have

�2�˛.f .�".s//; A�".s// D �2�˛.A
1=2
 f .�".s//; A

1=2
 �".s//

D �2�˛.A1=2 �".s/f
0
 .�".s//A

1=2
 �".s//

D �2�˛.A1=2 �".s/f
0.�".s//A

1=2
 �".s//C2�

2 jA1=2 �".s/j
2

D �2�˛

Z
O

f 0.�".s//jA
1=2
 �".s/j

2 ds C 2�2 jA1=2 �".s/j
2;

from which we infer that

�2�˛.f .�".s//; A�".s// � 2�˛2jA
1=2
 �".s/j

2
C 2�2 jA1=2 �".s/j

2

� 2�.˛2 C �/jA
1=2
 �".s/j

2; (3.58)

where we used (2.23) and the fact that � � ˛.
Plugging (3.58) into the right-hand side of (3.57), we arrive at

Ej.u".t/; �".t//j
2
Y C 2E

Z t

0

k.u".s/; �".s//k
2
V ds

� j.u0; �0/j
2
Y C tK

�1 TrQ1 C � t TrQ2 C �tƒ

C 2.˛2 C �/E

Z t

0

�jA1=2 �".s/j
2 ds

� j.u0; �0/j
2
Y C tK

�1 TrQ1 C ˛t TrQ2 C ˛tƒ

C 2˛.2 C /E

Z t

0

j.u".s/; �".s//j
2
Y ds (3.59)

for all t 2 Œ0; T �, where we have also used the fact that � � ˛.
Hence, an application of the Gronwall lemma entails that

Ej.u".t/; �".t//j
2
Y

� Œj.u0; �0/j
2
Y C TK�1 TrQ1 C ˛T TrQ2 C ˛Tƒ�e2˛.2C/t ;

2E

Z t

0

k.u".s/; �".s//k
2
V ds

� Œj.u0; �0/j
2
Y C TK�1 TrQ1 C ˛T TrQ2 C ˛Tƒ�e2˛.2C/t

for all t 2 Œ0; T �. This implies that, for "! 0,

u" ! u D vCWA0 weakly in L2W .0; T IV1/;

�" ! � D  CWA weakly in L2W .0; T ID.A //;

where .u; �/ is a solution problem (2.6) or (1.1)–(1.2).



Existence and ergodicity for the 2D stochastic AC-NSEs 29

As for uniqueness, if . Qu.t/; z�.t// is a solution with initial data .u1; �1/, we have
by (2.6) that´

d NuC �A0 Nu dt D Œ�.B0. Nu;u/C B0. Qu; Nu//CK.R0.�A z�; x�/ �R0.�A x�; �//� dt;

dx� C �A x� dt D .�.B1. Nu; �/C B1. Qu; x�//C ˛Œf .�/ � f .z�/�/ dt;
(3.60)

where we have set Nu WD u� Qu and x� WD � � z� and where we have also used the bilinearity
of B0, B1, and R0.

Now, we take the inner product of equation (3.60)1 with K�1 Nu.t/ in H1 and the
inner product of equation (3.60)2 with �A x�.t/ in L2.O/. Using also the orthogonality
properties of b0 and b1 and adding the resulting equations, we infer that

1

2

d
dt
j. Nu.t/; x�.t//j2Y C �K�1kNu.t/k2 C �2jA x�.t/j

2

D �K�1b0. Nu;u; Nu/C .R0.�A z�; x�/; Nu/ � .R0.�A x�; �/; Nu/

� b1. Nu; �; �A x�/ � b1. Qu; x�; �A x�/ � ˛�.f .�/ � f .z�/; A x�/: (3.61)

Arguing as in [18, p. 10], one has

jK�1b0. Nu;u; Nu/j �
K�1�

4
kNuk2 C ckuk2j Nuj2;

jb1. Nu; �; �A x�/j �
�K�1

4
kNuk2 C

�2

5
jA x�j

2
C cjA1=2 �j2jA�j

2
j Nuj2;

jb1. Qu; x�; �A x�/j �
�2

5
jA x�j

2
C cj Quj2kQuk2jA1=2

x�j2;

j.R0.�A z�; x�/; Nu/j �
�K�1

4
kNuk2 C

�2

5
jA x�j

2
C cjA z�j

2.j Nuj2 C jA1=2
x�j2/;

j.R0.�A x�; �/; Nu/j �
�K�1

4
kNuk2 C

�2

5
jA x�j

2
C cjA�j

2
jA1=2 �j2j Nuj2;

where c is a positive large constant possibly depending on K; �; �; ˛;O.
Regarding the last term in (3.61), we apply the Lagrange mean value theorem to f so

as to get

�˛�.f .�/ � f .z�/; A x�/ D �˛�.f
0
 .� C �

x�/x�;A x�/

D �˛�.f 0.� C � x�/x�;A x�/C �
2 jA1=2

x�j2;

with 0 < � < 1. Now, from (2.21)2, using the Hölder and the Young inequalities, we find

� ˛�.f .�/ � f .z�/; A x�/

� cf ˛�

Z
O

.1C j� C � x�j/jx�jjA x�j dx C �2 jA1=2 x�j
2

� cf ˛�jx�jjA x�j C �
2 jA1=2

x�j2 C cOcf ˛�j�jL4.O/jx�jL4.O/jA x�j

C cOcf ˛�jx�j
2
L4.O/

jA x�j
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� cf ˛�jx�jjA x�j C �
2 jA1=2

x�j2

C cOcf ˛�
�1=2.�1 C 1/

1
2 .jA1=2 �jjA1=2

x�j C jA1=2
x�j2/jA x�j

�
�2

5
jA x�j

2
C 2c2f ˛

2
jx�j2 C �2 jA1=2

x�j2

C 4.cOcf ˛/
2�1.�1 C 1/.jA1=2 �j2jA1=2

x�j2 C jA1=2
x�j4/

�
�2

5
jA x�j

2
C .2c2f 

�1
C /˛2jA1=2

x�j2

C 4.cOcf ˛/
2�1.�1 C 1/.jA1=2 �j2jA1=2

x�j2 C jA1=2
x�j4/:

Here, cO is a positive constant depending on the domain O.
Inserting these previous estimates into the right-hand side of (3.61), we obtain

1

2

d
dt
j. Nu.t/; x�.t//j2Y � g.t/j. Nu.t/;

x�.t//j2Y ; (3.62)

where c D c.O; ˛;K; �; cf ; ; �/ is a positive constant and

g.t/ W D c.1C ku.t/k2 C jQu.t/j2kQu.t/k2 C jA1=2 �.t/j2 C jA1=2 �.t/j2jA�.t/j
2

C jA z�.t/j
2
C jA�.t/j

2
jA1=2 �.t/j2/: (3.63)

It then follows by applying the Gronwall lemma that

j..u � Qu/.t/; .� � z�/.t//j2Y � j.u0 � Qu0; �0 �
z�0/j

2
Y exp

R t
0 g.s/ ds; P -a.s.

This completes the uniqueness of .u; �/ as well as the continuity of

.u0; �0/ 7! .u.t/; �.t//:

4. Ergodicity

4.1. Existence of invariant measure

In this part, we aim to prove the existence of invariant measures of (2.6) by the Krylov–
Bogoliubov theorem (see, e.g., [11, p. 14]). To state the main result of this section, we
firstly introduce some notations and definitions. Let Cb.Y / denote the set of all bounded
continuous functions on Y . We equip it with the norm

k‰k1 D sup
X2Y
j‰.X/jY :

Then, .Cb.Y /; k � k1/ is a Banach space.
For each t > 0, we define the semigroup Pt associated with the solution

¹.u.t; U0/; �.t; U0// 2 L
2
W .0; T IV /; U0 D .u0; �0/ 2 Yº
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of (2.6) by

Pt‰.U0/ D EŒ‰..u.t; U0/; �.t; U0///�; ‰ 2 Cb.Y /; U0 D .u0; �0/ 2 Y : (4.1)

The proof of Markov property of Pt is standard (see, for instance, [3] or [7]). We also
have PtCs‰.:/ D PtPs‰.:/ for t; s � 0.

Denote by B.Y / the � -field of all Borel subsets of Y and by Pr .Y / the set of all
probability measures defined on .Y ;B.Y //. Define P �t to be the dual semigroup of Pt
given by Z

Y
‰.x/P �t ��.dx/ D

Z
Y
Pt‰.x/��.dx/

for�� 2Pr .Y /, t � 0, and‰ 2Cb.Y /. A measure�� 2Pr .Y / is called invariant measure
if P �t �� D �� for each t � 0.

Definition 4.1. A subset � � Pr .Y / is said to be tight if there exists an increasing
sequence .�n/ of compact sets of Y such that

lim
n!1

��.�n/ D 1 uniformly on �;

or, equivalently, if for any ı > 0 there exists a compact set Kı such that

��.Kı/ � 1 � ı; �� 2 �:

Now, we state the following result concerning the existence of the invariant measures
of (2.6).

Theorem 4.1. There exists an invariant measure �� 2 Pr .Y / associated with the semi-
group Pt satisfyingZ

Y
Pt‰.x/��.dx/ D

Z
Y
‰.x/��.dx/ for any t � 0 and ‰ 2 Cb.Y /:

Moreover, the support of �� is included in V andZ
Y
k.x; y/k2V��.dx; dy/ < C1: (4.2)

Proof. Firstly, let us point out the following estimate:

Ej.u.t; U0/; �.t; U0//j
2
Y C 2E

Z t

0

k.u.s; U0/; �.s; U0//k
2
V ds

� c3.˛; ; 2; T /.j.u0; �0/j
2
Y C tK

�1 TrQ1 C ˛t TrQ2 C ˛tƒ/; t � 0; (4.3)

which can be deduced from (2.6) by arguing as in (3.59). Here, .u.t; U0/; �.t; U0// is the
pathwise solution of system (2.6) starting from the initial data U0 D .u0; �0/.

Let …t .U0; �/ be the law of the process .u.t/; �.t//. Then, for any ‰ 2 Cb.Y /, we
have

Pt‰.U0/ D

Z
Y
‰.u1; �1/…t .U0; dx1; d�1/ 8.u1; �1/ 2 Y :
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In order to prove the existence of an invariant measure, it is enough to only check that, in
view of the Krylov–Bogoliubov theorem [11], that the set of measures

��;T WD
1

T

Z T

0

…t .U0; :/ dt; T > 1;

is tight in Pr .Y /. We fix U0 D .u0; �0/ 2 Y . Then, by (4.3), we have

1

t
E

Z t

0

k.u.s; U0/; �.s; U0//k
2
V ds � c3.j.u0; �0/j2Y CK�1 TrQ1 C � TrQ2 C �ƒ/:

Let BR be the ball of radius R in V D V1 �D.A /. Then, for all R > 0, we derive that

��;T .B
c
R/ D

1

T

Z T

0

…t .U0;B
c
R/ dt

�
1

TR2

Z T

0

Ek.u.t; U0/; �.t; U0//k
2
V dt

�
c3

R2
.j.u0; �0/j

2
Y CK�1 TrQ1 C � TrQ2 C �ƒ/;

from which we get the tightness of ¹��;T ºT�1. Denote by�� a cluster point of ¹��;T ºT�1.
Then, by integrating (4.3) on Y with respect to ��, we get (4.2). This completes the
proof.

4.2. The uniqueness of invariant measures

Here, we follow the approach in [2,13,27] to prove the uniqueness of the invariant measure
��, using the coupling method (see, e.g., [2, 13, 19, 27]). Lemmas 4.1–4.4 below are the
main steps in the proof. We still denote by .u.t; U0/; �.t; U0// the solution to (2.6) with
initial data U0 D .u0; �0/ 2 Y .

Lemma 4.1. Let ˇ D min.��; �`/ � ˛.2 C /, and we assume that

ˇ > 0: (4.4)

Then, the following estimates hold:

Ej.u.t; U0/; �.t; U0//j
2
Y � jU0j

2
Ye
�2ˇt
C
L1

2ˇ
(4.5)

and

E

Z t

0

k.u.s; U0/; �.s; U0//k
2
V ds �

1

2ˇ
jU0j

2
Y C

L1

2ˇ
t; (4.6)

for all t 2 Œ0; T �, where

L1 D .K
�1 TrQ1 C � TrQ2 C �ƒ/:
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Proof. Let t 2 Œ0; T � be fixed. We set for the sake of simplicity

Y.t/ D Ej.u.t; U0/; �.t; U0//j
2
Y :

Now, as in (3.59) we can prove that

Y.t/C 2E

Z t

0

k.u.s; U0/; �.s; U0//k
2
V ds � jU0j2Y C L1t C 2˛.2 C /

Z t

0

Y.s/ ds:

(4.7)
From (2.7) and (4.7), we infer that

Y.t/C 2ˇ

Z t

0

Y.s/ ds � jU0j2Y C tL1: (4.8)

We can then conclude, through the application of the Gronwall lemma [16, Lemma 1] that

Y.t/ � Y.0/e�2ˇt C L1

Z t

0

e�2ˇ.t��/ d� D Y.0/e�2ˇt C
L1

2ˇ
�
L1

2ˇ
e�2ˇt ; (4.9)

from which we get (4.5). Furthermore, (4.6) is a direct consequence of (4.8).

Lemma 4.2. Let r0; r1 > 0. Then, there exists � D �.r0; r1/ and T D T .r0; r1/ > 0 such
that for any t 2 ŒT .r0; r1/; 2T .r0; r1/�, ju0j � r0, jA1=2 �0j � r0, we have

P .ju.t; U0/j � r1; jA
1=2
 �.t; U0/j � r1/ � �.r0; r1/: (4.10)

Proof. Let v D u � WA0 and  D � � WA , where WA0 and WA are mild solutions
to (2.11).

Multiplying the second equation of (3.2) by � , we obtain P -a.s.

1

2

d
dt
.� j .t/j2/C b1.v.t/;WA .t/; � .t//C .�A .t/; � .t//

D �.�WA .t/; � .t// � b1.WA0.t/;WA .t/; � .t//

� ˛.f . .t/CWA .t//; � .t//: (4.11)

Once more, by multiplying the second equation of (3.2) by �A1 , we get P -a.s.

1

2

d
dt
�jr .t/j2 C b1.v.t/;  .t/; �A1 .t//C b1.v.t/;WA .t/; �A1 .t//

C b1.WA0.t/;  .t/; �A1 .t//C .�A1 .t/; �A .t//C .�WA .t/; �A1 .t//

D �b1.WA0.t/;WA .t/; �A1 .t// � ˛.f . .t/CWA .t//; �A1 .t//: (4.12)

Adding up (4.11) and (4.12) side by side, we arrive at

1

2

d
dt
.�jA1=2  .t/j2/C �2jA .t/j

2

D �b1.v.t/;  .t/; �A .t// � b1.v.t/;WA .t/; �A .t//

� b1.WA0.t/;  .t/; �A .t// � .�WA .t/; �A .t//

� b1.WA0.t/;WA .t/; �A .t// � ˛.f . .t/CWA .t//; �A .t//: (4.13)
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Now, multiplying the first equation of (3.2) by K�1v, we deduce that P -a.s.

1

2

d
dt
.K�1jv.t/j2/C �K�1kv.t/k2 CK�1b0.v.t/;WA0.t/; v.t//

� .R0.�A .t/;  .t//; v.t//CK�1b0.WA0.t/;WA0.t/; v.t//

D .R0.�AWA .t/;  .t//; v.t//C .R0.�A .t/;WA .t//; v.t//

C .R0.�AWA .t/;WA .t//; v.t//: (4.14)

By adding up (4.13) and (4.14) side by side, we find that P -a.s.

1

2

d
dt
j.v.t/;  .t//j2Y C �K�1kv.t/k2 C �2jA .t/j

2

D �K�1b0.v.t/;WA0.t/; v.t// �K�1b0.WA0.t/;WA0.t/; v.t//

C .R0.�AWA .t/;  .t//; v.t//C .R0.�AWA .t/;WA .t//; v.t//

� b1.WA0.t/;  .t/; �A .t// � .�WA .t/; �A .t//

� b1.WA0.t/;WA .t/; �A .t// � ˛.f . .t/CWA .t//; �A .t//: (4.15)

Consequently,

1

2
Œeıt j.v;  /.t/j2Y �C �K�1

Z t

0

eıskvk2 ds C �2
Z t

0

eısjA j
2 ds

D
1

2
j.u0; �0/j

2
Y �K�1

Z t

0

eısb0.v; WA0 ; v/ ds C
Z t

0

eıs.R0.�AWA ;  /; v/ ds

�

Z t

0

eısb1.WA0 ;  ; �A / ds �
Z t

0

eısK�1b0.WA0 ; WA0 ; v/ ds

C

Z t

0

eıs.R0.�AWA ; WA /; v/ ds � ˛
Z t

0

eıs.f . CWA /; �A / ds

�

Z t

0

eısb1.WA0 ; WA ; �A / ds�
Z t

0

eıs.�WA ; �A / dsC
1

2
ı

Z t

0

eısj.v;  /j2Y ds

(4.16)

for all t 2 Œ0; T �, P -a.s., where ı is a positive constant independent of t , and it will be
chosen later.

Let us proceed to estimate the terms on the right-hand side of (4.16).
Using the Hölder, the Ladyzhenskaya, and the Young inequalities, we find that

jK�1b0.v; WA0 ; v/j �K�1kvkL4.O/kvkkWA0kL4.O/

�K�1c.O/jvj
1
2 kvk

3
2 kWA0kL4.O/

�
�K�1

6
kvk2 C c.O; �/kWA0k

4
L4.O/.K

�1
jvj2/: (4.17)
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By the Hölder and the Young inequalities, we get

jK�1b0.WA0 ; WA0 ; v/j C j.R0.�AWA ; WA /; v/j

�K�1c.O/kWA0k
2
L4.O/kvk C c.O/�jAWA j

2
kvk

�
�K�1

6
kvk2 C c.O; �;K/kWA0k

4
L4.O/ C c.O;K; �; �/jAWA j

4: (4.18)

Once more, using the Hölder and the Young inequalities together with the embedding of
H1.O/ in L4.O/, we obtain

jb1.WA0 ; WA ; �A /j � �c.O/kWA0kL4.O/jAWA jjA j

�
�2

10
jA j

2
C c.O/kWA0k

4
L4.O/ C c.O/jAWA j

4: (4.19)

Thanks to the Hölder, the Gagliardo–Nirenberg, and the Young inequalities, we obtain

j.R0.�AWA ;  /; v/j � �jAWA jkr kL4.O/kvkL4.O/

� c.O/�jAWA jjA jjvj
1
2 kvk

1
2

�
�K�1

6
kvk2 C

�2

10
jA "j

2

C c.O; �; �;K/jAWA j
4.K�1jvj2/; (4.20)

where we have also used the embedding of H1.O/ in L4.O/.
One has

jb1.WA0 ;  ; �A /j � �kWA0kL4.O/kr kL4.O/jA j

� �c.O/kWA0kL4.O/jr j
1
2 jA j

3
2

�
�2

10
jA j

2
C c.O; �/kWA0k

4
L4.O/.�jA

1=2
  j2/; (4.21)

where we used the Hölder, the Gagliardo–Nirenberg, and the Young inequalities.
Combining the Hölder and the Young inequalities, we see that

�.�WA ; �A / � �
2 jWA jjA j � �

21=2jA1=2 WA jjA j

�
�2

10
jA j

2
C c�2 jA1=2 WA j

2: (4.22)

Next, owing to (2.23), we have

� ˛.f . CWA /; �A /

D �˛�.A1=2 . CWA /f
0. CWA /; A

1=2
  /C �2.A1=2 . CWA /; A

1=2
  /

� �˛.2 C /jA
1=2
  j2�˛�.A1=2 WAf

0. CWA /; A
1=2
  /C�2.A1=2 WA ; A

1=2
  /

� �˛.2 C /jA
1=2
  j2�˛�.A1=2 WAf

0. CWA /; A
1=2
  /C�2 jA1=2 WA jjA

1=2
  j

� �˛.2 C /jA
1
2
  j

2
� ˛�.A

1
2
WAf

0. CWA /; A
1
2
  /

C �2 jA
1
2
WA j C �

2 jA
1
2
WA jjA

1
2
  j

2:
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Furthermore, thanks to the Hölder and the Gagliardo–Nirenberg inequalities in conjunc-
tion with the second assumption of (2.21), we deduce that

� ˛�.A
1
2
WAf

0. CWA /; A
1
2
  /

� ˛�cf

Z
O

.1C j CWA j/jA
1
2
WA jjA

1
2
  j dx

� ˛�cf jA
1
2
WA jjA

1
2
  j C ˛�cf .k kL4 C kWA kL4/jA

1
2
WA jkA

1
2
  kL4

� ˛�cf jA
1
2
WA jjA

1
2
  j

C ˛�cf cO.j j
1
2 k k

1
2

H1 C jWA j
1
2 kWA k

1
2

H1/jA
1
2
WA jjA

1
2
  j

1
2 kA

1
2
  k

1
2

H1

� ˛�cf jA
1
2
WA jjA

1
2
  j

C ˛cf 
� 14 .1C �1/

1
2 cO.jA

1
2
  j

3
2 jA

1
2
WA j C jA

1
2
WA j

2
jA

1
2
  j

1
2 /.�2jA j/

1
2

�
�2

10
jA j

2
C ˛

4
3 c

4
3

f
�

1
3 .1C �1/

2
3 cO.jA

1
2
  j

2
jA

1
2
WA j

4
3 C jA

1
2
WA j

8
3 jA

1
2
  j

2
3 /

C ˛�cf jA
1
2
WA jjA

1
2
  j:

This implies

� ˛�.A
1
2
WAf

0. CWA /; A
1
2
  /

�
�2

10
jA j

2
C ˛

4
3 c

4
3

f
�

1
3 .1C �1/

2
3 cOjA

1
2
WA j

3

C ˛�cf jA
1
2
WA j C ˛�cf jA

1
2
WA jjA

1
2
  j

2

C ˛
4
3 c

4
3

f
�

1
3 .1C �1/

2
3 cO ŒjA

1
2
WA j

4
3 C jA

1
2
WA j

2�jA
1
2
  j

2;

where we used suitable Young’s inequalities. Hence,

� ˛.f . CWA /; �A /

�
�2

10
jA j

2
C �˛.2 C /jA

1
2
  j

2
C �2 jA

1
2
WA j C �

2 jA
1
2
WA jjA

1
2
  j

2

C ˛
4
3 c

4
3

f
�

1
3 .1C �1/

2
3 cOjA

1
2
WA j

3
C ˛�cf jA

1
2
WA j C ˛�cf jA

1
2
WA jjA

1
2
  j

2

C ˛
4
3 c

4
3

f
�

1
3 .1C �1/

2
3 cO ŒjA

1
2
WA j

4
3 C jA

1
2
WA j

2�jA
1
2
  j

2: (4.23)

Plugging the estimates (4.17)–(4.23) into the right-hand side of (4.16), we find that

1

2
eıt j.v;  /.t/j2Y C

1

2
min.��1; �`/

Z t

0

eısj.v;  /j2Y ds

�
1

2
j.u0; �0/j

2
Y

C

Z t

0

eısŒc.O; �;K/kWA0k
4
L4.O/ C c.O;K; �; �/jAWA j

4
C c�2 jA1=2 WA j

2� ds
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C

Z t

0

eısŒ.�2 C ˛�cf /jA
1=2
 WA j C ˛

4=3c
4=3

f
�1=3.1C �1/2=3cOjA

1=2
 WA j

3� ds

C

Z t

0

eısŒc.O; �/kWA0k
4
L4.O/ C c.O; �; �;K/jAWA j

4
C .� C ˛cf /jA

1=2
 WA j

C ��1˛4=3c
4=3

f
�1=3.1C �1/2=3cO.jA

1=2
 WA j

4=3
C jA1=2 WA j

2/�j.v;  /j2Y

C

Z t

0

eısŒ˛.2 C /C ı=2�j.v;  /j
2
Y ds;

where we used the fact that min.��1; �`/j.v;  /j2Y � k.v;  /k
2
V due to (2.7).

Observe now that, thanks to (2.15) and (2.17), we have for each � > 0

P .S�/ > 0; (4.24)

where
S� D ¹! 2 � W kWA0.t/k

2
L4.O/ C jAWA .t/j

2
� �; t 2 Œ0; 2T �º:

Furthermore, let
min.��1; �`/ > 2˛.2 C /: (4.25)

Hence, for � small enough such that

0 < � <
1

2 Nc
Œmin.��1; �`/ � 2˛.2 C /�;

where Nc D c.O; �;K; ; �; cf ; ˛/ is a positive constant, we infer that

eıt j.v;  /.t/j2Y Cmin.��1; �`/
Z t

0

eısj.v;  /j2Y ds

� j.u0; �0/j
2
Y C

Z t

0

eısŒ2˛.2 C /C ı C 2 Nc��j.v;  /j
2
Y ds

C 2

Z t

0

eısŒc.O; �;K/C c.O;K; �; �/C c�2�� ds

C 2

Z t

0

eısŒ.�2 C ˛�cf /C ˛
4=3c

4=3

f
�1=3.1C �1/2=3cO �� ds

for a.e. t 2 Œ0; 2T �, P -a.s. on S� . Now, choosing ı between 0 and min.��1; �`/ �
2˛.2 C / � 2 Nc�, we further obtain

j.v;  /.t/j2Y � e
�ıt
j.u0; �0/j

2
Y C

�

ı
Œ2¹c.O; �;K/C c.O;K; �; �/C c�2º

C 2¹.�2 C ˛�cf /C ˛
4=3c

4=3

f
�1=3.1C �1/2=3cOº�

for all t 2 ŒT; 2T �, P -a.s. on S� , where ı is independent of T . The latter yields for T D
T .r0; r1/ large enough,

ju.t/j � r1; jA
1=2
 �.t/j � r1 8t 2 Œ0; 2T �

on the set S� with positive probability.
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Lemma 4.3. Let ‰ 2 Cb.Y / be such that k‰k1 � 1. Then, for any t > 0, there exists
ı1 > 0 such that

jPt‰.x; y/ � Pt‰.x1; y1/j �
1

2
(4.26)

for all .x; y/, .x1; y1/ 2 Y , j.x; y/jY < ı1, j.x1; y1/jY < ı1.

Proof. Let U D .u; �/ be the solution of (2.6) with initial value .x; y/ 2 Y and denote by
DU the Gâteaux derivative of U . Denote DU D

�Dxu Dyu
Dx� Dy�

�
D
�
�1 �2
�3 �4

�
, where Dx and

Dy are Gâteaux derivatives with respect to x and y. Then,8̂̂<̂
:̂
�01 C �A0�1 C B0.�1;u/C B0.u; �1/ �KR0.�A�3; �/ �KR0.�A�; �3/ D 0;

�03 C B1.�1; �/C B1.u; �3/C �A�3 C f̨ 0 .�/�3 D 0;

�1.0/ D 1; �2.0/ D 0;

(4.27)
and8̂̂<̂
:̂
�02 C �A0�2 C B0.�2;u/C B0.u; �2/ �KR0.�A�4; �/ �KR0.�A�; �4/ D 0;

�04 C B1.�2; �/C B1.u; �4/C �A�4 C f̨ 0 .�/�4 D 0;

�3.0/ D 0; �4.0/ D 1

(4.28)
P -a.s. for all t 2 Œ0; T �.

Now, we take the inner product of the first equation of (4.28) with K�1�1.t/ in H1.
Then, take the inner product of the second equation of (4.28) with �A�3.t/ in L2.O/.
Adding the resulting equations, we obtain, after obvious manipulations,

1

2

d
dt
ŒK�1j�1j

2
C �jA1=2 �3j

2�C �K�1k�1k
2
C �2jA�3j

2

D �K�1b0.�1;u; �1/C b1.�1; �3; �A�/

� b1.u; �3; �A�3/ � ˛.f
0
 .�/�3; �A�3/: (4.29)

Let us proceed with estimating all the terms on the right-hand side of (4.29). Note that

jK�1b0.�1;u; �1/j � cK
�1
j�1jk�1kkuk

�
�K�1

4
k�1k

2
C c.�;K/kuk2.K�1j�1j

2/; (4.30)

jb1.�1; �3; �A�/j � c�j�1j
1=2
k�1k

1=2
jA1=2 �3j

1=2
jA�3j

1=2
jA�j

�
�K�1

4
k�1k

2
C
�2

6
jA�3j

2
C c.�; �;K/jA�j

2
j�1jjA

1=2
 �3j

�
�K�1

4
k�1k

2
C
�2

6
jA�3j

2

C c.�; �;K/jA�j
2.K�1j�1j

2
C �jA1=2 �3j

2/; (4.31)
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jb1.u; �3; �A�3/j � c�juj
1=2
kuk1=2jA1=2 �3j

1=2
jA�3j

3=2

�
�2

6
jA�3j

2
C c.�/juj2kuk2.�jA1=2 �3j

2/: (4.32)

By (2.21), we have

j˛.f 0 .�/�3; �A�3/j � �˛cf

Z
O

.1C j�j/j�3jjA�3j dx C �2 jA1=2 �3j
2

� �˛cf j�3jjA�3j C �
2 jA1=2 �3j

2

C �˛cf j�jL4.O/j�3jL4.O/jA�3j

� ˛cf �j�3jjA�3j C �
2 jA1=2 �3j

2

C ˛cf cO
� 12 .1C �1/

1
2 �jA1=2 �jjA1=2 �3jjA�3j

�
�2

6
jA�3j

2
C 3.˛cf /

2
j�3j

2
C �2 jA1=2 �3j

2

C 3.˛cf cO/
2�1.1C �1/jA1=2 �j2jA1=2 �3j

2;

from which we infer that

j˛.f 0 .�/�3; �A�3/j

�
�2

6
jA�3j

2
C Œ3.˛cf /

2.�/�1 C �

C 3.˛cf cO/
2.�/�1.1C �1/jA1=2 �j2�.�jA1=2 �3j

2/: (4.33)

Collecting all estimates (4.30)–(4.33) and inserting them on the right-hand side of (4.29),
we obtain, after straightforward transformations, that

d
dt
ŒK�1j�1j

2
C �jA1=2 �3j

2�Cmin.�K�1; �2/.k�1k
2
C jA�3j

2/

� c.1C kuk2 C juj2kuk2 C jA1=2 �j2 C jA�j
2/.K�1j�1j

2
C �jA1=2 �3j

2/; (4.34)

where c D c.�;O;K; �; ˛; cf ; /. Hence, an application of the Gronwall lemma entails
that

K�1j�1.t/j
2
C �jA1=2 �3.t/j

2
C

Z t

0

.k�1.s/k
2
C jA�3.s/j

2/ ds

� c expc
R t
0 Y.s/ ds; t 2 Œ0; T � (4.35)

with Y.t/ D c.1C ku.t/k2 C ju.t/j2ku.t/k2 C jA
1=2
 �.t/j2 C jA�.t/j

2/.
Analogously, we find that

K�1j�2.t/j
2
C �jA1=2 �4.t/j

2
C

Z t

0

.k�2.s/k
2
C jA�4.s/j

2/ ds

� cec
R t
0 Y.s/ ds; t 2 Œ0; T �: (4.36)
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We will now give an estimate for EŒ‰.u.t; �/; �.t; �// � ‰.u.t; �1/; �.t; �1//�, with
� D .x; y/ 2 Y , �1 D .x1; y1/ 2 Y . To achieve our goal, we will follow an idea of [27]
(see also [2]). Let us introduce the following cut-off function:

‡ı.x0/ D

8̂̂<̂
:̂
D 1 if x0 2 Œ0; ı�;

D 0 if x0 2 Œ2ı;1�;

2 Œ0; 1� if x0 2 Œı; 2ı�:

We have

EŒ‰.u.t; �/; �.t; �// �‰.u.t; �1/; �.t; �1//� D J1.t/C J2.t/C J3.t/; (4.37)

with

J1.t/ D E

�
‰.u.t; �/; �.t; �// � ‡ı

�Z t

0

k.u.s; �/; �.s; �//k2V ds
��

� E

�
‰.u.t; �1/; �.t; �1// � ‡ı

�Z t

0

k.u.s; �1/; �.s; �1//k
2
V ds

��
;

J2.t/ D E

�
‰.u.t; �/; �.t; �// �

�
1 � ‡ı

�Z t

0

k.u.s; �/; �.s; �//k2V ds
���

;

and

J3.t/ D �E

�
‰.u.t; �1/; �.t; �1// �

�
1 � ‡ı

�Z t

0

k.u.s; �1/; �.s; �1//k
2
V ds

���
:

Using the Chebyshev inequality and (4.6), we deduce that

jJ2.t/j �

�
P

Z t

0

k.u.s; �/; �.s; �//k2V � ı ds
�
k‰k1

�
k‰k1

ı
E

Z t

0

k.u.s; �/; �.s; �//k2V ds

� Œ.j.x; y/j2Y C L2/ e
ŒˇC2˛.2C/�t C L3t �

k‰k1

2ˇı
: (4.38)

Similarly,

jJ3.t/j � Œ.j.x1; y1/j
2
Y C L2/ e

ŒˇC2˛.2C/�t C L3t �
k‰k1

2ˇı
: (4.39)

Here,

L2 D
L1

ˇ
; L3 D

4˛2.2 C /
2L1

ˇŒ2˛.2 C /C ˇ�
:

With the view to estimate the term J1.t/, we rewrite it as

J1.t/ D

Z 1

0

d
d�

E

�
‰.u.t; �� /; �.t; �� // � ‡ı

�Z t

0

k.u.s; �� /; �.s; �� //k
2
V ds

��
d�;

where �� D �� C .1 � �/�1, � 2 Œ0; 1�.
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Hereafter, we set h D .x � x1; y � y1/ and denote by A W V1 � V2 ! V 01 � V
0
2 the

canonical isomorphism of V1 � V2 onto V 01 � V
0
2, and

�� D inf
²
t > 0 W

Z t

0

k.u.s; �� /; �.s; �� //k
2
V ds � 2ı

³
:

Invoking now the Bismut–Elworthy formula (see [29]), we obtain

J1.t/ D

Z 1

0

1

t
EŒ‰.U.t; �� // � ‡ı

�Z t

0

k.u.s; �� /; �.s; �� //k
2
V ds

�
�

Z t

0

.Q�1=2DU.s; �� /h; dW.s//� d�

C 2

Z 1

0

EŒ‰.U.t; �� // � ‡
0
ı

�Z t

0

k.u.s; �� /; �.s; �� //k
2
V ds

�
�

Z t

0

�
1 �

s

t

�
.AU.s; �� /;DU.s; �� /h/ ds� d�:

Then, we deduce that

jJ1.t/j � ck‰k1

Z 1

0

�
1

t
E

�Z t^��

0

jQ�1=2DU.s; �� /hj
2 ds

�1=2
C 2k‡ 0ık1E

�Z t^��

0

k�h.s; �� /k
2
V1�V2

ds
�1=2�Z t

0

kU.s; �� /k
2
V ds

�1=2�
d�;

where �h D .DU / � h. Now, by estimates (4.35) and (4.36), as well as the condition (2.8),
we have that Z t^��

0

jQ�1=2DU.s; �� /hj
2 ds � cjhj2:

Thanks to the estimates (4.6) and (4.35)–(4.39), we get

EŒ‰.u.t; �/; �.t; �// �‰.u.t; �1/; �.t; �1//�

� c.�; �;K; T; ; 2; ˛; �; `/k‰k1ı1

�
ı1

ı
C 2eıı1.1C t�1=2/

�
�
1

2
(4.40)

for all j�jY � ı1, j�1jY � ı1, when ı is appropriately chosen and ı1 is small enough. The
proof of Lemma 4.3 is now complete.

Remark 4.1. (1) From (4.40), we can observe that, for ı1 small enough, the factor on the
right-hand side of this inequality containing ı1 decreases to zero.

(2) In (4.40), we can choose ı > 0 to be any constant and then choose ı1 small enough
such that ı1 C 2 exp¹ıı1º.1C t�1/ < 3 and c.�; �;K; T; ; 2; ˛; �; `/k‰k1ı1 � 1=6.

Let 0 D
TrQ1C� TrQ2C�ƒ

2ˇ
, and for M > 0

�M D inf
®
mT I m 2 N W jU.mT;u0; �0/j

2
�M0

¯
: (4.41)
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Lemma 4.4. For any T > 0, there exists M.T /, C.T /, such that

P .�M � mT / � C.T /e
�ˇmT .1C j.u0; �0/j

2
Y /; (4.42)

and for |0 < ˇ,
Ee|0�M � C.|0; T /.1C j.u0; �0/j

2
Y /: (4.43)

Proof. By (4.5) in Lemma 4.1 and the Markov property of ¹U.mT;u0; �0/ºm2N , we find
that

E.jU..mC 1/T;u0; �0/j
2
Y j FmT / � e

�2ˇT
jU.mT;u0; �0/j

2
Y C 0: (4.44)

Using the Chebyshev inequality, we obtain

P .jU..mC 1/T;u0; �0/j
2
Y �M0 j FmT / �

1

M0
e�2ˇT jU.mT;u0; �0/j

2
Y C

1

M
:

(4.45)
Hereafter, we set

zBm D ¹jU.|T; U0/j
2
Y �M0I | D 0; 1; : : : ; mº;

zzBm D ¹jU.mT;U0/j
2
Y �M0º; U0 D .u0; �0/:

Notice that
zBmC1 D zBm \

zzBmC1:

Multiplying (4.45) by 1 zBm and then taking the mathematical expectation on the resulting
inequality, we derive that

P . zBmC1/ �
1

M0
e�2ˇTE.jU.mT;U0/j

2
Y1 zBm/C

1

M
P . zBm/: (4.46)

Similarly, we infer from (4.44) that

E.jU..mC 1/T; U0/j
2
Y1 zBm/ � e

�2ˇTE.jU.mT;U0/j
2
Y1 zBm/C 0P .

zBm/: (4.47)

Let
em D E.jU.mT;U0/j

2
Y1 zBm/; Pm D P . zBm/:

Therefore, from (4.46) and (4.47), one has�
PmC1
emC1

�
�

 
1
M

1
M0

e�2ˇT

0 e�2ˇT

!�
Pm
em

�
:

The eigenvalues of the above matrix are 0 and 1
M
C e�2ˇT . Choosing M such that

1

M
C e�2ˇT D e�ˇT ;
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we deduce that
P2m C e

2
m � C.T /e

�2mˇT .P20 C e
2
0/

� C.T /e�2mˇT .1C j.u0; �0/j
2
Y /:

Since zBm D ¹�M � mT º, (4.42) follows.
Moreover, for |0 < ˇ, we have

EŒe|0�M � D
X
n�0

e|0nTP .�M D nT / �
X
n�0

C.T /e|0nT e�nˇT .1C j.u0; �0/j
2
Y /

� C.T; |0/.1C j.u0; �0/j
2
Y /:

This completes the proof of Lemma 4.4.

Theorem 4.2. There is a unique invariant measure �� for semigroup Pt .

The proof of Theorem 4.2 is based on the following lemma.

Lemma 4.5. There are c� > 0 and Q|0 > 0 such that, for any T > 0, | 2 N, and any
‰ 2 Cb.Y /,

jP|T‰.cu0; �0/ � P|T‰.u
1
0; �

1
0/j

� c�k‰k1e
�|¹ Q|0T º.1C j.u0; �0/j

2
Y C j.u

1
0; �

1
0/j

2
Y /: (4.48)

Proof. We follow the idea in [13] (see also [27] or [2]). Let T > 0 and ı1 > 0 be as in
Lemma 4.3. Let zR D min.ı1; R/, R D M0, where 0 is defined as in Lemma 4.4, and
M is chosen as in the proof of Lemma 4.4.

For notational simplicity, in the sequel, we set U0 D .u0; �0/, U 10 D .u10; �
1
0/ and

U.t; U0/ D .u.t; u0; �0/; �.t; u0; �0//. Hence, for any U0; U 10 2 B zR.0/, where B zR.0/
denotes the ball centered at the origin of zR radius, we have

k�T .U.:; U0// � �T .U.:; U
1
0 //kTV

D sup
k‰k1�1;‰2Cb.Y/

jE.‰.U.T; U0/// � E.‰.U.T; U 10 ///j �
1

2
; (4.49)

where �T .U.:; U0// and �T .U.:; U 10 // are the laws of U.T; U0/ and U.T; U 10 /, respec-
tively.

Then (see [2, Appendix]), there is a maximal coupling .X1.U0; U 10 /; X2.U0; U
1
0 // of

.U.T;U0/; U.T;U
1
0 // which depends measurably on U0 and U 10 . This means that the law

of X1.U0; U 10 / (resp., X2.U0; U 10 /) coincides with that of U.T;U0/ (resp., U.T;U 10 /) and

P .X1.U0; U
1
0 / ¤ X2.U0; U

1
0 // �

1

2
;

PT‰.U.T; U0// � PT‰.U.T; U
1
0 // D EŒ‰.X1.U0; U

1
0 // �‰.X2.U0; U

1
0 //�:
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Let

.�11 .U0; U
1
0 /; �

1
2 .U0; U

1
0 //

D

8̂̂<̂
:̂
.X11 .U0; U

1
0 /; X

1
2 .U0; U

1
0 // if U0; U 10 2 B zR.0/; U0 ¤ U

1
0 ;

.U.T; U0/; U.T; U
1
0 // if U0 D U 10 ;

.U.T; U0/; zU.T; U
1
0 // otherwise;

where zU.T; U 10 / is the solution of the stochastic equation where the Wiener process W
has been replaced by an independent copy zW .

We again construct iteratively the coupling .�n1 .U0;U
1
0 /;�

n
2 .U0;U

1
0 // of .U.nT;U0/;

U.nT; U 10 // by the formula

.�1Cn1 .U0; U
1
0 /; �

1Cn
2 .U0; U

1
0 //

D .�11 .�
n
1 .U0; U

1
0 /; �

n
2 .U0; U

1
0 //; �

1
2 .�

n
1 .U0; U

1
0 /; �

n
2 .U0; U

1
0 ///:

Then, for U0; U 10 2 Bı1.0/, one has

jEŒ‰.U.nT; U0//� � EŒ‰.U.nT; U 10 //�j

D jEŒ‰.�n1 .U0; U
1
0 //� � EŒ‰.�n2 .U0; U

1
0 //�j

� 2k‰k1P .�n1 .U0; U
1
0 / ¤ �

n
2 .U0; U

1
0 //:

Furthermore, we define

`M;1 D inf¹n 2 N W �n1 ; �
n
2 2 B zR.0/º;

and recursively,
`M;|C1 D inf¹n > `M;| W �n1 ; �

n
2 2 B zR.0/º:

Then, (4.43) can be generalized to two solutions, and we have

EŒe|0`M;1T � � C.|0; T /.1C j.u0; �0/j
2
Y /; (4.50)

and, by the Markov property,

EŒe|0.`M;|C1�`M;| /T j F`M;|T � � C.|0; T /.1C j�
`M;|
1 j

2
Y C j�

`M;|
2 j

2
Y /:

which implies that, for | � 1,

EŒe|0`M;|C1T � � C.|0; T /EŒe
|0`M;|T .1C j�

`M;|
1 j

2
Y C j�

`M;|
2 j

2
Y /�

� C.|0; T /.1C 2 zR
2/EŒe|0`M;|T � (4.51)

and
EŒe|0`M;|T � � C.|0; T /

| .1C 2 zR2/|�1.1C j.u0; �0/j
2
Y /: (4.52)
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Now, we construct a sequence of stopping times to enter inside the ball B zR defined recur-
sively by

QlM;|C1 D inf¹n � Q̀M;| W j�n1 jY � zR; j�
n
2 jY �

zRº:

We set
Q̀
0 D inf¹| 2 N W �

Q̀
M;|C1

1 D �
Q̀
M;|C1

2 º: (4.53)

Recall, in virtue of (4.49), that

P .�
Q̀
M;|

1 ¤ �
Q̀
M;|

2 / �
1

2
;

and then,

P . Q̀0 > | C 1 j Q̀0 > |/ �
1

2
:

Writing
P . Q̀0 > | C 1/ D P . Q̀0 > | C 1 j Q̀0 > |/P . Q̀0 > |/;

we obtain
P . Q̀0 > |/ � 2

�| :

So, for any Q|0 ( Q|0 will be chosen later), we have

EŒe
Q|0 Q̀M; Q̀0

T
� �

X
|�0

E.e Q|0
Q̀
M;|T 1

|DQ̀0
/

�

X
|�0

P .| D Q̀0/
1�
Q|0
|0 ŒE.e|0

Q̀
M;|T /� Q|0=|0

�

X
|�0

�
1

2

�.|�1/.1� Q|0=|0/
ŒC.|0; T /

| .1C 2 zR2/|�1.1C j.u0; �0/j
2
Y /�
Q|0=|0 :

We choose Q|0 such that

2¹�.1� Q|0=|0/ºŒC.|0; T /.1C 2 zR
2/� Q|0=|0 < 1; (4.54)

and we get

EŒe
Q|0 Q̀M; Q̀0

T
� � C. Q|0; |0; zR; T /.1C j.u0; �0/j

2
Y /: (4.55)

Since
QQ̀
0 D inf¹| 2 N W �|1 D �

|
2 ; �

|
i 2 B zR; i D 1; 2º �

Q̀
M; Q̀0
C 1;

we deduce that
EŒe Q|0

QQ̀
0T � � C. Q|0; |0; zR; T /.1C j.u0; �0/j

2
Y /:

This implies that

P .�|1 ¤ �
|
2 / D P .e Q|0

QQ̀
0T � e Q|0T | /

� C. Q|0; |0; zR; T /.1C j.u0; �0/j
2
Y /e
� Q|0T | :
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Hence,
jEŒ‰.U.|T; U0//� � EŒ‰.U.|T; U 10 //�j

� 2k‰k1P .�|1 .U0; U
1
0 / ¤ �

|
2 .U0; U

1
0 //

� k‰k1C. Q|0; |0; zR; T /.1C jU0j
2
Y C jU

1
0 j
2
Y /e
� Q|0T | :

This proves (4.48).
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