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An infinite dimensional version of the Kronecker index
and its relation with the Leray—Schauder degree

Pierluigi Benevieri, Alessandro Calamai, and Maria Patrizia Pera

Abstract. Let f be a compact vector field of class C! on a real Hilbert space H. Denote by B the
open unit ball of H and by S = 0B the unit sphere. Given a point ¢ ¢ f(S), consider the self-map
of S defined by

v T =0
T = 5 =g

If H is finite dimensional, then S is an orientable, connected, compact differentiable manifold.
Therefore, the Brouwer degree, degBr(fg ) is well defined, no matter what orientation of S is chosen,

pES.

assuming it is the same for S as domain and codomain of fg. This degree may be considered as a

modern reformulation of the Kronecker index of the map fg . Let degg,(f. B, ¢) denote the Brouwer
degree of f on B with target q. It is known that one has the equality

degg, (f.B. q) = degp, (f).

Our purpose is an extension of this formula to the infinite dimensional context. Namely, we will
prove that
degys(f. B, q) = degy(f)).

where deg; g(-) denotes the Leray—Schauder degree and degy(:) is the degree earlier introduced by
M. Furi and the first author, which extends, to the infinite dimensional case, the Brouwer degree and
the Kronecker index. In other words, here, we extend to the Leray—Schauder degree the boundary
dependence property which holds for the Brouwer degree in the finite dimensional context.

1. Introduction

The purpose of this paper is to prove that the boundary dependence property, which is
known to hold for the Brouwer degree in the finite dimensional context, can be extended to
the Leray—Schauder degree as well. To illustrate our results, we need to fix some notation
that will be used throughout the paper.

Let H be a real Hilbert space. Denote by B the open unit ball of H and by S the unit
sphere dB of H. Let {: H — H be a compact vector field; namely, a map of the type I —k,
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where [ is the identity on H and k is a compact map, meaning that k is continuous and
sends bounded sets into relatively compact sets. Since { is a compact perturbation of the
identity, which is a proper map on bounded and closed subsets of H, { inherits the same
property. As a consequence, it maps bounded and closed sets onto bounded and closed
sets. By r we mean the radial retraction of H \ {0} onto S. Namely, r is the smooth map
p — p/lpll. The boundary map of T is the restriction f|s: S — H of { to the boundary
S of B.

If 0 ¢ §(S), then the Leray—Schauder degree of the triple (f, B, 0), respectively, the
Brouwer degree when H is finite dimensional, are well defined. These degrees will be
denoted, respectively, by deg; ¢ and degg,. Moreover, if 0 ¢ f(S), it makes sense to con-
sider the boundary self-map §%:S — S of { given by the composition 7 o f|s.

Observe first that if 0 ¢ §(S) and H is finite dimensional, then both the Brouwer
degrees degg, (f, B, 0) and degBr(fa) are defined; the second one being the degree for
maps between oriented, compact, connected, real manifolds of the same finite dimension
(see, e.g., [12, 17]). As usual, when H is finite dimensional, one assumes that the two
orientations of S as domain and codomain of | are the same.

As pointed out in [23], there are not so many references devoted to a thorough exposi-
tion of the Brouwer degree on manifolds, whereas the winding number in two dimensions
is a well-known tool in nonlinear analysis. Actually, there is a deep link between these
concepts. In fact, we recall that, when H = R?, the integer degBr(fa) is called the wind-
ing number (around the origin) of the closed curve f|s:S — R2. For this reason, it is
folklore to still call degBr(fa) the winding number (around the origin) of f|s, whenever
2 <dimH < oo and 0 ¢ §(S). The degree degBr(fa) may be thought of as a modern
reformulation of the index of the boundary map f|s introduced by L. Kronecker in [14].
The Kronecker index, when different from zero, ensures the existence of at least one zero
of the map f in B (see, for example, [18]; consider also [10] for details and interesting
historical notes).

An important result (see, for example, [8]) implies that if H is finite dimensional and
0 ¢ 7(S), then one gets the following equality between the Brouwer degree of f in B with
target zero and the winding number around the origin of f|s:

degp, (f,B,0) = degy, (f?). (1.1)

As far as we know, in the literature there is not an infinite dimensional version of this
formula, also called the boundary dependence property of the Brouwer degree. In fact,
when H is infinite dimensional and 0 ¢ {(S), only the degree of the triple (f, B, 0) makes
sense, and this is the Leray—Schauder degree deg; (f, B, 0). On the other hand, for maps
between differentiable manifolds, the Leray—Schauder degree is not defined.

Here, we want to fill this gap by showing that, whatever is the dimension of H, if f isa
compact vector field of class C! such that 0 ¢ f(S), then one gets an extension of equality
(1.1). Namely, in our main result, Theorem 4.4 below, we will prove that

deg; (F, B, 0) = degy(f?), (1.2)
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where deg,; is the degree introduced in [4] for Fredholm maps of index zero between
differentiable manifolds, hereafter called bf-degree to distinguish it from other classical
degrees such as the already mentioned degg, and deg; . The definition and properties of
the bf-degree can be found in the recent paper [3], and are recalled in Section 2.6 below.
In Section 2, we will also show that the definition of the bf-degree is based on a notion
of topological orientation for nonlinear Fredholm maps of index zero between finite or
infinite dimensional manifolds (see [2, 23] for additional details). As we will see, (1.2)
holds if 2 is oriented by a special orientation that we will call canonical.

The bf-degree coincides with the Brouwer degree for C! maps between finite dimen-
sional oriented manifolds; in the infinite dimensional case and for C! compact vector
fields, it coincides with the Leray—Schauder degree. Therefore, equality (1.1) can be writ-
ten, just using the bf-degree, as

deg,o(f. B, 0) = degy (), (1.3)

which holds with a suitable orientation of f on B. In other words, formulas (1.2) and (1.3)
are equivalent since deg,((f, B, 0) = deg; (f, B, 0), where f has a special orientation that
we will call standard (see Section 4). As we already pointed out, formulas (1.2) and (1.3)
provide an extension to the Leray—Schauder degree and to the bf-degree of the boundary
dependence property of the Brouwer degree.

Many authors proposed a definition of an integer-valued degree for Fredholm maps
(see, e.g., [1, 19, 23]). Here, we mention the works of Fitzpatrick, Pejsachowicz, and
Rabier, who defined in [11] a notion of degree for C 2 Fredholm maps between real Banach
manifolds, extended to the C! case in [20]. The degree theory in [11,20] is based on a
different notion of orientation. Instead, here we follow the simpler concept of orienta-
tion introduced by M. Furi and the first author in [4], which plays a crucial role in our
arguments.

As a final remark, we observe that equality (1.2) implies the following easily compre-
hensible extension of the classical intermediate value theorem (cf. [3]): If the intersection
between T (S) and a half-line with extreme q ¢ T(S) is transversal and is the image (under
1) of an odd number of points of S, then any value of the connected component of H \ {(S)
containing q is assumed by ¥ in B. In particular, such a component is bounded, since so

is T(B).

2. Preliminaries

In this section, we gather some notation and recall some preliminary notions that we will
need later. In particular, we summarize the main concepts related to the degree introduced
in [4], hereafter called bf-degree as pointed out in the Introduction (see [2, 3,5, 6] for
additional details). A special attention is devoted to the concept of topological orientation
for Fredholm maps of index zero between finite or infinite dimensional real differentiable
manifolds. Concept that, throughout the paper, we will call top-orientation, in order to
avoid misunderstanding with the classical orientation of finite dimensional differentiable
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manifolds, as well as with the algebraic orientation for Fredholm linear operators of index
zero introduced in [4], here called al g-orientation.

2.1. Notation and recalls

Let H and K be two real Hilbert spaces. Denote by £(H, K) the Banach space of the
bounded linear operators from H into K, endowed with the usual operator norm, and, for
simplicity, let £ (H) stand for £(H, H). Let Iso(HH, K) be the open subset of &£ (H, K) of
the invertible operators; let GL(H) stand for Iso(H, H).

The following fact regarding finite dimensional Hilbert spaces belongs to the folklore.

Remark 2.1 (Canonical determinant). Assume that H and K have the same finite dimen-
sion, and let L € £(H, K) be given. If H and K are oriented, then the determinant of L,
det L, is canonically well defined; meaning that it does not depend on the choice of two
positively oriented orthonormal bases, one of H and one of K. Moreover, in the special
case when L € £(H), then, no matter whether or not H is oriented, det L is as well canon-
ically well defined, that is, it does not depend on the chosen basis of H, provided it is the
same for H as domain and codomain.

We recall that an operator L € £(H, K) is said to be Fredholm (see, e.g., [22]) if both
its kernel, Ker L, and its cokernel, coKer L = K/L(H), are finite dimensional. In this
case, its index is the integer

ind L = dim(Ker L) — dim(coKer L).

Note that if L € £(H, K) is invertible, then it is Fredholm of index zero. Moreover,
any operator in £(R¥, R?) is Fredholm of index k — s.

The subset of £(H, K) of the Fredholm operators will be denoted by ®(H, K). In
particular, given n € Z, by @, (H, K) we denote the set

{L € ®(H,K) :ind L = n}

The symbols ®(H) and &, (H), respectively, stand for ®(H, H) and &, (H, H).

Recall that a continuous map between metrizable spaces is said to be proper if the
preimage of any compact set is a compact set. Note that proper maps are closed, meaning
that the image of any closed set is a closed set.

Proposition 2.2. Here are some important properties of the Fredholm operators:

(1) if L € ®(H, K), then the image of L is closed in K;

(2) the composition of Fredholm operators is Fredholm and its index is the sum of the
indices of the composite operators;

(3) if L € ®(H, K), then L is proper on any bounded and closed subset of H;
4) foranyn € Z, the set ®,,(H, K) is open in £(H, K);
(5) if L € ,(H,K) and K € £(H,K) is compact, then L + K € &, (H, K).
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It is worth noticing the following useful consequence of property (2).

e If L € ®,(H,K) and k € N, then the restriction of L to a k-codimensional closed
subspace of H is Fredholm of index n — k. Analogously, if K C K contains the image
L and has codimension k in K, then the operator L, thought as acting from H to K,
has index n + k.

Let f: W — K be a C! map defined on an open subset of H. Recall that f is said
to be Fredholm of index n € Z if, for all p € W, the Fréchet differential df, of f at p
belongs to @, (H, K). In the sequel, we will say that f is a ®,-map.

Throughout the paper, by a manifold, for short, we will mean a smooth, boundaryless
differentiable manifold embedded in a real Hilbert space. Note that, consequently, any
manifold has an induced Riemannian structure.

If M is a manifold embedded in H and p € M, the tangent space of M at p, denoted
by T, M, will be identified with a closed subspace of H. In fact, one may regard any
tangent vector p € T, M as the derivative y'(0) € H of a C! curve y: (—1,1) — M such
that

y(0) = p.
The following remark is a direct consequence of Remark 2.1.

Remark 2.3. If M and N are two oriented manifolds of the same finite dimension, and
f:M — N is C!, then, for any p € M, the determinant of the differential of df,,: T, M —
TrpyN

detdf),,

is well defined. Consequently, if &' = M, the determinant
detdf,,

where df,: Ty M — Tr(p)M, is well defined as well, no matter what orientation of M is
chosen, assuming it is the same for M as domain and codomain of f.

Similarly to the case of maps between Hilbert spaces, a C! map f: M — N between
two manifolds is Fredholm of index n (see [21]) if so is df,: Ty M — Ty N, for any
p € M. Such a map will be called a ®,-map (between manifolds).

As usual, given a map f: M — N, we will call, respectively, points and values the
elements in the domain M and the codomain N of f.

If f: M — N is C!, anelement p € M is said to be a regular point if the differential
dfp: TyM — TrpyN is surjective; otherwise, p is a critical point. An element g € N is
a critical value if its preimage f~!(g) contains at least one critical point; otherwise, ¢ is
a regular value.

The celebrated Sard’s lemma (see, e.g., [17]) implies that if M and N have the same
finite dimension and f is C 1 then the set of regular values is dense in N. Thus, by a
finite dimensional reduction argument, one can show that the same assertion holds true
even when f is a proper ®o-map.
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2.2. Special linear operators and algebraic orientation

With the symbol ¥ (H., K), or simply by ¥ (H) when K = H, we mean the (not necessar-
ily closed) vector subspace of &£ (H, K) of the operators with finite dimensional image.

The symbol [ stands for the identity operator acting on any vector space.

Let L € L£(H) be such that I — L € ¥ (H). In this case, we will say that L is an
admissible operator (for the determinant). By A(H) we denote the affine subspace I —
F (H) of £(H) of the admissible operators. Note that if H is finite dimensional, then
A(H) = L(H). In [13], the determinant of an operator L € 4 (H) is defined as

det L = det Ly,

where L |y is the restriction of L (as domain and as codomain) to any finite dimensional
subspace H of H containing the image of / — L, with the convention that det L[y = 1 if
H = {0}.

Here are three fundamental properties of the determinant (see, for example, [7] for a
discussion about other properties).

Remark 2.4. If L, Ly, L, € A(H) and R € Iso(H, K), then
o detL # 0if and only if L is invertible,

e LyL; € A(H) and det(L, L) = det L, det L,

* RLR '€ A(K)and det(RLR™") = det L.

Let L € £(H) with H = X @ Y and dim X < +o0.

Remark 2.5. Suppose that, according to the above splitting of H, L can be represented

in a block matrix form as
L1t Lq2
L = ,
( 0 7 22)

where I5; is the identity on Y. Then, the image of / — L is a subset of X. Therefore,
applying the definition of determinant, one gets det L = det L;.

Let L € ®o(H, K) be given. In [4], an operator A € F (H, K) is called a corrector of
L if L + A € Iso(H, K). However, based on the opinion of some colleagues, we agree
that the word “corrector” is misleading, since an isomorphism need not to be corrected.
Therefore, now we use the more appropriate word companion. The fact that, given any
L € ®&y(H, K), no matter if it is invertible or not, the set €(L) of its companions is
nonempty is of fundamental importance for the construction of the bf-degree. Moreover,
it is crucial for us that any L € Iso(H, K) has a natural companion: the null operator of
£(H, K).

Definition 2.6 (Equivalence relation of companions). Given L € ®y(H, K), we say that
two companions A and B of L are L-equivalent if the determinant of the admissible
operator (L + B)"!(L + A) is positive. This is an equivalence relation on the set € (L)
of the companions of L with exactly two equivalence classes.
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Based on Definition 2.6 one gets the following concept (see also [3]).

Definition 2.7 (Algebraic orientation of a ®g-operator). An algebraic orientation of an
operator L € ®y(H, K), for short called alg-orientation, is one of the two equivalence
classes of € (L), denoted by €4 (L) and called the class of positive companions of the
alg-oriented operator L. The equivalence class €(L) \ €4 (L) is regarded as opposite to
€4 (L).

Three special algebraic orientations are in order.

Definition 2.8 (Natural alg-orientation of an isomorphism). Any L € Iso(H, K) admits
the natural alg-orientation: the one given by considering the null operator of &£ (H, K) as
a positive companion of L.

Definitions 2.9 and 2.10 below regard only the finite dimensional case.

Definition 2.9 (Associated alg-orientation of a linear operator). Let H and K have the
same finite dimension. Assume that they are oriented up to an inversion of both the orien-
tations (or, equivalently, assume that H x K is oriented). Then, any L € £(H, K) admits
the alg-orientation which is associated with the orientations of H and K: the one obtained
by considering as a positive companion of L any A € € (L) such that L + A is orientation
preserving.

A particular associated orientation is the following.

Definition 2.10 (Canonical alg-orientation of a linear endomorphism). Let H be finite
dimensional. Then, the orientation of H x H does not depend on the chosen orientation of
H. Consequently, given L € £(H), its associated alg-orientation is well defined, no matter
what is the orientation of H. Therefore, we will say that this alg-orientation is canonical.
Equivalently, a companion A of L defines the canonical alg-orientation if and only if the
canonical determinant of L 4 A is positive.

Recall that if H and K are oriented spaces with the same finite dimension, then the
(classical) sign of any L € £(H, K) is defined as follows (see, for example, [17]):
0 if L is not invertible,
sign L = { +1 if L is orientation preserving,

—1 if L is orientation reversing.

In particular, if L € £(H) and H is finite dimensional, then sign L is just the sign of
det L, which, in this case, is canonically well defined.

In the infinite dimensional case, in [4] the first author and M. Furi introduced the
following concept of sign of an alg-oriented operator, called bf-sign in [3] in order to
distinguish it from the classical notion.
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Definition 2.11 (bf-sign of an alg-oriented operator). Let L € ®y(H, K) be alg-oriented.
Its bf-sign is the integer

0 if L is not invertible,
sign,; L =  +1 if L is invertible and naturally alg-oriented,

—1 if L is invertible and not naturally alg-oriented.

The proof of the following remark is left to the reader (see also [3]).

Remark 2.12. Assume that H and K have the same finite dimension and are oriented, if
L € £(H, K) has the associated alg-orientation, then sign,; L = sign L. In particular, if
L € £(H), the same equality holds when L is canonically alg-oriented.

From Definitions 2.6, 2.8, and 2.11 one gets the following result (see [2] for details).

Proposition 2.13 (Sign test of an invertible operator). Let L € Iso(H, K) be alg-oriented.
Then, given any A € €4 (L), one has

sign,; L = sign(det(L ' (L + A))) = sign(det(I + L™'A)).

The following notion regards the composition of alg-oriented operators (see [2] for
details).

Definition 2.14 (Composition of alg-oriented operators). Let L:H; —H, and L,:H, —
H; be two alg-oriented ®g-operators. Their alg-oriented composition is the operator
L,L; endowed with the alg-orientation obtained by considering as a positive compan-
ion any operator of the type (L, + B)(Ly + A) — Ly L1, where A and B are positive
companions of L and L, respectively.

One can check that the alg-oriented composition is associative (see [2]).

2.3. Pre-orientation and topological orientation in the flat case

We now sketch the main points regarding the concepts of pre-orientation and topological
orientation (top-orientation for short) in the flat case: first, we consider continuous maps
from a topological space into ®¢(H, K), and then, we deal with ®g-maps f: W — K
defined on W C H open.

Let L € ®y(H, K) and A4 € f’(i) be given. Since Iso(H, K) is open in £(H, K),
L + A is invertible for all L sufficiently close to L. Thus, because of property (5) of
Proposition 2.2, L € ®¢(H, K) and, consequently, A € €(L). This argument leads us to
the following definition.

Definition 2.15 (Pre-oriented and top-oriented maps of ®y-operators in the flat case). Let
X be a topological space and I': X — ®(H, K) a continuous map. A pre-orientation
of T is a function w that to any x € X assigns an alg-orientation w(x) of I'(x). A pre-
orientation w of T is a topological orientation (top-orientation for short) provided it is
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continuous in the following sense: X € X and A € w(X) imply A € w(x) for all x in
a neighborhood of X. The map T is called rop-orientable if it admits a top-orientation,
and top-oriented if a top-orientation has been chosen. A subset 4 of ®q(H, K) is top-
orientable or top-oriented if so is the inclusion map A — @y (H, K).

Remark 2.16. In some circumstances, it could be useful to give the definition of top-
orientation as follows: A pre-orientation w of T is a top-orientation if for any X € X there
exists A € w(X) such that A € w(x) for all x in a neighborhood of x.

In [5] it is proved that the definition of top-orientation contained in the above remark
is equivalent to that given in Definition 2.15. This is a consequence of Lemma 2.17 below
(see [5, Lemma 3.1]).

Lemma 2.17. Let A, B € ¥ (H,K) be two L-equivalent companions of an operator L €
o (H, K). Then, there exist two neighborhoods Ug and Ug of A and B in ¥ (H, K) and
a neighborhood Vi, of L in ®y(H, K) such that A" and B’ are L'-equivalent for any
A eUy, B €U, L €Vp.

Clearly, if A C ®((H, K) is top-orientable, then so is any subset of 4, as well as any
continuous map into . In [5], by means of the theory of covering spaces, it is proved
that any simply connected and locally path connected subset of ®q(H, K) admits exactly
two top-orientations (recall that any simply connected topological space is assumed to be
path connected). Actually, it is shown that if X is a simply connected and locally path
connected topological space, then any continuous map I': X — ®¢(H, K) admits exactly
two top-orientations. Moreover, if X € X and « is any of the two algebraic orientations
of I'(X), then there exists a unique top-orientation w of I" such that w(X) = «. In other
words, the two top-orientations of I" are opposite each other (see also Definition 2.7).

Observe that the Leray—Schauder subset LS(H) of £(H) consisting of the compact
linear perturbations of the identity is convex. property (5) of Proposition 2.2 shows that
LS(H) consists of ®y-operators. Therefore, since it is simply connected and locally path
connected, the following definition makes sense.

Definition 2.18 (Standard top-orientation of the Leray—Schauder subset of &£ (IH)). The
unique top-orientation w of LS(H) whose alg-orientation w(/) of the identity is the nat-
ural one will be called standard. Given any L € LS(H), we will say that w(L) is the
standard alg-orientation of L.

We observe that, with the standard orientation, not all the invertible operators of
LS(H) receive the natural orientation. The simplest case is given by splitting

H=H; & (H;)",
in which H; has odd finite dimension, and considering L defined as
Lix+y)=—-x+y

(see also [7, Section 5]).
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A surprising result of N. Kuiper (see [15]) asserts that if the Hilbert space H is infinite
dimensional and separable, then the linear group GL(H) is contractible. In [5] it is shown
that, in this case, ®¢(H) is not top-orientable.

Let f: W — K be a Fredholm map of index zero defined on an open subset of H. Since
f is at least of class C'!, the following notions of pre-orientation and top-orientation of f
make sense.

Definition 2.19 (Pre-oriented and top-oriented ®¢-maps in the flat case). A pre-orien-
tation and a top-orientation of a ®g-map f: W — K are, respectively, a pre-orientation
and a top-orientation of the differential map df: W — ®y(H, K), according to Defini-
tion 2.15.

A special and important case of a ®-map defined on an open subset W of H is a C'!
compact vector field. Namely, a C! map f: W — H with the property thatk = I —fisa
compact map; that is, a map sending bounded sets into relatively compact sets. Recalling
that the differential of a C! compact map at a point of its domain is a compact linear
operator (see [9]), one gets that, for any p € W, df, belongs to the Leray—Schauder
subset LS(H). Therefore, the following definition makes sense.

Definition 2.20 (Standard top-orientation of a C'! compact vector field). Given an open
subset W of H and a C' compact vector field f on W, the standard top-orientation of
{ is the one inherited by df: W — LS(H) from the standard top-orientation of LS(H),
according to Definition 2.18.

Note that any operator L € ®(H, K) can also be regarded as a C! map from W = H
into K. Therefore, for L we have two different notions of orientation: the alg-orientation
(see Definition 2.7) and the top-orientation (see Definition 2.19). Since dL: H — K is the
constant map dL, = L for all p € H, we will tacitly assume that the two possible orien-
tations, if given, coincide. More precisely: if € (L) is the class of positive companions
for L, then it is as well for d L, for all p € H.

2.4. Pre-orientation and topological orientation in the non-flat case

The notions of pre-orientation and top-orientation for ®y-maps between open sets of real
Hilbert spaces can be extended to the case of maps between manifolds.

Definition 2.21 (Pre-oriented ®-maps between manifolds). A pre-orientation of a Fred-
holm map f: M — N of index zero between two manifolds is given by assigning, to any
p € M, an alg-orientation w(p) of dfp: Ty M — TrpyN.

A generalization of the above concept, which will be useful in the sequel, can be given
by considering a subset C of M.

Definition 2.22. In notation of Definition 2.21, given a subset C of M, a pre-orientation
of the pair (f, C) is a map that assigns to any p € C an alg-orientation of df,: T, M —
TrmN-
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In the notation of the above definitions, the notions of pre-orientation of f and of
(f, M) coincide. In this case, we use the simpler language of Definition 2.21.

Definition 2.23 (Pre-oriented composition of ®y-maps between manifolds). The pre-
oriented composition of two (or more) pre-oriented maps between manifolds is given by
assigning, at any point p of the domain of the composite map, the composition of the
alg-orientations (according to Definition 2.14) of the differentials in the chain of operators
representing the differential at p of the composite map.

A pre-orientation of a map between manifolds will be called a top-orientation if it is
continuous in the sense specified in the following definition. Before giving Definition 2.24,
we point out that from now on we will make the following tacit assumption.

* Any diffeomorphism between manifolds (such as charts and parametrizations) will be
tacitly assumed to be naturally pre-oriented by assigning the natural alg-orientation to
the differential at any point of its domain (recall Definition 2.8).

Definition 2.24 (Top-oriented ®-maps between manifolds). Let f: M — N be a Fred-
holm map of index zero between two manifolds modeled on H and K, respectively. A
pre-orientation of f is a top-orientation if it is continuous in the following sense: given
any two charts, ¥: V — K of & and ¢: U — H of M, such that f(U) C V, the pre-
oriented composition

Yo fop lipU)—>K

(in which ¢ and v are naturally pre-oriented) is a top-oriented map, according to Defini-
tion 2.19. The function f is said to be top-orientable if it admits a top-orientation, and
top-oriented if a top-orientation has been chosen.

It is useful (as we will see in Section A) to introduce the term “correlated” for different
pairs of “objects”.

Definition 2.25. According to Definition 2.24, we say that the following notions are cor-
related:

(1) the top-orientation of the restriction f|y of f to U with the top-orientation of

ki=vyofop™
(2) acompanion A, of df,, where p € U, with the companion A, pofd 13,/,( p) obtained
as

“Tp = dVy(p) Ap(dep) "
see the diagram

A
TyM —2= Ty N

d«)pl ld Vi (p) 2.1

H— K
AI’

The following remark is an immediate consequence of Definition 2.24.
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Remark 2.26. In the notation of Definitions 2.24 and 2.25, if o and & are two correlated
top-orientations of f|y and k, respectively, a companion A, of df, belongs to a(p) if
and only if the correlated companion A, belongs to &(p).

The following orientability result for a ®¢-map between manifolds includes the flat
case in which the first manifold is an open subset of H and the second one is K (see [5]).
Recall that a simply connected topological space is assumed to be path connected and
observe that any manifold is locally path connected.

Proposition 2.27 (Orientability criterion for ®y-maps between manifolds). Let f: M —
N be a Og-map between two manifolds, and assume that M is simply connected. Then,
given any p € M and one of the two alg-orientations « of df),, there exists one and only
one top-orientation o of f such that w(p) = «.

By the above proposition, we can say that f admits exactly two top-orientations, one
opposite to the other (see also Definition 2.7).

The special attributes, introduced above, regarding the alg-orientation of some linear
operators (see Definitions 2.8 and 2.9) can be adapted to some particular ®¢-maps between
manifolds just by considering their differential. In fact, we introduce the following three
notions (see also [3, Definition 3.20]).

Definition 2.28 (Three special top-orientations for ®¢-maps between manifolds). A spe-
cial top-orientation of a ®y-map between manifolds is the natural one, which makes sense
whenever f: M — N is a diffeomorphism (or, more generally, a local diffeomorphism):
given any p € M, according to Definition 2.8, one assigns the natural alg-orientation to
the differential df,.

Another special top-orientation, called associated, can be givento f: M — N provided
itis C! and the two manifolds have the same finite dimension and are oriented: according
to Definition 2.9, for any p € M one considers the associated alg-orientation of df),.

Finally, the associated top-orientation of a self-map f of a connected, orientable, finite
dimensional manifold M will also be called canonical. In fact, it does not depend on the
chosen orientation of M, provided it is the same for M as domain and codomain of f.

2.5. Families and homotopies of ®¢-maps between manifolds

Definition 2.24 can be extended in order to obtain a notion of top-orientation for homo-
topies or, more generally, for continuous families of Fredholm maps of index zero between
manifolds.

Let M and N be two given manifolds modeled on H and K, respectively, and let A
denote a simply connected and locally path connected topological space.

Definition 2.29 (Top-oriented families of ®y-maps between manifolds). A continuous
map H: M x A — N is a ®y-family if it is continuously differentiable with respect to the
first variable and any partial map ¥ = H (-, 1), A € A, is a ®g-map. A top-orientation of
H is a continuous family {w, } of top-orientations of all the ®y-maps of the family {J¢} };
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where “continuous” means that, given any open subset E of A and any two charts, ¢: U —
H of M and ¥: V — K of N, whenever (U x E) C V, the alg-oriented composition

AV ge(p.) d(H)p(dpp) ™" € Do (H,K),

in which (we recall) the isomorphisms (d¢,) ! and d¥ g p.4) are naturally alg-oriented,
depends continuously on (p, 1) € U x & according to Definition 2.15. The ®¢-family
J is said to be top-orientable if it admits a top-orientation, and top-oriented if a top-

orientation has been chosen.

One obtains an important particular ®,-family when the parameter space is the interval
[0, 1]. In this case, J is called a ®y-homotopy and the partial maps #H( and H; are said
to be ®y-homotopic.

The following is a crucial result concerning the transport of the top-orientation along
®y-homotopies. The proof can be found in [5] and is based on the theory of covering
spaces.

Proposition 2.30 (Transport of the top-orientations along ®,-homotopies). Assume that
for a given t € [0, 1] the partial map F; of a ©g-homotopy H from M to N has a top-
orientation «. Then, there exists one and only one top-orientation w of # such that the
(partial) top-orientation w; of #; coincides with o. In particular, if two maps from M to
N are ©y-homotopic, then they are both top-orientable or both not top-orientable.

From Proposition 2.30, we deduce that any C! self-map f: M — M which is ®-
homotopic to the identity is top-orientable. In fact, the identity, being a diffeomorphism,
admits the natural top-orientation (even when M is a non-orientable finite dimensional
manifold).

A simple example of a not top-orientable ®y-map is given by a constant map f from
a non-orientable compact manifold M into itself (see [5]). Observe that the fact that f is
not top-orientable agrees with the non-contractibility of M.

Again, by means of the theory of covering spaces, one obtains the following general-
ization of Proposition 2.30 to ®¢-families. The proof is similar to the one given in [5] for
®y-homotopies, therefore, it is omitted.

Proposition 2.31 (Spread of the top-orientations for families of ®¢-maps). Let J: M x
A — N be as in Definition 2.29. Assume that, for a given A € A, the partial map ¥, has
a top-orientation . Then, there exists one and only one top-orientation w of H such that
the partial top orientation w), coincides with o.

2.6. Topological degree for strictly admissible triples

The bf-degree introduced in [4] is an integer valued function, deg;(), defined on a wide
class of triples, called bf-admissible, and satisfying some important properties which, for
simplicity, we do not to mention here (see [3,5,6,23]). Instead, we will focus our attention
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only on a subclass of the bf-admissible triples, called strictly bf-admissible, which are
necessary, as well as sufficient, for the understanding and proof of some of our results.

We recall first the notion of bf-admissible triple: given a top-oriented ®o-map f: M —
N, an open (possibly empty) subset U of M, and a target value g € N , the triple (f, U, q)
is said to be bf-admissible if U N f~1(g) is compact.

Definition 2.32 (Strictly bf-admissible triple). Let U be an open subset of M, f:U — N
a continuous map which is ®¢ on U, and ¢ € N a target value. The triple (f, U, q) will
be called strictly bf-admissible if it satisfies the following properties:

(1) f is properon U,

(2) q ¢ fU),
(3) f is top-oriented on U.

With the notation and assumptions of Definition 2.32, observe that U is a manifold
and the compact set f~!(g) N U is contained in U. Therefore, the triple (f, U, q) is bf-
admissible and, consequently, the integer deg,( f, U, ¢) is well defined.

The following properties of the restriction of bf-degree to the class of the strictly bf-
admissible triples are in order.

* (Additivity) Let (f, U, q) be strictly bf-admissible. If Uy and U, are two disjoint open
subsets of U such that U N f~(q) € Uy U Us,, then

degye(f. U, q) = degy(f. U1, q) + degys(f. U2, q).

 (Homotopy invariance) Let U be an open subset of M, and 3:U x [0,1] - N a
proper homotopy. Assume that the restriction of # to U x [0, 1] is a top-oriented
®g-homotopy. If y: [0, 1] — N is a continuous path such that y(t) ¢ #;(0U) for all
t € [0, 1], then degy (H;, U, y(t)) does not depend on t € [0, 1].

» (Excision) If (f, U, q) is strictly bf-admissible and V is an open subset of U such that
Y g)NU C V, then

degy(f, U, q) = degy (/. V. q).

* (Computation formula) If (f, U, q) is strictly bf-admissible and q is a regular value
for f inU, then the set U N f~(q) is finite and

deg (£, U,q) = Z signy; dfp,
peUNS~Hg)

with the convention that the sum is zero if U N f~1(q) is empty.

* (Continuous dependence) Let f: M — N be a top-oriented ®o-map and U an open
subset of M. If f is proper on the closure of U, then the function deg.;(f, U, ): N \
f(U) — Z is locally constant.
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Observe that if deg,(f, U, q) # 0, then the equation f(p) = ¢ admits at least one
solution in U. In fact, if U N f~(g) is empty, then g is a regular value for f in U, and
the computation formula applies.

Notice also that the Computation Formula shows that the integer deg,( f, U, §)—when
q is aregular value—is an algebraic count of the solutions in U of the equation f(p) = q.

Let (f, M, q) be strictly bf-admissible and assume that N is connected. Then, the
Continuous Dependence property implies that deg,( f, M, q) does not depend on the target
q € N. Thus, we will adopt the following notation.

Notation 2.33. Let f: M — N be a proper top-oriented ®o-map. The symbol deg,( f)
stands for degy¢( f, M, q), with g € N arbitrary, provided that N is connected and the
degree is considered in the whole domain of f.

As a simple example of degree for strictly bf-admissible triples consider a complex
polynomial P of degree n > 0. Observe that P:C — C is a proper map, since | P(z)| — oo
as |z| — oo. Thus, regarding P as a self-map of R? with the canonical top-orientation
(recall Definition 2.28) and given any ¢ € R2, the triple (P,R?, ¢) is strictly bf-admissible
(see Definition 2.32). Since R? is the whole domain of P and is connected, according to
Notation 2.33 we may simply write deg,;(P) instead of deg,;(P, R?, q). We claim that
deg¢(P) is the same as the algebraic degree of P. To prove this, observe first that, given
any z € C, one has dP,(2) = P’(z)z, z € C. Consequently, whenever the derivative
P’(z) is different from zero, the differential d P is orientation preserving and, due to the
canonical top-orientation of P, its bf-sign is 1. To compute the bf-degree of P, one may
consider a regular value g of P and apply the computation formula. In this case, because
of the fundamental theorem of algebra and the factorization of a polynomial, the equation
P(z) = q has exactly n solutions. Since the bf-sign of the differential dP at any of these
solutions is 1, we get deg,;(P) = n, as claimed.

Willingly, one may prove the same equality avoiding the use of the Fundamental The-
orem of Algebra, and getting one of the many proofs of such a beautiful theorem. In fact,
one can check that there exists a proper ®o-homotopy joining P with a monomial of the
type Q(z) = az", with a # 0. Thus, because of the homotopy invariance property of the
bf-degree, one gets deg;(P) = deg,¢(Q), and the fact that deg,;(Q) = n can be proved
by considering the well-known n solutions of the equation az” = a.

Another important example is given by Leray—Schauder C!-triples. Namely, triples
(f, U, q), where { is a (continuous) compact vector field on the closure U of a bounded
open subset U of H, g ¢ f(dU), and the restriction of f to U is of class C ! and standardly
top-oriented (see Definition 2.20). With this top-orientation, because of the Computation
Formula of the bf-degree, we get the following result that can be found in [1].

Proposition 2.34 (The bf-degree and the LS-degree). Let f be a compact vector field on
the closure U of a bounded open subset U of H. Assume that T is C' on U with the
standard top-orientation. Then, given any q ¢ 7(3U), one has

deg; s(f. U.q) = degy(f. U, q).
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3. Compact and finitely perturbed vector fields

From now on, the Hilbert space H will be assumed to be infinite dimensional. By X we
will denote a finite dimensional subspace of H and Y = X<. Then, onehas H = X @ Y.
As in the Introduction, here and in the rest of the paper, B and S will stand for the unit
open ball and the unit sphere of H. In addition, we will always assume that dim X > 3,
implying that the unit sphere S N X of X is simply connected. For a better comprehension
of the statements and the proofs in the sequel, it is useful to distinguish the following
special subsets of the space H.

*  Equatorial space: X.
* Polar space: Y.

* Equatorial sphere: E = S N X.

Consider a compact vector field f on H. As pointed out in the Introduction, since
the identity / is a proper map, f is as well proper on any bounded and closed subset of
H. Hence, it inherits the same important property. Moreover, as one can check, { maps
bounded sets into bounded sets. This implies that the image, under {, of any bounded and
closed subset of H is as well bounded and closed. This is the case of (S).

Denote by r the radial retraction of H \ {0} onto the unit sphere S. Observe that
r: p+— p/llpll is a smooth map, since so is the norm function on H \ {0}.

If 0 ¢ §(S), then an important map can be introduced as follows.

Definition 3.1 (The boundary self-map (of {)). Given a compact vector field f on H,
assume that 0 ¢ T(S). Then, the map

§9.S > 8,
defined by the composition r o f|s, will be called the boundary self-map (of T).

The proof of the following result, which is crucial for us, can be found in [3] (cf. [3,
Lemmas 5.1 and 5.4]).

Proposition 3.2. If the compact vector field | is such that O ¢ {(S), then the boundary
self-map 19 is proper. If, in addition, § is C', then §° is Fredholm of index 0.

From Proposition 3.2, one gets that if f is of class C!, top-oriented and 0 ¢ f(S),
then degbf(fa) is well defined, according to Notation 2.33. However, since 9 admits
exactly two top-orientations, opposite to each other (Proposition 2.27), one has the fol-
lowing remark.

Remark 3.3. Let f be of class C! such that O ¢ f(S). Then, degbf(fa) is defined up to a
sign, depending on the chosen top-orientation of f?.

Let us now consider the subclass of the finitely perturbed vector fields.
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Definition 3.4. A compact vector field g: H — H will be called a finitely perturbed vector
field if the image h(H) of the map & = I — g is contained in a finite dimensional subspace
of H.

Let us point out that if g is a finitely perturbed vector field, then the perturbing map
h = I — g sends bounded sets into bounded sets.

Hereafter, by ¢ = I — h we denote a finitely perturbed vector field such that 2(H) C X.

Regarding g and its relation with the splitting H = X @ Y one has further results. The
proof of the following remark is left to the reader.

Remark 3.5. The map g sends X into itself. Moreover, the preimage q~!(g) of any value
q € X is contained in X.

The following definition is justified by the fact that, according to Remark 3.5, g maps
X into itself.

Definition 3.6. If 0 ¢ g(E), then the composition r o g|g will be called the boundary
equatorial self-map (of g) and denoted by (g|x)?:E — E.

Notice that if g is C! and 0 ¢ g(S), then (g|x)? is Fredholm of index zero, having
domain and codomain of the same finite dimension.

Lemma 3.7. Ifgis C! and 0 ¢ q(S), then a point p of E is regular for the boundary self-
map g°:'S — S if and only if so is for the boundary equatorial self-map (g|x)?: E — E.

The proof requires the following three technical remarks. As usual, given p € E, we
denote by 7,,S or p the tangent space of S at p, and by T,E the tangent space of [E at p.

Remark 3.8. Given any p € E, due to the fact that p is orthogonal to Y, the tangent space
of S at p can be represented as

pr=0ptnX)aYv. G.1)

Henceforth, any tangent vector p to S at p can be written as p = X + y, with x € X
and y € Y. Clearly, y = 0if (and only if) p € T,E.

Remark 3.9. Assume that ¢ = / — & is of class C'. Its differential dg, at any point
p € His given by

dgp(p) = p—dhy(p),
with p € H. Thus, putting p = x + y withx and y in 7,X = X and 7,Y =Y, respec-
tively, one gets

dgp(p) = dgp(x) +dgp(y) =d(glx)p(X) + y —dhp(y),
with d(g|x), (%) — dh,(3) € X and j € Y.

Remark 3.10. The differential dr; atany g € H \ {0} of the radial retraction r is ﬁ M.,

where IT, 1 is the orthogonal projection of H onto the tangent space g+ of Satq = r(g).
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Proof of Lemma 3.7. Given p € E, put ¢ = g?(p) € E. It is sufficient to prove that the
differential of g? at p,
d(a®)p: TS — T,S,

and its restriction
d(@")plT,e = d((a]x)")p: T,E — T4E

are both injective or both non-injective. In fact, the two linear operators, which are Fred-
holm of index zero (see Proposition 3.2), are injective if and only if they are surjective
(and when this holds, by definition, p is a regular point).

Obviously, if d(ga)p is injective, so is its restriction d((glx)a)p. Let us prove the
converse implication.

Assume that d((g|x)?) p is injective and observe that if X € X, then d (ga)p (x) is the
same as d((g]x)?) p(X). Therefore, denoting § = g(p), taking into account Remark 3.9,
and putting p = X + y as in Remark 3.8, we may write

d(a"),(p) = dra(day(p)) = d((alx)?)p () + ¥ — dry(dhy()),

where i = [ — g. It remains to prove that if d((g|X)a)p (x) +y —drg(dhy(y)) =0, then
x =0and y =0.
In fact, since d((g|x)a)p()'c) —drz(dhy(y)) € X (see Remarks 3.9 and 3.10) and y €
Y, we obtain
d((8]x)°)p(¥) = drg(dhp(5)) =0 and  § =0.

Finally, from y = 0 one gets dr;(dh,(y)) = 0 and, consequently,
d((alx)"), () =0,
which by assumption implies x = 0. ]
The following result is a consequence of Remark 3.5 and Lemma 3.7.

Corollary 3.11. If g is C' and 0 ¢ g(S), then a value q of the equatorial sphere E is
regular for (g|x)? if and only if so is for g°.

Let g be C! such that 0 ¢ g(S). Since the equatorial sphere [ is an orientable, finite
dimensional connected manifold, the boundary equatorial self-map (g|x)? admits the
canonical top-orientation (see Definition 2.28). On the other hand, g2 is Fredholm of index
zero (Proposition 3.2) and has a simply connected domain. Therefore it is top-orientable,
admitting exactly two top-orientations. Our purpose, in the rest of this section, is to define
a particular top-orientation of g?, induced by the canonical top-orientation of (g|x)? and
consequently called “canonical”.

Lemma 3.12. Let g be C' and 0 ¢ g(S). Given any p € E, put ¢ = ¢°(p) € E. Sup-
pose that Ap: T,E — T,E is a companion of the differential d((g|x)a)p. Then, the linear
operator Ay: TpS — T4S, defined by Ay (x + y) = Apx, where x € Xand y €Y, isa
companion ofd(ga)p.
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Proof. The operator Ay, has the same finite dimensional image as Aj. Thus, it is sufficient
to show that L}, = d (ga)lJ + Ay, is invertible. To see this, since Ly, is a $o-operator (see
property (5) of Proposition 2.2), it is enough to check that Ly, is injective. This can be
done as in the proof of Lemma 3.7. |

We will call A, the normal extension of A,. We can generalize this concept in the
following definition.

Definition 3.13. Let 7: X — H be a linear operator. The operator 7°: H — H defined as
T°(w + w) = Tv,where v € X and w € Y, is called the normal extension of T.

Remark 3.14. With the notation of Lemma 3.12 and in the sense of Definition 2.6, one
has the following assertion: if A and B are d((g|x)?) p-equivalent, then the normal exten-
sions A% and B* are d (ga)p-equivalent. The converse is also true. Therefore, to any
pre-orientation o of (g|x)? correspond one and only one pre-orientation o* of the pair
(g?, E) (recall Definition 2.22). The pre-orientation o will be called the normal exten-
sion of a.

In the case when « is a top-orientation of (g|x)?, the following crucial result says that
o not only induces a pre-orientation on (g2, E), but also induces a top-orientation on q?.
The proof of Theorem 3.15 below requires some technical steps and it is postponed to the
appendix (see Section A).

Theorem 3.15. Let g be C' and such that 0 ¢ g(S). Assume that (g|x)° is canoni-
cally top-oriented and denote by w its canonical top-orientation. Denote by w* the pre-
orientation of (g°, E), which is the normal extension of w, according to Remark 3.14.
Then, there exists one and only one top-orientation of q° that coincides with »° at any
point of E.

Based on the above theorem, we can now present the definition of canonical top-
orientation of g°.

Definition 3.16 (Canonical top-orientation of g?). Let g be C! and such that 0 ¢ g(S).
Assume that (g|x)? is canonically top-oriented and call e its canonical top-orientation.
Denote by @* the pre-orientation of (q?, E), which is the normal extension of w, according
to Remark 3.14. The canonical top-orientation of g is the one that coincides with w* at
any point of E.

To obtain a result on the transport of the canonical top-orientation in the infinite
dimensional setting (see Proposition 3.18 below), we need the following lemma about
top-oriented ®g-homotopies of self-maps in the finite dimensional case.

Lemma 3.17. Let M be an orientable, connected, finite dimensional manifold and K : M x
[0, 1] = M a top-oriented ®o-homotopy. Then, if one partial top-orientation of K is
canonical, so are all the others.
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Proof. Call X’ a finite dimensional Hilbert space which M is modeled on. For any ¢ €
[0, 1], denote by K the partial map K;(-) = K (-, ). Let f € [0, 1] be given and assume
that J; is canonically top-oriented. Fix p € M and take two charts of M, (U, ¢) at p
and (V,v) at § := K (p,1). For a suitable neighborhood J of 7, assume, without loss of
generality, that X (U x J) C V.

Let A¢j,7: T M — TzM be a positive companion of d (K7) 5 and call /’1\(1;,,-): X —X
the correlated operator according to Definition 2.25. See also the following commutative
diagram:

A,_
Ty M —22 Ty M

d(¢;) ﬁl ld Vg

X — X
Az,

Consider the map k: o(U) x J — X’ given by
k(e,0) = ki (x) = Y (K (97 ().

Taking U and J smaller if necessary, assume that /1\(1;,,3 is a companion of d (lgt)x

for every (x,t) € (U) x J. Consequently, the determinant of d (12,) x+ f/l\( 5.7 does not
change its sign in ¢(U) x J since it depends continuously on (x, t).

Consider, for every (p,t) € U x J, the companion A, ) of d(K;), which is corre-
lated with the constant companion A, (5. Recalling that 4 7) is a positive companion of
d(K7) 5 for its canonical alg-orientation (Definition 2.10), it follows that

det(d(K7) 5 + A,p) > 0.

It is important to point out that the above determinant is well defined thanks to Remark 2.3.
Consequently, we have

det(d(K1)p + A(py) >0 V(p.t) € U x J.

Therefore, A(, ) is a positive companion of d(X;), for its canonical algebraic orien-
tation for every (p,t) e U x J.

Thus, we obtain that the set € of (p, t) € M x [0, 1] such that d(K,), is canonically
alg-orientated is open. Recalling, by the assumption of the lemma, that € # @ and M x
[0, 1] is connected, it follows that € = M X [0, 1], and the lemma is proved. L]

Proposition 3.18 (Homotopic transport of the canonical top-orientation). Let go and g1
be two C! finitely perturbed vector fields on H. Assume that

0 ¢ ((1—1)go+1g1)(S) Vi el0.1],
and consider the ®o-homotopy H:S x [0, 1] — S, given by

He = ((1—1)go +1g1)°, 1 €10,1].
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Then, given a top-orientation of ¥, if one partial top-orientation is canonical, so are all
the others.

Proof. Tt can be obtained proceeding as in the proof of Lemma 3.17 for the particular case
of a boundary equatorial self-map, and applying the definition of canonical top-orientation
of a boundary self-map. ]

Lemma 3.19. Suppose that the finitely perturbed vector field q is C' such that 0 ¢ q(S).
If g% is canonically top-oriented, then

signy; d(g”), = signd((glx)?), VYp €E.

Proof. Let p € E be given. From Lemma 3.7 one gets that if one of the two operators,
d(g?) p ord ((alx)?) p, is not invertible, so is the other; and in this case, their sign is zero.
We may therefore assume that both the differentials are invertible, so that each of their
signs is either 1 or —1. Hence, it is sufficient to show that if one of them has sign 1, so has
the other. Meaning that if one of the two differentials, d(g?) p or d ((glx)?) p» admits the
null operator as a positive companion, the same holds true for the other one; and this is a
consequence of the relation between w(p) and its normal extension w*(p), introduced in
Remark 3.14. ]

Proposition 3.20. Suppose that g is C' and 0 ¢ g(S). If ¢° has the canonical top-
orientation, then

degyi(g”) = degg,(alx. B N X,0).

Proof. According to the Computation Formula of the bf-degree one has

degii(a”) = Y signyd(a?),.
re@) ' (g)

where g € S is any regular value for g?. Corollary 3.11 implies that as ¢ we may choose a
regular value for the boundary equatorial self-map (g|x)?, whose existence is ensured by
Sard’s lemma. Because of Remark 3.5, one has

6" (@) = ((slx)) " (9).

Thus, Lemma 3.19 implies

degii(a”) = Y signgd(@”),= Y signd((glx)?), = degg, ((alx)?).
pe(a®)~1(q) re((glx)?)~1(q)

Finally, from the classical boundary dependence property of the Brouwer degree

degp, ((g]x)?) = degp,(alx. B N X,0),

recalled in the Introduction (see, e.g., [8]), we get the result. [
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4. The Leray-Schauder case

Let g be a finitely perturbed vector field of class C! such that 0 ¢ q(S). In this case,
the Leray—Schauder degree on B (with target 0) of g is defined by the so called “finite
dimensional reduction” (see [16]). Namely,

degLS(g’Bﬂ 0) = degBr(Q'Xs]B N X,O) (41)

It is known that this is a well-posed definition since degp, (g|x, B N X, 0) does not depend
on the choice of X.

If the boundary self-map g is canonically top-oriented, from Proposition 3.20 and
equality (4.1) one gets

deg; 5(g.B.0) = deg(g?). (4.2)

Assume now that f is a compact vector field of class C! such that 0 ¢ f(S). We will
prove that the same equality still holds for f, provided that the corresponding boundary
self-map T2 has “the orthodox topological orientation” that we will define below. In fact,
according to Remark 3.3, degbf(fa) is defined up to a sign, depending on the choice of
one of the two possible top-orientations of {7, We will show that one of them is, in some
sense, more natural than the other. This top-orientation will be the one for which the
equality (4.2) holds, with { instead of g.

We will need the following Remark (see, for example, [3, Lemma 5.11]).

Remark 4.1. Given ¢>0, the C! compact vector field f can be uniformly e-approximated
on the unit disk B by a C'! finitely perturbed vector field.

Recall that f(S) is closed. Therefore, if 0 ¢ §(S), the same holds for any other suffi-
ciently close compact vector field.

Now, we extend the notion of canonical top-orientation, given in Definition 3.16 for
boundary self-maps of finitely perturbed vector fields, to the general setting of boundary
self-maps of compact vector fields.

Definition 4.2 (Canonical top-orientation of {?). Givena C! compact vector field f: H —
H such that 0 ¢ §(S), the canonical top-orientation of its corresponding boundary self-
map f? is the one transported (according to Proposition 2.30) by the ®o-homotopy

t ((1-0)g+H)? telo,1],

where g is any C! finitely perturbed vector field sufficiently close to f whose g? is canon-
ically top-oriented.

The following result ensures that Definition 4.2 is well posed.

Proposition 4.3. Let f:H — H be a compact vector field of class C' such that 0 ¢ £(S).
If o and g1 are two C finitely perturbed vector fields sufficiently close to §, and gg and
g? are canonically top-oriented, then the ®o-homotopies H° and H?', defined by

0 = ((1-1)go +1F)?, H' =((1-t)g +1F)?. te]0,1],

transport the same orientation to fa.
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Proof. Givenany A = (¢,s) € [0, 1] x [0, 1], consider the boundary self-map
Ky = ((1 = )50 + 531’
which is the partial map K, of the following family of boundary self-maps:
K:Sx[0.1]x[0.1] > S, (p.t.5) > (1 —5)H° + sH(p).

Since the parameter space A = [0, 1] x [0, 1] is simply connected and locally path con-
nected, Proposition 2.31 applies yielding a unique top-orientation w of K whose partial
top-orientation @(-, 0, 0) coincides with the canonical top-orientation of g3 = K(o,0)-
By considering the ®-homotopy s — Ko ) joining gg with g"l’ , and applying Propo-
sition 3.18, one gets that the partial top-orientation w(:, 0, 1) coincides as well with the
canonical top-orientation of g? = K(o,1). Consequently, recalling the uniqueness of w
with the assigned top-orientation w(-, 0, 0), the top-orientations transported to {2 by H#°
and #! are, respectively, (-, 1,0) and @ (-, 1, 1). Finally, these two partial top-orientations
coincide, since they are both transported by the family X to the same map §°. ]

In [16], the degree of a compact vector field § such that O ¢ (S) is defined as

deg; (T, B, 0) := deg; (g, B,0), 4.3)

where g is any finitely perturbed vector field, sufficiently close to {. As shown in [16], this
definition is well posed, since if go and g; are two finitely perturbed vector fields suffi-
ciently close to f, then deg; s(go, B, 0) and deg; s(g1, B, 0) are well defined and coincide.

From the equalities (4.2) and (4.3) we obtain that if g is a C'! finitely perturbed vector
field sufficiently close to f, with ¢? canonically top-oriented, then

deg;5(f.B. 0) = degy(g”). (4.4)
We finally get our main result.

Theorem 4.4. Let f:H — H be a compact vector field of class C' such that 0 ¢ f(S).
Assume that the corresponding boundary self-map §:S — S is canonically top-oriented.
Then

deg; 5(f,B,0) = degye(f?).

Proof. Let g be a finitely perturbed vector field of class C!, and assume that it is so close
to f such that 0 ¢ ((1 —1)g + 1)(S) for any 7 € [0, 1]. Let g? be canonically top-oriented.
According to Definition 4.2, g? induces, through the ®¢-homotopy

(Q=tg+tH:S—>S, relo1],

the canonical top-orientation of f%. Moreover, because of the homotopy invariance prop-
erty of the bf-degree, one gets degbf(fa) = degbf(ga). Thus, the assertion follows from
formula (4.4). [ ]
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From Theorem 4.4 and Proposition 2.34 we get the following infinite dimensional
analogue of (1.1).

Corollary 4.5. Let f:H — H be a compact vector field of class C such that 0 ¢ F(S).
Assume that { is standardly top-oriented and the corresponding boundary self-map fa: S—
S is canonically top-oriented. Then

degy(f, B, 0) = degye(f?).

As an application of our main results, we prove the following version of the classical
intermediate value theorem (compare with [3, Theorem 6.9]).

Theorem 4.6 (Intermediate value theorem via a half-line). Let f be a compact vector field
of class C' on H. Given q ¢ T(S), let Ay be a half-line with extreme q. If the intersection
of T(S) with A is transverse and its preimage under f|s is made up of an odd number of
points, then the connected component of H \ 1(S) containing q is a bounded open subset

of 1(B).

Proof. Asshown in [3, Lemma 6.8], the transversality assumption implies that | deg, (((f —
¢)?)|, which is well defined according to Remark 3.3, is different from zero.

Now, assume that (f — ¢)? is canonically top-oriented and denote by € the connected
component of H \ {(S) containing g. Since H \ {(S) is open, so is the component €. Thus,
recalling that a compact vector field maps bounded sets into bounded sets, it remains to
prove that € is contained in {(B); which means that f — u vanishes somewhere in B,
whatever is u € €. To see this, let u € € be given, and observe that deg; ;(f —¢,B.,0) =
deg; g(f — u, B, 0) because of the homotopy invariance property of the LS-degree. Thus,
Theorem 4.4, applied to the compact vector field f — ¢, yields

0 # degy(f —9)?) = degys(f —¢.B.0) = deg;5(f —u.B.0),
and the assertion follows from the existence property of the LS-degree. ]

As shown in [3], given any real Hilbert space H and any n € Z, there exists a top-
oriented compact vector field f, on H such that degbf(fg ) = n (compare with [3, Example
6.10]). Note that Theorem 4.6 does not apply if the integer n is even.

A. Proof of Theorem 3.15

Proof. As the uniqueness is a straightforward consequence of Proposition 2.27, we need
to prove the existence of a top-orientation of g2 that coincides with w* at any point of E,
where, we recall, ®® is the normal extension to (g2, E) of the canonical top-orientation @
of (g|x)?, according to Remark 3.14.

Denote by y and § the two top-orientations of g and consider

F:={pecE:y(p)=0’(p)} and A:={pecE:38(p)=0o(p)}.
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One has ' UA = E and I' N A = @. Recalling that E is connected, if we prove
that I' and A are open, then one of them coincides with E and thus Theorem 3.15 is
proved. Indeed, if, without loss of generality, I' = [, the top-orientation y of g satisfies
y(p) = o*(p) forevery p € E.

Summarizing the above argument, our purpose is to prove that I is open, assuming
that it is not empty. From now on, p € E is a given point and we suppose that

y(p) = 0*(p). (A.1)

We want to prove that y(p) = @*(p) for all p in a suitable neighborhood of p in E.
We proceed in two steps.

Step 1. This is a technical step: we start from a positive companion 45 of d ((a]x)?) B
that is, A5 € w(p), and we determine, depending on A 5, a selection of positive compan-
ions of a’((g|x)8)p for p in a suitable neighborhood of p in E.

First of all, denote by H’ and X’ two Hilbert spaces locally diffeomorphic to S and
[E, respectively. Without loss of generality, we can assume that X’ is a subspace of H'.
Consider two charts ¢: U — H’ and y: V — H’ of S such that 5 € U, q?(U) € V and
put g := q?(p) € V. Denote by k: ¢(U) — ¥ (V) the composition
ki=yoglop™
and by A 5: X’ — X’ the linear operator given by

A5 = d(Wlvne); Apd(@lure)) "

According to Definition 2.25, A; and A 5 are correlated companions of d ((glx)?) P
and d(l€|¢,(UnE))¢,(1;), respectively (see also diagram (2.1)).

Without loss of generality, let U N E be connected and sufficiently small in such a
way that fTI; is a companion of d(l€|¢,(UnE))¢,(p) for any p € U N E. Thus, using the
definition of top-orientation based on Remark 2.16, A 5 defines a top-orientation, say a,
on the restriction ]€|q;(Um]E), where /f,; € a(p) foreach p e U NE.

Forevery p € U NE, consider the companion A4, of d ((a]x)?) p defined in the diagram

Ap
TP]E —_— Tga(p)E
d(‘pUﬂ[E)pJ( ld(le”E)ga(m (A2)

X’ e X’
45

Every A, is correlated with A 5 and hence, by Remark 2.26,
Apea(p) VpeUnNE, (A3)

where « is the top-orientation of the restriction to U N E of (g|x)?, which is correlated
with &. Recalling that A5 € w(p), we have a(p) = w(p) and consequently, since U N E
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is connected, a(p) = w(p) forevery p € U N E (see Proposition 2.27). Therefore, (A.3)
implies

Ap cew(p) VYpeUnNE. (A.4)
Step 2. In this step we develop the rest of the proof. Let us introduce two selections of
companions of the operators d(g?) p» where p € U for the first selection and p € U N E

for the second one.
(1) The first selection of companions. Consider the splitting

H =X & (X/)J‘.

Recalling Definition 3.13, consider the normal extension fffﬁ: H — H of A 5, defined,
we recall, as

A5 +w) = 4;5(),
where v € X’ and w € (X’)*. The operator /’1\; is a companion of d lgq,( 5) (Lemma 3.12).

Hence, taking U smaller if necessary, ff;} is a companion of d lg(p(p) for each p € U.
Consider now the linear operators

Bp:T,S — T,S. Bp:=dy,'A5dg, pel,

where g := g°(p). Every B, is correlated with fl\fﬁ and hence, it is a companion of d(ga)p.
Thus, we obtain the first selection 8: p — B,,, p € U, of companions of the differentials
d (Qa)p-

(2) The second selection of companions. First of all, take, for any p € U N E, the com-
panion A of d((g|x)3)p, defined by the diagram (A.2). Consider, for any p € U N E, the
normal extension A3: T, S — T4 S of Ap. Any A3 is a companion of d(ga)p (Lemma 3.12),
and hence, we obtain another selection of companions of the operators d (ga)p, that is,
A pr— A, peUNE.

We point out that B, is defined for each p € U, while 4}, only for p € U NE. A
crucial and not difficult property is

B,=45 VpeUNE (A.5)

(we omit the proof). In step 1, we showed that A, € w(p) for every p € U N E. Hence,
by the definition of the normal extension w* of w, it follows that

A, €0’(p) YpeUNE. (A.6)

Now, we want to show that B, € y(p), for every p € U. We know that A% defines a
top-orientation of k, call it ,3, in which /Tj; € B (p) forevery p € U. Then, by Remark 2.26,

the correlated top-orientation 8 on g°|y is such that

B, € B(p) Vpel.
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Assumption (A.1) and formulas (A.5) and (A.6) imply B; € y(p) and hence, B(p) =
y(p). Consequently, taking U connected,

B(p)=v(p) VpeUl,

because § and y are top-orientations. Thus, we have
B, ey(p) VpeU (A7)
as claimed. Therefore, we can conclude that

y(p) =’(p), peUNE,

that is, p € I' admits a neighborhood [E which is contained in I', i.e., I" is open in E. The
proof is complete. u
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