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Multiple homoclinic solutions for nonsmooth
second-order differential systems

Mohsen Timoumi

Abstract. In the present paper, we obtain infinitely many pairs of homoclinic solutions for a class
of nonsmooth second-order differential systems when the energy functional associated is not con-
tinuously differentiable and does not satisfy the Palais—Smale condition.

1. Introduction

Consider the following second-order differential system:
u(t)+q@)u@) +Vv(t,u(t)) =0, teR, (DV)

where ¢ € C(R,R) and V:R x RY — R is a continuous function, differentiable in the
second variable with continuous derivative VV(z, x) = 3—‘;(1, Xx). As usual, we say that
a solution u € C2(R, RY) of (DV) is homoclinic (to 0) if u(¢) — 0 and 1(¢) — 0 as
|t| = oo. Moreover, if u(t) # 0, u is called a nontrivial homoclinic solution.
When ¢ (t) = 0, formally, system (D V) reduces to the following classical Hamiltonian
system:
() + VV(t,u()) =0, teR. (HS)

Over the forty past years, with the aid of critical point theory and variational methods (see
for example [16]), the existence and multiplicity of homoclinic solutions for (# $) have
been extensively investigated in the literature when V (¢, x) takes the form

V(t,x) = —%L(l‘)x -x + W(t, x) (1.1)

with L € C(R,RV*) and W € C'(R x R R); see for example [1-3,7,8, 10-15,17-22,
28,29,31-33,35-37], but we do not even try to review the large bibliography. Here, ““-”
denotes the usual inner product in R¥ and the associated norm will be denoted by | . |.
For the general case where ¢(¢) # 0, in the last two decades, the existence and multi-
plicity of homoclinic solutions for ({DV) have been studied by a few mathematicians via
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critical point theory and variational methods; see [4,5,9,23-27, 30, 34,38] and the refer-
ences listed therein. In all the previous papers, the potential V' takes the form (1.1) where
L and W satisfy suitable conditions, and the energy functional associated to system (D V)
defined on a well-chosen convenient space by

() = %/Reg(t)ﬂu(tﬂz—i—L(l)u(l)-u(t)] dt—/ReQ(’)W(t,u(t))dt

is continuously differentiable. The difficulties encountered in all these papers are the
Sobolev embedding compactness problem and the Palais—Smale condition problem. To
escape from it, several authors have imposed suitable coercivity conditions on L and
growth constraints on VW for which I € C!(E,R) and the critical points of / on E
are exactly the homoclinic solutions of system (V). Note that the conditions used in the
well-known papers do not cover some nonlinearity like

Vi, x) = —%[1 + %Cos(ﬁ)]bﬂz +d)|x)°, (12)

where 0 <y < 1,d € CR,R*) N L*R) for | <a < 5% and d # 0. It is easy to
see that V e C1(R,RY). However, let ¢ € C(R, R) be such that Q(t) = fé q(s)ds is
bounded; then for u € H é (R) and v an indefinitely differentiable function from R into
R with compact support, the derivative of the energy functional J associated to (DV),

J(u) = %/ReQ(”m(z)sz+fReQ<f>K(r,u(z))dz—AeQ<’>W(z,u(r))dz,
is
J’(u)v:/eQ(t)u(t)-i)(Z)dt—i-/ 2Oty - v(r) de
R R

1
+ E/ReQm cos(|u(®)| ™" u(r) - v(r) dt

+ Zf eC O sin(Ju(0)| 7 u(t) - v(t) dt
4 Jr

— o[ eCOd)u@®)|°2u(t) - v(t) dt.
R
Let

w(t) = ;] u(t) = (w(),0,...,0), v{)= (w()sin(w7()),0,...,0).
1+ |t]zr

An easy computation shows that u, v € H é (R). On the other hand, we have

[ eCO ()7 sin(Ju ()| u(t) - v(t) dt
R

_ / @O (1) 2 sin(|lw(t)| ) dt
R
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> mo /R ()2 sin?(jw(n)| ) di

2—y

® o1l 1=y o2
= 2my / sTv (s — 1) 77sin“(s)ds
14 1

= +o00.

Therefore, J is not continuously differentiable on H é (R).

In this note and for the first time, we are interested in the existence of infinitely many
pairs of homoclinic solutions for (V) when the function V' satisfies some conditions,
which covers the cases as in (1.2). More precisely, we will study the cases when the quad-
ratic form %L(t)x - x is replaced by a general nonsmooth function K (¢, x) and no growth
constraints are imposed on VV'. To the best of our knowledge, it seems that no similar
results are obtained in the literature for nonsmooth damped vibration systems. Taking
V(t,x) =—K(t,x)+ W(t,x), where K, W:R x RY — R are continuous functions, dif-
ferentiable in the second variable with continuous derivatives respectively VK (¢, x) and
VW(t, x), we obtain the following results.

Theorem 1.1. Assume that g and W satisfy

(Q ¢€C®.R)and
t

= d

o) /0 4(s) ds

is bounded from below with my = inf;cr e2®;

(Hy) there exist constants 1 < v < 2 and a > 0 such that
K(t,x) > alx|” V(t,x) e RxRY;
(Hy) thereexisto € ]1,v, 1 <a < ﬁ and d € L%(R,RJF) such that
[W(t,x)| <d(®)|x|]” V(t,x) e RxRY;

(H3) V(t,—x) = V(t,x)V(t,x) € R x RY;
(Hy) there exist constants T € |1,2[ and | € RY U {400} such that

Vi,
(¢, x) =1 uniformlyint € R.

Ix|—0 |x]|?
Then system (DV) possesses infinitely many pairs of nontrivial homoclinic solutions.
Theorem 1.2. Assume that (Q), (H;), (H»), (H3) and the following condition are satisfied:

Vit x)
1m
|x|]—0 |)C|2

= 400 uniformlyint € R. (H))

Then system (D'V) possesses infinitely many pairs of nontrivial homoclinic solutions.



M. Timoumi 116

Theorem 1.3. Assume that (Q), (H,), (H»), (H3) and the following conditions are satisfied:
(H)) there exist positive constants b, R such that K(t,x) < b|x|" Vt € R, x| < R;

(Hs) there exist constants T € |1, v[, [ € R} U {400}, to € R and r > 0 such that

Wi,
(@, x) =1 uniformlyint €ty —r,to +r|.

1
|x]—0 |x|’
Then system (D'V) possesses infinitely many pairs of nontrivial homoclinic solutions.

Theorem 1.4. Assume that (Q), (H,), (H)), (H,), (Hs) and the following condition are
satisfied:
(H’S) there exist constants ty € R and r > 0 such that
W(t, x)
Ix|=0 |x|¥

= +o00 uniformlyint € |ty —r,tg + r|.

Then system (D'V) possesses infinitely many pairs of nontrivial homoclinic solutions.

Remark 1.1. If Q(¢) = f(f q(s)ds — 400 as |t| — oo, an homoclinic solution of (D V)
is called a fast homoclinic solution.

Remark 1.2. In assumptions (H,)-(Hs), (H)) and (HY), the nonlinearity VV does not
verify any growth constraints, so the energy functional associated to (V) is continuous
but neither continuously differentiable nor does it satisfy the Palais—Smale condition as
we saw above.

2. Preliminaries

In order to prove our main results, we recall some definitions and basic results. Let X be
a Banach space and X’ its dual space. The weak convergence in X is denoted by “—”.
Let J be a functional defined on X . Then J is said to be weakly sequentially lower semi-
continuous if liminf, o J(4,) > J(u) for any u € X and (u,) C X satisfying u,, — u.

Let J be a continuous functional defined on X and let E be a dense subspace of X;

we say that J is E-differentiable if
(a) for all u € X and v € E, the derivative of J at u in the direction v, denoted by
(J'(u), v), exists, that is,
J(u + sv) — J(u)
P ;

('), v) = lim

(b) the mapping J’ satisfies that
(i) v (J'(u),v)islinearin E forallu € X,

(ii) u + (J'(u), v) is continuous in X for all v € E, that is,

(J'(up),v) — (J'(u),v) asu, —-u inX.
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A point u € X is said to be a critical point of J if |J'(u)| = 0, where
|" ()| = sup{(J'(u),v)/v € E, |Jv| = 1}

and || . || denotes the norm in X.
Now we are in position to recall a variant of Clark’s Theorem due to [6].

Lemma 2.1. Let X be a separable and reflexive Banach space with norm || .|| and let E
be a dense subspace of X. Assume that J is a continuous functional defined on X which
is E-differentiable. Suppose that J satisfies the following conditions:

(Ay) J is an even functional, i.e., J(—u) = J(u) for every u € X, and it is bounded
from below;

(Ay) ifueX, (uy) C X, |J (up)| = 0and u, — uasn — oo, then |J'(u)| = 0;
(A3) J is weakly sequentially lower semicontinuous;
(A4) the set {u € X/J(u) < J(0)} is bounded in X ;

(As) for every positive integer k, there exist a k-dimensional subspace Xy of X and
Pk > 0 such that SUPx, s, J < J(0), where S, = {u € X/|u| = p}.

Then J has infinitely many pairs of critical points (£uy)renN satisfying
J(tug) < J0), up #0fork e N and up — 0ask — oo.

Remark 2.1. Assumption (A,) can be deduced from the following assumption:

(A) ifu € X, (up) C X andu, — u in X asn — oo, then
(J'(up),v) — (J'(u),v) VYv€eE.
Therefore, the result of Lemma 2.1 is true if assumption (A») is replaced by (A)).

In the following, we shall use L2Q (R) to denote the Hilbert space of measurable func-

tions from R into RY under the inner product

(”»U>L§_, =/ReQ(’)u(t).v(t)dt

1

2

lull2 = ( / eQ"’|u(t>|2dr) .
Q R

Similarly, LSQ (R) (2 < s < 00) denotes the Banach space of functions on R with values

1
Il = ( [ @Ot ar)

and L%"(R) denotes the Banach space of functions on R with values in RY under the
norm

and the induced norm

in RY under the norm

Julleg = esssupte = u()l/1 € R}.



M. Timoumi 118

Let
H)R.RY) = {u € Ly (R)/1t € LH(R)}.

Then H é (R) equipped with the following inner product and norm is a Hilbert space:

(u,v) =/eQ(’)[u(t)-i;(z)+u(t)-v(t)]dt, u,v € Hy(R),
R
ull = (w2, u e Hy(R).

Itis well known that H é (R) is continuously embedded into LSQ (R, RN ) forall2 <s < o0,
and then there exists a constant 1y > 0 such that

lullzs, < nsllull - Yu € Hp(R).

3. Proof of theorems

Consider the functional J associated with equation (V) defined on the space X =
H j(R), introduced in Section 2, by

J(u) = %fReQ(’)m(z)Pdt+/ReQ<’>K(z,u(z))dz—/ReQ(’)W(z,u(r))dz.

Let E = D(R) be the space of indefinitely differentiable functions from R into RY with
compact support. Then J is E-differentiable and

(J' (), v) =/ eQ(’)u(t)-i)(t)dt+/ eCOVK@, u())-v()dt
R R
—/ eQ(’)VW(t,u(t)) -v(t)dt YueX,veE.
R
Step 1. J iseven. If o = 1, one gets

1
J () > -[ eQ(’)|12(t)|2dt+a/ eQ(t)lu(t)|”dt—||u||Zoo/ e2Dq(r)dt
2 R R R

1 2—v
> —/ eQ(f>|u(z)|2dz+a(Vm°) ||u||”_2/ 2Oy ()2 dt
2 Jr Noo R
Moo )" a/ 0]
——==) |lu e2Wd@)dt
(Jo) Ml | 2y
1 2—v o
= min{ . a(X0) Tl 2l - (J2=)” [ e2Odwantule. G
2 Noo Jmo/ Jr
Ifl<a< %,then% > 2 and we have

1
J () > -/ eQ(f>|u(z)|2dt+a/ 2Oy (r)|" dt
2 Jr R

- (/ eQ(’)d“(t)dt)a(/ QO |y (1) dz)“
R R
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1 2—v
> _/ eQ(f>|u(z)|2dz+a(”m°) ||u||”_2/ 2Oy (1) dr
2 Jr n R

oo

— Nl g nlee flull®

1
. 1 m 2—v _ a
> min{ > a(X22) 7 u)? 2}||u||2—(f ede“(t)dr) W ull”. (3:2)
Noo R el

For |ju| > (2a)ﬁ “:TO, inequalities (3.1) and (3.2) imply, for a positive constant ¢y,

mo 2—v
T za(XZ0) "l = el
o0

Therefore, J is coercive and bounded from below because o < v. Hence (A;) and (A,4)
are satisfied.

Step 2. Letu, — uin X and v € E. Then
[eQ(’)un(t)-i)(t)dt-i-/ 2Oy, (1) -v(t) dt
R R
—>f eQ(’)u(t)-i)(t)dt+/ 2Oty -v(r)dr. (3.3)
R R

Since v € D(R), by the Lebesgue convergence theorem,

- [ @Ouvwrdr— [ LOVV 0 vie)dr
R R (3.4)

_>—/ eQ(’)u(t)-v(t)dt—/ eCOVV(t,u,(t)) - v(t) dt.
R R

Combining (3.3) and (3.4) yields (J'(u,), v) — (J'(u), v). Therefore, condition (A))
holds for J.

Step 3. Moreover, if u,, — u in X, then by [18, Theorem 1.6], we have

1 1
liminf—/ QO (1)2dt > —/ eCOu(t)? dt.
R 2 Jr

n—oo

Applying Fatou’s lemma and using (H,) leads to

lim inf / eCOK(t, u, (1)) dt > / eCOK@,u(r)) dt,
R R

n—>oo

while (H,) implies

lim | eCOW(t,u,(r))dt z/eQ(’)W(t,u(t))dt.
R

n—>oo R

Hence J satisfies (A3). To complete the proof of our results, it remains to verify condi-
tion (As).
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3.1. Proof of Theorem 1.1

For any k € N, let X} be a k-dimensional subspace of O (R). Since all norms in a finite-
dimensional space are equivalent, then for any positive integer k, there exists a positive
constant yx such that

lul| < 7/k||u||LzE2 Yu € Xg.

By (Hy), for 0 < [y < I, there exists a constant Ry > 0 such that
V(t,x) = lo|x|* VYt eR, |x| < Ryp. 3.5)

For u € X with |lu|| < Ron— :,’omo we have

lulzs e
o < < < Ry. 3.6
Il = 8 < Tl < Ro (36

Combining (3.5) and (3.6) yields

J(u) = %/Reg(’)lu(tﬂzdt—/ReQ(t)V(t,u(t))dt

1
s4wW—m/ewmwm%n
2 R
1 1 mo\2—°
= Sl = to— (=) lull.
2 Vi Y/ Moo
Choosing
lo \ =%
pe = min Ry, ()77} 72
Vi Moo
we obtain

1/ lo\ 2% [ /m0)\2
sup J(u)f—i(—o)2 (ﬂ) <0, whereS, ={uecX:|ull =pk}.

2
ueXx NSy, Vi TNoo

Therefore, (As) is satisfied. According to Lemma 2.1, J possesses infinitely many pairs
of critical points +uy, k € N, satisfying

J(£ur) < J©), up #0forkeN and ur — Oask — oo.
Therefore, system (V) has infinitely many pairs of nontrivial homoclinic solutions.

3.2. Proof of Theorem 1.2

2
For any k € N, let Xy be as above and M > %" By assumption (H)), there exists a con-
stant R; > 0 such that

V(t,x) > M|x|> VteR, |x| <Ry. (3.7)
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Let u € Xj with |u|| < %Jmo = pg; we have ||u||L~ < Ry. Hence (3.7) yields, for
llull = pr.

J(u) = %/Reg(’)lu(zﬂzdt—/l;eQ(’)V(t,u(t))dt

1 1 M

< Slul® = Mulz, < Slul? = —llu)l?
2 o 2 Vi

=

(1 M>2 0
- — — < 0.
2 y]? Pk

Therefore, (As) is satisfied and we conclude as in the proof of Theorem 1.1 that system
(DV) has infinitely many pairs of nontrivial homoclinic solutions.

3.3. Proof of Theorem 1.3

For any k € N, let X be a k-dimensional subspace of D(]tg — r, ¢y + r[). As above, for
any positive integer k, there exists a positive constant y; such that

el = yellullz  Vu € X
By (Hs), for 0 < [y < I, there exists a constant 0 < Ry < R such that
W(t,x) > lo|x|" Vtelto—rto+r[, [x] <R;. (3.8)
For u € Xj with

Ju =min{R1,(2l—‘l’))”l’}%,

we have |[u||L~ < Rj. Therefore, (3.8) and (H)) imply

J(u) = %/ReQ(’)lu(t)th +/ReQ(’)K(t,u(t))dt—[I;eQ(’)W(t,u(t))dt

1
2

IA

||u||2+b/ReQ<'>|u(z)|de—IO/ReQ“Hu(z)de

1 oo \VTF v—1 T T
= gl +o (=) [ O ar—io [ @O ar
1 n V-1 e
< gt = o= b(J2==) ] [ 2o as
1 2 Noo \V7° v—1 1 mo\2-7 T
< lulP = o b (ZZ=)" "l ]y—g(“nw ) lul
1 lo 1 mo\2—7 z
< Sl = (=) ul.
2 2 Vi  Noo

Since 0 < t < 2, we deduce that there exists a positive constant pg small enough such that
J(u) < 0foru € X with |Ju|| = pg, which is (As). Therefore, system (D V) has infinitely
many pairs of nontrivial homoclinic solutions.
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3.4. Proof of Theorem 1.4

For any k € N, let X; be defined as in the proof of Theorem 1.3 and let M > b. By
assumption (H%), there exists a constant 0 < Rx < R such that

W(t.x) = M|x|" Vi €lio—r.to+r] [x| < Re. (3.9

Letu € X with

. M %v mo
hall = inf{ Re. (5= ) "} 4= = o
2Vk Noo

then we have |[u| L~ < Rg. Hence (3.9) and (H)) yield

J(u) = E/I;eQ(t)m(t)lzdt+/ReQ(’)K(t,u(t))dt—/l;eQ(t)W(z,u(t))dt

2
1
< -/ eCDi(n)? dt +b/ eQ(’)|u(t)|"dt—M/ LD dr
2 Jr R R
< Sl = 01 =b) [ 2O ar
R

-2

oo

1 M —b mo\ 2~V
= Sl = == (=)
Yk

M — b\ 2% (\/mg\2

(577 () <o
Vi Moo

Condition (As) is satisfied. As above, system (£ V) has infinitely many pairs of nontrivial

homoclinic solutions.
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