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Radon-Nikodym theorems in non-separable
Banach spaces

Sokol Bush Kaliaj

Abstract. In this paper, we present two Radon—Nikodym theorems in non-separable Banach spaces
using Pettis and variational McShane integrals. The first one works for a dominated additive interval
multifunction ® : I — ck(X), and the second one works for a dominated strong multimeasure
M : £ — cwk(X), where I is the family of all closed non-degenerate subintervals of the interval
W =1[0,1]" C R™, £ is the family of all Lebesgue measurable subsets of W, and cwk (X) (ck(X))
is the family of all convex weakly compact (convex compact) non-empty subsets of X .

1. Introduction and preliminaries

One of the major problems in the theory of multimeasures is that of the existence of set val-
ued Radon—Nikodym derivatives. This issue was first considered by Debreu—Schmeidler
[9] and Artstein [1], Costé [7], Costé and Pallu de la Barriere [8] and Hiai [14]. In
paper [4], B. Cascales, V. Kadets, and J. Rodriguez have proved a Radon—Nikodym theo-
rem for a dominated strong multimeasure taking convex compact values in a non-separable
locally convex topological vector space (see [4, Theorem 3.1]). In paper [10], L. Di Piazza
and G. Porcello have obtained a Radon—Nikodym theorem for a dominated finitely addi-
tive multimeasure or a dominated additive interval multifunction ® : I — ck(X) using
Pettis integral and [4, Theorem 3.1], where I is the family of all closed non-degenerate
subintervals of [0, 1] C R (see [10, Theorem 4.2]).

In this paper, we present two Radon—-Nikodym theorems in a non-separable Banach
space X using Pettis and variational McShane integrals. The first one works for a domi-
nated additive interval multifunction ® : I — ck(X) (see Theorem 2.6) and the second
one works for a dominated strong multimeasure M : £ — cwk(X) (see Theorem 2.7).
Theorem 2.6 improves [10, Theorem 4.2] and Theorem 2.7 improves the Banach version
of [4, Theorem 3.1] for strong multimeasures defined on &£. The techniques of the proof
of Theorem 2.7 can be used to the more general cases. The fact that a convex weakly com-
pact subset of X has the Radon—Nikodym property is essential in the proof of Theorem
2.7 (cf. [2, Theorem 3.6.1]).
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Throughout, X is an arbitrary Banach space with its dual X*. The closed unit ball of
X* is denoted by By+. We denote by 2% the family of all non-empty subsets of X and
by bee(X) (ck(X), cwk(X)) the subfamily of 2% of all bounded, convex, and closed
(convex compact, convex weakly compact) subsets of X. We consider on cwk(X) the
Minkowski addition (A + B = {a + b : a € A,b € B}) and the standard multiplication
by scalars. By # we denote the subfamily of 2% of all bounded closed subsets of X . The
family J is a complete metric space with the Hausdorff distance, given by

dx(A,B) = max{e(A, B),e(B, A)},

where
e(A, B) = supdist(a, B), dist(a, B) = inf{|la — b|| : b € B}.

acA
For every C € J the support function of C is denoted by o (-, C') and defined as follows:

0(nC): X* >R, o(x*,C)=sup{(x*.x):xeC}.

Letw = (ay,...,am) and B = (by, ..., by) with —oo < a; < b; < 400 for j =
1,...,m.Theset [a, B] = I—[;-"zl laj, b;] is called a closed non-degenerate interval in R™.
Ifby —ay =+ = by —am, then I = [a, B] is called a cube and we set [; = b; — a;.

We denote by I the family of all closed non-degenerate subintervals of W = [0, 1]™. The
Euclidean space R is equipped with the maximum norm. We may also find it convenient
to use the symbols By, (t, r) for the open ball in R™ with center ¢ and radius r > 0, 0B
and B? for boundary and interior of a subset B C R™, respectively. We denote by £ the
family of all Lebesgue measurable subsets of W and by B the family of all Borel subsets
of W. The Lebesgue measure of a set E € £ is denoted by |E|. Thus, if / is a cube, then

1] = ™.

The word “at almost all” always refers to the Lebesgue measure A on W.

Amap ' : W — 2% is called a multifunction and a map ® : I — 2% is said to be an
interval multifunction. A function f : W — X is said to be a selection of a multifunction
I:W —2Xif f(t) e T(¢t) forall t € W. We denote by Sr the family of all selections of
I". We say that an interval multifunction ® : T — 2% is an additive interval multifunction,
if for each two non-overlapping intervals I, J € I with / U J € I we have ®(/ U J) =
(1) + ®(J). Two intervals / and J are said to be non-overlapping if 1° N J° = @.
An additive interval function ¢ : I — X is said to be a selection of an additive interval
multifunction ® : T — 2% if p(I) € ®(I) for all I € I. We denote by S¢ the family of
all additive interval selections of ®.

The following embedding result will be useful to us (see [6, Theorems II.18 and
11.19]).

Theorem 1.1. Let £, (Bx+) be the Banach space of all bounded real valued functions
defined on Bx+ endowed with the supremum norm || - || 0. Then, the map

i:cwk(X)— L(Bx*), i(C)=0(,C)



Radon—-Nikodym theorems in non-separable Banach spaces 127

satisfies the following properties:
(i) i(A+ B)=i(A) +i(B)forevery A, B € cwk(X),
(i) i(aA) =a-i(A) forevery a > 0 and every A € cwk(X),
(iii)) dg (A, B) = ||li(A) —i(B)||oo for every A, B € cwk(X),
@iv) i(cwk(X)) is closed in £ (Bx+).
Definition 1.2. We say that an additive interval multifunction ® : I — cwk (X)) is strongly

absolutely continuous (s AC ) if for every & > 0 there exists 1, > 0 such that for every finite
collection 7 of pairwise non-overlapping subintervals in I, we have

DUl <ne =Y du(0().{6}) <e.
Ienm Ierm

where 6 is the zero vector in X.
Replacing the last inequality with dz (3_;c, D(1),{6}) < &, we obtain the notion AC
for ®.

Definition 1.3. Given a pointz € W, we set
I@) = {I el:tell isacube}.

We say that an additive interval function ¢ : I — X has the cubic derivative at the point
t, if there exists a vector ¢..(t) € X such that

: o)

1 Ap(t, 1) —.(1)| =0, Ap(t, 1) = —= |,
Jim gD =gl =0, (g0 =42)
|I|—0

where @..(¢) is said to be the cubic derivative of ¢ at t.

Given a sequence (B,) of subsets of X, we write ), B, to denote the set of all
elements of X which can be written as the sum of an unconditionally convergent series
Zn Xy, where x,, € By, foreveryn € N.

Definition 1.4. A mapping M : £ — 2% is said to be a strong multimeasure if the fol-
lowing hold:
i  M@©) =16},

(i)  for each sequence (E,) of pairwise disjoint members of £, we have
M(U E,,) = Z M(Ep,).
n n

A strong multimeasure M : £ — 2% is said be A-continuous, if M(Z) = {6} whenever
Z C W satisfies |Z]| = 0. A countable additive vector measure m : £ — X is said to be
a selection of M if m(E) € M(E) for every A € £. We denote by Sy the family of all
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countable additive selections of M. The strong multimeasure M is said to be of bounded
variation if [M|(W) < +oo, where |M |(W) = sup ) _; | M(E;)|| and supremum is taken
over all finite partitions (E;) of W in £ and

ICll = sup{llx]l: x € C}. (C € H).

Since i (cwk (X)) (i(ck(X))) is a closed cone of £, (Bx+), we obtain by embedding
theorem (Theorem 1.1) that a mapping M : £ — cwk(X) (ck(X)) is a strong multimea-
sure if and only if M> =i o M is a countable additive vector measure. In this case,

i(DM(ED) =3 M¥(Ey),

whenever (E,) is a sequence of pairwise disjoint members of £ (see [5, Lemma 2.3]). For
the concept of multimeasure, we refer to [13, Chapter 7] and references therein.

Definition 1.5. A multifunction I' : W — bcc(X) is called Pettis integrable in cwk (X)
(ck(X)) if the following hold:

(i) o(x*,T()) is Lebesgue integrable for every x* € X*,
(ii) foreach E € £ thereis Cg € cwk(X) (Cg € ck(X)) such that

o(x*,Cg) =/ o(x*,T())d)\ forevery x* € X*.
E

We call Cg the Pettis integral of T" over E and set (P) [ T'(1)d A = Cg. Itis well known
that the mapping M : £ — cwk(X) (ck(X)) defined by M(E) = (P) [ T'(t)dA is a
A-continuous strong multimeasure.

The Pettis integral for multifunctions was first considered by Castaing and Valadier
[6, Chapter V] and has been widely studied in papers [3, 12, 18, 19]. The notion of Pettis
integrable function f : W — X as can be found in the literature (see [11, 17,22, 23])
corresponds to Definition 1.5 for I'(r) = { f(¢)} when the integral (P) [ T'(1)dA is a
singleton. For definition and properties of Bochner integral, we refer to [11].

A pair (/,t) of an interval I € I and a point ¢ € W is called an M-tagged interval in
W. A finite collection & = {(I;, ;) : i = 1,..., p} of M-tagged intervals in W is called
an M-partition of W if {I; :i = 1,..., p} is a collection of pairwise non-overlapping
intervals in I and LJ(”)Gyr I = W. A positive function § : W — (0, +00) is called a
gauge on W. We say that an M-partition 7 of W is §-fine if for each (/,t) € = we have
I C Bnu(2,6(2)).

We now recall the definitions of McShane integrability and variational McShane inte-
grability (or strong McShane integrability) of functions defined on W and taking values
in X, cf. [22, Definitions 3.2.1 and 3.6.2].

Definition 1.6. A function f : W — X is said to be McShane integrable if there exists
Iy € X with the following property: for every & > 0 there exists a gauge § on W such that
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for every §-fine M-partition = of W we have
‘ Ir— > ol

(I,t)ern
We write then I = (M) [, f(¢)dA. The function f is said to be McShane integrable
over E € £, if the function f1g is McShane integrable, where 1 g is the characteristic
function of E. In this case, we write

(M) /;5 £ dA = (M) /W FOLE()dA.

<é&.

Definition 1.7. A function f : W — X is said to be variationally McShane integrable (or
strongly McShane integrable), if there is an additive interval function ¢ : I — X with the
following property: for every ¢ > 0 there exists a gauge 6 on W such that for every §-fine
M-partition w of W we have

Y. lso-e)] <e
(I,t)er
In this case, the additive interval multifunction ¢ is called the variational McShane primi-
tive of f.
The function f : W — X is variationally McShane integrable with the primitive ¢, if
and only if f is Bochner integrable (cf. [22, Theorem 5.1.4]). In this case,

(p(I)=(M)/If(t)d)L=(B)/If(t)d)k forevery I € I.

Definition 1.8. Let ¢ : I — X be an additive interval function and let t € W°. We set
I°0) ={1 € I(t):t €I°}.If I € I°(t), then we write

°e.={JeI’t):JcCl}

and define a partial ordering <; on I°(¢) by saying that I’ <, I"” ifand only if I’ D I".
Then, (I°(¢), <;) is a directed set. For the concepts of nets and subnets we refer to [16].
We now define

Ly@)= () L@ 1), (1.1)

I€lo(t)
where
Lo(t, 1) ={A¢p(t,J)e X :J €I°0.1)}

and L, (t, 1) is the closure of L, (¢, I'). By [16, Theorem 7, page 72] it follows that L, (¢)
is the set of all limit points of the net (A@(?, 1)) rezo(s)-

Definition 1.9. Let ®: T — cwk(X) be an additive interval multifunction and let# € W°.
For each I € I°(t) we write

(1)

ACD([,I) - W,

Aot )= | J A®@.J)
Jelo@,I)
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and define

Lo(t)= () Lol D). (1.2)

I€l°(t)
where L (, 1) is the convex hull of the set A¢ (¢, 1), i.e.,

LCP(tv I) = CO(ACD([’ 1))7

and Lg(t, 1) is the closure of the convex set Lo (¢, 1) in X.
Assume that x; € X isa o(X, X*)-limit point of a net (x7)7eo(;) With x7 € AD(z, 1),
where o (X, X*) is the weak topology in X . Then

X*)

x; € Lo(2, 1) o forevery I € 1°(1),

and since by [20, Proposition 8, page 34] or [21, Corollary 2, page 65] we have

X, X*
LoG.1) = Lot. D) "7,

it follows that x; € Lg(¢).

2. The main results

The main results are Theorem 2.6 and Theorem 2.7. Let us start with a few auxiliary
lemmas.

Lemma 2.1. Let ¢ : I — X be an additive interval function and let C € I(t). Assume
that

e @issAC,

s CCWe

Then, given 0 < ¢ < 1 there exists Co € 1°(t) with C; O C such that

|Ap(t,C) — Ap(1.Co)| < e.

Proof. Let us consider the case when ¢ is a boundary point of C, since if C € I°(t), then

C. = C. Since C C W? is acube there exista = (ay,...,a,) € W°and r > 0 such that

C =T1i~,lai — r,a; + r]. Hence, for each s > 1 we have C(s) = [[i=;[a; — r.s,a;i +

r.s] O C and ¢ is the interior point of C(s). Since ¢ is sAC, the following hold.

* There exists 1, > 0 such that for each finite collection & of pairwise non-overlapping
subintervals in I, we have

C
Sl <= Y el < 2L @

Jen Jen

* By [15, Lemma 2.3] that there exists ¢ > |W| such that ||¢(/)|| < c forall I € I.
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Since 5-|C| < § < 1 we can choose a cube C(s) C W such that

. &
0 <10~ 1] <. = min (5-ICO- 1€ )

We are going to prove that C, = C(s) is the required cube.
We have C; D C, C, € I°(¢) and there exists a finite collection 7, of pairwise non-
overlapping subintervals in I such that

CUJy, =C,, (J,,e => J)
Jen,
and C° N J° =@ forall J € me. Thus, [Jr,| = 3 jc,, [J]and [Ce| = [C| + |Jr,|, and
since |J,| < ne we obtain by (2.1) that
g|C|
> el < = 22)
Jem,

Note that

|Ag(t.C) — Ap(1.Co)||

9(C) 9O+ Y jen, o)) H

IC] |Ce
_[e©) @)+ > sen, () H
IC| IC| + |Jr,|

P(O)(C] + [Ux, ) = (C) + 3y, 9(J)IC] H
ICT-(C] + D)
POz | = ICI X jen, () '
IC-|Cel
Wl e | Xier, ()]
B |C| '|C8| |Cs|

Thus,

[ 0O | Xsem oD _

Ag(t,C) — Ap(t,Ce) | < A+B.  (23)
|20 ol = ZeT el C]
Since |Jz,| < 52|C¢| - |C| and [|p(C)|| < ¢ we obtain
|z - el lle©O)l e e _¢
= —= —|Ce|-IC] = lo(O)|| = < =. 2.4
CT- 1G] |C|-|Ce|2c| sl 1CT=le(Oll5; =5 24

By (2.2) we have also

_ Z.Ierrg le(DI < e|C| <

B ¢
|C| 2|1C| 2
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The last result together with (2.3) and (2.4) yields

|Ap(t,C) — Ap(t.Co)| = A+ B < g + g =

and this ends the proof. ]

The next lemma characterizes the cubic derivative in terms of a convergent net.

Lemma 2.2. Let ¢ : I — X be an additive interval function and let t € W°. Then, the
following statements are equivalent:

(i) @ has the cubic derivative ¢ (t) = z,

(ii)  the net (A@(t, 1))reo(r) converges to z.

Proof. (1)=(ii) Assume that (i) holds and let ¢ > 0. Then, there exists n; > 0 such that
for each I € I(t) we have

U] <ne = [Ap@. 1) —z|| <e.

Since t € W€ there exists I;, € I°(t) such that |1, | < n, Hence, for each I € I°(t) C
I(t) we have

I Cly, ==yl <ne= [Api 1)—z| <e.

This means that the net (A@(t, I))e o) converges to z.
(ii)=(i) Assume that (ii) holds, and let 0 < & < 1. Then, there exists Iy € I°(¢) such
that for each I € I9(¢), we have

&
Io =i I = ||Agp(t, 1) —z|| < 7 (2.5)

Since t = (t1,..., t;y) is the interior point of Iy, there exists r > 0 such that B, (t,r) =
[T/t — r.ti + 1) C Ip. Choose 0 < 1, < r™ and fix an arbitrary cube C € I(¢) with
|C| < ne. Since [¢c < r, it follows that C C By, (¢, r).

If C € I°(¢), then Iy <; C and, consequently, we obtain by (2.5) that

e
Ap(t,C) —z|| < 3 <e. (2.6)

It remains to consider the case when ¢ is a boundary point of C. Applying Lemma 2.1
with C and [[/_,[t; — r,# + r] instead of W there exists C, € I°(¢) with C C C; C
[T/, [t; — r.t; + r] such that

&
[Ap(t, C) — Ap(t, Ce) || < >

and since Iy <X; C,, we obtain by (2.5) that
&

2

= ¢.

&
1A0(. C) —z|l = [Ap(t. C) — Ap(t. Co)ll + [ Ap(t. Co) — 2]l < 5 +
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Since C was arbitrary, the last result together with (2.6) yields that for each C € I (), we
have
ICl <ne = [[Ap(r,C) —z|| <.

Then,
lim ||Ae(t,1)—z| =0.
Jim A1) ~z|
|[7|—0
This means that ¢,.(¢) exists and ¢/ (¢) = z, and this ends the proof. |

By [15, Theorem 2.8], we have that if an additive interval function ¢ : I — X is
absolutely continuous and has the cubic derivative at almost all # € W, then there exists
a variationally McShane integrable function f : W — X which is the Radon—-Nikodym
derivative of ¢ with respect to A. In the following lemma, we replace the existence of the
cubic derivative ¢, (r) with the existence of limit points of the net (A¢(z, I))reze.

Lemma 2.3. Let ¢ : I — X be an additive interval function and let f : W — X be a
function. Assume that

o pissAC,

*  f(t) € Ly(t) atalmost allt € W°, where L (t) is defined by (1.1).

Then, f is variationally McShane integrable with

o(l) = (M)/I f@)dr foreveryl € I. 2.7

Proof. By hypothesis, there exists Z C W with |Z| = 0 such that f(t) € L,(¢) for all
t € WO\ Z. We first prove that f is Pettis integrable. To see this fix an arbitrary x* € X *.
Since (x*, ¢) is sAC, by [15, Lemma 2.4] there exists a Lebesgue integrable function
g : W — R such that

(x*, o(I)) = /g(l)dk forevery I € I,
I

and there exists Z** C W with |Z*"| = 0 such that

111?(1) [(x*, Ag(t. 1)) — g(t)] =0 foreveryt e W\ Z* . (2.8)
el(t

|7|—0
Hence, by Lemma 2.2, we obtain that the net ({(x*, Ap(t, I)))re1e(r) converges to g(z)
forevery t € W°\ Z*" e,

lim (x*, Ap(t, 1)) = g(r) foreverysr e W°\ Z* .
I€lo(t)

This means that
Lixe (1) = {g(1)} foreveryr € WO\ Z*",
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and since (x*, Ly(t, I)) = Lxx ) (t, I) forall I € I°(¢), it follows that
(x*, f(t)) € (x™, Ly(t)) C Lix=)(t) ={g(t)} forallz e W°\ (ZU ARY
The last result together with (2.8) yields

Ili}r(l)(x*, Ap(t, 1)) = (x*, f(t)) forallt € WO\ (ZUZ*).
el(t
|I|—0

Since x* was arbitrary and ¢ is sAC, we obtain by [15, Lemma 2.5] that f is Pettis
integrable with

o(l) = (P)/I f(@t)dr foreveryl € I. 2.9

By [15, Lemma 2.3], there exists a unique countable additive vector measure mg, :
£ — X such that m,, is A-continuous of bounded variation and m, (/) = ¢(/) for all
I € I.Thus,

my(E) = (P)L f(@)dr forevery E € £.

Thanks to [15, Lemma 2.2], the set ¢(I) = {¢([) : I € I} is a separable subset of
X.If Y is the closed linear subspace spanned by ¢(I), then Y is also a separable subset
of X. Note that by [20, Proposition 8, page 34] or [21, Corollary 2, page 65] we have

Y =Y = YOXX) and since Ag(r, 1) = §8) € ¥ for all I € I°(¢), we obtain that

f(t) €Y atalmostall t € W. Thus, f is A-essentially separably valued, and since (x*, f')
is measurable for all x* € X*, by Pettis’s measurability theorem (cf. [11, Theorem I1.1.2,
page 42]) it follows that f is measurable. Hence, we obtain by [19, Remark 4.1] that

Mol (W) = fW 1 £ @) A < +oc.

Thus, the function || f(+)|| is Lebesgue integrable. Therefore, by [11, Theorem I1.2.2], the
function f is Bochner integrable. Further, by [22, Proposition 2.3.1] and (2.9), we obtain

o) = (B)/If(t)d)k forevery I € 1.

By [22, Theorem 5.1.4], we infer that f is variationally McShane integrable with the
primitive ¢ satisfying (2.7), and the proof is complete. ]

The next lemma characterizes Pettis integral of multifunctions.

Lemma 2.4. Let ® : I — cwk(X) (ck(X)) be an additive interval multifunction and let
I': W — bce(X) be a multifunction. Assume that ® is AC and for each x* € X* we
have

o(x*, (1)) = /a(x*,F(t))d)& forevery I € I.
I
Then, T is Pettis integrable in cwk(X) (ck(X)) with

d(1) = (P)/IF(t)dA forevery I € I.



Radon-Nikodym theorems in non-separable Banach spaces 135

Proof. Since @ is AC, we obtain by embedding theorem (Theorem 1.1) that ®*° =i o
® is also AC. Hence, by [15, Lemma 2.3], there exists a unique countably additive A-
continuous vector measure H*® : £ — i(cwk(X)) such that ®*°(I) = H* (/) for all
I € I.Hence, the mapping H : £ — cwk(X) defined by

i(H(E)) = H®(E) forevery E € &

is a A-continuous strong multimeasure such that H(1) = ®(I) for every I € I. Note that
for each x* € X*, we have

o(x*, H(I)) = o(x*,®(1)) = /Ia(x*,l"(t))d)t forall I € I.

It is easy to see that the family

€ = {B eB:(Vx*e X*)[o(x*, H(B)) = / o (x*, r(z))dx}}
B

is a o-algebra, and since I C € C B by equality B = o (), it follows that € = B, where
o(I) is o-algebra generated by I. Thus, for each B € B, we have

o(x*,H(B)) = /Ba(x*,l"(t))dk forall x* € X*.

The last result together with the fact that H is A-continuous yields that for each E € £,
we have

o(x*, H(E)) =/ o(x*,T(t))d\ forevery x* € X*.
E

This means that T" is Pettis integrable with H(E) = (P) [ I'(t)dA for all E € &£, and
this completes the proof. ]

The following lemma shows a schematic display of the major implications involved in
proving the first result Theorem 2.6.

Lemma 2.5. Let © : I — ck(X) be an additive interval multifunction for which there is
aset Q € ck(X) such that ®(I) C |I|Q atall I € I. Then,

(i) foreach ¢ € So, we have Ly(t) # @ forallt € W, where Ly(t) is defined by
(1.1),

(ii) for any ¢ € So, a function f, : W — X such that f,(t) = 0 for all t € W
and f,(t) € Ly(t) for every t € W is variationally McShane integrable with
the primitive @,

(iii) the multifunction T’ : W — ck(X) defined by I'(t) = {0} for all t € OW and
I'(t) = Lo(t) for everyt € W is Pettis integrable with ®(1) = (P) fI I'@t)dA
forall I € I, where Lg(t) is defined by (1.2).
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Proof. (i)Givent € W°and ¢ € S¢, we have Ap(t, 1) € Q forevery I € 1°(¢). It follows
that the net (A¢(t, I))se o) has a limit point /, in the compact set Q. Then, [, € L, (¢)
and consequently L, (¢) # 9.

(ii) By hypothesis, we have f,(¢) € L,(t) for every t € W°. It is easy to see that P is
sAC . Hence, ¢ is also sAC and, therefore, by Lemma 2.3, the function f,, is variationally
McShane integrable with the primitive .

(iii) Since for each t € W and ¢ € S¢, we have

0 # Ly(t) C La(t) C O,

it follows that I" is well defined. Let us prove that I" satisfies (iii). To this end, fix an
arbitrary x* € X*. Since the additive interval function

v:I—->R, yv{)=ocx* &)

is SAC, we obtain by [15, Lemma 2.4] that there exists a Lebesgue integrable function
g W — R with

Yv() =o(x*, o)) = /g(t)d/\ forevery I € I, (2.10)
I

and there exists Z** C W with |Z*"| = 0 such that Yl(t) exists and Y. () = g(¢) at
all t € W\ Z*". Therefore, by Lemma 2.2, we obtain that the net (Ay(z, D)rerow
converges to g(¢) forevery t € W°\ Z*¥" | i.e.,

li *A®(t, 1) = lim Av(t, 1) =g() forallt €e W°\ Z*¥. (2.11
Iegp(t)a(x (¢, 1)) dm Y, 1) =g@) fora \ (2.11)

Then, givent € W°\ Z*" and ¢ > 0, there exists I, € I°(t) such that
1€l 1) = oa(x*, AD@E, 1) <gt)+¢
and by Definition 1.9, it follows that
o(x*, Ao(t, ) <g(t)+e = o(x™, Lo(t, 1)) <g(t)+& = o (x", Lo (1)) <g(t) +e.

This means that
o(x*,T(1)) < g(t) forallt € WO\ Z*". (2.12)

Suppose that for some 1 € W° \ Z*" there exists r € R such that
o(x*,T@®) <r and r < g(?).
By virtue of (2.11) there exists I, € Z9(¢) such that

Iell)=>r<ox* AD@,)).
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Hence,
IeI’tl) = (Eix] € ACID(t,I))[r < (x*,xl)],

and if we write I,(t) = I°(, I,), then
(VJ € I,(t)[r < (x*.x5)] (2.13)

Since xj € A®(¢,J) C Q forall J € I,(¢), by [16, Theorem 2, page 136] follows that
the net (x7) ser, () has a limit point x; € Q. Then,

x; € Lo(t,J) forevery J € I,(t),

and since

Le)= () Le(t.D)= () Lt J),

Ielo(t) JeI, (1)
it follows that x; € Lg(t) = I'(¢). Hence, by (2.12), we obtain

(x*,x) =o(x*T(1) <,

and since (x*, x;) is a limit point of the net ((x*, xs)) ser, (), it follows that there exists
Jr € I,(t) such that
(x*,xy,) <.

The last result together with (2.13) implies that

r<{x*x5)<r.
This contradiction shows that

o(x*,T(t)) = g(t) foreveryt e WO\ Z*".
Hence, the function o (x*, I'(:)) is Lebesgue integrable and, consequently, we obtain by
(2.10) that
o(x*, (1)) = /U(x*,F(t))dA forevery I € I.

I

Since x* was arbitrary, the last result holds for all x* € X*, and since @ is sAC we

obtain that ® is also AC. Therefore, we obtain by Lemma 2.4 that I" is Pettis integrable
with ®(7) = (P) [, T'(t)dA forall I € I, and the proof is complete. |

We are now ready to prove the first result.

Theorem 2.6. Let @ : I — ck(X) be an additive interval multifunction for which there is
aset Q € ck(X) suchthat ®(1) C|1|Q atall I € I. Then, there exists a Pettis integrable
multifunction I' : W — ck(X) such that

(1)  foreach ¢ € Sg there exists a variationally McShane integrable function f € St
with the primitive ¢,

(i) ®(I) = (P) [, T(t)dAforall I € I.
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Proof. The multifunction I' defined by (iii) in Lemma 2.5 is Pettis integrable with
d(1) = (P)/F(t)d)& forall I € I.
I

If ¢ € So, then the function f,, defined by (ii) in Lemma 2.5 is variationally McShane
integrable with the primitive ¢. Since

Jo(t) € Ly(t) C Lo(t) =T(r) foreveryt e W°
and f,(t) =60 € {0} = I'(¢) for all t € W, it follows that f, € Sr, and this ends the

proof. |

The second result works for a dominated strong multimeasure M : £ — cwk(X).
Since ck(X) C cwk(X), it follows that Theorem 2.7 improves the Banach version of
[4, Theorem 3.1] for strong multimeasures defined on &£. The technique of the proof of
this theorem can be used to the more general cases.

Theorem 2.7. Let M : £ — cwk(X) be a strong multimeasure for which there is a set
0 € cwk(X) such that M(A) C |A|Q forall A € £. Then, there exists a Pettis integrable
multifunction I' : W — bcce(X) such that

(1)  for each m € Sy there exists a variationally McShane integrable function [ €
Spwithm(I) = (M) [; f(t)dA forall I € I,

(i) M(E)=(P) [z T(t)dA forall E € &£.
Proof. Let (E;) be a finite partition of W in £. Since
D IM(E)| < (Z IEiI)IIQII = W[ Q] < +oo,
i i
it follows that M is of bounded variation. It is easy to see that M is also A-continuous.
We now can define an additive interval multifunction as follows:
d: I - cwk(X), OU)=MU).
(a) We first claim that there exists Z C W with |Z| = 0 such that
Le(t) # 0, foreveryt € WO\ Z,

where L () is defined by 1.2. To see this, we consider a countably additive selector m of
M . Then, m is A-continuous and
m(E)
|E|
and since Q has the Radon—-Nikodym property, it follows that there exists a Bochner
integrable (= variationally McShane integrable) function f : W — X with

e Q forall E € £ (|E| #0),

m(E) = (B)/;: f@ydr = (M)/E f(@)d\ forevery E € £.
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By [15, Theorem 2.8] the additive interval function ¢ : I — X defined by ¢(I) = m(I) for
all I € TissAC, (¢),(¢) exists and (¢)..(t) = f(¢) atalmost all # € W. Hence, by Lemma
2.2 there exists Z C W with |Z| = 0 such that the net (Ag(¢, I))ezo() converges to
f(t)atallt € W°\ Z, and since

Ly(t) ={f ()} C La(2).

it follows that Lg(¢) # @ forallt € W2\ Z.
(b) We now claim that L (¢) is a bounded subset of X for all 1 € W?. Indeed, by the
inclusion
Lo(t,I)CQ (@eW’IcelIM),

we obtain
Le(t) C Q forallt € W°,

and, consequently,
Lo < |Q]l < 400 foreveryr e W°.

(c) Finally, we claim that the multifunction

Lo(t), teW°\ Z,

I': W — bce(X), F([)z{{g}’ teZUdWw,

is the required multifunction. Observe that (i) has already been obtained in the proof of
(a). It remains to prove (ii). To see this fix an arbitrary x* € X*. Since the additive interval
function

y:I—>R, y)=o0kx" o))

is AC, we obtain by [15, Lemma 2.4] that there exists a Lebesgue integrable function
g : W — R with

v(l) =o(x* ®)) = /g(l)d)t forevery I € I (2.14)
I

and there exists Z*~ C W with | Z*"| = 0 such that v/ (¢) exists and ¥.(t) = g(¢) for all
teWwW\Z X" Therefore, by Lemma 2.2, we obtain

li *AD(, 1)) = lim Av(t,1) = g(t) forallt € W°\ Z* . (2.15
ze}%)o(x (t, 1)) LU V(1) =g(t) fora \ (2.15)

The last result together with the definition of I'(¢) yields
o(x*,T(1)) = o(x*, Lo(t)) < g(r) forallz € W°\ (Z U Z*"). (2.16)
Suppose that for some r € W° \ (Z U Z*") there exists r € R such that

o(x*,T@®) <r and r < g(®).
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By virtue of (2.15) there exists I, € I°(¢) such that
I CI%l)=>r<olx™ AD(@E, ).

Hence,
I €I°1)= (3x; € A®E, )[r < {x*, x1)],

and if we write I,(¢) = I°(¢, I,), then
(VJ € I,)[r < (x*.x7)] (2.17)

Since x; € AD(¢,J) C Q forall J € I,(t), by [16, Theorem 2, page 136], it follows that
the net (x7) ser, () has a weak limit point x;, € Q. Hence,

o(X,X*

X € Lot d) ) —To(t.J) forevery J € I,(1),

and since

Lo(t) = ﬂ Lo(t,1) = ﬂ Lo(t,J),

Ielo(t) JeI, (1)
it follows that x; € Lg(t) = I'(¢). Hence, by (2.16), we obtain

(x*,x;) <o(x*T () <r.

The fact that (x*, x;) is a limit point of the net ({x*, x7))sez, (1) together with the last
result yields that there exists J € I,(¢) such that

(x*,xz.) <r
The last result together with (2.17) implies that
r<{x*,x5)<r.
This contradiction shows that
o(x*,T(t)) = g(t) foreveryt € W°\ (Z U Z*).

Hence, the function o (x*, I'(:)) is Lebesgue integrable, and consequently, we obtain by
(2.14) that

o(x*, ®)) = /Io(x*,l"(t))dk forevery I € I.

Since x* was arbitrary, the last result holds for every x* € X*.
Since the family

€ = {B eB:(Vx*e X*)[o(x*,M(B)) = / o(x*,I‘(t))d/\i“
B
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is a o-algebra and since I C € C B by equality B = o () it follows that € = B, where
o(I) is o-algebra generated by I. Thus, for each B € B, we have

o(x*,M(B)) = /Ba(x*,F(t))d)L forall x* € X*.

The last result together with the fact that M is A-continuous yields that for each £ € £,
we have

o(x*, M(E)) :/ o(x*,T())dL forevery x* € X*.
E

This means that T is Pettis integrable with M(E) = (P) [ ['(t)dA for all E € &£, and
this ends the proof. ]
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