On rank one and Weyl–von Neumann theorem for multiplicative perturbations of unitary operators

Vanderléa R. Bazao, César R. de Oliveira, and Pablo A. Diaz

Abstract. For multiplicative perturbations of unitary operators, it is presented a version of Weyl– von Neumann theorem and a sufficient conditions for generic (in the intensity parameter) singular continuous spectrum under unitary rank one perturbations.

1. Introduction

We are interested in the spectral properties of multiplicative perturbations

$$U \mapsto UX$$
 (1.1)

of unitary operators U, on a (complex and infinite-dimensional) Hilbert separable space \mathcal{H} , with also unitary perturbing X. This is a *right* perturbation, and $U \mapsto XU$ is a *left* one.

The main physical motivation comes from time τ -periodically kicked quantum Hamiltonians (*A* and *B* are self-adjoint operators)

$$A + B \sum_{j \in \mathbb{Z}} \delta(t - \tau n)$$

whose Floquet operator, from just before a kick to just before the next one, is $e^{-i\tau A}e^{-iB}$; see, for instance, [3]. In (1.1), one immediately identifies $U = e^{-i\tau A}$ and $X = e^{-iB}$.

In a previous work [1], the present authors have shown that there is no nontrivial generalization of the multiplicative version of Birman–Krein theorem [2] on preservation of absolutely continuous spectrum under certain perturbations. The original version of Birman–Krein is for additive perturbations, but from this, the multiplicative version follows; that is, the absolutely continuous parts of the unitary operators U and UX (or XU) are unitarily equivalent if $X = \mathbf{1} + W$ with trace class W.

In this note, we present multiplicative versions of two important known results for additive self-adjoint perturbations. First, a version of Weyl–von Neumann theorem [6] and, second, a version of a result on the generic presence of singular continuous spectrum for rank one perturbations due to del Rio, Makarov, and Simon [7].

Mathematics Subject Classification 2020: 47A55 (primary); 47A10, 81Q10 (secondary). *Keywords:* unitary operators, multiplicative perturbation, Weyl–von Neumann theorem, rank one perturbations.

Recall that, according to Weyl–von Neumann theorem, given a self-adjoint operator A and $\varepsilon > 0$, there is a self-adjoint operator S with Hilbert–Schmidt norm $||S||_{\text{HS}} < \varepsilon$ such that A + S has pure point spectrum. Our conclusion will be similar (see Theorem 2.2): given a unitary operator U, there exists another unitary operator X = 1 + Wwith $||W||_{\text{HS}} < \varepsilon$ so that the perturbation UX (or XU) has pure point spectrum.

The other set of results culminate in the following (let $\sigma(A)$ denote the spectrum of the linear operator A). Given a singular (i.e., with no absolutely continuous spectrum) unitary operator U, with $\{e^{it} \mid a < t < b\} \subset \sigma(U)$, and a unitary rank one perturbation $X_{\lambda} = e^{i\lambda P_{\phi}}, 0 \leq \lambda < 2\pi$, with P_{ϕ} the projection onto the one-dimensional subspace generated by the cyclic vector ϕ , then, for generic (i.e., dense G_{δ} set) of intensities λ s, the perturbed operator UX_{λ} has purely singular continuous spectrum in $\{e^{it} \mid a < t < b\}$. This will be a consequence of Theorem 3.5.

Section 2 presents general remarks on multiplicative perturbations of unitary operators, then Theorem 2.2 and its proof. In Section 3, after a suitable preparation, one finds Theorem 3.5 and its proof.

2. Multiplicative perturbations

If we have a unitary operator X, it is convenient to write it in the form $X = e^{iY}$, with Y a bounded self-adjoint operator. Then,

$$X = e^{iY} = \sum_{j=0}^{\infty} \frac{(iY)^j}{j!} = 1 + \sum_{j=1}^{\infty} \frac{(iY)^j}{j!} = 1 + W,$$

where $W = \sum_{j=1}^{\infty} \frac{(iY)^j}{j!}$. Thus, we can write

$$UX = U(1+W) = U + UW.$$

Remark 2.1. If the operator $X = \mathbf{1} + W$ is unitary, one has

$$1 = (1 + W)(1 + W)^* = 1 + W + W^* + W^*W,$$

$$1 = (1 + W)^*(1 + W) = 1 + W^* + W + WW^*:$$

then $W^* + W + WW^* = W^* + W + W^*W = 0$, and it follows that

$$W^*W = WW^*.$$

so W is a normal operator. But this condition is not sufficient for $X = \mathbf{1} + W$ to be unitary; for example, if $W = \pm \mathbf{1}$, then X would not be unitary (it is necessary that $\sigma(W) \subset \{e^{it} - 1 \mid t \in \mathbb{R}\}$).

Our main result in this section is the following theorem.

Theorem 2.2. Let U be a unitary operator in \mathcal{H} . Given $\varepsilon > 0$, there exists a unitary operator $X = \mathbf{1} + W$, with $||W||_{\text{HS}} < \varepsilon$, such that the perturbed operator

$$U \mapsto UX$$

has pure point spectrum. It also holds true for left perturbations $U \mapsto XU$. (Left and right perturbations are in general different.)

First, we prove a Weyl-von Neumann version for additive perturbations of unitary operators.

Theorem 2.3. Given a unitary operator U and $\varepsilon > 0$, there exists a unitary operator V on \mathcal{H} with pure point spectrum such that

$$\|U-V\|_{\mathrm{HS}} < \varepsilon.$$

Proof. Write the unitary operator $U = e^{iT}$, with *T* self-adjoint and bounded; by the usual Weyl-von Neumann result for self-adjoint operators, there exists a bounded self-adjoint operator *B* with $||B||_{\text{HS}} < \varepsilon$ and T + B is pure point. It follows that $V = e^{i(T+B)}$ is unitary and pure point.

The next ingredient is a version of the Duhamel formula [6]

$$V - U = e^{i(T+B)} - e^{iT} = -i \int_0^1 e^{iT(1-u)} B e^{iu(T+B)} du.$$

By using the inequality

$$\|TS\|_{\rm HS} \le \|T\| \|S\|_{\rm HS},\tag{2.1}$$

it follows that

$$\|V - U\|_{\mathrm{HS}} \leq \int_{0}^{1} \|e^{iT(1-u)}Be^{iu(T+B)}\|_{\mathrm{HS}} \,\mathrm{d}u$$
$$\leq \int_{0}^{1} \|e^{iT(1-u)}\| \|B\|_{\mathrm{HS}} \|e^{iu(T+B)}\| \,\mathrm{d}u$$
$$\leq \|B\|_{\mathrm{HS}} < \varepsilon.$$

This completes the proof since V is a pure point operator.

Proof of Theorem 2.2. By Theorem 2.3, given $0 < \delta < 1$, there exists a unitary and pure point operator V such that Q = U - V satisfies $||Q||_{\text{HS}} < \delta$. Thus,

$$U = V + Q = V(1 + V^{-1}Q);$$

by inequality (2.1), $||V^{-1}Q||_{\text{HS}} < \delta < 1$, and it follows that $(1 + V^{-1}Q)$ is invertible (in norm).

Write $X = (\mathbf{1} + V^{-1}Q)^{-1}$; hence,

$$UX = V,$$

concluding that X is unitary (since U and V are). By writing the operator X as the series

$$X = \mathbf{1} + \sum_{j=1}^{\infty} (-V^{-1}Q)^{j},$$

one finds that

$$||X - \mathbf{1}||_{\mathrm{HS}} \le \sum_{j=1}^{\infty} ||V^{-1}Q||_{\mathrm{HS}}^{j} \le \sum_{j=1}^{\infty} \delta^{j} = \frac{\delta}{1 - \delta}$$

To complete the proof, it is enough to pick δ such that $\frac{\delta}{1-\delta} < \varepsilon$ and identify

$$W = \sum_{j=1}^{\infty} (-V^{-1}Q)^j.$$

For a left perturbation

$$U \mapsto XU$$
,

it is enough to consider

$$U = V + Q = (\mathbf{1} + QV^{-1})V,$$

with $X = (\mathbf{1} + QV^{-1})^{-1}$, and identify $W = \sum_{j=1}^{\infty} (-QV^{-1})^{j}$.

3. Unitary rank one perturbations

Let ϕ be a normalized vector in \mathcal{H} that is cyclic for the unitary operator U, that is, the closure

$$\overline{\mathrm{Lin}\{U^j\phi\mid j\in\mathbb{Z}\}}=\mathcal{H}$$

 $U^0 = 1$. Let $P_{\phi}(\cdot) = \langle \phi, \cdot \rangle \phi$ (which is self-adjoint and idempotent) denote the projection onto the subspace generated by ϕ , and for real λ consider

$$X_{\lambda} := e^{i\lambda P_{\phi}} = \mathbf{1} + W$$

with

$$W\xi = (e^{i\lambda} - 1)\langle \phi, \xi \rangle \phi = (e^{i\lambda} - 1)P_{\phi}(\xi).$$

In fact,

$$e^{i\lambda P_{\phi}} = \sum_{j=0}^{\infty} \frac{(i\lambda P_{\phi})^{j}}{j!} = \mathbf{1} + \sum_{j=1}^{\infty} \frac{(i\lambda P_{\phi})^{j}}{j!} \stackrel{P_{\phi} = P_{\phi}^{2}}{=} \mathbf{1} + (e^{i\lambda} - 1)P_{\phi}.$$

Note that there is a periodicity in the intensity parameter λ , and it suffices to consider $0 \le \lambda < 2\pi$.

Now, we have the multiplicative rank one perturbation

$$U_{\lambda} = UX_{\lambda} = U(1 + (e^{i\lambda} - 1)P_{\phi}).$$
(3.1)

To simplify statements, denote by μ^{λ} the spectral measure of the pair (U_{λ}, ϕ) . Note that since ϕ is cyclic for U, it is also cyclic for U_{λ} for all $\lambda \in \mathbb{R}$.

We are interested in relating the perturbation (3.1) to the Cauchy transform F(z) of a Borel measure μ on $[0, 2\pi)$, defined for complex numbers $|z| \neq 1$ as

$$F(z) = \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \mathrm{d}\mu(t).$$

In case of μ^{λ} , we denote $F_{\lambda}(z) = \langle \phi, (U_{\lambda} + z\mathbf{1})(U_{\lambda} - z\mathbf{1})^{-1}\phi \rangle$.

Important results (see [9]) that relate nontangential limits of this transform to the singular μ_s^{λ} and absolutely continuous parts of μ^{λ} are summarized in the following theorem.

Theorem 3.1. (1) The limit $\lim_{r\to 1} F_{\lambda}(re^{it})$ exists for Lebesgue a.e. $t \in [0, 2\pi)$, and if

$$\mathrm{d}\mu^{\lambda}(t) = f(t)\frac{\mathrm{d}t}{2\pi} + \mathrm{d}\mu_{\mathrm{s}}^{\lambda}(t)$$

then $f(t) = \Re(F_{\lambda}(e^{it})).$

(2) t_0 is an eigenvalue of U_{λ} if and only if

$$\lim_{r \to 1} (1-r) \Re(F_{\lambda}(re^{it_0})) \neq 0,$$

and, in general, $\lim_{r\uparrow 1} (1-r) \Re(F_{\lambda}(re^{it_0})) = \mu^{\lambda}(\{t_0\}).$ (3) μ_s^{λ} is supported on $\{t \mid \lim_{r\uparrow 1} F_{\lambda}(re^{it}) = \infty\}.$

Consider now the Borel transform $R_{\lambda}(z)$ associated with the unitary operator U_{λ} , which is given by

$$R_{\lambda}(z) = \langle \phi, (U_{\lambda} - z\mathbf{1})^{-1}\phi \rangle = \int_0^{2\pi} \frac{\mathrm{d}\mu^{\lambda}(t)}{e^{it} - z},$$

and it has a simple relation to the Cauchy transform $F_{\lambda}(z) = 1 + 2zR_{\lambda}(z)$. After taking expectation values, with ϕ , of the second resolvent identity, one obtains a unitary analog of the so-called Aronszajn–Krein formula; that is,

$$R_{\lambda}(z) = \frac{R_0(z)}{e^{i\lambda} + z(e^{i\lambda} - 1)R_0(z)}$$

which is [4, equation (9)] (note that we have a rather different notation from [4]). This is also interesting since one may obtain results for the perturbed operator U_{λ} from asymptotic limits of $R_0(z)$, as in Proposition 3.2 ahead, where, from this formula, one has conditions for the divergence of R_{λ} in terms of R_0 only.

By following Combescure [4], introduce B(x) and G(x) by

$$B(x) = \left[\int_0^{2\pi} d\mu(t) \left(\sin^2\left(\frac{x-t}{2}\right)\right)^{-1}\right]^{-1} = \frac{1}{G(x)}.$$

For a general unitary operator V, with cyclic vector ϕ and spectral measure ν , we have corresponding quantities $B_V(z)$ and $G_V(z)$ (just integrate with respect to ν). With such notation, [4, Proposition 1] implies the following proposition.

Proposition 3.2. Let $\lambda \neq 0$. Then, $d\mu^{\lambda}$ has an atom at the point $x \in [0, 2\pi)$ if and only if $B(x) \neq 0$ (i.e., $G(x) < \infty$) and

$$\lim_{\varepsilon \to 0} e^{i(x+i\varepsilon)} R_0(e^{i(x+i\varepsilon)}) = \frac{e^{i\lambda}}{1 - e^{i\lambda}}$$

or, equivalently,

$$\lim_{\varepsilon \to 0} F_0(e^{i(x+i\varepsilon)}) = i \cot\left(\frac{\lambda}{2}\right).$$

Remark 3.3. Given the relation $F_{\lambda}(z) = 1 + 2zR_{\lambda}(z)$, with $z = e^{i(x+i\varepsilon)}$, if

$$\lim_{\varepsilon \to 0} \frac{F_0(e^{i(x+i\varepsilon)}) - 1}{2} = \frac{e^{i\lambda}}{1 - e^{i\lambda}},$$

then

$$\lim_{\varepsilon \to 0} F_0(e^{i(x+i\varepsilon)}) = \frac{2e^{i\lambda}}{1-e^{i\lambda}} + 1 = \frac{1+e^{i\lambda}}{1-e^{i\lambda}}$$
$$= \frac{e^{-i\frac{\lambda}{2}} + e^{i\frac{\lambda}{2}}}{e^{-i\frac{\lambda}{2}} - e^{i\frac{\lambda}{2}}} = i \cot\left(\frac{\lambda}{2}\right).$$

We need the following results related to the spectrum $\sigma(U)$.

Theorem 3.4. Given the unitary operator U, the set

$$S = \{e^{ix} \mid G(x) = \infty\}$$

is a dense G_{δ} in $\sigma(U)$.

Theorem 3.5. $\{\lambda \mid U_{\lambda} \text{ does not have eigenvalues in } \sigma(U)\}$ is a dense G_{δ} set in $[0, 2\pi)$.

3.1. Proof of Theorem 3.4

The set $S = \{e^{ix} \mid G(x) = \infty\}$ is dense in $\sigma(U)$. To prove this, we first recall that G(x) is given by

$$G(x) = \int_0^{2\pi} d\mu(t) \left(\sin^2 \left(\frac{x - t}{2} \right) \right)^{-1},$$

and that

$$\Re(F(re^{ix})) = \int_0^{2\pi} \frac{1 - r^2}{1 + r^2 - 2r\cos(x - t)} \mathrm{d}\mu(t).$$

Now, suppose that $G(x) < \infty$ over an interval (a, b). Consequently,

$$\lim_{r \to 1} \Re(F(re^{ix})) = 0.$$

Then, using the fact that $\lim_{r\to 1} F(re^{ix})$ exists for Lebesgue a.e. $t \in [0, 2\pi)$ and

$$\mathrm{d}\mu(t) = f(t)\frac{\mathrm{d}t}{2\pi} + \mathrm{d}\mu_{\mathrm{s}}(t),$$

where $f(x) = \lim_{r \to 1} \Re(F(re^{ix}))$ and $d\mu_s$ is supported on

$$\left\{x \mid \lim_{r \to 1} \Re(F(re^{ix})) = \infty\right\},\$$

we obtain that $\mu(a, b) = 0$; that is, $(a, b) \cap \text{supp}(d\mu) = \emptyset$. Therefore,

$$S = \{e^{ix} \mid G(x) = \infty\}$$

is dense in $\sigma(U)$.

Next, we show that $S = \{e^{ix} \mid G(x) = \infty\}$ is a G_{δ} . To do this, introduce

$$G^{m}(x) = \int_{0}^{2\pi} \mathrm{d}\mu(t) \left(\frac{1}{m^{2}} + \sin^{2}\left(\frac{x-t}{2}\right)\right)^{-1},$$

which is a C^{∞} function and $G(x) = \sup_{m} G^{m}(x)$. Then,

$$\{e^{ix} \mid G(x) = \infty\} = \{e^{ix} \mid \text{for every } n, \text{ there exists } m \text{ such that } G^m(x) > n\}$$
$$= \bigcap_n \bigcup_m \{e^{ix} \mid G^m(x) > n\}$$

is a G_{δ} .

Remark 3.6. According to Proposition 3.2, only values of e^{ix} with $G(x) < \infty$ can serve as eigenvalues of U_{λ} . Note that if the spectrum $\sigma(U)$ is a perfect set without isolated points, Theorem 3.5 states that the points e^{iy} with $G(y) = \infty$ are locally nonenumerable within $\sigma(U)$.

On the other hand, it is evident that $\{e^{ix} \mid G(x) = \infty\} \subset \sigma(U)$. And Theorem 3.5 reveals that $\{e^{ix} \mid G(x) < \infty\}$ has an empty interior within $\sigma(U)$. Moreover, this interior is also empty within the circle $S^1 = \{e^{it} \mid 0 \le t < 2\pi\}$. In fact, the theorem provides a stronger result, suggesting that $\sigma(U_{\lambda})$ could have an empty interior in S^1 . Furthermore, if $G(x) < \infty$, it implies that the integral

$$F(x) = \int_0^{2\pi} \frac{(1-r^2) + 2ri\sin(x-t)}{1+r^2 - 2r\cos(x-t)} d\mu(t)$$

converges absolutely, and F(x) is purely imaginary as $r \to 1$.

Lemma 3.7. Let B be a subset of \mathbb{R} that is nowhere dense, and let $H : B \to \mathbb{R}$ be a function satisfying, for x < y,

$$\alpha(y-x) < H(y) - H(x) < \beta(y-x)$$
(3.2)

with fixed α , $\beta > 0$. Then, the image of H is a set that is nowhere dense.

Proof. See [7, Lemma 3.2].

Theorem 3.8. The set $S = \{F(x) \mid G(x) < \infty$ and $x \in \text{supp}(\mu)\}$ is a countable union of sets that are nowhere dense in $[0, 2\pi)$ (int $(\overline{S}) = \emptyset$).

Proof. See [7, Lemma 3.1].

3.2. Proof of Theorem 3.5

Let $M : (0, 2\pi) \to I$ be the function (which is a homeomorphism), where $I = \{a + ib \mid a = 0\}$ (the imaginary axis), defined by $M(\lambda) = i \cot(\frac{\lambda}{2})$. Then, by Theorem 3.8, we have that the set

$$\left\{\lambda \mid \text{there exists } x \text{ with } G(x) < \infty, \ e^{ix} \in \sigma(U), \ M(x) = i \cot\left(\frac{\lambda}{2}\right)\right\}$$

is a countable union of nowhere dense subsets. Therefore, its complement is a dense set by the Baire category theorem. But, by Proposition 3.2, this complement is exactly

 $\{\lambda \mid U_{\lambda} \text{ has no eigenvalues in } \sigma(U)\},\$

which is dense. Furthermore, by [5, 8], this set is also a G_{δ} .

As a consequence of these results, we have the following corollary.

Corollary 3.9. If $\{e^{it} \mid a < t < b\} \subset \sigma(U)$ and U does not have absolutely continuous spectrum, then, for a generic set of λ in $[0, 2\pi)$, U_{λ} has purely singular continuous spectrum in $\{e^{it} \mid a < t < b\}$.

Proof. Combine Theorem 3.5 and the multiplicative version of Birman–Krein theorem (since $(e^{i\lambda} - 1)P_{\phi}$ in (3.1) is trace class).

Acknowledgments. The authors thank the anonymous referee for careful reading their manuscript and suggestions. CRdO thanks the partial support by CNPq (under contract no. 303689/2021-8), and PAD thanks the support by CAPES (Brazilian agency).

References

- V. R. Bazao, C. R. de Oliveira, and P. A. Diaz, On the Birman–Krein theorem. C. R. Math. Acad. Sci. Paris 361 (2023), 1081–1086 Zbl 07755463 MR 4659068
- [2] M. Š. Birman and M. G. Krein, On the theory of wave operators and scattering operators. *Dokl. Akad. Nauk SSSR* 144 (1962), 475–478 Zbl 0196.45004 MR 0139007
- [3] G. Casati and L. Molinari, "Quantum chaos" with time-periodic Hamiltonians. Progr. Theoret. Phys. Suppl. (1989), no. 98, 287–322 MR 1033467
- [4] M. Combescure, Spectral properties of a periodically kicked quantum Hamiltonian. J. Statist. Phys. 59 (1990), no. 3-4, 679–690 Zbl 0713.58044 MR 1063177
- [5] S. De Bièvre and G. Forni, Transport properties of kicked and quasiperiodic Hamiltonians. J. Statist. Phys. 90 (1998), no. 5-6, 1201–1223 Zbl 0923.47042 MR 1628308
- [6] C. R. de Oliveira, Intermediate spectral theory and quantum dynamics. Prog. Math. Phys. 54, Birkhäuser, Basel, 2009 Zbl 1165.47001 MR 2723496
- [7] R. Del Rio, N. Makarov, and B. Simon, Operators with singular continuous spectrum. II. Rank one operators. *Comm. Math. Phys.* 165 (1994), no. 1, 59–67 Zbl 1055.47500 MR 1298942
- [8] B. Simon, Operators with singular continuous spectrum. I. General operators. Ann. of Math. (2) 141 (1995), no. 1, 131–145 Zbl 0851.47003 MR 1314033

 B. Simon, Analogs of the *m*-function in the theory of orthogonal polynomials on the unit circle. *J. Comput. Appl. Math.* 171 (2004), no. 1-2, 411–424 Zbl 1055.33010 MR 2077215

Received 31 July 2023; revised 12 December 2023.

Vanderléa R. Bazao

Faculdade de Ciências Exatas e Tecnologias, Universidade Federal da Grande Dourados, 79804-970 Dourados, MS, Brazil; vanderleabazao@ufgd.edu.br

César R. de Oliveira

Departamento de Matemática, Universidade Federal de São Carlos, 13560-970 São Carlos, SP, Brazil; oliveira@dm.ufscar.br

Pablo A. Diaz

Departamento de Matemática, Universidade Federal de São Carlos, 13560-970 São Carlos, SP, Brazil; pdaraos@gmail.com