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On rank one and Weyl-von Neumann theorem
for multiplicative perturbations of unitary operators

Vanderléa R. Bazao, César R. de Oliveira, and Pablo A. Diaz

Abstract. For multiplicative perturbations of unitary operators, it is presented a version of Weyl—
von Neumann theorem and a sufficient conditions for generic (in the intensity parameter) singular
continuous spectrum under unitary rank one perturbations.

1. Introduction

We are interested in the spectral properties of multiplicative perturbations
U UX (1.1)

of unitary operators U, on a (complex and infinite-dimensional) Hilbert separable space #,
with also unitary perturbing X . This is a right perturbation, and U +— XU is a left one.

The main physical motivation comes from time t-periodically kicked quantum Hamil-
tonians (4 and B are self-adjoint operators)

A+BY 8 —1n)

JEZ
—irAe—iB;
iB_

whose Floquet operator, from just before a kick to just before the next one, is e
see, for instance, [3]. In (1.1), one immediately identifies U = e i™and X = e~

In a previous work [1], the present authors have shown that there is no nontrivial
generalization of the multiplicative version of Birman—Krein theorem [2] on preservation
of absolutely continuous spectrum under certain perturbations. The original version of
Birman—KTrein is for additive perturbations, but from this, the multiplicative version fol-
lows; that is, the absolutely continuous parts of the unitary operators U and UX (or XU)
are unitarily equivalent if X = 1 + W with trace class W.

In this note, we present multiplicative versions of two important known results for
additive self-adjoint perturbations. First, a version of Weyl-von Neumann theorem [6]
and, second, a version of a result on the generic presence of singular continuous spectrum
for rank one perturbations due to del Rio, Makarov, and Simon [7].
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Recall that, according to Weyl-von Neumann theorem, given a self-adjoint opera-
tor A and & > 0, there is a self-adjoint operator S with Hilbert—Schmidt norm || S ||gs < ¢
such that 4 + S has pure point spectrum. Our conclusion will be similar (see Theo-
rem 2.2): given a unitary operator U, there exists another unitary operator X =1+ W
with || W ||gs < ¢ so that the perturbation UX (or X U) has pure point spectrum.

The other set of results culminate in the following (let 0(A) denote the spectrum of
the linear operator A). Given a singular (i.e., with no absolutely continuous spectrum)
unitary operator U, with {e’’ | a <t < b} C o(U), and a unitary rank one perturbation
X, = el AP 4,0 < A < 2w, with Py the projection onto the one-dimensional subspace
generated by the cyclic vector ¢, then, for generic (i.e., dense Gy set) of intensities As,
the perturbed operator UX; has purely singular continuous spectrum in {e’’ | a <t < b}.
This will be a consequence of Theorem 3.5.

Section 2 presents general remarks on multiplicative perturbations of unitary opera-
tors, then Theorem 2.2 and its proof. In Section 3, after a suitable preparation, one finds
Theorem 3.5 and its proof.

2. Multiplicative perturbations

If we have a unitary operator X, it is convenient to write it in the form X = Y with Y
a bounded self-adjoint operator. Then,

o0 . i o . i

iy (iY)’ _ (iY)’ _

X =e —E I —1+E 7 =14+W,
Jj=0 j=1

where W = Z;‘;l (if!)j . Thus, we can write

UX=U1+W)=U+UW.
Remark 2.1. If the operator X = 1 + W is unitary, one has

1=0+WYA+W)* =1+ W +W* + W*W,
1=0A+WY*A+-W)=14+W* "+ W +WW*;

then W* + W + WW* = W* + W + W*W = 0, and it follows that
W*W = WW*,

so W is a normal operator. But this condition is not sufficient for X =1 + W to be
unitary; for example, if W = +£1, then X would not be unitary (it is necessary that o (W) C
{e'" — 1|t eR)).

Our main result in this section is the following theorem.
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Theorem 2.2. Let U be a unitary operator in JH. Given € > 0, there exists a unitary
operator X = 1+ W, with |W ||us < &, such that the perturbed operator

U—UX

has pure point spectrum. It also holds true for left perturbations U +— X U. (Left and right
perturbations are in general different.)

First, we prove a Weyl-von Neumann version for additive perturbations of unitary
operators.

Theorem 2.3. Given a unitary operator U and € > 0, there exists a unitary operator V
on J with pure point spectrum such that

U —V]us <e.

Proof. Write the unitary operator U = ¢'T, with T self-adjoint and bounded; by the usual
Weyl-von Neumann result for self-adjoint operators, there exists a bounded self-adjoint

operator B with || Bl|lus < ¢ and T + B is pure point. It follows that V = ¢/T+5) g
unitary and pure point.
The next ingredient is a version of the Duhamel formula [6]
1
V _ U — ei(T+B) _ eiT — _l / eiT(l—u)Beiu(T+B) du
0
By using the inequality
ITSlus < ITNIIS llus. (2.1
it follows that
1
IV = Uls < [ 170 BTy g
0
1
< [ 1O Bl [T
0
= [IB|ns <e.
This completes the proof since V is a pure point operator. ]

Proof of Theorem 2.2. By Theorem 2.3, given 0 < § < 1, there exists a unitary and pure
point operator V' such that Q = U — V satisfies || Q|lus < §. Thus,

U=V+Q=VA+V'0)

by inequality (2.1), |V "1 Q|lus < § < 1, and it follows that (1 4+ V=1 Q) is invertible (in
norm).
Write X = 1+ V! Q)_l; hence,

UX =V,
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concluding that X is unitary (since U and V are). By writing the operator X as the series

X=1+) (-v'Q),

=1

one finds that
1X = 1lus < Y1Vl < D8 = .

J=1 J=1

To complete the proof, it is enough to pick § such that 1878 < ¢ and identify

W=7 (-v"0).

j=1

For a left perturbation
U~ XU,

it is enough to consider
U=V+Q0=0+0VHy,

with X = (14+ QV~H)~!, and identify W = Y72, (—QV 1)/, "

3. Unitary rank one perturbations

Let ¢ be a normalized vector in J that is cyclic for the unitary operator U, that is, the
closure

Lin{U/¢ | j € Z} =

U® = 1. Let Py(-) = (¢, )¢ (which is self-adjoint and idempotent) denote the projection
onto the subspace generated by ¢, and for real A consider

X, =Moo =14+ W

with ' .
WE = (e — 1)(p.£)¢p = (e"* — 1) Py(£).

In fact,
AP AP, P
oiAPs — Z(l 0)’ Z(l 6)’ Lo, 1+(61A_I)P¢
j=0

Note that there is a periodicity in the intensity parameter A, and it suffices to consider
0<A<2m.
Now, we have the multiplicative rank one perturbation

Uy =UX) = Ul + (e —1)Py). 3.1
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To simplify statements, denote by u” the spectral measure of the pair (Uy, ¢). Note
that since ¢ is cyclic for U, it is also cyclic for U, for all A € R.

We are interested in relating the perturbation (3.1) to the Cauchy transform F(z) of a
Borel measure u on [0, 277), defined for complex numbers |z| # 1 as

F(z) = /02” .

et —z

In case of u*, we denote Fy(z) = (¢, (U + z1)(Uy, — z1) "' ¢).
Important results (see [9]) that relate nontangential limits of this transform to the sin-
gular uﬁ‘ and absolutely continuous parts of u* are summarized in the following theorem.

Theorem 3.1. (1) The limit lim, .| Fj (re'’) exists for Lebesgue a.e. t € [0,2r), and if

det
dut(6) = f(O) 5+ dul (),
b4
then f(t) = R(Fy(e')).
(2) to is an eigenvalue of Uy, if and only if
lim (1 — FYR(Fy.(re'0)) # 0,
r—
and, in general, lim, 41 (1 — r)R(Fy (re®)) = u*({to}).
(3) ul is supported on {t | lim,4; Fj(re'’) = oo}.

Consider now the Borel transform R)(z) associated with the unitary operator U,
which is given by
21 dMA (l)

: 9
elt —z

Ri(2) = (. (Uy — 21)'g) = /0

and it has a simple relation to the Cauchy transform F)(z) = 1 + 2zR(z). After taking
expectation values, with ¢, of the second resolvent identity, one obtains a unitary analog
of the so-called Aronszajn—Krein formula; that is,

Ro(2)
el 4 z(etr —1)Ro(z)’
which is [4, equation (9)] (note that we have a rather different notation from [4]). This is

also interesting since one may obtain results for the perturbed operator U, from asymp-
totic limits of Ro(z), as in Proposition 3.2 ahead, where, from this formula, one has

Ry(2) =

conditions for the divergence of R} in terms of Ry only.
By following Combescure [4], introduce B(x) and G(x) by

B(x) = |:/(;2n d/i(t)(sinz(xT_t))_l]_1 = G(lx)'

For a general unitary operator V', with cyclic vector ¢ and spectral measure v, we have
corresponding quantities By (z) and Gy (z) (just integrate with respect to v). With such
notation, [4, Proposition 1] implies the following proposition.




V. R. Bazao, C. R. de Oliveira, and P. A. Diaz 204

Proposition 3.2. Let A # 0. Then, du* has an atom at the point x € [0, 27) if and only if
B(x) # 0 (i.e., G(x) < 00) and

ei/l

. i(x+ie) i(x+ie)y __
lime Ro(e ) = !

or, equivalently,

. . A
lim Fo(e!*+19)) = icot(—).
e—>0 2

Remark 3.3. Given the relation Fj(z) = 1 + 2zR;(z), with z = ¢! &+8) if

Fo(ei(x-i-is)) -1 ei/l
lim = —,
£—0 2 1 —eit
then
2eih _ 1 + eit

: i(x+ie)y _ —
gl—rf(l)FO(e )= et * 1 —eit

e“% +él 5 . A
= m =1 COt(E)'
We need the following results related to the spectrum o (U).
Theorem 3.4. Given the unitary operator U, the set
S ={e™ | G(x) = o0}
is a dense Gg in o (U).

Theorem 3.5. {A | U, does not have eigenvalues in o (U)} is a dense Gg set in [0, 27).

3.1. Proof of Theorem 3.4

The set S = {¢'* | G(x) = oo} is dense in o (U). To prove this, we first recall that G (x)

is given by
2 x—1\\"!
G(x) =/ du(t)(sin?( —— ,
| (s (457)
and that 5 5
: T 1—r
R(F(re'™)) = du().
(F(re™) /0 1 +7r2—2rcos(x —1t) w0

Now, suppose that G(x) < co over an interval (a, b). Consequently,

lim R(F(re'*)) = 0.
r—
Then, using the fact that lim,_,; F(re'*) exists for Lebesgue a.e. ¢ € [0,27) and

du(t) = f(t);—; T (),
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where f(x) = lim,_.; R(F(re'*)) and du, is supported on
{x | lim R(F(re'™)) = oo},
we obtain that u(a, b) = 0; that is, (a, b) N supp(dp) = @. Therefore,
S ={e™ | G(x) = oo}

is dense in o (U).
Next, we show that S = {e’* | G(x) = oo} is a G5. To do this, introduce

G (x) = /02” d/t(t)(# it (22 ’))_1,

which is a C*° function and G(x) = sup,, G™(x). Then,

{eix | G(x) = o0} = {eix | for every n, there exists m such that G™ (x) > n}
= ﬂU (™ | G™(x) > n}
n m
isa Gg.

Remark 3.6. According to Proposition 3.2, only values of e?* with G(x) < oo can serve
as eigenvalues of U, . Note that if the spectrum o (U) is a perfect set without isolated
points, Theorem 3.5 states that the points e’ with G(y) = oo are locally nonenumerable
within o (U).

On the other hand, it is evident that {¢'* | G(x) = oo} C o(U). And Theorem 3.5
reveals that {e’* | G(x) < oo} has an empty interior within o (U). Moreover, this interior
is also empty within the circle S' = {e?’ | 0 <t < 2x}. In fact, the theorem provides a
stronger result, suggesting that o (U, ) could have an empty interior in S'!. Furthermore, if
G(x) < oo, it implies that the integral

Flx) = /2” (1 —r?) + 2ri sin(x — 1)
“Jo 1 +7r2—2rcos(x —1t)

dp(t)

converges absolutely, and F(x) is purely imaginary as r — 1.

Lemma 3.7. Let B be a subset of R that is nowhere dense, and let H : B — R be a
Sfunction satisfying, for x <y,

a(y —x) < H(y) — H(x) < B(y — x) (3.2)
with fixed o, B > 0. Then, the image of H is a set that is nowhere dense.
Proof. See [7, Lemma 3.2]. [

Theorem 3.8. The set S = {F(x) | G(x) < 0o and x € supp(u)} is a countable union of
sets that are nowhere dense in [0, 21) (int(S) = @).

Proof. See [7, Lemma 3.1]. [
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3.2. Proof of Theorem 3.5

Let M : (0,2m) — I be the function (which is a homeomorphism), where I = {a + ib |
a = 0} (the imaginary axis), defined by M(1) =i cot(%). Then, by Theorem 3.8, we have
that the set

. A
{/\ | there exists x with G(x) < oo, €' € o(U), M(x) = icot(z)}

is a countable union of nowhere dense subsets. Therefore, its complement is a dense set
by the Baire category theorem. But, by Proposition 3.2, this complement is exactly

{A | U, has no eigenvalues in o (U)},

which is dense. Furthermore, by [5, 8], this set is also a Gg.
As a consequence of these results, we have the following corollary.

Corollary 3.9. If {¢'' |a <t < b} C 6(U) and U does not have absolutely continu-
ous spectrum, then, for a generic set of A in [0,2m), Uy has purely singular continuous
spectrum in {e'' | a <t < b}.

Proof. Combine Theorem 3.5 and the multiplicative version of Birman—Krein theorem
(since (e’ — 1) Py in (3.1) is trace class). [ ]
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