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On regularity and asymptotic stability for semilinear
nonlocal pseudo-parabolic equations

Dao Trong Quyet and Dang Thi Phuong Thanh

Abstract. We deal with a class of nonlocal pseudo-parabolic equations involving strong nonlinear-
ities. The questions on existence, regularity and stability of solutions are addressed by using local
estimates, fixed point arguments, and the relation between the Hilbert scales and fractional Sobolev
spaces.

1. Introduction

Let � be a bounded domain in RN , N � 1, with smooth boundary @�. In this paper, we
consider the following problem:

@
¹kº
t .u ��u/ � ��u D f .u/ in �; t 2 .0; T �; (1.1)

u D 0 on @�; t 2 .0; T �; (1.2)

u.0/ D � in �; (1.3)

where � > 0, f is a given nonlinear function, and @¹kºt denotes the nonlocal derivative of
Caputo type as follows:

@
¹kº
t v.t/ D .k � v0/.t/ D

Z t

0

k.t � �/v0.�/ d�:

In this work, we make use the following assumption on the kernel function k.

(PC) The function k 2L1loc.RC/ is nonnegative, nonincreasing and there exists a func-
tion m 2 L1loc.RC/ such that

k �m.t/ D

Z t

0

k.t � �/m.�/ d� D 1 for all t 2 .0;1/:

The pair .k; m/ is called the Sonine kernel [23]. The typical case is .k; m/ D .g1�˛; g˛/
for ˛ 2 .0; 1/, where g˛.t/ D t˛�1=�.˛/. In this case, @¹kºt D @

˛
t , the Caputo fractional

derivative of order ˛ and (1.1) is the nonlocal version of the pseudo-parabolic equation

ut ��ut � ��u D f: (1.4)
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In [1, 5], equation (1.4) describes the infiltration of homogeneous fluids through fissured
rocks. One also uses (1.4) to study the non-steady flows of second order fluids [9], the
theory of the two temperatures in heat conduction [6], the monodirectional propagation of
nonlinear dispersive long waves [2], etc.

Early results on qualitative theory of pseudo-parabolic equations in the linear case
can be found in [13, 24, 26], where the regularity and long-time behavior of solutions
were discussed. In addition, the author in [26] demonstrated a relation between solutions
of pseudo-parabolic equation and parabolic equation, which showed that the solution of
pseudo-parabolic equation approximates to the one of corresponding parabolic equation.

It is worth mentioning that pseudo-parabolic equations in semilinear case have at-
tracted an extensive study. Without stress of references, we refer the reader to recent works
[19,30,33], where the global existence and finite time blow-up of weak solutions were ana-
lyzed by using the so-called potential well method. It should be noted that this method was
first developed for semilinear hyperbolic equations in [20] and then employed for various
classes of nonlinear hyperbolic and parabolic equations, in order to address behavior of
solutions depending on initial energy levels; see e.g. [7, 17, 18, 31, 32].

In order to depict the memory effect of processes modeled by (1.4), one replaces the
time derivative by @˛t with ˛ 2 .0; 1/. Then (1.4) changes to

@˛t .u ��u/ � ��u D f: (1.5)

The last equation has been a subject of numerous studies. We mention some results on
solvability, stability and controllability [12, 14, 16, 34] for (1.5). Recently, the authors
in [21] proved the global solvability of the Cauchy problem associated with (1.5) in
both bounded and unbounded domains, where the nonlinearity f D f .u/ takes values
in Lebesgue spaces. Some existence results related to (1.5) were obtained in [28] with
nonlinearity function being of polynomial and logarithmic type. Regarding a stochas-
tic version of (1.5), the question of existence and regularity of solutions was addressed
in [25]. It is worth noting that the analysis for (1.5), i.e., the special case k.t/ D g1�˛.t/,
is based on the Mittag-Leffler functions, whose regularity is well known. In this case,
it is straightforward to find the resolvents and their regular properties for the associated
Cauchy problem.

Regarding problem (1.1)–(1.3), which is first introduced in this paper, employed to
describe different memory effects (depending on k), the related resolvents have been
unknown. We will show in Section 2 the construction of these resolvents, denoted by
¹S.t/º and ¹R.t/º. Especially, the spatial smoothing effect of ¹R.t/º is proved.

On the other hand, due to practical applications, the nonlinearity f .u/may contain the
advection/convection term of the form H.u/ � ru, where H.u/ is a vector field (see the
example in the last section). In this case, one says that f .u/ takes weak values, i.e., f .u/
belongs to a fractional Sobolev space of negative order. This situation was not addressed
in cited works.

In this study, we consider problem (1.1)–(1.3) in the circumstance that the nonlinear-
ity function f .u/ takes values in Hilbert scales of negative orders. This enables us to deal
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with the case when f .u/ contains the advection/convection term, thanks to the relation
between the Hilbert scales and fractional Sobolev spaces (mentioned in the next section).
Dealing with problem (1.1)–(1.3), we first prove the global existence and uniqueness of
mild solution to (1.1)–(1.3) in a general case, where f . � / is locally Lipschitzian. More-
over, the asymptotic stability of solutions is proved in the case m … L1.RC/. This will be
done in Section 3. Section 4 is devoted to regularity results. We show that the obtained
solution is Hölder continuous. This feature is useful for numerical schemes. Finally, we
testify, in a particular case, that the mild solution and the weak solution to (1.1)–(1.3)
coincide.

It should be mentioned that the questions of stability and regularity imposed in this
work have not been taken into account in literature, even in the fractional case. Concerning
the highlight of our work, one brings up the following:

• the unique solvability of the Cauchy problem governed by the nonlocal pseudo-para-
bolic equation with respect to the Sonine kernels, where the nonlinearity function is
allowed to take weak values;

• the asymptotic stability of the obtained solution, which has not been addressed for the
case of weak-valued nonlinearity;

• the Hölder regularity of mild solutions, which is helpful in numerical analysis;

• the agreement between the mild and weak solutions in the case that f .u/ takes values
in H�1.

2. Preliminaries

2.1. Formulation of solutions

It is known that condition (PC) ensures the complete positivity of m, i.e., the functions
s. � / and r. � / obeying

s.t/C �

Z t

0

m.t � �/s.�/ d� D 1; t � 0; (2.1)

r.t/C �

Z t

0

m.t � �/r.�/ d� D m.t/; t > 0; (2.2)

take nonnegative values for each � > 0. See [8, 29].
Denote by s.t; �/ and r.t; �/ the solution of (2.1) and (2.2), respectively, to emphasize

the dependence on the parameter �. The following proposition shows some important
properties of these functions.

Proposition 2.1 ([27]). For every � > 0,

(a) the function s. � ; �/ is nonnegative and nonincreasing. Moreover,

1

1C �k.t/�1
� s.t; �/ �

1

1C �.1 �m/.t/
8t � 0:
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(b) The functions r. � ; �/ is nonnegative and one has

s.t; �/ D 1 � �

Z t

0

r.�; �/ d� D k � r.t; �/ 8t � 0;

so
R t
0
r.�; �/ d� � ��18t > 0. Moreover, if m. � / is nonincreasing, then

r.t; �/ �
m.t/

1C �.1 �m/.t/
8t > 0:

(c) For each t > 0, the functions � 7! s.t; �/ and � 7! r.t; �/ are nonincreasing.

(d) Let v.t/ D s.t; �/v0 C
R t
0
r.t � �; �/g.�/ d� . Then v. � / solves the problem

@
¹kº
t v.t/C �v.t/ D g.t/; v.0/ D v0;

where g 2 C.RC/.

We also use the following Gronwall type inequality.

Proposition 2.2 ([15]). Let v be a nonnegative function satisfying

v.t/ 6 s.t; �/v0 C

Z t

0

r.t � �; �/Œ˛v.�/C ˇ.�/� d�; t � 0;

for � > 0, ˛ > 0, v0 � 0 and ˇ 2 L1loc.RC/. Then

v.t/ 6 s.t; � � ˛/v0 C

Z t

0

r.t � �; � � ˛/ˇ.�/ d�:

Particularly, if ˇ is constant and ˛ < �, then

v.t/ 6 s.t; � � ˛/v0 C
ˇ

� � ˛
.1 � s.t; � � ˛//:

We are now in a position to give a representation of a solution to (1.1)–(1.3). Let h � ; � i
and k � k denote the inner product and the norm, respectively, in L2.�/, that is,

hu; vi D

Z
�

u.x/v.x/ dx; kuk D hu; ui
1
2 for u; v 2 L2.�/:

Let ¹.�n; en/º be the eigensystem of the Laplacian �� associated with the Dirichlet
boundary condition, where ¹enº is a orthonormal basis of L2.�/, i.e.,

��en D �nen in �; en D 0 on @�; kenk D 1:

Then one can find a solution of (1.1)–(1.3) as follows:

u.t/ D

1X
nD1

un.t/en:
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Using this formula in (1.1)–(1.3), one gains

.1C �n/@
¹kº
t un.t/C ��nun.t/ D fn.u.t//;

un.0/ D �n WD h�; eni;

where fn.u.t// D hf .u.t//; eni. Employing Proposition 2.1 (d), we get

un.t/ D s.t; �n/�n C

Z t

0

.1C �n/
�1r.t � �; �n/fn.u.�// d�; �n D

��n

1C �n
:

Therefore, we have the following representation:

u.t/ D S.t/� C

Z t

0

R.t � �/f .u.�// d�; (2.3)

S.t/ D

1X
nD1

s.t; �n/h � ; enien; (2.4)

R.t/ D

1X
nD1

.1C �n/
�1r.t; �n/h � ; enienI (2.5)

here we use the notation h � ; � i for both inner products and dual pairs, if no confusion
arises.

2.2. Properties of resolvents

For % 2 R, we define the space H% as

H%
D

´
v D

1X
iD1

vnen W

1X
iD1

�%nv
2
n <1

µ
:

Then H% is a Hilbert space endowed with the norm kvkH% WD
�P1

iD1 �
%
nv
2
n

� 1
2 . In addition,

for % > 0, we can identify the dual space of H% with H�%. Note that H0 D L2.�/, and
the family ¹H%º%2R is said to be the Hilbert scales of L2.�/.

Lemma 2.3. Let ¹S.t/º and ¹R.t/º be the families of linear operators defined by (2.4)
and (2.5), respectively. Then

(a) for each v 2 H�, we have

kS.t/vkH� � s.t; �1/kvkH� ; �1 D
��1

1C �1
;

for all t � 0.

(b) For each T > 0 and g 2 C.Œ0; T �IH��2/, we have



Z t

0

R.t � �/g.�/ d�





2
H�

� ��11

Z t

0

r.t � �; �1/kg.�/k
2
H��2 d�:
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Proof. (a) Observing that

kS.t/vk2H� D

1X
nD1

s.t; �n/
2v2n�

�
n ; vn D hv; eni;

and ¹�nº is increasing, we have

kS.t/vk2H� � s.t; �1/
2

1X
nD1

v2n�
�
n D s.t; �1/

2
kvk2H� :

(b) We see that



Z t

0

R.t � �/g.�/ d�





2
H�

D

1X
nD1

�Z t

0

.1C �n/
�1r.t � �; �n/gn.�/ d�

�2
��n

�

1X
nD1

���2n

�Z t

0

r.t � �; �n/gn.�/ d�

�2
:

Using the Hölder inequality, we have�Z t

0

r.t � �; �n/gn.�/ d�

�2
�

Z t

0

r.t � �; �n/ d�

Z t

0

r.t � �; �n/g
2
n.�/ d�

� ��1n

Z t

0

r.t � �; �n/g
2
n.�/ d�

� ��11

Z t

0

r.t � �; �1/g
2
n.�/ d� I

here we utilized Proposition 2.1 (b)–(c). Therefore,



Z t

0

R.t � �/g.�/ d�





2
H�

� ��11

Z t

0

r.t � �; �1/

1X
nD1

���2n g2n.�/ d�

D ��11

Z t

0

r.t � �; �1/kg.�/k
2
H��2 d�:

The lemma is proved.

We are now in a position to recall some notions and facts related to the regularity of
the family ¹S.t/º.

Definition 2.4 ([22]). Let m 2 L1loc.RC/ be a function of subexponential growth, i.e.,Z 1
0

jm.t/je��t dt <1 for every � > 0:

Denote by Om the Laplace transform of m.

(i) Suppose that Om.z/ ¤ 0 for all Re.z/ > 0. For # > 0, m is said to be #-sectorial
if jarg Om.z/j � # for all Re.z/ > 0.
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(ii) For given l 2 N, m is called l-regular if there exists a constant c > 0 such that

jzn Om.n/.z/j � cj Om.z/j for all Re.z/ > 0; 0 � n � l:

Lemma 2.5 ([15]). Assume that the kernel function m is 2-regular and #-sectorial for
some # < � . Then the resolvent family S. � / is differentiable on .0;1/. In addition, it
holds that

kS 0.t/k �
M

t
; t 2 .0;1/;

for some M � 1.

2.3. Embeddings of fractional Sobolev spaces

Denote by W r;p.�/, r � 0; 1 � p <1, the fractional Sobolev space of order r based on
Lp.�/ (see e.g. [10, 11]). Put

W
r;p
0 .�/ WD C1c .�/

W r;p.�/
; H r .�/ WD W r;2.�/; H r

0 .�/ WD W
r;2
0 .�/:

We assume that � is sufficiently smooth such that C1c .�/ is dense in H r .�/ with 0 <
r < 1=2, which ensures H r

0 .�/ D H r .�/ (see [3, Corollary 8.10.1]). It is known that
(see, e.g. [4])

Hr
D

8̂̂̂̂
<̂
ˆ̂̂:
H r
0 .�/; 0 � r < 1=2;

H
1=2
00 .�/ ¦ H

1=2
0 .�/; r D 1=2;

H r
0 .�/; 1=2 < r � 1;

H 1
0 .�/ \H

r .�/; 1 < r � 2;

in which H 1=2
00 .�/ is the Lions–Magenes space, i.e.,

H
1=2
00 .�/ D

²
u 2 H 1=2.�/ W

Z
�

ju.x/j2

.dist.x; @�//2
dx <1

³
:

So one has the following embeddings.

Lemma 2.6. Let H�r .�/ be the duality of H r
0 .�/ for r � 0. If 0 � r � r 0 � 2, then

Hr 0 ,! Hr ,! H r .�/ ,! L2.�/ ,! H�r .�/ ,! H�r ,! H�r
0

:

We also recall the following embeddings.

Lemma 2.7 ([3, Theorem 8.12.6]). For given 1� p;p0 �1, 0� r; r 0 <1 and r 0 � d
p0
�

r � d
p

, it holds that W r 0;p0.�/ ,! W r;p.�/.

Combining Lemma 2.7 and Lemma 2.6, we gain the embeddings as follows.

Lemma 2.8. It holds that

(a) Lp.�/ ,! H r .�/ ,! Hr if
®
�
N
2
< r � 0; p � 2N

N�2r

¯
.

(b) Hr ,! H r
0 .�/ ,! Lp.�/ if

®
0 � r < N

2
; 1 � p � 2N

N�2r

¯
.
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3. Solvability and stability

In order to deal with problem (1.1)–(1.3), we make the following assumption.

(F) The nonlinearity function f in (1.1) induces a mapping

f WH�
! H��2; � 2 .0; 2�;

obeying that f .0/ D 0 and that

kf .v1/ � f .v2/kH��2 � Lf .r/kv1 � v2kH�

for all v1; v2 2 Br WD ¹v 2 H� W kvkH� � rº; here Lf is a nonnegative function
such that

L�f WD lim sup
r!0

Lf .r/ <
�1
p
2
:

Based on representation (2.3), we give the following definition of a mild solution for
(1.1)–(1.3).

Definition 3.1. A function u 2 C.Œ0; T �IH�/ is said to be a mild solution to problem
(1.1)–(1.3) on Œ0; T � if and only if

u.t/ D S.t/� C

Z t

0

R.t � �/f .u.�// d�

for any t 2 Œ0; T �.

Theorem 3.2. Let assumption (F) hold. Then there exists ı > 0 such that problem (1.1)–
(1.3) has a unique mild solution on Œ0; T �, provided k�kH� 6 ı.

Proof. For u 2 C.Œ0; T �IH�/, with the norm kuk1 WD supt2Œ0;T �ku.t/kH� , let ˆ be the
mapping defined by

ˆ.u/.t/ D S.t/� C

Z t

0

R.t � �/f .u.�// d� for t 2 Œ0; T �:

We refer to this mapping as the solution operator. Observe that

kˆ.u/.t/k2H� � 2kS.t/�k
2
H� C 2





Z t

0

R.t � �/f .u.�// d�





2
H�

� 2s.t; �1/
2
k�k2H� C 2�

�1
1

Z t

0

r.t � �; �1/kf .u.�//k
2
H��2 d�;

thanks to Lemma 2.3 (b). Assume that u.t/ 2 Br for all t 2 Œ0; T �. Then, using (F) and the
fact that s.t; �1/ � 1, one gains

kˆ.u/.t/k2H� � 2s.t; �1/k�k
2
H� C 2�

�1
1

�Z t

0

r.t � �; �1/ d�

�
Lf .r/

2r2

D 2s.t; �1/k�k
2
H� C 2�

�2
1 .1 � s.t; �1//Lf .r/

2r2

D 2s.t; �1/Œk�k
2
H� � �

�2
1 Lf .r/

2r2�C 2��21 Lf .r/
2r2:
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Taking r� > 0 such that 2��21 Lf .r
�/2 < 1, we see that

kˆ.u/.t/kH� � r� for u.t/ 2 Br� ;

provided that k�kH� � ı WD ��11 Lf .r
�/r�. We have shown that ˆ.Br�/ � Br� , where

Br� WD ¹u 2 C.Œ0; T �IH
�/ W kuk1 � r

�
º:

It remains to show that ˆ is a contraction mapping on Br� . Indeed, for u1; u2 2 Br� , we
have

kˆ.u1/.t/ �ˆ.u2/.t/k
2
H� � �

�1
1

Z t

0

r.t � �; �1/kf .u1.�// � f .u2.�//k
2
H��2 d�;

thanks to Lemma 2.3 (b). Then, using (F) again, one gets

kˆ.u1/.t/ �ˆ.u2/.t/k
2
H� � �

�1
1

Z t

0

r.t � �; �1/Lf .r
�/2ku1.�/ � u2.�/k

2
H� d�

� ��21 Lf .r
�/2ku1 � u2k

2
1

�
1

2
ku1 � u2k

2
1 for all t 2 Œ0; T �;

which implies that ˆ is a contraction.

Remark 3.3. When f is globally Lipschitzian, i.e., Lf .r/ D L�f > 0 for all r > 0, one
can prove the existence and uniqueness of a mild solution to (1.1)–(1.3), regardless of
the assumption f .0/ D 0 and the smallness of initial data. This can be done by the same
reasoning as in [15].

It should be noted that the resolvent S.t/ has no smoothing effect, which implies that
the solution u.t/, in general, cannot be more regular than the initial datum. Indeed, we
claim that there exists � 2 H� such that S.t/� … H
 for any 
 > �. Let

� D
1

2
C



N
; � D

1X
nD1

n��en:

Since �n � Cn2=N as n!1 (C > 0), we have

��nn
�2�
� C�n�2.��

�
N / D C�n�1�

2.
��/
N :

Then

k�k2H� D

1X
nD1

��nn
�2� <1;

i.e., � 2 H�. Now we estimate

kS.t/�k2H
 D

1X
nD1

�
ns.t; �n/
2n�2� : (3.1)
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Using Proposition 2.1 (a) yields

s.t; �n/ �
1

1C �nk.t/�1
�

1

1C �k.t/�1
:

So

�
ns.t; �n/
2n�2� �

1

.1C �k.t/�1/2
�
nn

�2�

�
C 


.1C �k.t/�1/2
n�2.��



N /

D
C 


.1C �k.t/�1/2
n�1;

which deduces the divergence of series (3.1).

We now consider the asymptotic stability of a solution to (1.1)–(1.3) in the sense of
Lyapunov.

Theorem 3.4. Assume that (F) holds. Let u� be the solution of (1.1) with respect to the
initial datum ��, obtained by Theorem 3.2. If m … L1.RC/, then u� is asymptotically
stable.

Proof. Take r� and ı D ��11 Lf .r
�/r� from the proof of Theorem 3.2. In view of this

proof, it is easily seen that u� is uniquely defined on Œ0; T � for any T > 0.
Let u be the solution of (1.1) with respect to the initial datum � 2 Bı . Then u 2 Br� .

Moreover, one sees that

ku.t/ � u�.t/k2H� � 2s.t; �1/k� � �
�
k
2
H�

C 2��11

Z t

0

r.t � �; �1/kf .u.�// � f .u
�.�//k2H��2 d�

� 2s.t; �1/k� � �
�
k
2
H�

C 2��11

Z t

0

r.t � �; �1/Lf .r
�/2ku.�/ � u�.�/k2H� d�

for any t > 0. Employing Proposition 2.2 yields

ku.t/ � u�.t/k2H� � 2s.t; �1 � 2�
�1
1 Lf .r

�/2/k� � ��k2H�

for any t > 0.
Asm … L1.RC/, it follows from Proposition 2.1 (a) that s.t; �1 � 2��11 Lf .r

�/2/! 0

as t !1. We get the conclusion as desired.

In the next theorem, we prove the existence of an absorbing set for solutions of (1.1)
in the case that f is globally Lipschitzian.
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Theorem 3.5. Assume that f is globally Lipschitzian, i.e.,

kf .v1/ � f .v2/kH��2 � L�f kv1 � v2kH�

for all v1; v2 2H�. If L�
f
< 1
2
�1 andm … L1.RC/, then there exists a bounded absorbing

set for solutions of (1.1).

Proof. As mentioned in Remark 3.3, for each � 2 H�, there exists a unique solution u of
(1.1) with u.0/ D �. In addition, we have

ku.t/k2H� � 2s.t; �1/k�k
2
H� C 2�

�1
1

Z t

0

r.t � �; �1/kf .u.�//k
2
H��2 d�

� 2s.t; �1/k�k
2
H�

C 2��11

Z t

0

r.t � �; �1/Œ2.L
�
f /
2
ku.�/k2H� C 2kf .0/k

2
H��2 � d�:

Using Proposition 2.2 again, we obtain

ku.t/k2H� � 2s.t; �1 � 4�
�1
1 .L�f /

2/k�k2H� C
4kf .0/k2

H��2

�1 � 4.L
�
f
/2

for all t > 0. Since s.t; �1 � 4��11 .L�
f
/2/! 0 as t !1, there exists T D T .�/ > 0 such

that 2s.t; �1 � 4��11 .L�
f
/2/k�k2H� < 1 for all t � T . That is,

ku.t/k2H� � 1C
4kf .0/k2

H��2

�1 � 4�
�1
1 .L�

f
/2

for all t � T . Equivalently, the ball B� with

� D
�
1C

4kf .0/k2
H��2

�1 � 4�
�1
1 .L�

f
/2

� 1
2

is an absorbing set for solutions of (1.1). The proof is complete.

4. Regularity results

4.1. Hölder regularity

Denote

V�;
r;r� D
°
u 2 Br� W sup

h2.0;T /
t2.0;T�h/

t
ku.t C h/ � u.t/kH�

h

� r

±
;

where the ball Br� is taken from the proof of Theorem 3.2 and 
 2 .0; 1/.
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Theorem 4.1. Let the assumptions of Theorem 3.2 be satisfied. If the kernel functionm is
2-regular and � -sectorial for some � 2 .0; �/ and

`1 D 3�
�1
1 .L�f /

2 sup
t2.0;T �

t2

Z t

0

r.t � �; �1/�
�2
 d� < 1;

`2 D sup
h2.0;T /
t2.0;T�h�

� t
h

�2
 Z tCh

t

r.�; �1/ d� <1

hold, then the solution of (1.1)–(1.3) is Hölder continuous on .0; T �.

Proof. It suffices to show that the solution operator ˆWV�;
r;r� ! V�;
r;r� is contractive. In
fact, we need to show ˆ.V�;
r;r�/ � V�;
r;r� for some r > 0.

Let u 2 V�;
r;r� . Then

ˆ.u/.t C h/ �ˆ.u/.t/ D ŒS.t C h/ � S.t/��

C

Z t

0

R.�/Œf .u.t � � C h// � f .u.t � �//� d�

C

Z tCh

t

R.�/f .u.t � � C h// d�

DM1.t/CM2.t/CM3.t/; t > 0:

By assumption, S. � / is differentiable on .0;1/. Then

kM1.t/kH� �

Z tCh

t

kS 0.�/�kH� d� �Mk�kH�

Z tCh

t

d�

�
DMk�kH� ln

�
1C

h

t

�
:

So

kM1.t/kH� �M
�1k�kH�

�h
t

�

(4.1)

for any 
 2 .0; 1/. Here we used the inequality ln.1C b/ � x




for b > 0.

Now employing Lemma 2.3 (b), we have

kM2.t/k
2
H� � �

�1
1

Z t

0

r.�; �1/kf .u.t � � C h// � f .u.t � �//k
2
H��2 d�

� ��11

Z t

0

r.�; �1/.L
�
f C �/

2
ku.t � � C h/ � u.t � �/k2H� d�:

Put Dhu.t/ D u.t C h/ � u.t/; then

kM2.t/k
2
H� � �

�1
1 h2
 .L�f C �/

2

Z t

0

r.�; �1/.t � �/
�2
 .t � �/

2
kDhu.t � �/k
2
H�

h2

d�

� ��11 h2
r2.L�f C �/
2

Z t

0

r.�; �1/.t � �/
�2
 d�;
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thanks to the formulation of V�;
r;r� . Thus� t
h

�2

kM2.t/k

2
H� �

1

3
`1r

2: (4.2)

Regarding M3.t/, we see that

kM3.t/k
2
H� � �

�1
1

Z tCh

t

r.�; �1/kf .u.t � � C h//k
2
H��2 d�

� ��11 .L�f C �/
2

Z tCh

t

r.�; �1/ku.t � � C h/k
2
H� d�

� ��11 .L�f C �/
2.r�/2

Z tCh

t

r.�; �1/ d�:

Hence � t
h

�2

kM3.t/k

2
H� � `2�

�1
1 .L�f C �/

2.r�/2: (4.3)

Combining (4.1)–(4.3), one obtains� t
h

�2

kˆ.u/.t C h/ �ˆ.u/.t/k2H�

� 3
� t
h

�2
 3X
iD1

kMi .t/k
2
H�

� 3M 2
�2k�k2H� C 3`2�
�1
1 .L�f C �/

2.r�/2 C `1r
2:

Since `1 < 1, we are able to choose r > 0 (large enough) such that� t
h

�2

kˆ.u/.t C h/ �ˆ.u/.t/k2H� � r

2
8h 2 .0; T /; t 2 .0; T � h/;

which implies ˆ.u/ 2 V�;
r;r� . The proof is complete.

4.2. Mild solutions vs weak solutions

In this subsection, we assume that (F) holds with � D 1.

Definition 4.2. A function u 2 C.Œ0; T �IH1/ is said to be a weak solution to problem
(1.1)–(1.3) on Œ0; T � if u.0/ D � and equation (1.1) holds in H�1 for every t 2 Œ0; T �, i.e.,

h@
¹kº
t u; vi C h@

¹kº
t ru;rvi C �hru;rvi D hf .u/; vi (4.4)

for every v 2 H1 and t 2 Œ0; T �.

Theorem 4.3. A function u 2 C.Œ0; T �IH1/ is a weak solution to (1.1)–(1.3) if and only
if it is a mild solution.
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Proof. Let u 2 C.Œ0; T �IH1/ be a weak solution to (1.1)–(1.3). Then the smoothness of
the boundary of � implies that en 2 H2, n 2 N. Taking v D en in (4.4) and integrating
by parts yields

h@
¹kº
t u; eni � h@

¹kº
t u;�eni � �hu;�eni D hf .u/; eni;

which ensures that

.1C �n/@
¹kº
t un.t/C ��nun.t/ D fn.u.t//; un.0/ D �n D hu.0/; eni;

where un.t/ D hu.t/; eni and fn.u.t// D hf .u.t//; eni. Thus

un.t/ D s.t; �n/�n C .1C �n/
�1

Z t

0

r.t � �; �n/fn.u.�// d�;

where �n D
��n
1C�n

. Put

�1.t/ D

1X
nD1

�ns.t; �n/
2�2n D

1X
nD1

�1.t/Œn�;

�2.t/ D

1X
nD1

�n

�
.1C �n/

�1

Z t

0

r.t � �; �n/fn.u.�// d�

�2
D

1X
nD1

�2.t/Œn�:

In order to show that u admits the representation in Definition 3.1, we testify the uniform
convergence of the series �1.t/ and �2.t/. Indeed, one sees that

�1.t/Œn� D �ns.t; �n/
2�2n � �n�

2
n ;

and the series
P1
nD1 �n�

2
n converges to k�k2

H1 . Then �1.t/ is uniformly convergent due
to the Weierstrass test. Concerning �2.t/, we observe that

�2.t/Œn� � �
�1
n

�Z t

0

r.t � �; �n/ d�

��Z t

0

r.t � �; �n/jfn.u.�//j
2 d�

�
� ��1n �

�1
n

Z t

0

r.t � �; �n/jfn.u.�//j
2 d�

� ��11

Z t

0

r.t � �; �1/�
�1
n jfn.u.�//j

2 d�; (4.5)

thanks to the Hölder inequality and Proposition 2.1 (b).
In addition, we have t 7! f .u.t// is continuous as mapping from Œ0; T � into H�1.

So the series
P1
nD1 �

�1
n kfn.u.t//k

2 is uniformly convergent on Œ0; T �. That is, for every
" > 0, one can find N" 2 N such that

N"CpX
nDN"

��1n kfn.u.t//k
2 < "�21 for all p 2 N; t 2 Œ0; T �:
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Now taking (4.5) into account, we get

N"CpX
nDN"

�2.t/Œn� � �
�1
1

Z t

0

r.t � �; �1/

 
N"CpX
nDN"

��1n kfn.u.�//k
2

!
d� < "

for all t 2 Œ0; T �, which implies the uniform convergence of �2.
Conversely, assume that u 2 C.Œ0; T �IH1/ is a mild solution of problem (1.1)–(1.3).

Then

u.t/ D S.t/� C

Z t

0

R.t � �/f .u.�// d�:

Obviously, u.0/ D � . It remains to check that equation (1.1) holds in H�1. Recall that u
can be represented by

u.t/ D

1X
nD1

un.t/en; with un.t/ D s.t; �n/�n C .1C �n/�1r. � ; �n/ � fn.u. � //:

Then

k � u0n.t/ D
d

dt
Œk � .un � �n/�.t/

D
d

dt
Œk � .s. � ; �n/ � 1/�n�.t/

C .1C �n/
�1 d

dt
Œk � r. � ; �n/ � fn.u. � //�.t/:

Noting that

d

dt
Œk � .s. � ; �n/ � 1/�.t/ D ��ns.t; �n/; k � r. � ; �n/.t/ D s.t; �n/;

thanks to Proposition 2.1 (d) and (b), we have

k � u0n.t/ D ��ns.t; �n/�n C .1C �n/
�1 d

dt
Œs. � ; �n/ � fn.u. � //�.t/

D ��ns.t; �n/�n C .1C �n/
�1Œfn.u.t//C s

0. � ; �n/ � fn.u. � //.t/�

D ��ns.t; �n/�n C .1C �n/
�1Œfn.u.t// � �nr. � ; �n/ � fn.u. � //.t/�:

Hence

.1C �n/k � u
0
n.t/ D ���ns.t; �n/�n � �nr. � ; �n/ � fn.u. � //.t/C fn.u.t//

D !1.t/Œn�C !2.t/Œn�C !3.t/Œn�: (4.6)

We will show that the series
P1
nD1 !i .t/Œn�en for i D 1; 2; 3 are uniformly convergent in

H�1 on Œ0; T �. Regarding the series
P1
nD1 !1.t/Œn�en, we see that

��1n .!1.t/Œn�/
2
D �2�ns.t; �n/

2�2n � �
2�n�

2
n 8t 2 Œ0; T �;
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and the series
P1
nD1 �

2�n�
2
n converges to �2k�k2

H1 . This ensures the uniform convergence
in H�1 of

P1
nD1 !1.t/Œn�en and that

1X
nD1

!1.t/Œn�en D ��S.t/�: (4.7)

Now considering the series
P1
nD1 !2.t/Œn�en, one has

��1n .!2.t/Œn�/
2
D ��1n �

2
n

�Z t

0

r.t � �; �n/fn.u.�// d�

�2
� ��1n �

2
n

�Z t

0

r.t � �; �n/ d�

��Z t

0

r.t � �; �n/jfn.u.�//j
2 d�

�
� ��1n �n

Z t

0

r.t � �; �n/jfn.u.�//j
2 d�

� �

Z t

0

r.t � �; �1/�
�1
n jfn.u.�//j

2 d�:

Then the uniform convergence of the series
P1
nD1 �

�1
n .!2.t/Œn�/

2 is testified by the same
reasoning for �2.t/. It is easily seen that

1X
nD1

!2.t/Œn�en D ��ŒR � f .u/�.t/: (4.8)

Finally, we have
1X
nD1

!3.t/Œn�en D

1X
nD1

fn.u.t//en;

which is the decomposition of f .u.t// in H�1. This together with (4.6)–(4.8) leads to

k � @t .u ��u/.t/ D ��S.t/� C ��ŒR � f .u/�.t/C f .u.t//

D ��ŒS.t/� CR � f .u/.t/�C f .u.t//

D ��u.t/C f .u.t//;

which is an equation in H�1. The proof is complete.

An example

Let k.t/ D g1�˛.t/e�ˇt with ˛ 2 .0; 1/ and ˇ > 0. Then

m.t/ D g˛.t/e
�ˇt
C ˇ

Z t

0

g˛.s/e
�ˇs ds

(see e.g. [29]). Obviously,

m0.t/ D
˛ � 1

�.˛/
t˛�2e�ˇt < 0; t 2 .0;1/I
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then m. � / is a decreasing function. Furthermore,

Om.�/ D ��1.�C ˇ/1�˛ for Re.�/ > 0:

We first check that m is �
2

-sectorial. Indeed, if Re.�/ > 0, then

arg.�C ˇ/ 2
�
�
�

2
;
�

2

�
; arg.�C ˇ/1�˛ 2

�
�
�

2
;
�

2

�
; arg.��1/ 2

�
�
�

2
;
�

2

�
:

So
arg. Om.�// D arg.��1/C arg.�C ˇ/1�˛ 2

�
�
�

2
;
�

2

�
;

thanks to the fact that arg.��1/ and arg.�C ˇ/1�˛ have opposite signs.
Now we testify that m is 2-regular. Observe that

Om0.�/ D .1 � ˛/��1.�C ˇ/�˛ � ��2.�C ˇ/1�˛:

Then

� Om0.�/ D
h
.1 � ˛/

�

�C ˇ
� 1

i
Om.�/:

Since Re.�/ > 0 and ˇ > 0, it is easily seen that
ˇ̌
�

�Cˇ

ˇ̌
< 1. Thus

j� Om0.�/j � .2 � ˛/j Om.�/j:

In addition,

Om00.�/ D ˛.˛ � 1/��1.�C ˇ/�˛�1 � .1 � ˛/��2.�C ˇ/�˛

C 2��3.�C ˇ/1�˛ � .1 � ˛/��2.�C ˇ/�˛:

Then

�2 Om00.�/ D ˛.˛ � 1/�.�C ˇ/�˛�1 � .1 � ˛/.�C ˇ/�˛

C 2��1.�C ˇ/1�˛ � .1 � ˛/.�C ˇ/�˛

D

h
˛.˛ � 1/

�2

.�C ˇ/2
� 2.1 � ˛/

�

�C ˇ
C 2

i
Om.�/:

This implies
j�2 Om00.�/j � Œ.2C ˛/.1 � ˛/C 2�j Om.�/j:

Thus m is 2-regular, which ensures the differentiability of the resolvent S. � / on .0;1/.
Regarding the nonlinearity, let

f .u/ D jujp�1uCH.u/ � ru;

where p > 1 and H.u/ D .h1.u/; : : : ; hN .u// is a vector field obeying that

hi .0/ D 0; jhi .v/ � hi .w/j . jv � wj 8v;w 2 RI
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here the notation X . Y means that X � cY for some constant c > 0. So

jf .u/ � f .v/j . .jujp�1 C jvjp�1/ju � vj

C

NX
iD1

Œjhi .v/jj@xi .u � v/j C jhi .u/ � hi .v/jj@xiuj�

. .jujp�1 C jvjp�1/ju � vj C

NX
iD1

Œjvjj@xi .u � v/j C ju � vjj@xiuj�:

Let � D 2 � � � 0 and 0 < 2� < N � 2C 2�. Take

Qr D
2N

N C 2�
; Qp D

2N

N � 2�
; Qq D

N

2
:

Then
1

Qr
D
1

Qp
C
1

Qq
:

Now, for u; v 2 H�, we have

kjujp�1vkLQr � kjuj
p�1
kL QqkvkL Qp D kuk

p�1

L.p�1/ Qq
kvkL Qp ;

thanks to the generalized Hölder inequality. Assume that

p �
N C 2�

N � 2�
:

Then .p � 1/ Qq � Qp. So .p � 1/ Qq � Qp, which implies

kjujp�1vkLQr . kukp�1
L Qp
kvkL Qp :

In view of Lemma 2.8, we see that LQr .�/ �H�� , H� � L Qp.�/. Hence one deduces that

kjujp�1vkH�� . kukp�1H� kvkH� : (4.9)

Now taking

Qr D
2N

N C 2�
; Qp D

2N

N C 2 � 2�
; Qq D N;

one also has
1

Qr
D
1

Qp
C
1

Qq
:

Using the generalized Hölder inequality again, we have

kv@xiukLQr � kvkL Qqk@xiukL Qp . kvkL QqkukW 1; Qp : (4.10)

Note that
H�
� W

�;2
0 .�/ � L

2N
N�2� .�/ � L Qq.�/:
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Furthermore, due to Lemma 2.7, one sees that

H�
� W

�;2
0 .�/ � W

1; Qp
0 .�/:

Using these embeddings in (4.10) yields

kv@xiukH�� . kv@xiukLQr . kvkH�kukH� : (4.11)

Therefore, it follows from (4.9) and (4.11) that

kf .u/ � f .v/kH�� . .kuk
p�1
H� C kvk

p�1
H� C kukH� C kvkH�/ku � vkH� ;

which ensures that (F) is fulfilled with L�
f
D 0.

Finally, we testify the technical conditions given in Theorem 4.1. Since m. � / is de-
creasing, we have

r.t; �1/ �
m.t/

1C �1.1 �m/.t/
�

m.t/

�ı1 .1 �m/
ı.t/

;

thanks to Proposition 2.1 (b) and the inequality 1C b � bı for b > 0 and ı 2 .0; 1/. In
addition, since m.t/ � t˛�1=�.˛/ as t ! 0, one see that

m.t/

.1 �m/ı.t/
� ˛ı�.˛/ı�1t˛�˛ı�1 as t ! 0:

Concerning `1, let

ƒ1.t/ D t
2


Z t

0

r.t � �; �1/�
�2
 d�:

Then

ƒ1.t/ � t
2


Z t

0

m.t � �/��2
 d�

�ı1 .1 �m/
ı.t � �/

. t2

Z t

0

.t � �/˛�˛ı�1��2
 d�:

Recalling that g˛ � gˇ .t/ D g˛Cˇ .t/, we see that

ƒ1.t/ . t2
g˛�˛ı � g1�2
 .t/ D t
2
g˛�˛ıC1�2
 .t/ . t˛�˛ı ;

which implies that supt2.0;T �ƒ1.t/ is finite.
Regarding `2, put

ƒ2.t; h/ D
� t
h

�2
 Z tCh

t

r.�; �1/ d�:

Then

ƒ2.t; h/ .
� t
h

�2
 Z tCh

t

m.�/ d�

.1 �m/ı.�/
D

� t
h

�2
 m.t C #h/h

.1 �m/ı.t C #h/
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for some # 2 Œ0; 1�, due to the mean value theorem. So

ƒ2.t; h/ .
� t
h

�2
 m.t/h

.1 �m/ı.t/
;

thanks to the fact that t 7! m.t/

.1�m/ı .t/
is also a decreasing function. It follows that

ƒ2.t; h/ . h1�2
 t2
C˛�1�˛ı ;

which ensures the finiteness of

`2 D sup
h2.0;T /
t2.0;T�h�

ƒ2.t; h/;

provided that 1C ˛ı � ˛ � 2
 < 1.
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