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Liouville-type theorems for double-phase problems
involving the Grushin operator

Quang Thanh Khuat

Abstract. In this paper, we are concerned with the double-phase problem involving the Grushin
operator in the whole space RN = RNt x RM2

—divg(IVoul?">Vgu + w(z)|Veu|?>Vgu) = f(2)lul" " u,

where Vg is the Grushin gradient, A is the Grushin operator,g > p > 2,r >g—land w, f €
LllOC (R¥) are two nonnegative functions satisfying some growth conditions at infinity. Our purpose
is to establish some Liouville-type theorems for stable weak solutions or for weak solutions which
are stable outside a compact set of the equation above.

1. Introduction and main results

The Liouville-type theorems, which are concerned with the nonexistence of nontrivial
solutions of PDEs, have been intensively developed in the past few decades since they
have emerged as a fundamental tool for many applications to the qualitative properties of
solutions of partial differential equations; see, e.g., [5,6, 16,27,28]. In this paper, we study
Liouville-type theorems for the double-phase problem involving the Grushin operator in
the whole space RY = RM x RMN2

—divg(|Veul??Veu + w(2)|Veul?>Veu) = f(2)lul""u, (1.1)

where Vg = (Vy, [x[YV)), Ag = divg oVg = Ay + [x[*Y Ay, > p>2,andr > g — 1.

In this paper, we assume that w, f € L} (R™) are two nonnegative functions verifying

the following condition: there exist Ry, C1, C2 > 0 and a, b € R such that
w(z) < Cilz|g 1.2)

and
f(2) = Cylz|% (1.3)
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for all |z|g > Ry. Here, z = (x, y) € RM x RM2 and

1
lzle = [IXPOFD + (v + Dy P00
Note that, there is a group of dilations {§; };~¢
8§ RN RN, 8,(2) =68,(x.y) = (tx, 17 T1y)

such that the operator Ag = divg oV = Ay + |x|*Y A, is §;-homogeneous of degree
two. This operator is elliptic when |x| # 0 and degenerates on {0} x R,

Let us first recall that, in the case y = 0, w = 0, p = 2, the left-hand side of (1.1)
becomes —Au. The most well-known Liouville-type result for nonlinear elliptic equa-
tions involving the Laplace operator was given in the celebrated article [16], in which the
authors proved that the Lane—-Emden equation

—Au=u" inRVN

has no positive solution if and only if r < % About the class of stable solutions of
the Lane—-Emden equation, Farina [13] obtained an optimal Liouville-type theorem; see
also [30].

Next, in the case y = 0, w = 0, p > 2, equation (1.1) becomes
—Apu = f@)|ul"'u inRY,

The reader is referred to [29] for the nonexistence result of positive solutions and to [7,9]
for the nonexistence result of stable solutions of this equation.

Considering (1.1) in the case y = 0, w > 0, ¢ > p > 2, the operator of the left-hand
side becomes the double-phase operator, and we have the equation

—div(|[Vu|P72Vu + w(2)|Vul?2Vu) = f()|u|"'u inRY. (1.4)

Following the ideas in the papers [9, 14], Phuong Le [24] established the nonexistence of

nontrivial stable solutions in WI;CH (R™) of (1.4) under the condition

N < mi {p(a0+r)+b(ao+p—1) (q—a)(ozo+r)+b(a0+q—l)}
< min :

r—p+1 ’ r—q+1

where

Qo -

2r—q+142r(r—q+1)
= P .

We now consider the general case y > 0. In recent years, there has been an increas-
ing interest in Liouville-type theorems for elliptic equations involving the operator Ag =
divg oVg = Ay + |x|27Ay; see, e.g., [11,12,23,31,33]. Currently, this operator is usu-
ally named Grushin operator. The operators of this kind were first introduced and studied
by Franchi and Lanconelli [15]. Recently, they were named by Kogoj and Lanconelli [19]
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A -Laplacians, under the additional assumption that the operators are homogeneous of
degree two with respect to a group of dilations; see also [1,10,20-22,25,31,32]. The oper-
ator considered by Grushin [17] is a very particular case of the A-Laplacians; Grushin
studied this operator by adding lower terms with complex coefficients; see also [3]. For
the equation
—Agu =u" inRY =RM xRN,

the Liouville-type theorem was proved by Monticelli [26] for nonnegative classical solu-
tions and by Yu [33] for nonnegative weak solutions. The optimal condition on the range

of the exponent is
0+2

< 9
0-2

where
O=Ni+@+1N; (1.5)

is called the homogeneous dimension of R" associated to the Grushin operator. The Liou-
ville results for the nonlinear elliptic equations involving p-Laplace-type Grushin operator

—divg (w(2)|Veu|P2Vgu) = f(z)gu) inRYN =RM xRN

was studied in [31], where g(u) = e* or g(u) = —u~?. However, to our best knowledge,
there has not any work treating the double-phase problem (1.1) involving the Grushin
operator. The purpose of this paper is to establish some nonexistence results of nontrivial
stable solutions of (1.1). Notice that double-phase differential operators and their cor-
responding energy functionals appear in nonlinear elasticity theory, strongly anisotropic
materials, Lavrentiev’s phenomenon, and so on; see, e.g., [2,4, 8, 18,34-36].

We next recall some notations which will be used in the sequel. Let & C RY be an
open domain, and let H : Q x [0, 00) — [0, 00) be the function (z,7) + t? + w(z)t9. Put

pr (1) =[9H(z, |u|>=/9<|u|l’+w(z)|u|4>

and
L7 (Q) = {u:Q — R | uis measurable and pg (1) < oo},

with the norm
. u
lullr = inf{z > 01 pr (%) = 1}.
T
Define
WEH(Q) = {u e L (Q) | |Veu| € L7 (Q)},
with the norm
lulli,zz = IIVoullg + llulla.

Denote by WOI’H () the closure of C!(€2) with respect to the || - ||1,# norm and
WA (Q) = {u:Q - R|up e W (Q)forall g € CH(Q)}.

In order to state our results, we need the following definitions.
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Definition 1.1. A functionu € Wl;C’H (R™) is said to be a weak solution of equation (1.1)
if £(z)|u|" € L}

L (@RM), and for all ¢ € C}(RY) we have
[ (Veul?™Vou + w@IVeul"*Veu) Voo = [ f@lulup. (1.6
RN RV
Moreover, u is called a finite energy solution if
/N (IVul? + w(z)|Vgul? + f(2)|ul"™") < .
R

Definition 1.2. We say that a weak solution u of (1.1)
* isstableifforall ¢ € C} (RY) we have

Lu(w)i= [ [IVeul”Vapl® + (p = DIVeul’*(Vau- oy’
+ /RN w(@)[|Veul??|Veel* + (g — 2)|Vou|?*(Veu - Vap)?]
—r/ FE g = 0, (L.7)
RN

s s stable outside a compact set K C RY if L, (¢) > 0 only holds for ¢ € C} (RN \ K),
* has Morse index equal to k > 1 if k is the maximal dimension of a subspace V C
CH(RY) such that L,(¢) < 0forall g € V \ {0}.

Notice that the stability condition (1.7) is nothing but the fact that the second variation
at u of the energy functional

_ [Voul? = w()|Veul?  f(2)u|*!
E(u)_/;w( I q o+l )

is nonnegative. Therefore, all the local minima of the functional are stable solutions
of (1.1). Besides, we also know that every finite Morse index solution is stable outside
a compact set. Indeed, there exist mq > 1 and Vy := Span{gy, ..., ¥m,} C CI(RY) such
that L, (¢) < 0 for any ¢ € V \ {0}. Therefore, L, (¢) > 0 for every ¢ € C}(RN \ K),
where K := 72, supp(¢;).

Our first result concerning the classification of stable weak solutions of (1.1) is as
follows.

Theorem 1.3. Letq > p > 2,r > q — 1. Suppose that w, [ € LIIOC(RN; [0, 00)) satisfy-
ing (1.2) and (1.3). Under the condition

plag+71)+blag+p—1) (g—a)(ao+71)+blag+qg—1)
r—p+1 ' r—q+1

L 2r—g+1+4+2/r(r—q+1)

Qo - q—l

0 < min{ }, (1.8)

where
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equation (1.1) has only the trivial stable weak solution. Here, the homogeneous dimension
Q is given in (1.5).

Next, we consider a special case of f and w in (1.1), i.e.,
—divg(|[Veu|?2Veu + 2|4 |Veu|T2Veu) = |z|%ju""'u  inRY = RN x RNz,
(1.9)

We next give some conditions ensuring the nonexistence of nontrivial finite energy solu-
tions of (1.9). Our second result is as follows.

Theorem 1.4. Letqg > p > 2,r > g — 1. Suppose that u is a finite energy solution of (1.9)
satisfying |Vou|P">Vgu + |2|%|Vou|?2Veu € WL RN, RY). If

loc
0+5b OQ—p O—q+a
r+1 ’

> max{ ,
then u must be trivial, i.e., u = 0.

p q

Under the same assumptions in Theorem 1.4, we will prove that any weak solution,
which is stable outside a compact set, is also a finite energy solution. Therefore, we obtain
the following theorem.

Theorem 1.5. Letg > p >2,r > q — 1. Suppose that u is a weak solution of (1.9) which is
stable outside a compact set and |Vgu|P2Vgu + Iz|& |Vou|?2Vgu € Wl;c’z(]RN, RM).

If

0+b {Q—p Q—q+a}
> max , ,

r+1 )4 q

then u must be trivial, i.e., u = 0.

In particular, our results generalize those in [24] from the Laplace operator to the
Grushin operator. Our results are also extensions of those in [31] to the double-phase
problem. Inspired by [11,24,31], our approach in this paper is also based on the energy
method and a Pohozaev identity involving the Grushin operator established below.

This paper is organized as follows. In Section 2, we prove Theorem 1.3. The proof of
Theorem 1.4 is given in Section 3. The last section is devoted to the proof of Theorem 1.5.

2. Proof of Theorem 1.3

We begin this section by fixing some notations. Let Q2 g = B1(0, R) x B»(0, R”T1), where
B1(0,R) C Rt and B,(0, R?*!)  R™ are the Euclidean balls.
First, we prove the following a priori estimate for stable weak solutions of (1.1).

Proposition 2.1. Let u be a stable weak solution of (1.1). Suppose that o« > 1, r >
2
@=D@ED” (i m > 1 so that

4a
min{(mq—p)(a+r) (mq—q)(a+r)}
a+p—1 = a+g-—1

> myq. 2.1



Q.T Khuat 242

Then, for all n € CX(RN; [0, 1]) and Vgn = 0 in QR,, there is a positive constant C
depending on p, q, r, o, m such that

[ (Vaul? ™ & w@) Voult e~ + f@)ul
R

pla+tr)
r—p+1

_atp-1 platr)
<c / £(2)" 5 V]
RN\Qg,

atr at+g—1 (a+r)
wC [ T v F.
RN\Qp

0

Proof. For each k € N, we define

1tz ¢, |t| <k,
kT, |t >k,

[t]%~ e, |t <k,
k=1t |t] > k.

ap(t) = { and br(t) = {

By direct calculations, we have

alt|* |t <k,

ket = k.

a—1
e, el <k,

ap(t) =193 ..
g {k;, 1] > k.

and by (1) = {

It follows that

2
a@? = 1he0), aer = ST p ),

lag () af (1)>™ + b ()b (1) ™ < Coslt|* T

(2.2)

forallt e Rand s > 2.

By density arguments, we observe that (1.6) holds for all ¢ € WOl RY). Moreover,
one may easily check that if u € WIOIC’H (RM), then ay (u), bx (1) € WI;QH (RN) for any
k € N. This implies that a;(u)y> € W,"# (RY) and by )y B € W"H (RY) for all
v e CLRYN),k e N,and B > q.

Let B> ¢,e € (0,1),and ¢ € CH(RY) satisfying 0 < ¢ < 1. Using

,H(

¢ = byt

as a test function in (1.6) gives us
[ IVaulPbi v + 5 [ 196ul2buw? " Vou - Vou
RN RN
+ [ w@Neub @t + 8 [ wE)Veul eyt Veu - oy
R

= [, by
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Applying Young’s inequality, we obtain
~ [ 0@ Veul" 2wy Vu - Vou
R
<8 [ 0@ out iy Vo]
4-1 =1 @=DB\ 757
< / {s(w(z)qq |VGu|q_lb,'c(u)qq v % )q !
RN
1 ,, l=a  B—q q
+ Ce(w ()7 b)) 7 v T (Vo)
—e [ wEVoulb
RN
L R A S e
R

In the same way, we have

=8 [ IVGul? ey Vou - Yoy

<o / Veul?b,a)y® + C., [ b (0|7 B, () =Py PP [V .
RN ]RN

Employing the two estimates above and (2.2), we get that
(=) [ (Foul” + () Voul*)bg y?
< [ S by
RN
+Co [ b1 Py Yy
+Co [ Wbl )y Ty
< [ FOu T byt + G [ ety ey
RN RN
+c€/ w(z) [y |V gy |7,
]RN
Applying Schwartz’s inequality for the stability condition (1.7), we obtain
(=1 [ IVeul"2¥eeP + g~ 1) [ wElVoul?IVael
RN RN

> r—=1_2
=r [ renr

243

(2.3)

2.4)
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for all ¢ € C} (RN). By density arguments, we have that (2.4) holds true for all ¢ €
WOI’H (R™). Next, using ¢ = ay (u)wg € WOI’H (RN as a test function in (2.4), we obtain

2

(=D /RN Voul”~2|ag )y = Vou + gakw)w?w

2

+q=1) [ wEIVeul2 a0 Veu + Santny T Vew

= [ @ .
RN
Applying the inequality
lz1 4+ z2|> < (1 + 8)|z1]? + Cs|z2|> forzy,zo € RN, § >0,

we arrive at

g G
<(p-1+3) [ WoulPawry? + A [ 1Voul? Zax?y? 2 Yoy
+(a=1+2) [ weIVauta iy’
4B [ w@)Voul2a @y Ve 3)
RN

In the case ¢ > 2, employing Young’s inequality, we get that

B, / W) Veul?2ap )y P2 Vo y
]RN

2q-2)  (@-2)B ) e
q

< [ 5 (0@ Woutr a0

2(2

+ (@i a?a 005 v o) |

= %/ w(Z)lVGMVIa;C(u)Zv/ﬂ 4 Cs/ w(Z)Iak(u)IqaL(u)Z_qufﬂ_q|VG1/,|q.
RN RN

We see that this inequality is also true in the case ¢ = 2. By the same argument, we have
A [ ol Za v (Vo u P
RN

€ ’ ’ _ _
<5 [ Veula@rv? + ¢, [l ar rvbrvey .
RN RN
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Putting these two estimates back into (2.5) gives
[ SO ey
RN
<=1+ [ Voulawv? + @ -1+9) [ 0@ Voulta,ay?
RN RN
+C [ lanlPa 2Py Yoy
R
o [ wElaola wp 1A ey,
R
Using the fact that ¢ > p and (2.2), we derive
[ Ol g
RN
<@-1+0) [ (Voul” + v Voulta 0y
R

+C / =Py B P Gy P 4 C. / w (@) P Vg |9
RN RN

- (g—1+e¢)(a+ 1)
- 4o

+C / [Py PP Vg y | 4 C, / W)= Y Ve y . (2.6)
RN RN
Combining (2.3) and (2.6), we obtain
r / FE ™ ag )y
RN

_g—1+e@+1)?
4a(l —¢)

+Ce / lu|* TP Y PP |V |P + Ce f w(@)|ul[*T Yy P vy .
RN RN

[ 0¥eul? + wIVaul )b v

L S by

Using (2.2) gives us

[ T oy

_ (g—1+¢)(a+ 1)?
4a(l —¢)

+C / =Py PV y [P + C / ()|l P Ty,
RN RN

f POl ag )y ?
]RN

Therefore,
Do [ fl
RN

¢, / =Py PGy P 4 . / wE@) [ Y PV,
RN RN
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where
(g—1+e)(a+ 1)
Dg:=r—
4a(l —¢)
Since lim,_,o+ D, =1 — W > 0, we can fix some ¢ sufficiently close to zero

such that D, > 0. We also fix 8 = ¢. Hence,
r—1 2.4 < C a+p—1_,4q9—p \V/ D
F@ " arm) y? < |ua] vIP Ve y|
RN RN
+C [ @l Vel
RN
Combining this with (2.3) and using (2.2), we can also bound gradient terms as follows:
[ (Veul? + w@Veulbaou? + [ Felul axw?ye
RN RN
<C [ eyl 4 C [ w@ e Vey.
RN RN
Using Fatou’s lemma when letting k — oo, we get that
[ (VoulP ™+ w(e) Vutthule™ + £:)juf*7)
R
<C [ eyl € [ w@ne Vel @)
RN RN
Next, take ¢ = n™ in (2.7) and apply the Young inequality to find that
[N (IVoulP[ul*™" + w(@)|Veul?[ul*" + f(2)[ul*F")n?"
R

EC/ |u|a+p—1|an|anq—P+C/ w(Z)|u|a+q—1|VGn|qnq(m_1)
RN\QRO RN\QRO

a+p—1

! - _p\atr _atpl Pt
< f L(F@SFT oty )y o (fe) 7 (Van))
RN\QRg, 4

1 ato- e
+/ {-(f(z):ﬁrl|u|a+q—lnq(m—1)) +q-1
RV\Qg, |4

+C(w(z) ()~ Vel J“}

! _atp-l pletr)
= —/ f(Z)|u|¢x+rnqm + C/ f(2) rfpp+1 |VG77|f*1’“
4 JrM\ax, RN\Qg,
! q(a+r)

a+r o -1
3 fog, SO [ e ) v
RN\QRO RN\QRO
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Therefore,
/ (VulP ™™+ w (@) Vaul|ul* ™ + f @l )"
R
_atp—1 pla+r)
sc[ s wen#
]RN\SZRO
a+r _atg—l q(a+r)
+ C / U)(Z) r—q+1 f(Z) r—q+1 |VGTI| r—q+1 |
RY Ry
The proof is complete. ]

Let R > 0, Qor = B1(0,2R) x B5(0,2R? 1), where
B1(0,2R) c RM',  B,(0,2R"*') c RN

are the Euclidean balls. Define

n,R(X) = 7)1(%), n2,r(y) = le(R|fJ|rl),

where 71,72 € C2°([0,+00)),0 < 01,2 < 1,

() = {1 in [0, 1],

0 in[2, +00),

and for some constant C > 0 and 11, g, 12, r satisfy

C
IVanrl = 5 IVymarl = 27

Lemma 2.2. The following assertions hold true.

(i)  There exists a constant C > 0 independent of R such that
C
[Vanr| < z Vz € Qar,

where nr(z) = n1,rR(x)N2,R(Y).
(ii)  There exists a constant C > 0 independent of R such that if z € Q,R, then

|zl < CR.
(iii) Ifz & QRp, then|z|g > R.
Proof. Proof of (i). We have

Venr = (Vxnr. 1x|"Vynr) = 02, Vxn1,r. 1X1" 11,8 Vyn2,R)-
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For any z = (x, y) € Q,g, we have x € B;(0,2R). This implies
|x] <2R.

Combining this with the hypothesis about functions 1; g, i = 1, 2, there exists a constant
C > 0 independent of R such that

C
IVenrl?> = U%,R|Vx’71,R|2 + |x|2y77%,R|Vy772,R|2 < R Vz € QspR.

Therefore, there is a constant C > 0 independent of R such that
C
[Venr| < E’VZ € Qap.

Proof of (ii). For any z = (x, y) € Qag, we have x € B1(0,2R), y € B»(0,2RY*1). This
implies
|x| <2R and |y| <2R"*!.

Then, we get

1
Zle = [P + (v + 12y PO
< [(2R)2(y+1) +(y+ 1)2(2RV+1)2]m_
By direct calculation, we obtain
lzlc < CR,
where C is a positive constant independent of R.

Proof of (iii). For any z = (x, y) ¢ Qg, we have x ¢ B;(0, R), y ¢ B,>(0, R¥™1). This
implies
|x| >R and |y|> R"*!.
We deduce that )
Zle > [R2OFD + (v + D2 (R 2050,
By direct calculation, we have |z|g > R. |
Proof Theorem 1.3. Observe that
_ 2
_@=De+D
4o

are equivalent to 1 < o < . Besides, it follows from the assumptionr > g — 1> p — 1
that there is m > 1 satisfying (2.1). Clearly, the standard cut-off function ng is chosen as
in Lemma 2.2 satisfying ng € C/ (RM),0 < ng < 1inRY and

a>1 and r

NR =1 in QR,
nr =0 in RV \ Qzp,
IVonrl < §  inQag\ Qr,
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where R > Ry. For all R > Ry, applying the Proposition 2.1 with « € [, &) and the
function ng as in Lemma 2.2, there is a constant C independent of R such that

/ (IVoulPlul* + w(z) [ Vould " + £()ul**)
Qr

pla+r)

atp—1
<c / £ P Vg P
Qr\QR

q(a+r)

atr atqg—1
e / w(z) P f(2) T [Veng| T
Q2r\QR

Since |z|g > R > Ry, Yz ¢ Qr, and using the hypothesis about w(z), f(z), nr, we
obtain

/Q (IVoulP el + w()|Vould ™" + £()ul**)
R

b(a+p—1) a(e+r) b(a+g—1)
- platr) - qlatr)
r—p+1 i ——— r—q+1 r—q+1 —
sc/ l2lg T R +c/ EE R
QZR\QR S—ZZR\QR

Combining this with |z|g > R, Vz ¢ Qg and |z|g < CR, Vz € Q,g, we have

[ (VoulP = + w) Voul ™ + f@f) < R 28)
QR
where
. {p(a+r)+b(a+p—1) g—a)a+r)+bla+qg—1)
f = Q —min , .
r—p+1 r—q-+1

By assumption (1.8), we may choose « sufficiently close to g such that 6 < 0. Then, by
letting R — oo in (2.8), we get the conclusion of the theorem. ]

3. Proof of Theorem 1.4
We begin this section with the following Pohozaev-type identity involving the Grushin
operator.

Proposition 3.1. Suppose that u is a finite energy solution of equation (1.9) and

\Voul?2Veu + |z|%|Veu|72Veu € WA RN RY).

loc

Then, we have

— - b
M/ IVGu|p + w/ |Z|‘6|VGu|q — Q_+/ |Z|g|u|r+1,
P RN q RN r+1 RN
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Proof. By density arguments and the regularity provided, we may use vg = nrz* - Vgu

as a test function in (1.6), where ng is chosen as in Lemma 2.2 and z* = (x, "'x—+|1,1y) we
have

/N (IVou|?=>Vgu - Vgvg + |z|&|Veul? >Veu - Vgug) = /N |z|% |u|" " tuvg.
R R

3.1
Using the divergence theorem, we obtain
/ |VoulP2Vgu - Vg
RN
= /N |Veu|?~*(Veu - Venr)(z* - Vou)
R
Veul?
+[ |VGM|pﬂR+[ nrz* - Vg Veul?
RN RN p
= /N IVeu|?~>(Vgu - Venr)(z* - Vou)
R
|Vgul? |Vgul?
+/ |VGu|p’7R_/ VGTIR~Z*——/ nrR(Vg - z%)———
RN RN p RN p
= /N IVoul?"*(Veu - Vgngr)(z* - Vou)
R
* VGu 4 VGu 4
+/ |VGM|”'7R—/ Venr -z !—Q/ YIR!-
RN RN p RN p
It follows from [y |VGu|? < oo and the dominated convergence theorem that
lim |Vou|?2Vgu - Vgvg = —M/ |Voul?. (3.2)
R—o0 JRN p RN

Similarly,
|, 2161Veulr2Veu - Vove
R
N /11;1\/ 12|& | Veul?2(Vou - Vgnr)(z* - Vou)

Veul?
+ [ iVeul+ [ |z|%nRz*-vG(' ')
RN RN q

- / 214 1Voul 2 (Veu - Vong) (=" - Vou) + / 2[4 Vul“nz
RN RN

|[Voul? |[Voul? [Voul?
—a/ 121% 7R —/ |z|sznR-z*——Q/ 2] S
RN q RN q RN q

It follows from [ |2|4|VGu|? < oo and the dominated convergence theorem that

fim [ 1215 Voul 2Vou - Vove =~ 222 [ afg veur. 63
R—o0 JRN q RN
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Now, we take vg = ngz™ - Vgu on the right-hand side of (3.1) and employing the diver-
gence theorem to find

[ ettt

= [ el lul ungz - Vo

=/ 2[Rz - Ve Mias
RN G r +1

b |u|r+l b |u|r+1
= — \V/ .z — \V/ L 7*
/RN c(zlg) - z"nr PR /RN IzlgVenr -z P

_/ el (V6 -9
RN r +1

p o ult! b |r+] |r+1
=—b/RN z|% & —/RN |z|GVGnR-z —Q/ |z IGnR

r+1

Since fR Nz g|u|' *1 < 00, we deduce from the dominated convergence theorem that

b
Jim [ el e = =250 [ el (3.4
r+1
The conclusion of the proposition follows from (3.1)—(3.4). ]

Proof of Theorem 1.4. To prove Theorem 1.4, first, we prove the following identity:

/ |vcu|1’+|z|‘&|vcu|q:/ (212 fu .
RN RN

Indeed, using ¢ = unpg as a test function in (1.6), where ng is chosen as in Lemma 2.2,
we obtain

/ |VGu|p77R+/ |Veul?>uVgu - Vgng
RN RN
n / 121 [Voul“ng + / 1214 [Veul"uVeu - Vanr
RN RN
_ /RN 2 (8l g 3.5)

By means of Holder’s inequality, we have

/N |Voul?*uVgu - Vgngr
R

5/ Veul?|ul| Yozl
]RN

1 r—p+1

p—1
P r+1 __bp p(r+1) p(r+1)
5(/ |vGu|P) (/ |z|%|u|’+l) (/ |z|G'”“|anR|r—p+l) .
RN RN RN
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Using the hypothesis about nr and Lemma 2.2, we have

/RN |Voul?>uVgu - Vgnr

o T bp (r+1) Gy
p r pr+1 pr
<c( [ weur) (et ) ([ R
RN RN Qr\QRr
e T
Q(r—p+1) _ r+b+1 P r
< CR rGn i (/ |VGu|1’) (/ |z|l&|u|’+1)
RN RN

; iion 216 o 2-p Q(r—p+1) _ r4b+1
Using the condition <5 > =5, we see that PG rF1 < 0. Therefore, by

letting R — oo, we get that

lim |Vou|?"2uVgu - Vgng = 0. (3.6)

R—o0 JRN

In the same way, we have

[ e8I ¥eut uTou - Vo
R

5/ 121 Ve ult [u]| Ve nz|
]RN

q=1
< a|y q ? b r+1)"
< 1zIG | Vaul 1| lul
RN RN

r—q+1
”(’Jr_'_l]) _717‘1_'_1 q(r+1) \ ¢C+D
r—q r—q —
x /R'Z 1257 |Vgne| St

g—1
O(r—q+1)
< CR qr(ril) +§_rﬁﬁl (/ |Z|%|VGM|q) ! (/ |Z|Ié|u|r+l)r
RN RN

1

1

By gilb > Q-qta q+“ , there holds Q;r(ri'l")l) +7- 'fﬂrl < 0. Therefore, letting R — oo,
we get that
lim / 12|14 Veu|?*uVeu - Vgnr = 0. (3.7
R—>oc0 JRN

Combining (3.5)—(3.7) leads to

b
/ (Voul? + 2% Voul?) =/ 1218 fu .
RN RN

Substituting this identity into Proposition 3.1, we obtain

oO+b OQO-p / Q+b Q—q+a /
=7 _ 277 Veul? - 4\ Veuld = 0.
(r+1 P RN| Gu| * r+1 q RN |Z|G| Gu|

Since Qilb > max{%, %}, then it follows that u is constant and hence must be

Z€ro. ]
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4. Proof of Theorem 1.5

The following a priori estimate holds for weak solutions which are stable outside a com-
pact set.

Proposition 4.1. Let u be a weak solution of (1.1) which is stable outside a compact set
2
K C RN, Suppose thata > 1, r > %, and m > 1 verifying

min{ (mg—p)a+r) (mqg—q)(a+r)

) }zmq.
a+p—1 a+qg—1

Then, for all n € CL(RN \ (K U Qg,); [0, 1]) and Vgn = 0 in Qg,, there is a constant
C depending on p, q, r, o, m such that

/ (Vaul? ™! + w(@)| Veul?ul*™ + f(z)u|**7)y™
R

_at+p-—1 pla+r)
=C fz) =¥ V| r=rH
]RN\QRO

q(a+r)

+ C/ w(z)r q+1 f(Z) r— q+1 |VG7’|r q+T1 |
RN\QR,

The proof of Proposition 4.1 follows closely to that of Proposition 2.1, and so, it will
be omitted.

Proof of Theorem 1.5. Let u be a weak solution of (1.9) which is stable outside a compact
set K. We fix Ry > Rp sothat K C Qpg,.Forany R > R + 1, we consider g € CCI(RN)
such that 0 < £g < 1 in RY and

0 in Qg,,
ER = 1 in QR\QR1+1,
0 inRN\ Qr.
We may assume furthermore that |Vg&gr| < C in Qg,+1 \ Qg, and |Vgér| < % in QR \

Q R, where C is independent of R. Then, applying Proposition 4.1 with ¢ = 1, w(z) =
lzIG. f(2) = |Z|b ,and n = &g, we obtain

/R (IVoul? + |21% Voul + 2[5 [ul+1)er

_bp__ p(r+1)

= C/ |zl " [VGéR| =7+
RN\Qg,

a(r+1) __bg (r+1)
* C/ 12167 1zl VRl 7ot 4.1)
RN\Qp

0
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Using the hypothesis about £g, we have
L (Veul? + g Voutt + =)
S-21?\52131+1

< [ (¥oul” + 218 Taul? + 2l hl+)eg"
RN
‘We also obtain

_bp__ +1)
C/ 2" Vg rl 7
RN\Qg,

__bp pr+1) _bp p(r+1)
—c| ele™ IVaERlP S € [ el Vagal P
QR1+1\QR1 Q2R\QR
r— bP+1 G+1)
=G+ C zlg"” VG ER| =7t

Qr\QRr
(r+b+1)

< Co+ C R =1

Similarly,

a(r+1) __bg q(r+1) q(r+b+1)—a(r+1)
C/ 12157 216" [Vakr| i < Co + RO
N
Ro

Substituting these three estimates into (4.1), we have

/ (IVoul? + 121§ | Vaul? + |z|% lu|"*1)
QR\QR,+1

Q_p(r+b+1) o- q(r+b+1)—a(r+1)
<Cp+ CiR* m—rt1T 4+ (R T=q+1 (4.2)

The condition

0+b {Q—p Q—q+a}

> max ,

r+1 p q

implies that
- p(r+b+1)
r—p+1

and

0 < q(r—i—b—i—l)—a(r—i—l)'
r—q+1
Therefore, letting R — oo in (4.2), we receive

\Voul? + |z|%|Voul? + |25 [u|"*! e LYRY).

This and Theorem 1.4 complete the proof. ]
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