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Existence and ergodicity for the two-dimensional
stochastic Allen—-Cahn-Navier-Stokes equations

Aristide Ndongmo Ngana and Theodore Tachim Medjo

Abstract. We study in this article a stochastic version of a coupled Allen—Cahn—Navier—Stokes
model in a two-dimensional bounded domain. The model consists of the Navier—Stokes equations
for the velocity, coupled with an Allen—Cahn model for the order (phase) parameter, both endowed
with suitable boundary conditions. We prove the existence of solutions via a semigroup approach.
We also obtain the existence and uniqueness of an invariant measure via coupling methods.

1. Introduction

We study the existence and ergodicity of the stochastic Allen—Cahn—Navier—Stokes equa-
tions (AC-NSEs)

du 4+ [—vAu+ (u-V)u + Vpldt = KuVedt + /01 dWi(t),

diva = 0,

(1.1)
dg + [u- Vo + uldt = /O2dWa(2),
n=—eAp +af(p)
in (0, +00) x O, subject to the boundary and initial conditions
_ om _
u=0, B =0 f)n (0, +00) x 309, (12)
u(()’x) = ll()(x), ¢(07x) = ¢0(x) m (95

where 7 is the unit outward normal to the boundary d@. Model (1.1) is an example of
a diffuse interface model, and it is well accepted that diffuse interface models are well-
known tools to describe the dynamics of complex (e.g., binary) fluid [1]. For instance, this
approach is used in [4] to describe cavitation phenomenon in a flowing liquid. The model
consists of the Navier—Stokes equation coupled with the phase-field system [8, 17, 18,25].
In (1.1)=(1.2), @ C R? is a bounded, open, and simply connected domain with smooth
boundary 00, and u = (u, u,) denotes the fluid velocity field, ¢ is the order (phase)
parameter, which represents the relative concentration of one of the fluids, p stands for the

Mathematics Subject Classification 2020: 35R60 (primary); 35Q35, 60H15, 76M35, 86A05 (secondary).
Keywords: stochastic, Allen—Cahn, Navier—Stokes equations, invariant measure, coupling, ergodicity.


https://creativecommons.org/licenses/by/4.0/

A. Ndongmo Ngana and T. Tachim Medjo 2

pressure, v, K is the kinematic viscosity of the fluid and the capillarity (stress) coefficient,
respectively, and €, ¢ > 0 are two physical parameters describing the interaction between
the two phases. In particular, € is related to the thickness of the interface separating the
two fluids, provided that the diffuse interface between the phases has a small but non-zero
thickness. The quantity w, also called chemical potential, is the variational derivative of
the following free energy functional:

7@ = [ (51967 +aF@)ax (13

where, e.g., F(r) = for f(&)dEé. Wy and W, are independent cylindrical Wiener processes
defined in a filtered space (2, ¥, ¥;, P) taking value in appropriate Hilbert spaces H1,
H,, respectively. Finally, O and Q, are linear continuous, positive, and symmetric oper-
ators on H; and H,, respectively (see (2.8) below).

Herein, we prove the existence and uniqueness of a solution (u(z, ug, ¢o), ¢ (¢, uo, o))
of the stochastic AC-NSEs (1.1)—(1.2) and of the corresponding invariant measure on
the space H; x H, defined in Section 2 below. The deterministic version of the Allen—
Cahn—Navier—Stokes system (1.1)—(1.2) was extensively studied in the literature (see,
e.g., [18,25], and the references therein). As noted in [6, 23, 24], stochastic partial dif-
ferential equations (SPDE) can be used to describe systems that are too complex to be
described deterministically, e.g., a flow of a chemical substance in a river subjected to
wind and rain, an airflow around an airplane wing perturbed by the random state of the
atmosphere and weather, etc. With the development of the theory of stochastic processes,
systems such as the Navier—Stokes equations perturbed by noises have been widely inves-
tigated with the goal of better understanding the complex phenomenon of turbulent flow.
The mathematical theory of the stochastic Navier—Stokes equations is very rich, covering
a broad area of deep results on existence of solutions, dynamical system features (i.e., how
the system behaves and evolves over time, including stability, attractors, long-time behav-
ior of the solutions, etc.), ergodicity, and many more. Let us recall that the presence of
noise in a model can lead to new and important phenomena. For instance, contrary to the
deterministic case, it is known that the 2D Navier—Stokes system driven with a sufficiently
non-degenerate noise has a unique invariant measure and hence exhibits ergodic behavior
in the sense that the time average of a solution is equal to the average over all possible
initial data [6]. Recently, instead of stochastic Navier—Stokes equation, many authors have
also studied ergodicity for the solutions of the stochastic magneto-hydrodynamics equa-
tions (see [2]), the solution of the stochastic Boussinesq equations (see [15,20,21] and
the references therein), and the solutions of the stochastic magneto-hydrodynamics alpha
model (see [31]); and this list is not exhaustive.

Let us mention that although we drew our inspiration from [2,21], the problem we
treat here does not fall into the framework of these references. Besides the usual nonlinear
term of the conventional Navier—Stokes system, the model (1.1)—(1.2) contains another
(stronger) nonlinear term that results from the coupling of the convective Allen—Cahn
equation and the Navier—Stokes system. Because of this fact, the analysis of the existence
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and uniqueness of invariant measures of the 2D stochastic AC-NSEs driven by degenerate
additive noise tend to be more complicated and subtle than of the same study done in [2]
or [21]. For more details, see, for instance, the proof of Proposition 3.1 in Section 3, or
the derivation of the estimates (3.12), (3.28), and (3.34), just to cite a few. Furthermore,
the technical method used here to derive the proof of Lemma 4.2 in Section 4 is different
from that used in [2, 21], primarily due to the presence of the term f, in the system
of equations, which is difficult to control. This makes the mathematical analysis of the
problem very challenging.

The paper is organized as follows. In Section 2, we gather all the necessary tools for the
operator formulation of problem (1.1)—(1.2). In Section 3, we provide the main existence
and uniqueness result for (1.1)—(1.2), which is proven via an approximating regularizing
scheme. In Section 4, we establish the existence of an invariant measure [, corresponding
to the stochastic flow ¢ — (u(t), ¢(¢)) and its uniqueness via coupling methods, following
[2, 13,27]. Furthermore, the uniqueness of the invariant measure implies that the flow is
ergodic, i.e.,

1T
TlgnooT/O \Il(u(t),qﬁ(t))dt:[Y\IJd;L*

for all U € L2(Y; u) (Y is defined in (2.3) below), which agrees with some physical
hypotheses on the AC-NSEs, which model the flow of two fluids (for instance, oil and
water).

2. Functional setting and formulation of the problem

We introduce necessary definitions of functional spaces frequently used in this work.
Given two Banach spaces E;, E», £(E1, E>) is the space of bounded linear operators
from E; to E,. If X is real Hilbert space with inner product (-, -)x, then we denote
the induced norm by || - ||x, while X’ will indicate its (topological) dual. If E; and X;
are separable Hilbert spaces, then by L,(E, X1) we will denote the Hilbert space of all
Hilbert—Schmidt operators from E; to X; endowed with the canonical norm || - ||, (£,,x,)-
For any p € [1,00) and s € R, we denote by L?(0) and WP () the usual Lebesgue and
Sobolev spaces of scalar functions, respectively. If p = 2, we simply write W*2(Q) =
H?®(O). We denote by HO1 (O) the closure of €5°(O9) in H'(O). We use the notations
L?(0), W*?(0O), and H* (O) to denote the spaces [L?(09)]?, [W5P(09)]?, and [H*(0))?,
respectively.
We introduce the following spaces:

V = {v € [€§°(9)]? such that divv = 0},
H, = the closure of V in L?(0),
¥V = the closure of V in [H, (O)]?.

We denote by (-, -) and | - | the inner product and the norm induced by the inner product
and the norm in L2(O) on Hy, respectively. We endow H; with the scalar product and
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norm of .2(©). As usual, we equip the space V; with the gradient-scalar product and the
gradient-norm |V - | := || - ||, which is equivalent to the [H{ (¢)]*-norm (due to Poincaré’s
inequality).

We now define the operator Ay by

Aou = —PAu Vu e D(4¢) = H*(O) NV,

where & is the Leray—Helmholtz projector in IL2(9) onto H;. Then, Ay is a self-adjoint
positive unbounded operator in H; which is associated with the scalar product defined
above. Furthermore, Ay' : Hy — H] is a self-adjoint linear compact operator on H; and
|Ag - | is a norm on D(Ay) that is equivalent to the H?(©)-norm.

We introduce the linear nonnegative unbounded operator on L?(9)

A1p = —Ap V¢ e D(A)) ={¢p € H*(9),d,¢ =0, on 30}, .1

and we endow D(A;) with the norm |Aq - | 4 |{-}|, which is equivalent to the usual
H?(O)-norm. For a fixed y > 0, we define the following operator:

Ayp=—Ap+yp Yo e D(Ay):={p € H*(9),d,¢ =0, on d0}.

Note also that A;l is a compact linear operator on L2(0) and |A,, - | is a norm on D(4,)
that is equivalent to the H2((9)-norm.
Hereafter, we set

Hy=L*(), Vo=D(A)?), H=H xH, V=Vxl,. (2.2)

In order to define the variational setting for the Allen—-Cahn—Navier—Stokes equations
(1.1)-(1.2), we also need to introduce the bilinear operators By, B; (and their associ-
ated trilinear forms by, b1) as well as the coupling mapping Ry which are defined, from
V1 x D(Ap) into Hy, Vi x D(A,) into H,, and Hy x D(A?,/z) into Hp, respectively.
More precisely, we set

(Bo(u,v),w) = / (u-Vv-wdx = bo(u,v,w) Vu,v,w e D(Ay),

]
(Bi(u.¢). ) = [O[w-vmwax = by ¥) VueVip.y € D(Ay).
(Rotiee).w) = [ (V- wldx = br(w,p0) Y€ Vi, € Ha g < DAY,

Let us point out that
Ro(n. @) = PuVe.
Now, we define the Hilbert spaces Y and V by

Y = H] X Vz, V= V] X D(Ay), (23)
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endowed with the scalar products whose associated norms are, respectively,

|, )3 = K ul® + (V> + yIpl*). (u.¢) €Y,

24
1. DT = vK lull® + €4, 6] V(u.$) € V. .

We recall that By, By, and Ry satisfy the following estimates (see, for instance, [14, 18,
25]):

1Bo(u, ) lyy < clul[lu]/|v]"/?|v]/? Vu,v e Vi,

1Bo(u, w)|? < cllul]| Aoul? Vu € D(Ao).

|By(u.¢)|r2 < clul'?|u]'/?14)/2¢|'/?| 4, ¢|'/>  Vu € V1. ¢ € D(4y). @
IRo(Ay . p)llyr < clA}/pl'/?| Ay pI /| Ay | Vp,¢ € D(Ay)

for some positive constant ¢ = ¢(0O, y).
Using the previous notations, the problem (1.1)—(1.2) can be formally written in the
following abstract form:

du + [vAou + Bo(u,u) — KX Ro(eAy¢, ¢)|dr = /O1dW;(t) in V],
dp + [Bi(u, ) + py]dt = Q2 dW>(1) in V3,

(2.6)
Ky = €Ayd + afy (),
u(0) = uo, ¢(0) = o,
with f,(r) = f(r) —a leyr,e < a.
Hereafter, we will denote by A > 0 and £ > 0 two positive constants such that
Mol < ol?. €429 < |4,¢]° V(v.9) € V. @7

Remark 2.1. Since VF, (¢) = f,(¢)V¢, then

Uy Vo = €A,V + aV F, ().

The term V F,, (¢) can be incorporated into the pressure gradient. Hence, we could replace
Ro(pty.9) by Ro(€Ay¢. 9).

Let (2, F,F = {F;}:>0. P) be a filtered probability space satisfying the usual con-
ditions (namely, it is complete, right-continuous and F, contains all null sets). Let ﬁ,i
(k =1,2,...,i = 1,2) be a sequence of real-valued one-dimensional standard Brownian
motions mutually independent on (2, ¥, P). Let

01 =A%, 0, =47, 1/2<so<1 2.8)

be a nonnegative define symmetric operator on H; (resp., H3), {e,i b1, {ei}kzl two
complete orthonormal basis of eigenfunctions of Ay, respectively, A; diagonalizing Q1
and Q»,, respectively, and {/\;{}kzl’ i = 1,2 be the corresponding eigenvalues so that

Qleli = A,lce,l, Qze,% = )L,%e,% Vk > 1.
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Since Q; (resp., Q») is of trace-class, it follows that

oo o0
TrQ; = Z(Qle,i,e,i)]dz = Zk}c < 00,
k=1

e 2.9)
[ e’}
TrQr =) (Qaef.ef)r2 = » A} < oo
k=1 k=1
We suppose furthermore that
oo N 00
A=Y IV(03eQI7: = D A3IVeRlzs < oo, 2.10)
k=1 k=1

The cylindrical Wiener process W = (W;, W>) on H = H; x H> has the following rep-
resentation:

+o00
Wi=Y Bie. i=12.
k=1

Note that the dependence on the variables is as follows:

400
Wi(t,x,0) = Z,ch(t,w)e}'c(x), (t,w,x) e RT x Q x 0.
k=1

Now, we consider the stochastic convolution that is the mild solution of the problem

dW4 (1) + AW4(1)dr = /O dW (1), @.10)
Wa(0) =0, '
given by
t
Walt) = [ e INVGAWE) 1= Wiy (1) Wi, (),
0
where
_ I)AO 0 _ Q1 0
= (0 ) e (T o)
In the rest of the paper, we will assume that
\/El (A0)8 and \/az(Ay)‘s are bounded operators. (2.12)

Then,

—e(t—s)A 2
le= = O, 12 1. D47
§ —§ —€Ay(t—
< v 0,(4y) ||526(H2,H2)||(Ay)0 A s)||1%2(H2,H2)

o0
_ _ 24—
= VO, (A ity AR De 2, (2.13)
k=1
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where e,% is the orthonormal basis of eigenvectors of 4, = A; + yI and )Li are the eigen-
values.
Note that by Itd’s isometry property of stochastic integral, we have

t 2
E[|Wa, (t)||2D((Ay)0) = E“/; e €Ay (t—s) \/52 dWs(s)

D((A4y)°)

t
—€A, (t— 2
=E/0 lemeAr@ S)\/Q2||L2(H2,D((Ay)")) ds

t
_ —€Ay(t— 2
—fo le= 4= /0,17, (b1, i, oy 95

Now, since
t 1 fole)

/ D@D ds = 3 ()OI (1 — e C0N and A ~ ek
0 k=1 € k=1

we infer that the Gaussian process Wy, lives in D((Ay)?) provided that
3> o.

By arguing similarly as in the proof of Proposition 34 (see [10, Section 5.3] for more
details), it can be shown that, in this case,

Wy, € €([0,T]; D((4,)%)), P-as.

Hereafter, we fix
o€{l1/4,1;3/2} and 6> 3/2.
By the Gagliardo—Nirenberg inequality, i.e.,
1/2

1/2 1/2 1/2
Ixllzs0) < clxl;5e) Xl iy < €l o |4y 2x ], x € D(A}2),

and the embedding of D(A)l,/ 4) in L*(0), we deduce that Wy, is a Gaussian process in
L*(0). More precisely, we have

Analogously, we find
Wy, € €([0, T]; Hy) x L*([0, T] x 9), P-as. (2.15)

Now, arguing similarly as previously and by making use of the Burkholder—Davis—Gundy
inequality, we obtain

t 2
4 —e(t—s)A 2
£ sup W4, Olbane = C(/o le™ ™Y O IE 11, pic 7y ds) '
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Consequently,

E sup ||WAy ()l Dca,yry < 00 iff (2.12) holds with § > 3/2. (2.16)
tefo0,T

In particular, for 0 = 1, we have

E s[up IWa, Ol D4,y < 00 (2.17)
tel0,T

Also thanks to the embedding of D((A4,)/*) in L*(0), we deduce that, for o = 1/4,

E sup ”WA (t)||L4((z)) < o0. (2.18)
t€l0,T]

As a direct consequence of (2.16), we infer that, for o = 3/2,

E Wy, (¢ < 00. 2.19
t:[lép ” Ay( )”D(A3/2) oo ( )
Analogously, we find
E sup ||WA0(I)||D(AO) < 00, (2.20)
t€l0,T]

provided that (2.12) holds and § > 3/2.
From now on, 4g and A, will satisfy (2.15) and (2.20), (2.17), and (2.19), respectively.

Assumption on f

(H1) We assume that f € €2(R) satisfies

lin’ll'r|—>-|-<>o f/(r) >0, . 2.21)
OO ser(1+ 1) VreR. i=012,
where ¢y is some positive constant.
(H2) We also assume that
(@), 419) = —n|4)%9 V¢ € D(4;"?) (222)

for some constant y; > 0.

Let us point out that (2.22) is satisfied if there exists a positive constant y, such that

f'(ry=—y2 VreR. (2.23)

3. Existence and uniqueness result for problem (2.6)

With the above framework in place, we now define the notion of local weak solutions of
the stochastic Allen—-Cahn—Hilliard—Navier—Stokes equations (2.6) that we will work with
in this work.
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Definition 3.1. Let the assumptions on f be satisfied, and let
S ={Q, FAF1}i20. P ABL(1), 1 = 0,k =1,2,3,...5i = 1,2}}

be a given stochastic basis and (u¢, ¢9) € Hy x V,. By the solution to problem (2.6), we
mean a pair of functions (u(¢), ¢(¢)) € L%V(O, T; V) such that P-a.s.

u(t) + [y [vAou + Bo(u,u) — K Ro(eAyd, $)] ds = uo + /01 Wi(1),

O(1) + [o[Bi(w,d) + iyl ds = o + /02 Wa(t). G.1)
Wy = €Ayd + af,(p).

With the above definition in mind, we are now ready to formulate our main existence
result in the following theorem.

Theorem 3.1. Let T > 0 be a fixed positive time. Problem (2.6) has a unique solution
(u, @) in the sense of Definition 3.1. Moreover,

1) (u(t),¢(t)) € €0, T; Hy x V), P-a.s;

(i) the map Hyx Hy — L*(0,T; H; xV5) N L2(0,T; V), (ug, o) — (u(t),d(t))

is continuous P-a.s.

To prove Theorem 3.1, we introduce the following translated unknown processes:

v(t) = u(t) = Wao (1), ¥ (@) = o) — Wy, (1),

where (u, ¢) is the solution to (2.6).
One can easily check that the deterministic functions v and v satisfy

v+ vAgv + Bo(v,v) + Bo(v, Wa,) + Bo(Wa,, v) — K Ro(eAy ¥, ¥)
= —Bo(Way, Wa,) + K Ro(eAyWa,, V) + K Ro(eAy Y, Wa,)
+K Ro(eAy Wi, Wa),
V' + Bi(v, V) + Bi(v, Wa,) + Bi(Wa,, V) + €Ay + ey Wy,
= —B1(Way, Wa,) —af, (Y + Wa,),
v(0) = up, ¥ (0) = ¢o,

(3.2)

where the derivatives v’ and ¥’ are taken in the sense of vectorial V| (resp., V) valued
distributions on (0, T') or, equivalently, a.e. on [0, T'].

We will now prove that problem (3.2) is well defined, and it is taking a considerable
part of this paper.

Proposition 3.1. Let T > 0 be a fixed positive time. Suppose that (ug, ¢po) € Hy X V5.
Then, there is a unique solution (v, V) € L%,V(O, T;V) to (3.2) such that P-a.s. (v, V) :
[0, T] — V' is absolutely continuous on [0, T| and P-a.s.

() B9 e 120.T:V)), LB e L2(0.T: (D(4,))).
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() ve©0,T:Hy)andy € €0,T; V).

Proof of Proposition 3.1. Let e > 0 be fixed. We consider the following approximate prob-
lem:

vl + vAove + W1(ve) + Bo(ve, Wa,) + Bo(Wa,, ve)
—JC\I’EZ(vg, Ve) — KRo(eAyWa,, Ve) — K Ro(eAy e, Wa,)
= —Bo(Wa,, Wa,) + K Ro(eAyWa,, Wa,),
Vi 4 €Ay e + W2 (ve, Ye) + Bi(ve, Wa,) + Bi(Wa,. Ve)
= —afy (Ve + Wa,) — B1(Way, Wa,) —eyWy,,
ve(0) = uo, VY:(0) = ¢o,

(3.3)

P-a.s. and a.e. t € [0, T']. Here,

Bo(v,v) if ||v]| <1/,

vl = .
Byum)if o] > 1/e,
W2 (v, ¥) = R‘;(G(ivt/;’x) if o]l + 14y | < 1/
’ 0(edy ¥, .
ey Il + 14,91 > 1/e,
Bi(v,v) if [[v]| + |4,y < 1/e,
vy = By(v.v)

FAVIH AT if [|v]| + |4y ¥| > 1/e.

Now, in order to prove that (3.3) is well defined, we will use the standard Galerkin method
used in the deterministic case (see, for instance, [25]). Since the injection H; x H 1) c
Vi x D(A,) is compact, let {(w;, ¢;),i = 1,2,3,...} C Vi x D(A4,) be an orthonormal
basis of Hy x H'(O), where {w;,i = 1,2,...}, {¢;,i = 1,2, ...} are eigenvectors of
Ap and A, respectively. We set V, = span{(w1, ¢1), ..., (Wn, ¢»)}, and we look for
(vZ,¥2) € V, solution to the ordinary differential equations

d n
Ve 4 Agv! + PIWL(0?) + PLBo(v!, Way) + PLBo(Way, v7)

—P V(WL YY) — Py Ro(Ay Wa, W) — P Ro(Ay ¥, Wa,)

n

= —PLBo(Way. Way) + Pl Ro(Ay Wy, Wa,).
WE LAYt + PRI YD) + PEBI (08, Wa,) + P2B1 (Way, Y1)
= —fy (Yl + Wa,) — PZB1(Way. Wa,) — yPiWa,.

v2(0) = Pruo,  YI(0) = PZeo.

34)

where (P!, P2) : Hy x L2(Q) — V, is the orthogonal projection; and for the sake of
simplicity, we set v = K = € = « = 1. It is classical that, P-a.s., there exists a unique
(7, y¥}) in €0, T;Y) and by taking the scalar product in H; of (3.4); with v, then
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taking the scalar product in L?(©) of (3.4), with A, ¥,

% %quv 1A PYIP) + 0RIP + 1Ay 9l P + (Bo(vl, Way ), v7)
— (Ro(AyWa, . Y!), 02 + (Bi(Way. Y1), Ay L)
= —(Bo(Wio, Wiao). v) + (Ro(Ay Wa,, Wa,), v2) = (A)? f (W] + Wa, ). A} >y7)
— (B1(Way. Wa,). Ayyl) — y(Wa, . Ay yrl). 3.5

Now, by making use of the Holder, Ladyzhenskaya, and suitable Young inequalities, we
find

|(Bo(v;lv WAO)’ U:)| = | - (BO(v:’L$ vg)’ WAO)l
0% IlLa@) 1% 11 Wap 40

1 3
g2 1vg 11> [ Wao s (o)

A TA

IA

1
gllv'ﬁll2 + (O W llg 4@y 102 1. (3.6)

By the Holder, the Gagliardo—Nirenberg, and the Young inequalities together with the
embedding of H!(©) in L#(©9), we obtain

[(Ro(Ay Wa, . ¥rg), v)| < |4y Wa, VYL Ls0) 1V e o)
< c(O)| A4y Wa, || 4,92 |102 12 10712
< I+ S AP + @1, Wa Bl )
Using the Holder and the Gagliardo—Nirenberg inequalities once again, we have

[(B1(Way, V), Ay D] < [IWaollLsoy IV La@)| Ay ¥s |
1 3
< c(O) | Wayllne@) V¥ 1214y 9] |2

1
= gV + O Wallts) VVEE,  (B8)

where we used the Young inequality.
Thanks to the Holder and the Young inequalities, we find

[(—=Bo(Way, Wa,), )| + [(Ro(Ay Wa,, Wa,), v)|
= [(Bo(Way, vy), Wao)| + [(Ro(Ay Wa,, Wa,), vg)|
< c(O) Wiy L s 105 | + c(O)| Ay Wa, [P [|07 |

1
= S22 + (O Wao s o) + (@)1, Wa, I*. 3.9



A. Ndongmo Ngana and T. Tachim Medjo 12

Using the Holder and the Young inequalities in conjunction with the embedding of H ' (©)
in IL#(©9), we obtain

|(B1(Wao. Wa,). Ay )| < c(O)|Wa,lls oyl Ay Wa, 114, ¥ |
1
< ElAw//ﬂZ + c(O) | Wil 4 ()| Ay Wa, P
1
< 1—0|Ay1ﬂ£’|2 + c(O)|Waollf a0y + ¢(O) Ay Wa, |*. (3.10)

Thanks to the Cauchy—Schwarz and the Young inequalities, we infer that

1
[y Wa,, 4020 = yIWa, A 021 < 15 1Ay e + ey Wa, 2

IA

1
< E|Ay1,/f;’|2+cy|A;/2WAy|2. (3.11)
Let us proceed to the third term on the right-hand side of (3.5). One has

— ANyl + AYPWa,) (00 + Wa,), A2yl
= —((AY2yl + A2 Wa) £/ (W2 + Wa,). A2yl
+ y(AY2yl + AY2Wy,, ALyl

Using the Cauchy—Schwarz and the Young inequalities, we deduce that

VA PUL + AP Wa, AP < v AP 4y |40 1AY P W,

A

3
A2+ DAy 2 W, 2.
In light of (2.23), we have
A2y g Wy ), AY 2y = /0 P+ Wa ) AV2yn 2 dx < py | AV g 2,
From (2.21), together with the Gagliardo—Nirenberg inequality, we infer that
| — (A2 Wy, £/ (2 + Wa,), A2yl
< /@ U7 + Wa )| AY2 Wy, || Y27 d
< /@ (U Y7 + Wa, DIAL2 W, || A2y | dx

< crlAZ W 1AZ U2 + cr (12 ooy + 1Wa, o) 145 Wa, Loy 14X 20 (o)
< cr|A)PWy, || AL 2yl

ey T A+ y 2O A2y 3 AV WL, |51 A, W, 15| A,y |5

ey TS+ YT 2e(O)| AP W, || Ay Wa, |3 |AY 22 1314, 975
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Using now the Young inequality, we find

| = (A} Wa, [+ Wa,), A} 290

< ol + LAy grp + LAy,
+e(O)c)y R4y AL WA 114, Wa 1AV 2y P
+ely 1+ y ) e (@AY Wa 1814, W, B4V 2y

1 c _2 _ 2
< 1ol A VP A+ AP WA, P Ry (U yTHIA W, Py Wa, |
c ¢ 2 1.3 4 2
+ [y2+ S e(O@)c; YU+ YT A W, 314, Wi, | +c((9>]|A;/2w:|2.

Consequently,
= (A2 f W+ Wa,). 4297

1 y+c —2 - 2
< JoMAr Ve P+ TS AW P Gy TR (o yTOIAY W, PIA W,

=10
3]/ Cf g _2 —1, 3 1/2 4 2
+ 724 o S Oy I+ YT )IA W, 514, Wa, |5+ ¢(0)
x |42y, (3.12)

Collecting now the estimates (3.6)—(3.12) and inserting all of them in (3.5), we obtain the
following differential inequality:

S0P + A2 + P + 14,2

< clWaoll sy + clAy Wa, |* + clcp + DIAY2Wa, 1> + cc2| AL Wa, 2| Ay Wy, |3
+ (Wi (o) + 14y Wa, D102
e[t IWa ey +er + CE|A)1,/2WAV|%|AyWAy|%]|A},/2wg|2 (3.13)

for some positive constant ¢ = ¢(9, ¥, y2).
Integrating (3.13) in time over [0, ¢], where ¢ € [0, T'], we deduce that

t t
Iv?(l)|2+|Ai/21ﬁ§(l)|2+/0 IIvZ’(S)IIstJr/0 |4y w2 ()] ds

t
< cer + [ k() (02 ) + |AY297 (s)2) ds (3.14)
0

for some positive constant ¢ = ¢(0, y, y2, ¢r). We note that the constant ¢ is independent
of ¢ and n. Here,

T
c1 = [uol® + 14, %¢ol7> + /0 (IWao () 140y + 1Ay Wa, ()|* + 14}/ > Wa, (5)*) ds

T
[ 1AW, 0 PA W, )1 s,
0
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4 2
k(s) = (1 + [Way ()£ 4@y + |4y Wa, ()I* + |4} 2 Wa, ()15 14y Wa, (5)]5).

Hence, by the generalized Gronwall-Bellman lemma (see, for instance, [26, Corollary 1]),
we get

t
W2 + |42y ()] < cerexp (/ k(t) dr) vt €[0,T]. (3.15)
0

Furthermore, from (3.14) and (3.15), we infer that

t t t
/ v (s)]|* ds +/ |4,y (s)|>ds < ccyexp (/ k(z) dr) vVt €[0,T]. (3.16)
0 0 0

As a direct consequence of (3.15) and (3.16), we can say that (for a fixed &) (vZ, V) is
P-a.s. uniformly bounded in

L®(0,T; Hy x V2) N L*(0,T; Vy x D(4,)).

It then follows from the Banach—Alaoglu theorem that there exists a subsequence of
(vZ, ¥7), still denoted by (v%, ¥7), such that

W2yl — (ve, ¥e) weak-starin L*°(0,T; Hy x V2),
(", Y") — (ve, ¥e) weakin L2(0, T; Vi x D(4y)),

where (ve, Ye) € L0, T; Hy x Vo) N L%(0,T; Vs x D(Ay)) P-as.
Furthermore, since the injection Hy x V, C Vi x D(A,) is compact, we have

(07 ¥7) — (ve. ) strongly in L2(0, T3 Hy x V2),

) (3.17)
(ve, V) — (ve,¥e) ae.,in(0,7) x O,

IP-a.s. Now, since the weak convergence in L2(0,T; V; x D(A,)) is not enough to ensure

that
vl — vl(v) asn — 0o,

V20", Y1) — W2 (v, ) asn — oo, (3.18)
3 3 .
U (v, y)) = Y (ve, V) asn — oo;
we need to derive stronger a priori estimates. For this, we take the inner product in H; of

(3.4); with 2A4¢v?, the inner product in L2(0) of (3.4), with 2A12,1//f, and obtain, after
adding up the corresponding equalities

d
3 I 17 + 14y v P + 21 Ao P + 21472y 2
= —2(¥; (v}), Aov}}) — 2(Bo(vy, Wa,), Agvl) — 2(Bo(Wa,, 7). Agvy)

+ 2R, Y)Y, Agv?) + 2(Ro(Ay Wa,, Y1), Agv?)
+ 2(Ro(Ay ¥l Wa,). Agvl) — 2(¥3 (0] y]). ASyl)
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=242 Bi(0}, Wa, ), A)200) — 2042 Bi(Wag, Y1), A5 90)
—2(Bo(Waq, Wa,), Aovy) + 2(Ro(Ay Wa,, Wa,), Aovy)

—2(A2 £, (W + Wa)), A2y

— 2(AY2By(Way. Wa,). A 2Yl) — 2y (AY* Wy, A2y 0). (3.19)

If [[v7] < %, one has

|(WL (D). Agv?)| < c|v? 2| Agv? P/2 02|
1 3

< cllo™ V2| 400" P12 ||0"|

< ce V2 Apv" P2,

1

and if ||vg| > &7, one has

(W, (v)), Aov})|

IA

" 1/2 Aov" 3/2 "
82||v’;||2| £| | 0 sl || 8”

1/2 3/2
< 07 V2| Agu? 320 |

e2[vz 2
< ce”!og |2 Aguy P2,

Thus, in both cases, we have
_ 1 _
(W (7). Aov)| < ce™ 07 2 Ao 2 < | Aovf 2 + ceTHop |2, (3.20)

where c is a positive constant which is independent of ¢ and 7.
Observe now that

|(Bo(v, Wap). Aov™)| < c[[o2 /2| Aov? [*/2(|V Wiy IL2(0)
1
< g A0vEl” + el VWil IV I, (3.21)

c(O) | Wap L) I Vg lLs @y [ Aove |
(O [|Way llra oy llv™ 1172 Agv? |32

IA

|(Bo(Wa,, ), Aovy)]

IA

A

1
= g0V l” + c(O)Waollps 1017 (322)
Owing to the Gagliardo—Nirenberg inequality, we have

(W22, yl), Agv?)| < c(O)| A2 |IVY L Loy | Ay ¥ L3 (o)
5 1
< c(0)|Aov? || Ay Y| 3| A3 Pyl |3
_ 2 1
< c(0)e | Aov? || Ay Wl 3| AY Y25,

which holds if [|[v? | + [A, | <& L.
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Now, if [|[v?| + |4, ¥| > ™1, we obtain
c(0)
e([vgll + [Ay v D?
c(0)
~e(lvell + [Ay v D?

- 2 1
< (@)™ | Aguf |4, ¥ 17143291

|(LZ(2,yl), Agv?)| < [A0vg IV Iy | Ay e 1130y

5 1
|Agvl || Ay Y| 3| A3/ 2y |3

In conclusion, when [[v7 | + |4, ¥"| <& Lor |v?| + |A,¢¥"| > 7!, we get
_ 2 1
(W2 (g, ). Aovp)| = (O™ [ Aovg || 4,y 3143293
1 _ 4 2
gl A0vE 1+ (@72 A,y 31432y 13

APYRP + c(0)e 3 A, YRR (3.23)

1 1
<—A n|2 .
_18| 0v5‘| +18|

where we have also used the Young inequality with exponents (2, 2) firstly and secondly
with exponents (3/2, 3).
By the Holder and the Gagliardo—Nirenberg inequalities, we infer that

[(Ro(Ay Wa, . ¥2), Agv?)| < c(O)|Aov2|| A, Wi || Ay Wa, |2 | A2 2 Wy, |2

1
< E|on'§|2 + c(0)| Ay Wa, 120y |43 > Wa, || Ay vl 2.
(3.24)

By the Holder, the Gagliardo—Nirenberg, and suitable Young’s inequalities, together with
the embedding of H!(O) in L®(O), we find
[(Ro(Ay ¥y, Wa,), Aove)| < |4,V 130y IV Wa, lILs@y | Aovy |
< ¢(O)| AoV || Ay Wa, | A, ! |21 432y |2
1

1
< —|onZ|2 + T

<0 45297 P + e (O)] Ay Wa, [*1 4,y I

(3.25)
In the case |[v7| + |4, Y| < &', we get
(W2 (0, v, Aoy )|
= (A} B1 (o2, y]), A3y
< c(O)]|v? 13 [Agv?| 2 | Ay Y2 || A2Y2 | + c(O) W2 || Ay yl |2 | A 2yl P2
< (@) 0|12 Aov? |2 |AY 2P| + ()™t | Ayl | A3 2y P2,
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Now, if [v?| + |4, ¥| > ™!, we obtain

(W2 (2w, A2yl
1
= By (v, yl), A2yl
(ol & 1A,z (510 Vo) Ay o)l
1

= Al/ZB noyn ,A3/2 n
82(||I)’§||+|A,,¢g|)2|( y B vg) A )|

1 1 1
c(O) 2|2 |Agv? |2 | Ay Yl | A3 PPl | + c(O) W || Ay w2 | A 2y 2|2
_ 1 1 _ 1
< c(O)e o212 [Aov2 2| A3 22 | + c(O)e™ | Ay Y| 2| A3 2yl P2

IA

So, for both cases, we derive the following estimate:

(W2 (2, y). A2yl
< (@) V|12 | Agv] [2| AP0 | + c(O)e M Ay yl 2| A3 2yl P
1

1 _ _
< §|on;’|2 + lglAi/zwg’F + (@) + c(O)e A YT 2. (3.26)

Thanks to the Agmon inequality (as found in, for example, [30, p. 52]) along with the
Young inequality, we see that
(A2 By (v, Wa,), A3 2y
1 1
< c(O)[[V} 1171400 |2 | Ay Wa, |14}y
1

SIAPUE + (O] Ay Wa, [*107 1 (327)

1
< A vn 2
= 18| ove|” +
Once more, using the Agmon and the Gagliardo—Nirenberg inequalities, we obtain

(AL B1(Wao y2), A2y < c(O) |V W, 2oy | AY 2w V2| A3 2yl P2
+ ()| Way llLs(oy | Ay w2 V2| A3 2yl P2
< c(O) IV Wapllr2(o) | Ay w2 V2 A 2y 2/

+ c(O)|Wao llLsoy| Ay w21 21432y 2 P2
1
< A PVEP + OV Way a0y 1Ay Y2
+c(O) Wy I 40| Ay W21 (3.28)

By combining the Holder, the Gagliardo—Nirenberg, and the Young inequalities, we de-
duce that

|(Bo(Way. Wao), Aov™)| < c(O)| AgWa, |* |02
< c(0) + c(O)| AoWa, |* 0212, (3.29)
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[(Ro(Ay Wa, Wa, ), Agv})| < c(O)|Aovl | Ay Wi, Y12 432y, |1/2
= %'AO” >+ c(O)| Ay Wa, |4} Wa, | (3.30)
(AL B1(Way, Wa,), A3/ 2y)| < C((9)||VWA0|L2(0)|AYWAV|%|A§ WAyI%|A§w£|
+ c((9)||WAOII]L4((9)|AyWAy|%|A§WAV|%|A§w£|

3
< LY 4 (O VWi Byl Ay Wa, 145 Wi, |

18
3
+ c(O) | Waq I 40y Ay Wa, 1145 Wa, |, (3.31)
V(4,2 Wi, 4572900 < V|A3/2w:||A1/2WAy|Lz
= 18|A3/2x/f8 P+l V214, 1 (3.32)

We will now estimate the sixth term on the right-hand side of (3.19). We recall that
fy(r) = f(r) —a teyr,forall r € R. Thus,

(A2 Sy U+ Wa, ). AYPUT) = (4297 + A2 Wa) (02 + Wa,). AY29])
= (297 + AP Wa) £/ + Wa,). AP0
— ot_ley(A)l,/zlﬂg’ + A)l,/zWAy,Af’,/zwg’).
Now, by Cauchy—Schwarz’s and Young’s inequalities, we obtain
| — o ey (AL/2yl + A2 Wy, 2432y D)
< o ley (14,290 + 1432 Wa, 14329
< v(14290 ] + 14} Wa, D] 4329
< S IAYHIP + e (A2 4 1AW, P, (3.33)
Thanks to the Holder inequality together with (2.21), we deduce that

(4290 + APWa) £/ W2+ Wa,). AP0

s/@|f/<ws+WAy)||A;/2w;’||Ai/2w:|dx

+/@|f’(ws Wi AV W4, [ 4327 dx
<¢f [0 (U4 92 + Wa, DIAY2y2] 4327 dx

e [ 102+ W, DAY W, 14722
< cr A 2Y AUl + cp|AY > Wa || A2y 7|

+ e (1W2 ooy + 1Wa, o) | AY 2y | A2 2y |
+ e [V | oo + 1Wa, L)) | AN 2 Wa, [| 432y 2.
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The Young inequality implies
er 1PV PUL | + cp |42 Wa, 114329
1
< I PVEP 4 e LAY + ecfl AP Wy, P

for some positive constant ¢ independent of 7 and &.
Owing to the embedding of D(A4,) in L*°(0@), we obtain

cr 1V lzo) + Wa, @) | AL 22| AY 2y |
+ er (I oo + Wa, oo @) | AY 2 Wa, 1|43 2y
< c(O)cr | Ay YRIAPYR A 2YL | + c(O)er | Ay Wl | AY 2 W || A 2yl

19

+ c(O)cr | Ay Wa ||AYPUR | A 2YL | + c(O)cr | Ay Wa, || AY 2 W || A 22|

< 2 AU+ COIIAL UL A YL + O)FAY W, LA,y
+ c(O)cH Ay Wa, PIAY YL > + c(O)cF Ay Wa, 12| AY2 W, 12,
where we used the Young inequality. Hence,
(AL £, (W + Wa), A2y
< S lAPYIR o+ AV 4 el YWy,
+ (|4 2Yl P+ |A) 2 Wa, D) Ay 9l
+ | Ay Wa, PIAYZYL 2 + | Ay Wa, 1P| AL 2 Wy, |2,

where ¢ = ¢(0, y, ¢y) is a positive constant which is independent of n and e.
Plugging (3.20)—(3.34) into the right-hand side of (3.19), we arrive at

SI 4 14, ¥7 P+ 140w 4+ 143797

S et @™+ [VWal* + [WaylIf sy + [AoWa|* + 14, Wa, |D)]102 |12
Fo(e 4 e+ Ay Wa, ||AY 2 Wa, | + 1Ay Wa, |* + [V Wy, |*
+ [1Wao IF 4y + 14) 202 > + 142 Wa, )| Ay 92 P
+ el Ay Wa, PLAY P Wi, | + el Ay Wa, PIAYYL P + el Ay Wa, P14} 2 W, I?
[V Way P Ay Wi, 1A Wa, | + Wiy |24y | Ay Wa, 143 Wa, |
+c|AYPYL P + | AY2Wa, 1P + | Y2 Wy, |2

for some ¢ = ¢(0, y,cyr).

(3.34)

(3.35)
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Let us set
Yue() = 02O + 4,92 (0P,
Yi() = e + [VWayO1* + [Wag (0 IF 4y + 140 Wap (OI* + 14, Wa, (0)]*)
o(e73 e Ay Wa, (O] AS2Wa, | + [ Ay Wa, (D]* + [V Wa, (0)]*
+ [Way Ol 0y + 14 V2O + 14> Wa, (O),
Yo(t) = c(1+ | Ay Wa, () P|AY*Wa, ()] + |4y Wa, (0|4} > (1)
+ Ay Wa, (1P| A4} >Wa, (07 + [V Way (0)*| Ay Wa,, (1)]| A3/ > Wa,, (1)
+ [ Way D1} 40y 1Ay Wa, (11 A4/ * Wa, (0)]
+ | APYL O + |A) > Wa, (O + |4} Wa, ).
Hence, we can rewrite (3.35) as follows:

d¥, .
dr

+ A2 + | AP P < V1Y + Yo (3.36)
Notice that

2, ¥ O0)lv = [(Pruo. Pido)llv < |0, do)llv < +o0

provided that (ug, ¢o) € V. Hence, by assuming also that (ug, ¢o) € V, and since (2.19),
(2.20), and (3.16) hold true, we then derive from (3.36) by an application of the Gronwall
lemma that the sequence (u%, ) satisfies

T
[0 O + 4, ¥ O < Ce. / (| 40vs ()* + 4592 (5)P) ds < Ce, P-ass.,

0 (3.37)
which proves that (for a fixed positive number ¢) the sequence (v%, ¥7) is uniformly
bounded in L (0, T; V) N L2(0, T: D(Ag) x D(A3/?)), P-as.

Furthermore, using (3.37), we can check that
(dv's’ dy¢
de * dr

) is bounded in L2(0, T;Y) P-as. (3.38)

Since D(Ag) x D(Af,/ 2) C V C Y with compact injections, by [22, Theorem 5.1, Chapter
11, there exists (vg, ¥) € L®(0, T;Y) N L2(0, T; D(Ag) x D(A?,/z)), and a subsequence
of (v}, ) (still) denoted by (vy, ¥7) such that for all 7 > 0, we have P-a.s.

W2, ¥l) — (ve, Ve) strongly in L2(0, T; V),

W2 Yl — (ve, Ve) ae.,in(0,T)x0,

W2yl = (ve, Ve) weak-star in L*°(0,T; V),

(2 Yl) — (ve. Vo) weakly in L2(0, T; D(Ag) x D(A3/?)),

(3.39)

d d
a(vg, Y — a(vs, Ve) weakly in L2(0,T;Y).
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Furthermore, since (v, ") — (ve, Ye) as n — +ooin L2(0, T; V) for all T > 0, there
exists a subsequence (still) denoted by (v%, ¥7) (see [5, Theorem 4.9]) such that

(V% (@), ¥ (@)llv = (ve(®). Ye(w)) ae.inO (3.40)

and for a fix w € Q. With these convergences (3.39)—(3.40) in hand, we derive (3.18).
From (3.18) and (3.39), we can take limits in (3.4) exactly as in [9], with reference to
the proof of Theorem 7, and we obtain that (v, ¥) is a solution to (3.3).
The case where the initial data (ug, ¢9) belongs to Y\V can be done similarly as
in [25] in order to prove that (v, ¥¢) is a solution to problem (3.3).

3.1. Uniform estimates in &

Multiplying the first and second equations of (3.3) by K ~1v, and €A, ¥, respectively,
adding side by side the corresponding equalities, we obtain

Id . _ -
5 T e + el 2Vl + v T o |2 + €2 Ay v ?

= —JC_I(BO(VE’ WA())» ve) + (RO(GAVWAy ’ We)’ vE) - (Bl (WAO’ 1//8)’ €Ay¢fg)
— (K Bo(Way, Way). ve) + (Ro(€Ay Wa,, Wa ), ve)

— (A2 fy (e + Wa,). €A}/ > Ye) — (By(Wiay. Wa, ), €Ay Vre)

— ye(WAy,eAyws). (3.41)
Drawing on the same reasoning as in the proof of estimates (3.6)—(3.12), we find
-1 VJC_I 2 4 2
[ K™ (Bo(ve, Way), ve)| < 6 lvell +C(@,U,JC)||WAO||L4(0)|05| )

-1

veK €2
[(Ro(eAy Wa,, ¥e), ve)| < lvell® + l—olAyllfsl2 + (O, v, K) Ay Wy, |*|vg |,

6
2
€

|(BI(WA07 %),eAy%)l = E|Ay¢8|2 + C((g’€)||WA0||]14J4((9)|V¢8|27

2
€
|(BI(WA07 WAy)’ EAyW£)| =< E|Ayws|2 + C(O)HWAOHEHQ) + 0(0)|Ay WAJ,|47

2
€
[ve(Wa,, €Ay V)| < (514, Vel + cye?| 4,2 Wy, 17,

|(=K " Bo(Wag, Way ), ve)| + [(Ro(eAy Wa,, Wa,), v5)|
—1

<

- 6

—a((A)2Ye + A2 Wa,) £ (e + Wa,). €AY > )

10ell? + (@, v, K| Witg I 4y + (O )| Ay Wi, |,

62 2
< E|Ayl/f,3|2 + ClAY2 Wy, | + CAY > Wy, 1P| Ay Wy, |5

4 2
+ C[1+ |AY 2 Wa, |54, Wa, |5 ]| AL 2y 2

for some positive constant C = C(O, ¢y, y, a).
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Consequently,

S ol el A2 PT 4 0K el 1Ay v
< Wyl 4oy + clAy Wa, [* + | L2 Wa, 2
+ clA)l,/zWAyl2 + C|A)1,/2WA},|2|AVWA;,|%
+ C(||WA0||]‘1‘J4((9) + | Ay Wa, [4)ve|?
e[ 14 [AY2 WA, 1314y Wiy 13 W4, [ o ) ]| AL 20, (3.42)

where ¢ = c(O,a,y, K,v, €, 2, cr) is a positive constant which is independent of e.
Integrating (3.42) in time over [0, ¢], where ¢ € [0, T'], we arrive at

(e (). Ve () + /0 lwe(s), Ve()[% ds
< |(uo. ¥o)l% + ¢ /0 T(||WAO<s)||14(@) + Ay Wa, ()* + |A) 2 Wy, (5)[%) ds
+ c/OT |AL2Wa, ()2 + | A2 W, ()21 4y W, ()] ds
+ c/ot (14142 Wi, 1514, Wi, 121 Wag 4 o) 14y W, 1*] (0 P+ AY 29 ) ds

(3.43)

forallt € [0, T] and with ¢ = ¢(O, a, y, K, v, €, y2,cr). It then follows by an application
of the generalized Gronwall-Bellman lemma (see [26]) that

T

e () Ve + fo ||(vs(s),we(s>)||%,dsscczexp(fo kl(s)ds), (3.44)

P-as., where c = c(O,a,y, K,v,€,y2,¢r),
T
2 = |(uo. Yo)ly + ¢ /0 (IWay (91 0y + 14y Wa, ()[* + |4}/ > W, (5)[?) ds

T
ey / A2 Wy (5)2 + |AL2 Wy, (5)2] Ay Wy, ()] ds,
0

1 2 2
ki(s) = c(1 + |47 Wa, ()31 4, Wa, ()5 + Wiy (9)IlL a0y + 14y Wa, (5)[*).

We note that the constant ¢ is independent of ¢ and w € Q.
Now, we fix w € Q2 and select a sub-sequence ¢ = &(w) such that

(ve, ¥e)(t) = (v, ¥)(¢) weakly in L?(0, T; V), weak-star in L>®(0, T;Y),

Apve(t) — Aov(t)  weakly in L2(0, T; V), (3.45)
Ay Ye(t) — Ay (t)  weakly in L2(0, T; V3),
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and Bo(ve, Wa,) — Bo(v, Wa,) weakly in L2(0, T; V),
Bo(Wa,, ve) — Bo(Wa,, ) weakly in L2(0, T; V),
Ro(€Ayye. Wa,) — Ro(€Ay ¥, Wy,) weakly in L*(0,T; 1)), 3.46)
Bi(ve, Wa,) — Bi(v, Wa,) weakly in L2(0,T; V), '

By(Wao. V) = Bi(Wap.¥)  weakly in L2(0,T: V3),
SyWe +Wa,) = f,(W + Wa,)  weakly in L*(0,T: Hy).
Moreover, using the Holder and the Gagliardo—Nirenberg inequalities, we obtain
1 @e)llyy < clvelllvell,
192 @e. o) lyy < cel 4y 2wl 21 A4y e 2,
192 (e, Yo)llvy < cllvell| A}/ el
Hence, in light of (3.44), we see that fOT ||1,ﬂ£1 (ve(s))||21, ds, fOT ||1//€2(vg(s), wg(s))H‘:,i/3 ds,
and fOT 2 (ve(s), Ye(s)) ||22, ds are uniformly bounded with respect to ¢.
Once more, we fix w € Q. Then, we select a sub-sequence ¢ = &(w) such that
Ve (ve(r)) — z1(t) weakly in L*(0, T; V),
Y2(e(t), Ye(t)) — z2(t)  weakly in L*3(0, T; V), (3.47)
V2 (0e(t), Ye(t)) — z3(t)  weakly in L*(0, T; V).
Hence, we have
V(1) + vAou (1) + 21 (1) + Bo(v (1), Wa, (1)) + Bo(Wa, (1), v(1))
—Kz2(t) = K Ro(eAy Wy, (1), ¥ (1)) — K Ro(eAy ¥ (1), Wy, (1))
= —Bo(Wy, (1), W4, (1)) + K Ro(eAy, Wy, (1), Wy, (1)),
V(1) + €Ay Y (1) + z3(t) + Bi(v(t), Wa, (1)) + Bi(Wa, (1), ¥/(1))
= —afy (Y (1) + Wa, (1)) — Bi(Wa, (1), Wa, (t)) — eyWa, (1),
v(0) = uo, ¥ (0) = o,

ae. t € [0, T]. Moreover, since v, and ¥/ are uniformly bounded in L*/3(0, T; V) and
LZ(O, T; Vz'), respectively, we also have that for ¢ — 0 (see [22, Theorem 5.1])

(3.48)

v.(t,w) = v(t,w) stronglyin L(0, T; Hy),
Ve(t,w) = ¥ (t,w) strongly in L>(0, T’ D(A)l,/z)).
Asin [21, p. 6], we can check that

(3.49)

T T
/0 (‘I’gl(ve(t)),y(t))dt*/o bo(v(1).v(1). y(t))dt  Vy € €([0. T]: D(Ao)).

T T
/0 (W2 (0:(0). Ve (1)). p(1)) di — /0 (). Y (0). p())dr Vp € €(0.T): D(4,))
(3.50)
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as ¢ — 0. Then, by (3.47); and (3.47)3, it follows that z1 (1) = Bo(v(¢),v(¢)) and z3(¢) =

Bi(v(t),y¥(t)) ae.t €0, T].
We will now prove that

22(t) = Ro(eA, ¥ (t),¥(2)) ae.t [0, T].

Observe now that

T
/0 (W2 (0. (1), (1)), y (1)) di

by(y (1), Ye(1). €Ay Y (1)) dr

+/ bi(y(1), Ye(t), €Ay e (2))
tel0.TYNV I+ Ay vel>1/e 2 ([[vell + [AyPe])?
=J) + 7

/tE[O,T]IIIUell+|Ay11fe|51/8

dr

forall y € €([0,T]; D(Ap))-
In light of (3.44) and (3.49);, we deduce that

bi(y(@), Ve(t), €Ay Ye(t)) — b1(y(1), ¥ (1), €Ay ¥ (1)) ae. 1 €[0,T]
due to

b1y (1), We(t), €Ay Ve (1)) — br(y (). ¥ (). €Ay ¥ (1))
< b1y (0). Ye(t) = Y (1), €Ay Ye ()] + b1 (¥ (1), Y (1), €Ay (Y t) — Y (1))
< cel 4Oy Ol IV Wet) — v ()]

+ cel Y2 (W) = Y (O)IAY Y (D) || Vy (0]

+ celly(O)lleo | AY 2 (We (1) — Y ()| Ay (1))
< cel Aoy [ Ay e ()] + [y v (O A) 2 (e (0) = ¥ (1)),

Furthermore, as

b1y (8), Ve (0), €Ay Yo ()] < celly (@) llzoe (| Ay Ye (D)1 A} > Y (),

we infer from the Lebesgue dominated convergence theorem that
T
Js1 — / bi(y(t),¥(t), €A,y (t))dt as e — 0.
0

On the other hand, from (3.44), we have

sup {lve(@)|| + [Ayve(0)| > 1/e} < ce? P-ass.
t€l0,T]
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Consequently,

72| < ce/ |42y (01214, e (012 |y )]
T Jiel0 TR 1Ay v > 1/ e2(Jlve (@)l + 1Ay e ()])?

<ce | |4y 2960114y YOy )]
— Jeelo TRV Ay v >1/e |4y Y ()

<ce | A2y 0]

T Jreo v 4, wes1/e €2 Ay Ye()]12

<cee—>0ase — 0.

dr

By (3.47), it follows therefore that z5(t) = Ro(eA, v (t), ¥ (t)) ae.t € [0, T].

Hence, the pair (v, ¥) is a solution to (3.2) (for a fixed w € ). Furthermore, for
each w € Q, we can check that (3.48) with z; = By (v, v), zo = Ro(€A, ¥, ¥), and z3 =
B1(v, ¥) has at most one solution (v, ) with the above properties. Indeed, if (vq, Y1)
and (v, ¥») are two solutions to (3.48), then we can easily check that v = v; — v, and
¥ = Y1 — ¢ satisfy

1d
2 dt
+ K7 (Bo(v, Way), v) — (Ro(€Ay Y2, ), v) — (Ro(€4, Wa,,, 1), v)
+ (B1(v2, Y1), €Ay Y) + (Bi(Wao, V), €Ay )

= —a[(fy (Y1 + Wa,) — fy (Y2 + Wy, ). €4y ¥)].

(Kol + €l 42 P+ v K ol + (4,97 + K7 (Bo(v, v1),v)

By the Holder and the Young inequalities, we obtain

| K™ (Bo(v,v1), )| < c(O) K [ollv]lo:]| < %Hvﬂ2 +c(0,v, K)o |*o]?,
|K ™ (Bo (v, Wap). v)| < c(O) K™ [ Way lLsop o]/ v]*?
oI + O JOIWay a0 01
[(Ro(eAy Y2, %), v)| < c(O)e| Ay Yol [ A} * ¥ [Ls (o IVl s(o)

c(O)el Ayl A2 2| Ay w1210 2 0] 12

IN TN TA

IA

2
v 2 € 2
— —|4
eI+ 5514yl
+ (0.0, X, )| Ay a2 (1] + €| A2y ).

Analogously, we find

2
v €
[(Ro(eAyWa,,¥),v)| < ﬁllvnz + F)|Ay1//|2

+ (0, €. K. v) A, Wa, IP([0]? + €| A2y ?).
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Thanks to the Holder and the Young inequalities, we derive that
(B (v2, ¥). €Ay )| < c(O)elva|"?[|va |2 A2y |2 Ay p P
< %Ayw +¢(0,O)al? 027 (€| 4,2y ).
|(By(Way. ), €Ay ¥)| < €c(O) | Wiy llLaoy | Ay >0V | Ay yr [P
< %myw + (0, )| Wiy L4y (€14} ¥ ).

Applying the Lagrange mean value theorem to fy’ (see [28, Corollary 2]), using also the
second assumption of f (cf. (2.21)), we infer that

o (fy(Y1 + Wa,) — fy(¥2 + Wa,), €A, ¥)
= ae|(Yfy (OV1 + (1 = )Y + Wa,), Ay )|

< ae/(; | £, 0y 4 (1 = )2 + Wa )Y |14y ¥| dx

< cfae/O(l 110V + (1= 0)2 + Wa, DIV 1| Ay ] dx + ael /|| 4, 9]

<ae(cy + DAy ¥ + aecr(1¥1lr40) + [V2lL40) + [Wa, [L4@) |V L4 @) | Ay V]
< ae(cy + DIy|[4y ]
+aecry 2T+ D 2O+ 1420l + 1A Wa, DA 2|14, 9.
It then follows that

a|(fy(Y1 + Wa,) — fy(Ya + Wa,), €Ay ¥)|

2

€ _ _

< AP+ e er + DYE + (@) cfy T T+ D14 2
+ A2 + | AL 2 W, 1P| AY 2y 2

where we used the Young inequality.
From the above estimates, we derive that

1d 1
P 2L e (O]
< c(1+ A2y P + [A) 292 )? + A2 Wa, P + 1]
+ 1 Way I ag) + 1Ayl + 14y Wa, I + |02 022 (0. ¥) 3.

where ¢ = ¢(0, ¢y, y, €, ) is a positive constant. Now, by applying the Gronwall lemma,
we deduce that |(v, ¥)[3 = 0, i.e., (v1. V1) = (v, V). This implies that, for ¢ — 0,

ve(r) = v(0), Vet) = ¥ (1) (3.51)

weakly in L2(0, T; V1) and L?(0, T; D(Ay)), respectively, P-a.s. By (3.51), it follows
that v and v (and v" and ¥’) with respect to the filtration %; (because it is the case for v,
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and ;) and therefore (v, V) € L},(0,T;V) and (v/,y’) € L%,(0,T: V] x D(A,)). The
proof of Proposition 3.1 is now complete. ]

Let us now proceed to the proof of Theorem 3.1.

Proof of Theorem 3.1. Note that u, = v, + Wy, and ¢, = . + Wy, satisty

dug + [vAoue + Wi (ue) — K V2 (e, ¢)ldt = Q1 dW1 (1),
dpe + W3 (g, ) dt + 1 dt = /02 dWa (1),

l/«f/ = EA)/¢8 + afy(¢s)v

u:(0) = uo.  $(0) = go.

P-as.and a.e. t € [0, T].

By applying It&’s formula to the process |u.(¢)|? (see, for instance, [12, Theorem
4.32]), integrating the resulting equality between 0 and ¢, and then taking the mathematical
expectation, we derive that

(3.52)

t t
E|u€(t)|2+2E/ v||u€||2ds—2J{E/ (U2 (ug, pe), ue) ds = |uog|® + ¢ Tr Q1. (3.53)
0 0

Once more, by applying the Itd formula to the process |¢¢ ()%, we obtain

t t
1E|¢s(r)|2+2E/ (ui,¢e)ds+2E/ (W2 (ue, e), pe) ds = || + 1 Tr Qz. (3.54)
0 0

Applying again the Ito formula to |V ¢, (2)|?, we further obtain
t t
EIVO.0P + 28 [ (25, A190)ds + 2E | (W3(uerge). Arg) ds = Vol + 14,
0 0
(3.55)

Now, multiplying (3.54) by €y and (3.55) by e, respectively, adding up side by side the
resulting equations, we arrive at

t t
E[e(IVe(0) + ylge()2)] + 2E /0 (15 €Ay be) ds + 2E /0 (W2 (o o). €Ay o) ds
= €[|[Vo|> + y|po|*] + €yt Tr O, + €tA. (3.56)

It then follows from (3.53) and (3.56) that
¢
Bl (00, 4O +2 [ Iar gl s
= |(u0,¢0)|§{ + t K Tr 01 +eytTrQs,

t
T etA — 2eaE /O (5 (@e(5)). Ay i(s)) ds, (3.57)
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where we used (3.52)3 together with the fact that

_(\Ilg(”av‘iba)a ug) + (“1153("87‘158)’ €dype) = 0.

Let us proceed to estimate the nonlinear term on the right-hand side of (3.57). Indeed,
from the definition of the map f,, we have

—2ea(fy (@e(5)), Aype(s)) = _26“(A;1//2fy (Pe(s)), A;I//2¢e(s))
= —2ea (AL 2¢s(5) £} (¢s(5)) AL 26 (5))
= —2ea (A} 2¢s(5) ' ($s(5)) A} s (5)) 26y | AL 2 e ()]

— _req /0 F1(Ge(sNIAY 2 g (5) | ds + 262y |41 2, (5) 2,

from which we infer that

—2ea(fy (pe(s)). Aye(s)) < 2eays| AY 2 ¢s(5)|* + 267y | A} s (5) |
< 2e(ay2 + €y)| A} ¢ (), (3.58)

where we used (2.23) and the fact that € < «.
Plugging (3.58) into the right-hand side of (3.57), we arrive at

t
E|(ue(t), pe(0) 3 + 2]E/0 ([ (e (s), pe(s))|3 ds
< |(uo, ¢0)|%{ +t K ' Tr Q1+ eyt TrQ, + etA
t
+ 2(ay2 + ey)]E/ €|A)1//2¢8(S)|2ds
0

< (w0, 9po)3 + t K1 Tr Q) + ayt Tr Oy + atA
t
+2a(ys + Y)E /0 (s (s). e ()2 ds (3.59)

for all t € [0, T'], where we have also used the fact that € < «.
Hence, an application of the Gronwall lemma entails that

E|(ue(). ¢ (1) 3
< [I(wo. o)y + T K" Tr Q1 + ayT Tr Qs + aTA]e>* 2+,
t
2 [ (51 (o) s
< [|(u0,¢0)|§{ +TK 'Tr Q) +ayTTr Qs + aTA]e2“(72+y)’
for all ¢ € [0, T']. This implies that, for ¢ — 0,

u; —u=nv+ Wy weaklyin L3, (0,T; V),
$e — ¢ =y + Wy, weaklyin L}, (0.T: D(4,)),

where (u, ¢) is a solution problem (2.6) or (1.1)—(1.2).
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As for uniqueness, if (#(t), $(Z)) is a solution with initial data (u1, ¢1), we have
by (2.6) that

{dﬁ + vAgit dt = [—(Bo(@t, u) + Bo(it, ) + K (Ro(€A,d, d) — Ro(eA, ¢, )] dt,

4§ + €Ay B dt = (—(B1(@.§) + Bi(@. ) + alfy (@) — £, (@) dr.

(3.60)
where we have setit := u — it and ¢ := ¢ — 5 and where we have also used the bilinearity
of Bo, Bl, and R().

Now, we take the inner product of equation (3.60); with K ~'i(¢) in H; and the
inner product of equation (3.60), with €A4,¢(7) in L2(0). Using also the orthogonality
properties of by and b, and adding the resulting equations, we infer that

L@ BN+ K O + 14,50

= —K"'bo(@t, u, &) + (Ro(e4, ¢, §), &) — (Ro(€Ay$, ¢), &)
—bi1(@.¢.€Ayd) = bi(@. p.eAyp) — ae(fy(®) = fy(d). Ayp).  (.61)
Arguing as in [18, p. 10], one has

K
| K bo (@, . )| <

v K1
4

lal|* + clla® ||,

2
_ - _ € - _
b1 g ey @) < =Nl + S 1A, B2 + |4} 29 |4, 01,

2
L - — € — 2~ —
b1(@. . Ay d)| < =14, + clal?|a]*| 4, 2p P,

~— v K1 €2 — ~i —
(Ro(eAyd.d). )| = — ] + glqubl2 +clA, @17 (a)* + 14,761,
Ro(cAud —<V‘K—1—2 iA—z Ao bI2IAY 2012 1012
(Ro(edy¢. ¢).w)| = — —[a]” + —|Ay¢|” + c|4yp[7| 4y "¢ |ul".

where ¢ is a positive large constant possibly depending on X, v, €, @, O.
Regarding the last term in (3.61), we apply the Lagrange mean value theorem to f, so
as to get

—ae(fy (@) — 1,@), 4yP) = —ae(f1(d + 05)F. 4,P)
= —ae(f' (¢ + 00§, A,9) + ¥ |4,/ >,
with 0 < 6 < 1. Now, from (2.21),, using the Holder and the Young inequalities, we find
—ae(fy @) — f,@). Ay P)
< cfoee/0<1 T 16 + 0BDIPIIA, Bl dx + 2y| AL

< craelp||Ayp| + €2y| AP + cocraelplrio)|lLse)| Ay P
+ COCfa€|$|i4(0) |A}/§$|
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< craelgl| Ayl + €2y |A) 2P
+eocraey 2y 1) (1AY 2] A2 ) + |AY251%)] 4,8
< S 1A + 23l + 1A
+4(cocra)®y (T + DAY 2G| A) 2017 + | A) 2%
= %Amz + Qcfy™! + )% 4,2
+4(cocra)?y TNy + (1A 201214201 + |4} 2¢1Y).

Here, c@ is a positive constant depending on the domain O.
Inserting these previous estimates into the right-hand side of (3.61), we obtain

1d _ - _ _
53 @O 6O = gOI@®). $O) (3.62)
where ¢ = ¢(OQ,a, K, v,cr, v, €) is a positive constant and

g(t) 1 =c(l + [u@)|? + @@ Pla@)|? + |4 2p 0 + |42 ()*| Ay (1)
+ 1A, ¢(O + 14, p ()P AL 2p(1)]?). (3.63)

It then follows by applying the Gronwall lemma that

(= @)(t). (p — D)3 < |(wo — fio. po — do)|% expho €@ Py

This completes the uniqueness of (u, ¢) as well as the continuity of

(wo. o) = (u(t), $(1)). .

4. Ergodicity

4.1. Existence of invariant measure

In this part, we aim to prove the existence of invariant measures of (2.6) by the Krylov—
Bogoliubov theorem (see, e.g., [11, p. 14]). To state the main result of this section, we
firstly introduce some notations and definitions. Let C(Y) denote the set of all bounded
continuous functions on Y. We equip it with the norm

[Wlleo = sup [W(X)ly.
XeY

Then, (Cp(Y), | - |loo) is a Banach space.
For each t > 0, we define the semigroup P; associated with the solution

{(u(tv U())? d)(t’ UO)) € L%V(Ov Tv V)v UO = (an ¢0) € Y}
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of (2.6) by
PV (Up) = E[W((u(t,Up), (2, Up)))], W e Cp(Y), Up= (uo,o) €Y. (4.1)

The proof of Markov property of P; is standard (see, for instance, [3] or [7]). We also
have P, W(.) = P, P;W(.) fort,s > 0.

Denote by B(Y) the o-field of all Borel subsets of Y and by P,(Y) the set of all
probability measures defined on (Y, 8(Y)). Define P," to be the dual semigroup of P;
given by

[ wepina@ = [ Pvcou. o
Y Y

for . € Pr(Y),t >0,and ¥ € Cp(Y). A measure u« € P,(Y) is called invariant measure
if Py = py foreach s > 0.

Definition 4.1. A subset I' C P,(Y) is said to be tight if there exists an increasing
sequence (k) of compact sets of Y such that

lim p«(k,) =1 uniformly on I,
n—oo
or, equivalently, if for any § > 0 there exists a compact set K such that
Ux(Kg) >1—38, p«el.

Now, we state the following result concerning the existence of the invariant measures
of (2.6).

Theorem 4.1. There exists an invariant measure |1« € P, (Y) associated with the semi-
group P; satisfying

/ P (x)ux(dx) = / W(x)ux(dx) foranyt > 0and W € Cp(Y).
Y Y

Moreover, the support of |4« is included in V and

/Y G, 91 (. dy) < +oc. “2)

Proof. Firstly, let us point out the following estimate:

t
E|(u(t. Up). (1. Up))f3 + 2E /0 (s, Uo). bs. Uo)) [ ds
<c3(@, 7,72, T)([(o, po)|3 +t K" Tr Q1 + ayt Tr @y + atA), t>0, (4.3)

which can be deduced from (2.6) by arguing as in (3.59). Here, (u(z, Uy), ¢ (¢, Up)) is the
pathwise solution of system (2.6) starting from the initial data Uy = (ug, ¢o).

Let IT,(Uy, -) be the law of the process (u(t), ¢(¢)). Then, for any ¥ € Cp(Y), we
have

P»If(%)=AW(u1,¢1)nt(Uo,dxl,d¢1) V1) € Y.
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In order to prove the existence of an invariant measure, it is enough to only check that, in
view of the Krylov—Bogoliubov theorem [11], that the set of measures

1 T
W, T 1= —/ I, (Uy,.)dt, T >1,
T Jo
is tight in P, (Y). We fix Uy = (ug, o) € Y. Then, by (4.3), we have
1 ! _
;E/ (s, Uo). ¢ (s. Uo) |13 ds < c3(|(mo. ¢0)|3y + K" Tr Q1 + €y Tr Qs + €A).
0

Let Bg be the ball of radius R in V = V| x D(A,). Then, for all R > 0, we derive that

1 T
por®) = 1 [ MU By ar
0

T
A E||(u(z. Uo), ¢ (t, Up)) I3 dt

C -
5 R_32(|(u07¢0)|%{ + J< lTrQl +E)/TrQ2 +€A),

A

from which we get the tightness of {(«,7}7>1. Denote by (i« a cluster point of {{t«,7}T>1.
Then, by integrating (4.3) on Y with respect to p«, we get (4.2). This completes the
proof. ]

4.2. The uniqueness of invariant measures

Here, we follow the approach in [2,13,27] to prove the uniqueness of the invariant measure
L, using the coupling method (see, e.g., [2, 13, 19,27]). Lemmas 4.1-4.4 below are the
main steps in the proof. We still denote by (u(¢, Up), ¢(t, Uy)) the solution to (2.6) with
initial data Uy = (ug, ¢po) € Y.

Lemma 4.1. Let f = min(vA, €f) — a(y2 + y), and we assume that
B > 0. 4.4

Then, the following estimates hold:

L
E|(u(t, Us), ¢ (1, Uo) 3 < [Upl3e 2" + 2—/; (4.5)
and ; . .
E /0 Iuts. Vo). 9. U Iy ds < 52100 + 55 46)

forallt € [0, T], where

L= (K 'TrQ; 4+ eyTrQ, + €A).
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Proof. Lett € [0, T] be fixed. We set for the sake of simplicity

Y(t) = E|(u(r, Up), ¢ (1, Up)) 3.

Now, as in (3.59) we can prove that

t

t
Y(1) + 2B /0 1 @s. Uo), (5. Uo) % ds < |Uols + Lat +2a(ys +7) /0 Y(s) ds.

4.7
From (2.7) and (4.7), we infer that
t
Y@) + 2,3/ Y(s)ds < Ul +tLy. (4.8)
0
We can then conclude, through the application of the Gronwall lemma [16, Lemma 1] that
2 ! 2 2 Ly Ly
Y(t) < Y(0)e 2" 4 L1/ e 2P qr = Y(0)e P+ = — —e72 (4.9)
0 26 28
from which we get (4.5). Furthermore, (4.6) is a direct consequence of (4.8). ]

Lemma 4.2. Let rg,ry > 0. Then, there exists k = k(ro,r1) and T = T(rg,r1) > 0 such
that for any t € [T (ro,r1),2T (ro, 1)), |uo| < ro, |A11,/2¢0| < ro, we have

P(Ju(t, U)| < r1.|A)2¢(t. Up)| < r1) = K(ro.11). (4.10)

Proof. Let v = u — Wy, and ¥ = ¢ — Wy, where Wy, and Wy, are mild solutions
to (2.11).
Multiplying the second equation of (3.2) by €y, we obtain P-a.s.

1d
EE(GVIWU)IZ) +b1(v(1), Wa, (1), €y (1)) + (€Ay ¥ (1), €y (1))
= —(eyWa, (1), ey ¥ (1)) — b1(Way (), Wa, (1), ey ¥ (1))

—a(fy (Y (t) + Wa, (1)), ey ¥ (1)) (4.11)
Once more, by multiplying the second equation of (3.2) by €A1y, we get P-a.s.

%%élvlﬂ(t)I2 + b1 (v(0), Y (1), €A1y (1)) + b1 (v(1), Wy, (1), €419 (1))

+ b1 (Wao (1), ¥ (1), €A1 (1)) + (€A1 Y (1), €Ay Y (1)) + (€yWa, (1), €A1 ¥ (1))
= —b1(Wao (1), Wa, (1), €A1 Y (1)) — a(fy (W (1) + Wy, (1), €A1 (1)) (4.12)
Adding up (4.11) and (4.12) side by side, we arrive at
1d
53 €4V OR) + 14, v 0P
= —=b1(v(1). Y (1), €Ay Y (1)) — b1 (v (1), Wy, (1), €Ay ¥ (1))
—b1(Wao (1), ¥ (1), €Ay (1)) — (eyWa, (1), €4y ¥ (1))
—b1(Way (1), Wa, (), €Ay ¥ (1)) — a(fy (Y () + Wa, (1)), €4y ¥ (1)). (4.13)
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Now, multiplying the first equation of (3.2) by K ~!v, we deduce that P-a.s.
ld . 2 -1 2 -1
54 RO v Ko@) + K bo(v (1), Way (1), v (1))

— (Ro(eAy ¥ (1), ¥(1)), v()) + K™ bo(Way (1), Wa (1), v (1))
= (Ro(eAy Wy, (1), ¥ (1)), (1)) + (Ro(eAy ¥ (1), Wy, (1)) v(1))

+ (Ro(e€Ay Wa, (1), Wa, (1)), v(1)). (4.14)

By adding up (4.13) and (4.14) side by side, we find that P-a.s.
1d
53 @O VO +v I O + |4,y (1)
= — K o (0(1), Wy (), (1)) — K™ bo(Wao (1), Wa, (1), v(2))
+ (Ro(eAy Wy, (1), ¥(1)). v(1)) + (Ro(eAy Wy, (1), Wa, (1)), v(1))
—b1(Wao (1), ¥ (1), €Ay ¥ (1)) — (€yWa, (1), €4y ¥ (1))

— b1 (Way (1), Wa, (1), €Ay ¥ (1)) —a(fy (Y (1) + Wa, (1)), €Ay (2)).  (4.15)

Consequently,

1 t t
5[68t|(v,1ﬂ)(t)|%{]+v¢7(_1/ e53||v||2ds+62[ ¥4,y 2 ds
0 0

1 t t
o g0 = 5 [ oo Wago0)ds + [ 6 (Roe, W, ). 0) s
0 0

t t
—/ eSSbl(WAO,w,eAyw)ds—/ eSS K bo(Wy,, Wy, v) ds
0 0

t t
+ / e‘gs(Ro(eAyWAy, Wy,).v)ds — a/ ess(fy(w + Wa,), €Ay ¥)ds
0 0

t t 1 t
- / e b1 (Way, Wa, Ay ) ds— / e (yeWa, €Ay ) ds+ 28 / eI, Y1 ds
0 0 0
(4.16)

for all ¢ € [0, T], P-a.s., where § is a positive constant independent of ¢, and it will be

chosen later.
Let us proceed to estimate the terms on the right-hand side of (4.16).

Using the Holder, the Ladyzhenskaya, and the Young inequalities, we find that
| K™ o (v, Wy, v)| < K vllLao 0]l Wi llL+(0)
- 1.3
< K7 e(O) vl 2[v]|> [ Wa, llL4(o)

-1
4.17)

< 220l + (@ ) Wiyl 4 0 (K 0.

-6
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By the Holder and the Young inequalities, we get
| K™ bo(Way. Way. v)| + [(Ro(€Ay Wa,, Wa, ). v)]
< K e(O) Wiy 240 10| + c(O)el Ay Wi 0]
-1
<
-6
Once more, using the Holder and the Young inequalities together with the embedding of
H'(®) in L*(O), we obtain
|b1(Wao. Wa, . €Ay )| < €c(O)[[Wa lLao) | Ay Wa, [| Ay V|

€2
<
10
Thanks to the Holder, the Gagliardo—Nirenberg, and the Young inequalities, we obtain

[(Ro(€AyWa,, ¥),v)| < €Ay Wa, [IVY llLs@llvliLe o)

1 1
< c(O)elAy Wy, || Ay ¥rv] 2 [|v]2
-1

10112 + (@, v, O Wag 4 o) + (O J v, 1A, Wa |*. (4.18)

Ay ¥ 1> + c(O)IWag lIf a0y + (O Ay Wa, [*. (4.19)

2 e 2
= 2ol + 514, vl
+ (0, 6,0, K)| Ay Wa, [*(K " o[?), (4.20)

where we have also used the embedding of H'(®) in L*(0O).
One has

|61 (Way. ¥, €Ay ¥)| < €|[Waglns@) I VY ILs oy Ay Y]
1 3
< ec(O) [ WapllLao) VY12 |4y ¥|2

2
€
< AP+ @ Wy ligae) €42V 1), @21)

where we used the Holder, the Gagliardo—Nirenberg, and the Young inequalities.
Combining the Holder and the Young inequalities, we see that

—(eyWa, . €Ay ) < E2y|Wa |4, ¥ | < 2y 2| A2 Wy, |14, |

2
€
< AP+ eyl AW, 1 4.22)

Next, owing to (2.23), we have
—a(fy (¥ + Wa,). €Ay )
= —ae(A)2 (Y + Wa) £ (¥ + Wa,). A)20) + €y(A)> (Y + Wa,). A)>y)
< ealy + y)|A) 2y P —ae(A)* Wa, [ (¥ + Wa,). A2 9)+2y (A} > Wy, A)%y)
< ea(ys + V) AY Y P —ae(AY> Wa, /(0 + Wa,). A 2Y)+ 2y A} Wa, || 4}y |

1 1 1
<ea(y2 + VIAFYI* —ae(A; Wa, [/ (W + Wa,). A2 V)
1 1 1
+ 2y [AZWa, | + 2y|AZ Wa, [|AZ ¥ |2
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Furthermore, thanks to the Holder and the Gagliardo—Nirenberg inequalities in conjunc-
tion with the second assumption of (2.21), we deduce that

—qe(AZ Wa, £/ + Wa ). AL )
< e /@(l 1Y + Wa, DIAS Wa, 1143 y] dx
< aecr | AR Wa, [l A3 | + aecr (1VlLs + I1Wa, ll19) A3 Wa, [ A7 ¥ lls
< aecs | A2 Wa, AV
+aecreoy W1 + Wa, (¥ IWa, 0|45 Wa, [ A5 w13 1 A3 11,
< aecs |42 Wa, |42V
+ acfy—%(l +y ) co (AR 3143 Wa | + |43 Wa, 243 915)(€14, 9]
= SR +ately 0+ eolabu Pla W, 1§+ 1ab w3 laby )
Tacer |43 Wa, |47 v
This implies
—ae(A%WAyf’wf +Wa,), A2 9)
< 10|AN| +adedy i1+ y ol i W, P
+ aecﬂAZWAyl + a60f|A3WAy||A3w|2
+adeiyTH(U+y ) coll A} Way I3 + 143 Wa, P47 v P
where we used suitable Young’s inequalities. Hence,

- Ot(fy(klf + Wa, ). €Ay ¥)

1 1 1 1
—IAy1/f|2 +ea(ys + VATV + Ey[A; Wa, | + 2y A3 Wa, |1 A7y

=10
4 1 1 1 1
tase ¢}y y73(1 +y_1)%c(9|A2WAy|3+aecf|A2WAy| +aecf|A§WAy||A§w|2
4
+aiefyTI(1+yT YeollAF Wa, ¥ + 42 Wy, 21147 v 1 (4.23)

Plugging the estimates (4.17)—(4.23) into the right-hand side of (4.16), we find that
1 1 !
3¢ 10D + 3 minwar.ed) [ el vl ds
0
< ~|(wo.go)
— (1o,
2 0, %o) |y

" / 5[0, v, J) Wiyl aqoy + (O, K, v, ) Ay Wa, [* + ce2y| AV W, 2] ds
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t
+ / e’ss[(ezy/ + aec}r)lAll,/zWAy| + a4/3c;/3y_1/3(1 + y_1)2/3c(9|A11,/2WAy|3] ds
0

t
- /0 5 [(0. | Way [ 4y + ¢(0. €.v. )| Ay Wy, |* + (ey +acy)| 4}/ W, |

+e et Py TR 4y e (|AL2 Wy, 1M+ 1AY 2 Wa, DI )}
t
+ [ et + )+ 8720100 as
0

where we used the fact that min(vA1, €0)[(v, ¥)[3 < [[(v, ¥)]I3 due to (2.7).
Observe now that, thanks to (2.15) and (2.17), we have for each n > 0

P(S,) > 0, (4.24)

where
Sy = {0 € Q1 Wiy (0)24g) + |4y Wa, (O] < 1. 1 € [0.2T7}.

Furthermore, let
min(vAy, ef) > 2a(y2 + 7). (4.25)

Hence, for n small enough such that
1
0<n< ?[min(vll,eﬁ) —2a(y2 + p)l,
¢

where ¢ = ¢(O,v, K, y, €, cr, ) is a positive constant, we infer that
t
O + minwiset) [l ds
0
t
<10 o)y + [ P Ratrz + ) + 8-+ 221w, ) 0
t
+ 2/ %[ (O, v, K) + (O, K, v, €) + ce2ynds
0

t
+ 2/ ess[(ezy/ + aecy) + a4/3c;/3y_1/3(1 + V_I)Z/Sm]n ds
0

for a.e. t € [0, 2T], P-as. on S;. Now, choosing § between 0 and min(vA;, ef) —
2a(y2 + y) — 2¢n, we further obtain

@ OF = e |0, g0l + F2((0.v. J0) + (0. K. v.€) +ce?y)
+2{(e?y + aecy) + aPef Py 4 yTH o)

for all t € [T, 2T], P-as. on Sy, where § is independent of T'. The latter yields for T =
T (ro, r1) large enough,

lu(t)] < ri. |42 <1 Vi €[0,27]

on the set .S; with positive probability. ]
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Lemma 4.3. Let ¥ € Cp(Y) be such that |V|so < 1. Then, for any t > 0, there exists
81 > 0 such that

1
|PW(x,y) — PrW(x1,y1)| < 3 (4.26)

Jorall (x.y), (x1.y1) € Y, [(x, Y)|y <81, |(x1, yD)ly <81

Proof. Let U = (u, ¢) be the solution of (2.6) with initial value (x, y) € Y and denote by

DU the Gateaux derivative of U. Denote DU = (gif; gﬁ f;) = (%1 %2), where Dy and

D, are Gateaux derivatives with respect to x and y. Then,

X1+ vAox1 + Bo(x1.u) + Bo(u, x1) — KRo(eAy x3,¢9) — KRo(eAyd, x3) =0,
X3+ Bi(x1,¢) + Bi(u, x3) + €Ay x3 +afy(¢)x3 =0,

110) =1, x2(0) =0,
4.27)
and

X5 +vAoxa + Bo(x2,u) + Bo(u, x2) — K Ro(€Ay xa,9) — K Ro(€Ayd, xa) =0,
X4+ Bi(x2,9) + Bi(u, xa) + €Ay ya + af)($)xa =0,

x3(0) =0, x4(0) =1
(4.28)
P-a.s. forallz € [0, T1.
Now, we take the inner product of the first equation of (4.28) with KX~y (¢) in H;.
Then, take the inner product of the second equation of (4.28) with €4, x3(7) in L?(0).
Adding the resulting equations, we obtain, after obvious manipulations,

1d _ _
EE[J( 1|X1|2+€|A;1,/2X3|2]+V=7( M l? + €214y, xsl?
=K bo(x1,u, 1) + b1(x1, 13, €4, 9)

—bi(u, x3,€Ay x3) —a(f, (P)x3. €Ay x3). (4.29)

Let us proceed with estimating all the terms on the right-hand side of (4.29). Note that

| K boCrr e, xo)| < e Kl x|
-1

4
1b1(x1. 13, €Ay )| < celya |2 lV21AY 2 43121 4y 131124, ¢
—1

4

-1 ) 62 )
P+ S 14yl

+ (e v, AP (K xal? + el 4% 13, (4.31)

=

Il + e, KO lul® (K ). (4.30)

IA

2
€
lx1l? + £ 1Ay 131 + e v, KAy 6 Pl 14, 15

IA




Existence and ergodicity for the 2D stochastic AC-NSEs 39

b1, x3. €Ay x3)| < celul"?ul|"/2|A)? x3|"2| Ay x3 P2
2

€
6

=

|4y x3l? + c©)lul*u]* (€| AY? x3 ). (4.32)

By (2.21), we have

(£, (@) x3. €4y x3)| < eacy /0 (14 [pD1xall Ay xal dx + €2y|4)/? x5
< eacy|ysllAy xsl + €2y 1A} 2 x3)?
+ eacr|plLso) x3lL4@)|Ay X3l
< acrelyall Ay xsl + €2y|A)  x3)?
+acreoy 2 (1+y 1) 2e|AY 20| AY2 5| Ay 1]
< %|Ay)(3|2 + 3(acr)|xsl® + 62)’|A;1,/2X3|2
+3(acrco)®y (1 + ¥y HIA) 20214} x3)2,
from which we infer that
la(f (P) 3. €4y x3)]
< %Amf + Blacy)*(en) ™ +ey
+3(acrc) () A+ y N4 2P (€] 4} x5 ). (4.33)

Collecting all estimates (4.30)—(4.33) and inserting them on the right-hand side of (4.29),
we obtain, after straightforward transformations, that

d _ . _
G P + el 42 1P+ min KT )l + 14y 4 )
<c(+ [l + [ulPull® + |4 201> + [Ay ¢ (K 1 * + €l AY 2 x3l?),  (4.34)

where ¢ = c(v, 0, K, €,a,cr, y). Hence, an application of the Gronwall lemma entails
that

t
K OF + el A2 x50 + /0 (@) + Ay x3()P) ds
<cexpth¥@ds 4o 7] (4.35)

with ¥(t) = c(1 + [a ()] + w2 @)]? + 14, 2¢ )] + |4, (1)),
Analogously, we find that

t
K a0 + el AY2 a0 + /0 (221 + 14y 7)) ds

<cech¥®d 0, T]. (4.36)



A. Ndongmo Ngana and T. Tachim Medjo 40

We will now give an estimate for E[W(u(z, §), ¢ (¢, §)) — V(u(z, &1), ¢(¢, &1))], with
§=(x,y) €Y, & = (x1,y1) €Y. To achieve our goal, we will follow an idea of [27]
(see also [2]). Let us introduce the following cut-off function:

=1 ifxo (S [0, 8],
TS(XO) =4=0 if xg € [28,00],
c[0,1] if xo €[5, 25].

We have
E[W(u(,§), ¢(2,8)) — V(u@, &), ¢(2,51)] = J1(2) + J2(t) + J5(), (4.37)
with

J1(t) = E| W(u(r.§).9(t.§)) x Ts(/o II(u(S,E),qﬁ(S,E))Il%rdS)}

- E[w(u(tvsl)7 ¢(I7$1)) X TS(/O ||(u(s,§1), ¢(S’£:l))”%7 dS)],

() = E| W, ). 6. ) x (1—n([0 ||<u(s,5),¢(s,s>)||%vds))],

and

Ja(t) = —E|:\D(u(t,51),¢(t,§1)) X (1 - T&(/O (s, &1), (s, €T ds))].

Using the Chebyshev inequality and (4.6), we deduce that

12(1)] < (P / (s, £). p(s. NG = Sds)uwuoo

Wl
< 1¥lleo ” / s £). d(s. DI ds
< [ ) + Loy eBr2eatnie g q¥leo 438)
286
Similarly,
(1)) < [(Grvs y) B + Ly) elB2a0trl Lsr1%. (4.39)
Here,
P S . 7 e AR
B’ BRa(y2 +v) + Bl

With the view to estimate the term J; (¢), we rewrite it as

1 d t )
J(0) = fo EJE[\P(u(t,&),Mr,&))xn( [0 ||<u(s,sf),¢<s,sf>)||vds)]dr

where &, = & + (1 — 1)é1, T € [0, 1].
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Hereafter, we set h = (x — x1,y — y1) and denote by A : V; x V, — V| x V the
canonical isomorphism of V3 x V5 onto V] x V, and

t
pe = inf{z > 00 [ s, 96 £ 05 = 25}.

Invoking now the Bismut—Elworthy formula (see [29]), we obtain
1 t
50 = [ TEw e < T [ 10,6006, 601F o)
x / (0 V2DU(s. £ )b, dW(s))] de
0
1 t
12 / E[W (U &) x Tg( / lus. E). (. £ Y ds)
0 0

x /t (1 - ;)(AU(S, £,), DU(s, £)h) ds] d.
0

Then, we deduce that

1 1 tApr 1/2
ol el [ [5( [ 107 2puG sonpas)

tAPr P 1/2 t 1/2
+2||T(§||00]E(/0 It (S7§T)||%/1XV2ds) (/0 IIU(&Er)II%vdS) }dfa

where i = (DU) - h. Now, by estimates (4.35) and (4.36), as well as the condition (2.8),
we have that

APt
| 107 DU son ds < el
0
Thanks to the estimates (4.6) and (4.35)—(4.39), we get
E[W(u(t,£),¢(1,8)) — Y(u, £1), ¢, &1))]

)
<cw, e, KX, T,y 72,0, A, 0)||¥] 0081 (?1 + 26811 4 t_l/z)) < (4.40)

R =

for all ||y < 61, |E1]ly < &1, when § is appropriately chosen and §; is small enough. The
proof of Lemma 4.3 is now complete. ]

Remark 4.1. (1) From (4.40), we can observe that, for §; small enough, the factor on the
right-hand side of this inequality containing §; decreases to zero.

(2) In (4.40), we can choose § > 0 to be any constant and then choose §; small enough
such that §; + 2exp®®(1 4+ 171) < 3and c(v, e, K, Ty, 2.0, A, £) || ¥ 0od1 < 1/6.

Let yo = —TrQlJFG’;ErQ”EA, and for M > 0

ty = inf{mT; m € N : |UmT. uo,$0)|*> > My,}. (4.41)
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Lemma 4.4. For any T > 0, there exists M(T), C(T), such that
P(ty = mT) < C(T)e P (1 + |(uo. o) [3). (4.42)

and for jo < B,
Ee’*™ < C(jo, T)(1 + |(uo, $o)|3)- (4.43)

Proof. By (4.5) in Lemma 4.1 and the Markov property of {U(mT, ug, $o)}meN, we find
that

E(U((m + V)T, ug, ¢o)|% | Fmur) < e T\ UmT, uo, $0)|%> + vo. (4.44)

Using the Chebyshev inequality, we obtain

_ 1
e T \UGMT, uo. o)y + v

(4.45)

1
P(U((m + DT, uo, 0|3 = Myo | Fnr) < i
Yo

Hereafter, we set

By = HuGT, U0)|%( > My, j=0,1,...,m},
B = {|U(mT, Up)|3 = Myo},  Us = (o, ¢o).

Notice that -

Bm+1 = Bm N Bpt1.

Multiplying (4.45) by 15 and then taking the mathematical expectation on the resulting
inequality, we derive that

~ 1 _ 1 ~
P(Bns1) = e PTE(UMT. Uy 15,) + 3P (B (4.46)

Similarly, we infer from (4.44) that
E(U(m + DT, Uy 15,) < e PTE(UMT, U3 15,) + voP (Bm).  (4.47)

Let
em =E(UMT. Uy 15,). Pm =P(Bn).

Therefore, from (4.46) and (4.47), one has

()= ) ()
em+1/) ~ \ Yo e 2bT €m

The eigenvalues of the above matrix are 0 and ﬁ + e72BT _Choosing M such that

1
L om2BT _ BT

’
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we deduce that
P2 + e2 < C(T)e 2T (P2 + e2)
< C(M)e>™PT (1 + |(uo, $o)[3)-
Since B, = {tyy = mTY}, (4.42) follows.

Moreover, for jo < B, we have

E[e™] =Y " e/ P (1 = nT) < Y C(T)e’"Te™ T (1 + |(uo. d0)[3)

n>0 n>0

< C(T, jo)(1 + | (o, $0)|3)-
This completes the proof of Lemma 4.4. ]

Theorem 4.2. There is a unique invariant measure [Ly. for semigroup P;.
The proof of Theorem 4.2 is based on the following lemma.

Lemma 4.5. There are cx > 0 and Jo > 0 such that, for any T > 0, j € N, and any
Ve Gp(Y),

|P,7W(cuo, po) — P, (u, ¢d)|
< x| ¥llooe 7 OTHI + (o, p0)I3 + |(uh, $0)13). (4.48)

Proof. We follow the idea in [13] (see also [27] or [2]). Let T > 0 and §; > O be as in
Lemma 4.3. Let R = min(§1, R), R = My, where yq is defined as in Lemma 4.4, and
M is chosen as in the proof of Lemma 4.4.

For notational simplicity, in the sequel, we set Uy = (uo, ¢o), U, 1 — (u(l), qbé) and
U(t, Uy) = (u(t, ug, o), ¢(t, uo, ¢o))- Ijence, for any Uy, U, € B (0), where B 5(0)
denotes the ball centered at the origin of R radius, we have

77 (U(., Uo)) = 77 (U(, Up)) I v

= sup [E(W(U(T, Up))) — E(V(U(T. Ug)))| <

1
<, (4.49)
W loo<1,W€C, (Y) 2

where 77 (U(., Up)) and mr (U(., Uy)) are the laws of U(T, Up) and U(T, Uy), respec-
tively.

Then (see [2, Appendix]), there is a maximal coupling (X1 (Uo, Uy), X2(Uy, Uy)) of
(U(T, Up), U(T, Uy )) which depends measurably on Up and U, . This means that the law
of X1(Uo, Uy) (resp., X2(Uo, Uy )) coincides with that of U(T, Uy) (resp., U(T, U})) and

1
P(X1(Uo,Uy) # X2(Uo, Uy)) < >

PrW(U(T, Up)) — PrY(U(T, Uy)) = E[¥(X1(Uo, Uy)) — ¥ (X2(Uo, Uy))].
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Let

(T'1 (U, Up). T3 (Uo, Uy))

(X1(Uo, U), X2 (Uo, U})) if Up, Uy € Bz(0), Up # UL,
= (U(T, Up), U(T, Uy)) if Up = U,
(U(T. Up), U(T.Uy)) otherwise,

where U (T, Uy) is the solution of the stochastic equation where the Wiener process W
has been replaced by an independent copy w.

We again construct iteratively the coupling (I'?'(Up, UJ), T4 (Uo, Uy )) of (U(nT, Up),
U(nT,Uy)) by the formula

(" (Uo. Ug). T3 (Uo. Uy)

Then, for Uy, Uo1 € B, (0), one has

[E[W(U(nT, Up))] — EN¥(UnT, Ug))|
= [E[W(T] (Uo. Uy))] — E[¥(T'} (o, U]
< 2| WP (T} (Up, Ug) # T4 (Up, Uy )).

Furthermore, we define
ly1 =inf{n e N : ], T7 € Bg(0)},

and recursively,
eM,]+1 = inf{n > KM,] : F{l, Fg [S BR’(O)}

Then, (4.43) can be generalized to two solutions, and we have
Efe*1T] < C(jo, T)(1 + |(10, $0)[3), (4.50)
and, by the Markov property,
_ L L
EfeoCur =) | 7, 7] < Clo. T)A + T 1 + 10, 17).
which implies that, for j > 1,

Ele+17] < C(jo. T)E[e”T (1 + [T |3 + T3 )]
< C(jo.T)(1 + 2R?*)E[e/0tmT] (4.51)

and
EleT] < C(0, T) (1 + 2R 71(1 + |(wo, 0)[3). (4.52)
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Now, we construct a sequence of stopping times to enter inside the ball B j defined recur-
sively by
IMy+1 =inf{n = Ly, Ty < R, T3]y < R}

We set _ _
fo =inf{y € N : [\M7+1 = iMooty (4.53)
Recall, in virtue of (4.49), that
i i 1

P(I™ # 0 < 5.
and then,

~ ~ 1

IP’(ﬁo>]+1|50>])§§.
Writing
Plo>j+1) =Py > +1][Lo> )P > ),

we obtain

P(ly > j) <27/,

So, for any jo (jo will be chosen later), we have

~ Z _ T -
E[ejo ML ] < ZE(eJOZM,]TIJ:ZO)
J=0
= Y PO = lo)! T [E (e Tl
J=0
G=D@1=jo/J0)
1 ~ .
=¥ (3) (0. 7Y (14 227711+ (a0, po) )P,
J=0
We choose jj such that
2{_(1_j°/]°)}[C(]0, T)(1 + 2§2)]]0/Jo <1, (4.54)
and we get .
joly, 7 T ~ ~
E[e”™%"] < C(jo, jo. R, T)(1 + |(0, $0)I3)- (4.55)
Since

lo=inf{; eN:T{ =T} I} €Bg. i =12} <lp; +1.
we deduce that .
E[e/T] < C(jo. jo. R. T)(1 + |(uo. ¢0)I3).
This implies that

P(I #TJ) = P(elbT > ¢lT1y
< C(jo. jo. R, T)(1 + |(uo, ¢o)|3)e 70T/,
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Hence,
[E[W(U(; T, Uo))] — E[¥ (U T, U
< 2| W]l (T (Uo. Uy) # T3 (Uo. Up))
< [ ¥[ooC(Jo. jo. R.T)(1 + |Uo|3 + U [3)e= 7T
This proves (4.48). [ ]
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