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On rank one and Weyl–von Neumann theorem
for multiplicative perturbations of unitary operators

Vanderléa R. Bazao, César R. de Oliveira, and Pablo A. Diaz

Abstract. For multiplicative perturbations of unitary operators, it is presented a version of Weyl–
von Neumann theorem and a sufficient conditions for generic (in the intensity parameter) singular
continuous spectrum under unitary rank one perturbations.

1. Introduction

We are interested in the spectral properties of multiplicative perturbations

U 7! UX (1.1)

of unitary operatorsU, on a (complex and infinite-dimensional) Hilbert separable space H,
with also unitary perturbing X . This is a right perturbation, and U 7! XU is a left one.

The main physical motivation comes from time � -periodically kicked quantum Hamil-
tonians (A and B are self-adjoint operators)

AC B
X
j2Z

ı.t � � n/

whose Floquet operator, from just before a kick to just before the next one, is e�i�Ae�iB ;
see, for instance, [3]. In (1.1), one immediately identifies U D e�i�A and X D e�iB .

In a previous work [1], the present authors have shown that there is no nontrivial
generalization of the multiplicative version of Birman–Krein theorem [2] on preservation
of absolutely continuous spectrum under certain perturbations. The original version of
Birman–Krein is for additive perturbations, but from this, the multiplicative version fol-
lows; that is, the absolutely continuous parts of the unitary operators U and UX (or XU )
are unitarily equivalent if X D 1CW with trace class W .

In this note, we present multiplicative versions of two important known results for
additive self-adjoint perturbations. First, a version of Weyl–von Neumann theorem [6]
and, second, a version of a result on the generic presence of singular continuous spectrum
for rank one perturbations due to del Rio, Makarov, and Simon [7].
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Recall that, according to Weyl–von Neumann theorem, given a self-adjoint opera-
tor A and " > 0, there is a self-adjoint operator S with Hilbert–Schmidt norm kSkHS < "

such that A C S has pure point spectrum. Our conclusion will be similar (see Theo-
rem 2.2): given a unitary operator U , there exists another unitary operator X D 1CW
with kW kHS < " so that the perturbation UX (or XU ) has pure point spectrum.

The other set of results culminate in the following (let �.A/ denote the spectrum of
the linear operator A). Given a singular (i.e., with no absolutely continuous spectrum)
unitary operator U , with ¹eit j a < t < bº � �.U /, and a unitary rank one perturbation
X� D ei�P� , 0 � � < 2� , with P� the projection onto the one-dimensional subspace
generated by the cyclic vector �, then, for generic (i.e., dense Gı set) of intensities �s,
the perturbed operator UX� has purely singular continuous spectrum in ¹eit j a < t < bº.
This will be a consequence of Theorem 3.5.

Section 2 presents general remarks on multiplicative perturbations of unitary opera-
tors, then Theorem 2.2 and its proof. In Section 3, after a suitable preparation, one finds
Theorem 3.5 and its proof.

2. Multiplicative perturbations

If we have a unitary operator X , it is convenient to write it in the form X D eiY , with Y
a bounded self-adjoint operator. Then,

X D eiY D

1X
jD0

.iY /j

j Š
D 1C

1X
jD1

.iY /j

j Š
D 1CW;

where W D
P1
jD1

.iY /j

j Š
. Thus, we can write

UX D U.1CW / D U C UW:

Remark 2.1. If the operator X D 1CW is unitary, one has

1 D .1CW /.1CW /� D 1CW CW � CW �W;
1 D .1CW /�.1CW / D 1CW � CW CWW �I

then W � CW CWW � D W � CW CW �W D 0, and it follows that

W �W D WW �;

so W is a normal operator. But this condition is not sufficient for X D 1 C W to be
unitary; for example, ifW D˙1, thenX would not be unitary (it is necessary that �.W /�
¹eit � 1 j t 2 Rº).

Our main result in this section is the following theorem.
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Theorem 2.2. Let U be a unitary operator in H . Given " > 0, there exists a unitary
operator X D 1CW , with kW kHS < ", such that the perturbed operator

U 7! UX

has pure point spectrum. It also holds true for left perturbations U 7!XU . (Left and right
perturbations are in general different.)

First, we prove a Weyl–von Neumann version for additive perturbations of unitary
operators.

Theorem 2.3. Given a unitary operator U and " > 0, there exists a unitary operator V
on H with pure point spectrum such that

kU � V kHS < ":

Proof. Write the unitary operator U D eiT , with T self-adjoint and bounded; by the usual
Weyl–von Neumann result for self-adjoint operators, there exists a bounded self-adjoint
operator B with kBkHS < " and T C B is pure point. It follows that V D ei.TCB/ is
unitary and pure point.

The next ingredient is a version of the Duhamel formula [6]

V � U D ei.TCB/ � eiT D �i

Z 1

0

eiT .1�u/Beiu.TCB/ du:

By using the inequality
kTSkHS � kT kkSkHS; (2.1)

it follows that

kV � U kHS �

Z 1

0

keiT .1�u/Beiu.TCB/kHS du

�

Z 1

0

keiT .1�u/k kBkHS ke
iu.TCB/

k du

� kBkHS < ":

This completes the proof since V is a pure point operator.

Proof of Theorem 2.2. By Theorem 2.3, given 0 < ı < 1, there exists a unitary and pure
point operator V such that Q D U � V satisfies kQkHS < ı. Thus,

U D V CQ D V.1C V �1Q/I

by inequality (2.1), kV �1QkHS < ı < 1, and it follows that .1C V �1Q/ is invertible (in
norm).

Write X D .1C V �1Q/�1; hence,

UX D V;
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concluding that X is unitary (since U and V are). By writing the operator X as the series

X D 1C
1X
jD1

.�V �1Q/j ;

one finds that

kX � 1kHS �

1X
jD1

kV �1Qk
j
HS �

1X
jD1

ıj D
ı

1 � ı
:

To complete the proof, it is enough to pick ı such that ı
1�ı

< " and identify

W D

1X
jD1

.�V �1Q/j :

For a left perturbation
U 7! XU;

it is enough to consider
U D V CQ D .1CQV �1/V;

with X D .1CQV �1/�1, and identify W D
P1
jD1.�QV

�1/j .

3. Unitary rank one perturbations

Let � be a normalized vector in H that is cyclic for the unitary operator U , that is, the
closure

Lin¹U j� j j 2 Zº D H ;

U 0 D 1. Let P�.�/ D h�; �i� (which is self-adjoint and idempotent) denote the projection
onto the subspace generated by �, and for real � consider

X� WD e
i�P� D 1CW

with
W � D .ei� � 1/h�; �i� D .ei� � 1/P�.�/:

In fact,

ei�P� D

1X
jD0

.i�P�/
j

j Š
D 1C

1X
jD1

.i�P�/
j

j Š

P�DP
2
�

D 1C .ei� � 1/P� :

Note that there is a periodicity in the intensity parameter �, and it suffices to consider
0 � � < 2� .

Now, we have the multiplicative rank one perturbation

U� D UX� D U.1C .ei� � 1/P�/: (3.1)
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To simplify statements, denote by �� the spectral measure of the pair .U�; �/. Note
that since � is cyclic for U , it is also cyclic for U� for all � 2 R.

We are interested in relating the perturbation (3.1) to the Cauchy transform F.z/ of a
Borel measure � on Œ0; 2�/, defined for complex numbers jzj ¤ 1 as

F.z/ D

Z 2�

0

eit C z

eit � z
d�.t/:

In case of ��, we denote F�.z/ D h�; .U� C z1/.U� � z1/�1�i.
Important results (see [9]) that relate nontangential limits of this transform to the sin-

gular ��s and absolutely continuous parts of �� are summarized in the following theorem.

Theorem 3.1. .1/ The limit limr!1 F�.re
it / exists for Lebesgue a.e. t 2 Œ0; 2�/, and if

d��.t/ D f .t/
dt
2�
C d��s .t/;

then f .t/ D <.F�.eit //.
.2/ t0 is an eigenvalue of U� if and only if

lim
r!1

.1 � r/<.F�.re
it0// ¤ 0;

and, in general, limr"1.1 � r/<.F�.re
it0// D ��.¹t0º/.

.3/ ��s is supported on ¹t j limr"1 F�.re
it / D1º.

Consider now the Borel transform R�.z/ associated with the unitary operator U�,
which is given by

R�.z/ D h�; .U� � z1/�1�i D
Z 2�

0

d��.t/
eit � z

;

and it has a simple relation to the Cauchy transform F�.z/ D 1C 2zR�.z/. After taking
expectation values, with �, of the second resolvent identity, one obtains a unitary analog
of the so-called Aronszajn–Krein formula; that is,

R�.z/ D
R0.z/

ei� C z.ei� � 1/R0.z/
;

which is [4, equation (9)] (note that we have a rather different notation from [4]). This is
also interesting since one may obtain results for the perturbed operator U� from asymp-
totic limits of R0.z/, as in Proposition 3.2 ahead, where, from this formula, one has
conditions for the divergence of R� in terms of R0 only.

By following Combescure [4], introduce B.x/ and G.x/ by

B.x/ D

� Z 2�

0

d�.t/
�

sin2
�x � t

2

���1��1
D

1

G.x/
:

For a general unitary operator V , with cyclic vector � and spectral measure �, we have
corresponding quantities BV .z/ and GV .z/ (just integrate with respect to �). With such
notation, [4, Proposition 1] implies the following proposition.
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Proposition 3.2. Let � ¤ 0. Then, d�� has an atom at the point x 2 Œ0; 2�/ if and only if
B.x/ ¤ 0 (i.e., G.x/ <1) and

lim
"!0

ei.xCi"/R0.e
i.xCi"// D

ei�

1 � ei�

or, equivalently,

lim
"!0

F0.e
i.xCi"// D i cot

�
�

2

�
:

Remark 3.3. Given the relation F�.z/ D 1C 2zR�.z/, with z D ei.xCi"/, if

lim
"!0

F0.e
i.xCi"// � 1

2
D

ei�

1 � ei�
;

then

lim
"!0

F0.e
i.xCi"// D

2ei�

1 � ei�
C 1 D

1C ei�

1 � ei�

D
e�i

�
2 C ei

�
2

e�i
�
2 � ei

�
2

D i cot
�
�

2

�
:

We need the following results related to the spectrum �.U /.

Theorem 3.4. Given the unitary operator U , the set

S D ¹eix j G.x/ D1º

is a dense Gı in �.U /.

Theorem 3.5. ¹� j U� does not have eigenvalues in �.U /º is a dense Gı set in Œ0; 2�/.

3.1. Proof of Theorem 3.4

The set S D ¹eix j G.x/ D 1º is dense in �.U /. To prove this, we first recall that G.x/
is given by

G.x/ D

Z 2�

0

d�.t/
�

sin2
�x � t

2

���1
;

and that

<.F.reix// D

Z 2�

0

1 � r2

1C r2 � 2r cos.x � t /
d�.t/:

Now, suppose that G.x/ <1 over an interval .a; b/. Consequently,

lim
r!1
<.F.reix// D 0:

Then, using the fact that limr!1 F.re
ix/ exists for Lebesgue a.e. t 2 Œ0; 2�/ and

d�.t/ D f .t/
dt
2�
C d�s.t/;
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where f .x/ D limr!1<.F.re
ix// and d�s is supported on®
x j lim

r!1
<.F.reix// D1

¯
;

we obtain that �.a; b/ D 0; that is, .a; b/ \ supp.d�/ D ;. Therefore,

S D ¹eix j G.x/ D1º

is dense in �.U /.
Next, we show that S D ¹eix j G.x/ D1º is a Gı . To do this, introduce

Gm.x/ D

Z 2�

0

d�.t/
�
1

m2
C sin2

�x � t
2

���1
;

which is a C1 function and G.x/ D supmG
m.x/. Then,®

eix j G.x/ D1
¯
D
®
eix j for every n; there exists m such that Gm.x/ > n

¯
D

\
n

[
m

®
eix j Gm.x/ > n

¯
is a Gı .

Remark 3.6. According to Proposition 3.2, only values of eix with G.x/ <1 can serve
as eigenvalues of U�. Note that if the spectrum �.U / is a perfect set without isolated
points, Theorem 3.5 states that the points eiy with G.y/ D 1 are locally nonenumerable
within �.U /.

On the other hand, it is evident that ¹eix j G.x/ D 1º � �.U /. And Theorem 3.5
reveals that ¹eix j G.x/ <1º has an empty interior within �.U /. Moreover, this interior
is also empty within the circle S1 D ¹eit j 0 � t < 2�º. In fact, the theorem provides a
stronger result, suggesting that �.U�/ could have an empty interior in S1. Furthermore, if
G.x/ <1, it implies that the integral

F.x/ D

Z 2�

0

.1 � r2/C 2ri sin.x � t /
1C r2 � 2r cos.x � t /

d�.t/

converges absolutely, and F.x/ is purely imaginary as r ! 1.

Lemma 3.7. Let B be a subset of R that is nowhere dense, and let H W B ! R be a
function satisfying, for x < y,

˛.y � x/ < H.y/ �H.x/ < ˇ.y � x/ (3.2)

with fixed ˛; ˇ > 0. Then, the image of H is a set that is nowhere dense.

Proof. See [7, Lemma 3.2].

Theorem 3.8. The set S D ¹F.x/ j G.x/ <1 and x 2 supp.�/º is a countable union of
sets that are nowhere dense in Œ0; 2�/ (int. xS/ D ;).

Proof. See [7, Lemma 3.1].
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3.2. Proof of Theorem 3.5

Let M W .0; 2�/! I be the function (which is a homeomorphism), where I D ¹aC ib j
aD 0º (the imaginary axis), defined byM.�/D i cot.�

2
/. Then, by Theorem 3.8, we have

that the set²
� j there exists x with G.x/ <1; eix 2 �.U /; M.x/ D i cot

�
�

2

�³
is a countable union of nowhere dense subsets. Therefore, its complement is a dense set
by the Baire category theorem. But, by Proposition 3.2, this complement is exactly®

� j U� has no eigenvalues in �.U /
¯
;

which is dense. Furthermore, by [5, 8], this set is also a Gı .
As a consequence of these results, we have the following corollary.

Corollary 3.9. If ¹eit j a < t < bº � �.U / and U does not have absolutely continu-
ous spectrum, then, for a generic set of � in Œ0; 2�/, U� has purely singular continuous
spectrum in ¹eit j a < t < bº.

Proof. Combine Theorem 3.5 and the multiplicative version of Birman–Krein theorem
(since .ei� � 1/P� in (3.1) is trace class).
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