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Abstract. We develop a new approach to a priori L1-estimates for degenerate complex Monge–
Ampère equations on complex manifolds. It only relies on compactness and envelopes properties
of quasi-plurisubharmonic functions. Our method allows one to obtain new and efficient proofs of
several fundamental results in Kähler geometry.

In a sequel we shall explain how this approach also applies to the hermitian setting, producing
new relative a priori bounds, as well as existence results.
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Introduction

Complex Monge–Ampère equations have been one of the most powerful tools in Kähler
geometry since Yau’s solution to the Calabi conjecture [50]. A notable application is the
construction of Kähler–Einstein metrics: given a compact Kähler manifold .X;!/ of com-
plex dimension n and an appropriate volume form � normalized by �.X/ D

R
X
!n, one

seeks for a solution ' W X ! R to

.! C dd c'/n D e��'�;

where d D @ C x@, d c D i.@ � x@/ and � 2 R is a constant whose sign depends on that
of c1.X/. The metric !' WD ! C dd c' is then Kähler–Einstein as Ric.!'/ D �!' .

When � � 0, Yau [50] (see also [2] for � < 0) showed the existence of a unique
(normalized) solution ' by establishing a priori estimates by a continuity method, the
most delicate one being the uniform a priori estimate that he established by using Moser’s
iteration process.
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In recent years degenerate complex Monge–Ampère equations have been intens-
ively studied by many authors. In relation to the Minimal Model Program, they led to
the construction of singular Kähler–Einstein metrics (see [6, 32, 39] and the references
therein). The main analytical input came here from pluripotential theory which allowed
Kołodziej [41] to establish uniform a priori estimates when �D fdVX has density in Lp

for some p > 1.
Using different methods (Gromov–Hausdorff techniques), the case � > 0 (Yau–Tian–

Donaldson conjecture) has been settled by Chen–Donaldson–Sun [16–18, 29]. Again
establishing a uniform a priori estimate in this context turned out to be the most del-
icate issue, a key step being obtained by Donaldson–Sun [30] through a refinement of
Hörmander’s L2-techniques. An alternative pluripotential variational approach has been
developed by Berman–Boucksom–Jonsson [8], based on finite energy classes studied
in [37] and variational tools obtained in [7]. This approach has been pushed one step
further by Li–Tian–Wang who have settled the case of singular Fano varieties [42].

The main goal of this article is to provide yet another approach for establishing such
uniform a priori estimates. While the pluripotential approach consists in measuring the
Monge–Ampère capacity of sublevel sets ¹' < �tº, we directly measure their volume,
avoiding delicate integration by parts. Our approach thus extends with minor modific-
ations to the hermitian (non-Kähler) setting, providing several new results discussed in
companion papers [34,35]: the hermitian setting introduces several technicalities and new
challenges that might affect the clarity of exposition.

In the whole article we let X denote a compact Kähler manifold of complex dimen-
sion n. We fix a closed semi-positive .1; 1/-form ! which is big, i.e.

V WD

Z
X

!n > 0:

We let PSH.X;!/ denote the set of !-plurisubharmonic functions; these are functions u W
X ! R [ ¹�1º which are locally given as the sum of a smooth and a plurisubharmonic
function, and such that ! C dd cu � 0 is a positive current.

Our first main result is a brand new proof of the following a priori estimate.

Theorem A. Let ! be semi-positive and big. Let � be a probability measure such that
PSH.X;!/� Lm.�/ for somem> n. Any bounded solution ' 2 PSH.X;!/ to the equa-
tion V �1.! C dd c'/n D � satisfies a uniform a priori bound

OscX .'/ � T�

for some uniform constant T� D T .Am.�// which depends on an upper bound on

Am.�/ WD sup
²Z
X

.� /m d� W  2 PSH.X; !/ with sup
X

 D 0

³
:

The Hölder inequality shows that this result covers the case when �D fdVX is abso-
lutely continuous with respect to Lebesgue measure, with density f belonging to Lp ,
p > 1, or to an appropriate Orlicz class, as we explain in Section 2.2.
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A crucial particular case of this estimate is due to Kołodziej [41]. Other important
special cases have been previously obtained in [22, 31, 32]. Our new method covers all
these settings at once, and it also enables us to recover the main estimates of [10] (big
cohomology classes) and [24] (collapsing families), as we explain in Sections 3.1 and 3.2.
A slight refinement of our technique allows us to establish an important stability estimate
(see Theorem 2.6).

There are several geometric situations when one cannot expect the Monge–Ampère
potential ' to be globally bounded. We next consider the equation

V �1.! C dd c'/n D fdVX ;

where the density f 2L1.X/ does not belong to any good Orlicz class. Since the measure
� D fdVX is non-pluripolar, there exists a unique finite energy solution ' (see [28, 39]).
It is crucial to understand its locally bounded locus.

As ! is a semi-positive and big .1; 1/-form, we can find an !-psh function � with
analytic singularities such that ! C dd c� � ı!X is a Kähler current (see [23, Theorem
0.5]). For  quasi-psh and c > 0, we set

Ec. / WD ¹x 2 X W �. ; x/ � cº;

where �. ; x/ denotes the Lelong number of  at x. A celebrated theorem of Siu ensures
that for any c > 0, the set Ec. / is a closed analytic subset of X .

Our second main result provides the following a priori estimate, which extends a result
of Di Nezza–Lu [27]:

Theorem B. Assume f D ge� , where 0 � g 2 Lp.dVX /, p > 1, and  is a quasi-psh
function. Then there exists a unique ' 2 E.X; !/ such that

� ˛. C �/ � ˇ � ' � 0 with supX ' D 0;

� ' is locally bounded in the open set � WD X n .¹� D �1º [E1=q. //;

� V �1.! C dd c'/n D fdVX in �,

where ˛; ˇ > 0 depend on an upper bound for kgkLp and 1=p C 1=q D 1.

Again the proof we provide is direct, and can be extended to the hermitian setting
(see [35]). We finally show in Section 4 how the same arguments can be applied to effi-
ciently solve the Dirichlet problem in pseudo-convex domains.

Comparison with other works. Yau’s proof of his famous a priori L1-estimate [50] goes
through a Moser iteration process. Although Yau could deal with some singularities, his
method does not apply when the right hand side is too degenerate (see however [11, 49]
for further applications of Yau’s method).

An important generalization of Yau’s estimate has been provided by Kołodziej [41]
using pluripotential techniques. These have been further generalized in [10, 22, 31, 32] in
order to deal with less positive or collapsing families of cohomology classes on Kähler
manifolds. As this approach relies on delicate integration by parts, it is difficult to extend
it to the hermitian setting.
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Błocki [9] has provided a different approach based on the Alexandrov–Bakelman–
Pucci maximum principle and a local stability estimate due to Cheng–Yau (L2-case) and
Kołodziej (Lp-case). This has been pushed further by Székelehydi [47]. It requires the
reference form ! to be strictly positive.

A PDE proof of the L1-estimate has been recently provided by Guo–Phong–Tong
[40] using an auxiliary Monge–Ampère equation, inspired by the recent breakthrough
results by Chen–Cheng on constant scalar curvature metrics [14, 15].

Our approach consists in showing that the sublevel set ¹' < �tº becomes the empty
set in finite time by directly measuring its �-size. We only use weak compactness of
normalized !-plurisubharmonic functions and basic properties of quasi-psh envelopes,
allowing us to deal with semi-positive forms.

1. Quasi-plurisubharmonic envelopes

In the whole article we let X denote a compact Kähler manifold of complex dimension
n � 1. We fix a smooth closed real .1; 1/-form ! on X .

1.1. Monge–Ampère operators

1.1.1. Quasi-plurisubharmonic functions. A function is quasi-plurisubharmonic if it is
locally given as the sum of a smooth and a psh function. Quasi-psh functions ' W X !
R [ ¹�1º satisfying !' WD ! C dd c' � 0 in the weak sense of currents are called
!-plurisubharmonic (!-psh for short).

Definition 1.1. We let PSH.X; !/ denote the set of all !-plurisubharmonic functions
which are not identically �1.

Constant functions are !-psh if (and only if) ! is semi-positive. A C2-smooth func-
tion u has bounded Hessian, hence "u is !-psh if " > 0 is small enough and ! is positive.
It is useful to consider as well the case when ! is not necessarily positive, in order to
study big cohomology classes (see Section 3.1).

Definition 1.2. A semi-positive closed .1; 1/-form ! is big if V! WD
R
X
!n > 0.

The set PSH.X;!/ is a closed subset of L1.X/ for the L1-topology. Subsets of !-psh
functions enjoy strong compactness and integrability properties; we mention notably the
following: for any fixed r � 1,

� PSH.X; !/ � Lr .X/; the induced Lr -topologies are equivalent;

� PSHA.X; !/ WD ¹u 2 PSH.X; !/ W �A � supX u � 0º is compact in Lr .

We refer the reader to [20, 39] for further basic properties of !-psh functions.

1.1.2. Monge–Ampère measure. The complex Monge–Ampère measure

.! C dd cu/n D !nu
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is well-defined for any !-psh function u which is bounded, as follows from Bedford-
Taylor theory (see [4] for the local theory, and [39] for the compact Kähler context). It
also makes sense in the ample locus of a big cohomology class [10], as we shall briefly
discuss in Section 3.1.

The mixed Monge–Ampère measures .! C dd cu/j ^ .! C dd cv/n�j are also well
defined for any 0 � j � n, and any bounded !-psh functions u; v. We note for later use
the following classical inequality.

Lemma 1.3. Let '; be bounded !-psh functions such that ' �  . Then

1¹ D'º.! C dd
c'/j ^ .! C dd c /n�j � 1¹ D'º.! C dd

c /n

for all 1 � j � n.

Proof. To simplify notations we just treat the case j D n. It follows from Bedford–Taylor
theory [4] that for any bounded !-psh functions '; ,

1¹ �'º!
n
' C 1¹ >'º!

n
 � .! C dd

c max.';  //n:

When ' �  we infer 1¹ D'º!n' � 1¹ D'º!
n
 :

We shall also need the following (see [39, Proposition 10.11]).

Proposition 1.4 (Domination principle). If u; v are bounded !-psh functions such that
u � v a.e. with respect to !nu , then u � v.

1.2. Envelopes

Upper envelopes of (pluri)subharmonic functions are classical objects in potential theory.
They were considered by Bedford and Taylor to solve the Dirichlet problem for the com-
plex Monge–Ampère equation in strictly pseudo-convex domains [3]. We consider here
envelopes of !-psh functions.

1.2.1. Basic properties.

Definition 1.5. Given a Lebesgue measurable function h W X ! R, we define the !-psh
envelope of h by

P!.h/ WD .sup ¹u 2 PSH.X; !/ W u � h in Xº/�;

where the star means that we take the upper semi-continuous regularization.

The following is a combination of [36, Propositions 2.2 and 2.5, Lemma 2.3].

Proposition 1.6. If h is bounded from below and quasi-continuous, then

� P!.h/ is a bounded !-plurisubharmonic function;

� P!.h/ � h in X n P , where P is pluripolar;

� .! C dd cP!.h//
n is concentrated on the contact set ¹P!.h/ D hº.
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Recall that a function h is quasi-continuous if for any " > 0, there exists an open
set G of capacity smaller than " such that h is continuous in X nG. Quasi-psh functions
are quasi-continuous (see [4]), as also are their differences: we shall use this fact during
the proof of Theorem 3.3.

When h is C1;1-smooth, so is P!.h/ on the ample locus of Œ!�, as shown in [19,
Theorem 1.3], and further

.! C dd cP!.h//
n
D 1¹P!.h/Dhº.! C dd

ch/n: (1.1)

1.2.2. A key lemma. The following is a key technical tool for our new approach:

Lemma 1.7. Fix a concave increasing function � W R� ! R� such that �0.0/ � 1. Let
'; � be bounded !-psh functions with ' � �. If  D � C � ı .' � �/ then

.! C dd cP!. //
n
� 1¹P!. /D º.�

0
ı .' � �//n.! C dd c'/n:

Proof. Using �00 � 0 and �0 � 1, we observe that

! C dd c D !� C �
0
ı .' � �/.!' � !�/C �

00
ı .' � �/d.' � �/ ^ d c.' � �/

� �0 ı .' � �/!' C Œ1 � �
0
ı .' � �/�!� � �

0
ı .' � �/!' :

When '; � and � are C1;1-smooth, we can invoke (1.1) to conclude that

.! C dd cP!. //
n
D 1¹P!. /D º!

n
 � 1¹P!. /D º.�

0
ı .' � �//n!n' :

The last inequality follows from !C dd c � �0 ı .' � �/!' and the fact that is !-psh
on ¹P!. / D  º, where these inequalities can be interpreted pointwise.

When these functions are less regular, we take a different route. We set � D ��1 W

R� ! R�. This is a convex increasing function such that � 0 D .�0 ı �/�1 � 1. Set � D
P!. / � �. The function v D � C � ı .P!. / � �/ is !-psh with

! C dd cv D !� C �
00
ı � d� ^ d c�C � 0 ı � dd c.P!. / � �/

� Œ1 � � 0 ı ��!� C �
0
ı � .! C dd cP!. //

� � 0 ı � .! C dd cP!. //:

Thus !n
P!. /

� 1¹P!. /D º.�
0 ı .P!. / � �//

�n!nv : On ¹P!. / D  º we get

� 0 ı .P!. / � �/ D �
0
ı . � �/ D Œ�0 ı .' � �/��1:

Now v � � C � ı . � �/ D ' on X , with equality on the contact set ¹P!. / D  º. It
follows therefore from Lemma 1.3 that !nv � !

n
' on ¹P!. / D  º.

2. Global L1-bounds

In this section we prove Theorem A, as well as a stability estimate.
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2.1. Measures which integrate quasi-plurisubharmonic functions

Theorem 2.1. Let ! be semi-positive and big. Let � be a probability measure such
that PSH.X; !/ � Lm.�/ for some m > n. Any solution ' 2 PSH.X; !/ \ L1.X/ to
V �1.! C dd c'/n D � satisfies

OscX .'/ � T�

for some uniform constant T� D T .Am.�// which depends on an upper bound on

Am.�/ WD sup
²�Z

X

.� /m d�

�1=m
W  2 PSH.X; !/ with sup

X

 D 0

³
:

Let us stress that this result is not new: it can be derived from the celebrated a priori
estimate of Kołodziej [41], together with its extensions [22, 31, 32]. We provide here an
elementary proof that does not use the theory of Monge–Ampère capacities, and merely
relies on the compactness properties of sup-normalized !-psh functions and Lemma 1.7.

Proof of Theorem 2.1. Shifting by an additive constant, we normalize ' by supX ' D 0.
Set

Tmax WD sup ¹t > 0 W �.' < �t / > 0º:

Our goal is to establish a precise bound on Tmax. By definition, �Tmax � ' almost every-
where with respect to �, hence everywhere by the domination principle (Proposition 1.4),
providing the desired a priori bound OscX .'/ � Tmax.

We let � W R� ! R� denote a concave increasing function such that �.0/ D 0 and
�0.0/ D 1. We set  D � ı ', u D P!. / and observe that

! C dd c D �0 ı ' !' C Œ1 � �
0
ı '� ! C �00 ı ' d' ^ d c' � �0 ı ' !' :

It follows from Lemma 1.7 that

MA.u/ WD
1

V
.! C dd cu/n � 1¹uD º.�

0
ı '/n�:

Controlling the norms kukLm . We fix " > 0 so that n < nC 3" D m: The concavity of
� and the normalization �.0/ D 0 yield j�.t/j � jt j�0.t/. Since u D � ı ' on the contact
set ¹P!. / D  º, the Hölder inequality yieldsZ

X

.�u/" MA.u/ �
Z
X

.�� ı '/".�0 ı '/n d� �

Z
X

.�'/".�0 ı '/nC" d�

�

�Z
X

.�'/nC2" d�

� "
nC2"

�Z
X

.�0 ı '/nC2" d�

� nC"
nC2"

� Am.�/
"

�Z
X

.�0 ı '/nC2" d�

� nC"
nC2"

by using the fact that ' belongs to the set of !-psh functions v normalized by supX v D 0,
which is compact in LnC2".�/, and observing that AnC2".�/ � Am.�/.
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We are going to choose the weight � in such a way that
R
X
.�0 ı '/nC2" d� D B � 2

is a finite constant under control. This provides a uniform lower bound on supX u: indeed,

0 �
�
� sup

X

u
�"
D

�
� sup

X

u
�" Z

X

MA.u/ �
Z
X

.�u/" MA.u/ � 2Am.�/"

yields �21="Am.�/ � supX u � 0: We infer that u belongs to a compact set of !-psh
functions, hence its norm kukLm.�/ is under control with

kukLm.�/ � Am.�/C 2
1="Am.�/ � Œ1C 2

1="�Am.�/:

Since u � � ı ' � 0 we infer k� ı 'kLm � kukLm . The Chebyshev inequality thus yields

�¹' < �tº �
QA

j�.�t /jm
; where QA D Œ1C 21="�Am.�/: (2.1)

Choice of �. Lebesgue’s formula ensures that if g W RC ! RC is an increasing function
such that g.0/ D 1, thenZ

X

g ı .�'/ d� D �.X/C

Z Tmax

0

g0.t/�¹' < �tº dt:

Fix 0 < T0 < Tmax. Setting g.t/ D �0.�t /nC2" we define � by imposing �.0/ D 0,
�0.0/ D 1, and

g0.t/ D

8̂̂<̂
:̂

1

.1C t /2�¹' < �tº
if t � T0;

1

.1C t /2
if t > T0:

:

This choice guarantees that � W R� ! R� is concave increasing with �0 � 1, andZ
X

.�0 ı '/nC2" d� � �.X/C

Z C1
0

dt

.1C t /2
D 2:

Conclusion. We set h.t/ D ��.�t / and work with the positive counterpart of �. Note
that h.0/ D 0 and h0.t/ D g.t/1=.nC2"/ is positive increasing, hence h is convex. Observe
also that g.t/ � g.0/ D 1, hence h0.t/ D g.t/1=.nC2"/ � 1 yields

h.1/ D

Z 1

0

h0.s/ ds � 1: (2.2)

Together with (2.1) our choice of � yields, for all t 2 Œ0; T0�,

1

.1C t /2g0.t/
D �¹' < �tº �

QA

h.t/m
:

For t 2 Œ0; T0�, this reads

h.t/m � QA.1C t /2g0.t/ D .nC 2"/ QA.1C t /2h00.t/h0.t/nC2"�1:
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Multiplying by h0 and integrating between 0 and t , we infer that for all t 2 Œ0; T0�,

h.t/mC1

mC 1
� .nC 2"/ QA

Z t

0

.1C s/2h00.s/h0.s/nC2"

�
.nC 2"/ QA.t C 1/2

nC 2"C 1
.h0.t/nC2"C1 � 1/

� QA.1C t /2h0.t/nC2"C1:

Recall thatmDnC 3" so that ˛ WDmC 1>ˇ WDnC 2"C 1>2: The previous inequality
then reads

.1C t /�2=ˇ � Ch0.t/h.t/�˛=ˇ

for some uniform constant C depending on n; m; QA. Since ˛ > ˇ > 2 and h.1/ � 1,
integrating the above inequality between 1 and T0 we obtain T0 � C 0 for some uniform
constant C 0 depending on C; ˛; ˇ. Since T0 was chosen arbitrarily in .0; Tmax/, the result
follows.

2.2. Absolutely continuous measures

Assume � D fdVX is absolutely continuous with respect to a volume form dVX , with
density 0 � f 2 Lp.dVX / for some p > 1. Since PSH.X; !/ � Lr .dVX / for any 1 �
r < C1, we obtainZ

X

jujm d� � kf kLp.dVX / �

�Z
X

jujqm dVX

�1=q
for all u 2 PSH.X; !/, where 1=p C 1=q D 1, so that PSH.X; !/ � Lm. d�/ for all
m � 1. Thus Theorem 2.1 applies to this type of measures, providing a new proof of the
celebrated a priori estimate of Kołodziej [41] (see also [32]).

As in [41] our technique also covers the case of more general densities as we briefly
indicate. Let w W RC ! RC be a convex increasing weight. A measurable function f
belongs to the Orlicz class Lw.dVX / if there exists ˛ > 0 such thatZ

X

w.˛jf j/ dVX < C1:

The Luxemburg norm of f is defined as

kf kw WD inf
²
r > 0 W

Z
X

w.jf j=r/ dVX � 1

³
I

it turns Lw.dVX / into a Banach space.
Ifw� denotes the conjugate convex weight ofw (its Legendre transform), the Hölder–

Young inequality ensures that for all measurable functions f; g,Z
X

jfgj dVX � 2kf kwkgkw� :

We refer the reader to [45] for more information on Orlicz classes.
Theorem 2.1 thus allows us to re-prove [41, Theorem 2.5.2].
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Corollary 2.2. Let � D fdVX be a probability measure. Let w W RC! RC be a convex
increasing weight that grows at infinity at least like t .log t /m withm > n. If f belongs to
the Orlicz classLw then any solution ' 2 PSH.X;!/\L1.X/ to V �1.!C dd c'/nD�
satisfies

OscX .'/ � T�

for some uniform constant T� 2 RC.

Proof. While this was not required for the case of Lp-densities, we need here to invoke
Skoda’s uniform integrability result (see [39, Theorem 8.11]): there exist ˛ > 0 and C D
C.˛;M/ > 0 such that

sup
²Z
X

e2˛juj dVX W u 2 PSH.X; !/ and �M � sup
X

u � 0

³
� C:

The reader will check that, as s !C1, the conjugate weight w�.s/ grows like

w�.s/ � s1�1=m exp.s1=m/ � exp.2s1=m/:

It follows therefore from the Young inequality that any !-psh function u satisfies

˛m
Z
X

jujm d� �

Z
X

w ı f dVX C

Z
X

exp.2˛juj/ dVX < C1:

Thus PSH.X; !/ � Lm.�/ and the conclusion follows from Theorem 2.1.

One can slightly improve the assumption on the density as in [41, Theorem 2.5.2]; we
leave the technical details to the interested reader.

Remark 2.3. The Chern–Levine–Nirenberg inequality implies that if �D .! C dd c'/n

is the Monge–Ampère measure of a bounded !-psh function, then PSH.X; !/ � L1.�/.
If nD 1 this condition is equivalent to � having bounded potential (see [25, Lemma 3.2]).
Note however that when n � 2,

� the condition PSH.X; !/ � Ln.�/, � D .! C dd c'/n, is not sufficient to guarantee
that the !-psh function ' is bounded;

� one cannot improve the C-L-N inequality: there are examples of Monge–Ampère meas-
ures with bounded potential and PSH.X; !/ 6� L1C".�/,

as the following examples show.

Example 2.4. We consider the function v from [25, Section 1.3.1]. It is a smooth function
in X n ¹pº that is given locally near p by

v D � ı L; L D log kzk; �.t/ D � log.log.�t //:

A direct computation shows that

� WD .!X C dd
cv/n '

dV.z/

kzk2n
ˇ̌
log kzk

ˇ̌nC1 ˇ̌log
ˇ̌
log kzk

ˇ̌ˇ̌n :



Quasi-plurisubharmonic envelopes 1: uniform estimates on Kähler manifolds 11

One can easily check that PSH.X; !X / 2 Ln.�/ if n � 2 (it suffices to check this for
log kzk), but the local Monge–Ampère potential is not bounded near 0.

Example 2.5. Consider v as above with n D 1 and �.t/ D 1
log.�t/ . Then

!X C dd
cv '

dV.z/

kzk2
ˇ̌
log kzk

ˇ̌2 ˇ̌log
ˇ̌
log kzk

ˇ̌ˇ̌2
does not satisfy PSH.X; !X / � L1C".!X C dd cv/, for any " > 0.

2.3. Stability estimate

We now establish the following stability estimate, which can be seen as a refinement of
[38, Proposition 5.2].

Theorem 2.6. Let !;� be as in Theorem 2.1. Let ' 2 PSH.X;!/\L1.X/ be such that
supX ' D 0 and V �1.! C dd c'/n D �. Then

sup
X

.� � '/C � T

�Z
X

.� � '/C d�

��
for any � 2 PSH.X; !/ \ L1.X/, where � D �.n;m/ > 0 and

T D T .�; k�kL1/

is a uniform constant which depends on an upper bound on k�kL1 and on

Am.�/ WD sup
²�Z

X

.� /m d�

�1=m
W  2 PSH.X; !/ with sup

X

 D 0

³
:

Proof. Replacing � by max.'; �/, we can assume that ' � �. Define

Tmax WD sup ¹t > 0 W �¹' < � � tº > 0º:

It follows from Theorem 2.1 that Tmax is uniformly controlled by � and k�kL1 .
We let � W R� ! R� denote a concave increasing function such that �.0/ D 0 and

�0.0/ D 1. We set  D � C � ı .' � �/, u D P. / and observe that

! C dd c D !� C �
0
ı .' � �/.!' � !�/C �

00
ı .' � �/d.' � �/ ^ d c.' � �/

� �0 ı .' � �/!' :

It follows from Lemma 1.7 that

MA.u/ WD
1

V
.! C dd cu/n � 1¹uD º.�

0
ı .' � �//n�:

We fix 0 < a < b < c < 2c < " so small that

q WD
." � a/.nC b/

b � a
< m D nC ":
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The concavity of � and the normalization �.0/ D 0 yield j�.t/j � jt j�0.t/. Since u D
� C � ı .' � �/ on the support of .! C dd cu/n and PSH.X;!/� LnC2c.�/, the Hölder
inequality yields

0 �

Z
X

.�uC �/c MA.u/ �
Z
X

.�� ı .' � �//c.�0 ı .' � �//n d�

�

Z
X

.�' C �/c.�0 ı .' � �//nCc d�

�

�Z
X

.�' C �/nC2c d�

� c
nC2c

�Z
X

.�0 ı .' � �//nC2c d�

� nCc
nC2c

� Am.�/
c

�Z
X

.�0 ı .' � �//nC2c d�

� nCc
nC2c

:

Controlling the norms kukLm . Below we will choose � such that
R
X
.�0ı.'��//nC2c d�

� B is under control. This provides a uniform lower bound on supX u. Indeed, our nor-
malizations yield �.t/ � t , hence u � � C �.' � �/ � ' � 0; while

0 �
�
� sup

X

.u � �/
�c
�

Z
X

.�uC �/c MA.u/ � Am.�/cB
nCc
nC2c

yields a lower bound on supX .u� �/. Now uD u� �C � � u� �C infX �, so supX u�

supX .u � �/C infX � � �Am.�/B
nCc

c.nC2c/ C infX �.
Thus u belongs to a compact set of !-psh functions: its norm kukLq.�/ is under con-

trol for any q � m. Since u � � � � ı .' � �/ � 0, the Hölder inequality yieldsZ
X

j� ı .' � �/jm d� �

Z
X

j� ı .' � �/jnCa.� � u/"�a d�

�

�Z
X

j� ı .' � �/jnCb d�

�nCa
nCb

�Z
X

.� � u/q d�

� b�a
nCb

� C 0�

�Z
X

j.� � '/�0 ı .' � �/jnCb d�

�nCa
nCb

� C 0�

�Z
X

.� � '/
.nCc/.nCb/

c�b d�

� .c�b/.nCa/
.nCc/.nCb/

�Z
X

j�0 ı .' � �/jnCc d�

�nCa
nCc

� C1B
nCa
nCc

�Z
X

.� � '/ d�

�

DW QA; (2.3)

where


 D
.c � b/.nC a/

.nC c/.nC b/
;

and C1 depends on C�, k'kL1 and k�kL1 .
It follows therefore from the Chebyshev inequality that

�¹' < � � tº �
QA

j�.�t /jm
: (2.4)
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Choice of �. Fix T0 2 .0; Tmax/. We set g.t/ D �0.�t /nC2c and define � by imposing
�.0/ D 0, �0.0/ D 1, and

g0.t/ D

8̂<̂
:

1

�¹' < � � tº
if t � T0;

1 if t > T0:

This choice guarantees thatZ
X

.�0 ı .' � �//nC2c d� � �.X/C

Z Tmax

0

dt D 1C Tmax:

It follows from Theorem 2.1 that Tmax � T� is uniformly bounded from above, hence
B WD 1C T� is under control. Together with (2.3) and (2.4) we thus obtain

�¹' < � � tº �
C2ı

j�.�t /jm
; (2.5)

where ı WD .
R
X
.� � '/ d�/
 .

Conclusion. Set h.t/ D ��.�t /. It follows from (2.5) that for all t 2 Œ0; T0�,

1

g0.t/
D �¹' < � � tº �

C2ı

h.t/m
;

hence
h.t/m � C2ıg

0.t/ D .nC 2c/C2ıh
00.t/h0.t/nC2c�1:

Multiplying by h0 and integrating between 0 and t , we infer that for all t 2 Œ0; T0�,

h.t/mC1 � .mC 1/.nC 2c/C2ı

Z t

0

h00.s/h0.s/nC2c ds

� C3ı.h
0.t/nC2cC1 � 1/;

which yields

1 �
C3ıh

0.t/nC2cC1

h.t/mC1 C C3ı
: (2.6)

Recall that we have set m D nC " so that

˛ WD mC 1 D nC "C 1 > ˇ WD nC 2c C 1:

Raising both sides of (2.6) to the power 1=ˇ we obtain

1 �
C4ı

1=ˇh0.t/

.h.t/˛ C C3ı/1=ˇ
:

We integrate between 0 and T0 and make the change of variables x D h.t/ı�1=˛ to con-
clude that T0 � C5ı1=˛ � C5.

R
X
.� � '/C d�/

� with � D 
=˛. Letting T0 ! Tmax we
obtain the desired estimate.
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3. Refinements and extensions

We now explain how minor modifications of the proof of Theorem 2.1 provide other
important uniform estimates in various contexts of Kähler geometry.

3.1. Big cohomology classes

Let � be a smooth closed .1; 1/-form that represents a big cohomology class ˛. We set

V� .x/ WD sup ¹v.x/ W v 2 PSH.X; �/ with v � 0º:

This is a � -psh function with minimal singularities, i.e. any other � -psh function ' satisfies
' � V� C C for some constant C . It is locally bounded in the ample locus Amp.˛/,
a Zariski open subset of X where the cohomology class ˛ behaves like a Kähler class.

The Monge–Ampère measure .� C dd c'/n of a � -psh function ' with minimal sin-
gularities is well-defined in Amp.˛/, and one can show that it has finite mass independent
of ' and equal to

V˛ D Vol.˛/ D
Z

Amp.˛/
.� C dd cV� /

n > 0;

the volume of the class ˛.
We refer the reader to [10] for more details on these notions and focus here on slightly

extending [10, Theorem B] by our new approach:

Theorem 3.1. Let � be a probability measure on X . If PSH.X; �/ � Lm.�/ for some
m > n, then there exists a unique ' 2 PSH.X; �/ with minimal singularities such that
V �1˛ .� C dd c'/n D � and supX ' D 0. Moreover,

k' � V�kL1.X/ � T�

for some uniform constant T�.

Proof. It follows from [10, Theorem A] that there exists a unique finite energy solution '.
The key point for us here is to establish the a priori estimate. Note that ' � V� since
supX ' D 0. Our goal is to show that V� � Tmax � ', obtaining a uniform upper bound
on Tmax.

A difficulty lies in the fact that � is not a positive form. We consider the positive
current ! D � C dd cV� and set Q' D ' � V� � 0. Observe that

�' WD � C dd
c' D ! C dd c Q' DW ! Q' � 0:

Our plan is thus to show that the “!-psh” function Q' is bounded.
As in the proof of Theorem 2.1, we let � W R� ! R� denote a concave increasing

function such that �.0/ D 0 and �0.0/ D 1. We set  D V� C � ı Q' and consider

u D P� . / D P� .V� C � ı .' � V� //:
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Observe that

� C dd c D �0 ı Q'�' C Œ1 � �
0
ı Q'�! C �00 ı Q'd Q' ^ d c Q'

� �0 ı .' � V� /.� C dd
c'/:

The envelopes in the context of big cohomology classes enjoy similar properties
to those reviewed in Section 1.2. In particular, the complex Monge–Ampère measure
.� C dd cP� . //

n is concentrated on the contact set ¹P� . / D  º (see [36, The-
orem 2.7]) and the big version of Lemma 1.7 holds, showing that

V �1˛ .� C dd cu/n � 1¹P� . /D º.�
0
ı .' � V� //

n�:

The rest of the proof is identical to that of Theorem 2.1.

3.2. Degenerating families

Families of Kähler–Einstein varieties have been intensively studied in the past decade,
requiring one to analyze the associated family of complex Monge–Ampère equations. We
refer the reader to [24,33,44,46,48,49] for detailed examples and geometrical motivations.

The most delicate situation is when the volume of the fiber collapses. Theorem 2.1
yields a uniform bound in this case, providing an alternative proof and an extension of the
main results of [22, 31]:

Corollary 3.2. Fix a non-empty open set I � R. Let .!t /t2I be a family of semi-positive
and big forms on X , and assume there is a fixed form ‚ such that 0 � !t � ‚. Let Vt WDR
X
!nt > 0 denote the volume of .X;!t /. Let � be a probability measure. If PSH.X;‚/ �

Lm.�/ for some m > n, then any solution 't 2 PSH.X; !t / \ L1.X/ to

1

Vt
.!t C dd

c't /
n
D �

satisfies OscX .'t / � T� for some uniform constant T�.

The point is that the estimate is uniform in t , and independent of the behavior of Vt
(in particular, Vt may degenerate to zero at any boundary point of I ).

Proof. Theorem 2.1 provides a uniform bound OscX .'t / � T .Am.!t ; �//, where

Am.!t ; �/ WD sup
²Z
X

.� /m d� W  2 PSH.X; !t / with sup
X

 D 0

³
:

Observe now that PSH.X;!t / � PSH.X;‚/ and PSH.X;‚/ � Lm.�/, hence we obtain
Am.!t ; �/ � Am.‚;�/ < C1. The uniform upper bound follows.

This uniform estimate shows in particular that in many geometrical contexts, uni-
form control on the LnC"-norm of the Monge–Ampère potentials 't suffices to obtain
L1-control of the latter.
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One can obtain similarly uniform estimates when the underlying complex structure
is also changing: Let X be an irreducible and reduced complex Kähler space, and let
� WX!D denote a proper, surjective holomorphic map such that each fiberXt D ��1.t/
is an n-dimensional, reduced, irreducible, compact Kähler space, for any t 2 D. Given a
Kähler form ! on X and !t WD !jXt , one can consider the complex Monge–Ampère
equations

1

V
.!t C dd

c't /
n
D �t ;

where

� the volume V D
R
Xt
!nt turns out to be independent of t ;

� �t is a family of probability measures on each fiberXt (e.g. the normalized Calabi–Yau
measures of a degenerating family of Calabi–Yau manifolds).

In many concrete geometrical situations (see e.g. [24, 33, 44]), one can check that
Am.!t ; �t / � A is uniformly bounded from above for some m > n (often any m > 1).
If one can further uniformly compare supXt 't and

R
Xt
't
!nt
V

, then Theorem 2.1 applies
and provides a uniform L1-estimate. It is thus sometimes not necessary to establish a
uniform Skoda integrability theorem in families (compare with [24, 43]).

3.3. Relative a priori L1-bounds

Fix a semi-positive and big .1; 1/-form !, and an !-psh function � with analytic singular-
ities such that ! C dd c� � ı!X is a Kähler current which is smooth in the ample locus
Amp.!/. We normalize � so that supX � D 0 and set V D

R
X
!n > 0.

In this section we consider the degenerate complex Monge–Ampère equation

V �1.! C dd c'/n D � D fdVX ; (3.1)

where � is a probability measure whose density f 2 L1.X/ does not belong to any good
Orlicz class (see Section 2.2). Since� does not charge pluripolar sets, there exists a unique
“finite energy solution” ' 2 E.X; !/ (see [39]), but one cannot expect any longer that '
is globally bounded on X .

Given a quasi-plurisubharmonic function  on X and c > 0, we set

Ec. / WD ¹x 2 X W �. ; x/ � cº;

where �. ; x/ denotes the Lelong number of  at x. A celebrated theorem of Siu ensures
that for any c > 0, the set Ec. / is a closed analytic subset of X .

Theorem 3.3. Assume f D ge� , where 0� g 2Lp.dVX /, p > 1, and  is a quasi-psh
function. Then there exists a unique ' 2 E.X; !/ such that

� ˛. C �/ � ˇ � ' � 0 with supX ' D 0;

� ' is locally bounded in the Zariski open set � WD Amp.!/ nE1=q. /;

� V �1.! C dd c'/n D fdVX in �,

where ˛; ˇ > 0 depend on an upper bound for kgkLp and 1=p C 1=q D 1.
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When f � e� for some quasi-psh function  , it has been shown by Di Nezza–
Lu [27, Theorem 2] that the normalized solution ' to (3.1) is locally bounded in the
complement of the set ¹ D �1º. The proof of Di Nezza–Lu is a generalization of
the method of Kołodziej [41] that makes use of a theory of generalized Monge–Ampère
capacities further developed in [26]. We slightly extend this result here and propose a
brand new proof using envelopes and Theorem 2.1.

Proof of Theorem 3.3. Reduction to analytic singularities. We let q denote the conjugate
exponent of p, set r D 2p

pC1
, and note that 1 < r < p. If the Lelong numbers of  are all

less than 1=q, it follows from the Hölder inequality that f 2 Lr .dVX /, sinceZ
X

f r dVX D

Z
X

gre�r dVX �

�Z
X

gp dVX

� r
p

�

�Z
X

e�
pr
p�r  dVX

�p�r
p

;

where the last integral is finite by Skoda’s integrability theorem [39, Theorem 8.11] if
pr
p�r

�. ; x/ < 2 for all x 2 X , which is equivalent to �. ; x/ < 1=q.
It is thus natural to expect that the solution ' will be locally bounded in the com-

plement of the closed analytic set Eq�1. /. It follows from Demailly’s equisingular
approximation technique (see [21]) that there exists a sequence . m/ of quasi-psh func-
tions on X such that

�  m �  and  m !  (pointwise and in L1);

�  m has analytic singularities concentrated along Em�1. /;

� dd c m � �K!X for some uniform constant K > 0;

�
R
X
e2m. m� / dVX < C1 for all m.

We choose m D Œq�, set gm WD ge m� , and observe thatZ
X

grm �

�Z
X

e2m. m� / dVX

� 1
2m

�

�Z
X

g
2mr
2m�r
m dVX

� 2m�r
2m

�

�Z
X

e2m. m� / dVX

� 1
2m

�

�Z
X

gpm dVX

� 2m�r
2m

< C1

if we choose r�1 D p�1 C .2m/�1 < 1 so that 2mr
2m�r

D p. By replacing  by  Œq� �  
and g by gm 2 Lr , we can thus assume that

�  has analytic singularities and is smooth in X nEq�1. /;

� the function Q WD a C � with a WD ı=K is !-psh.

Uniform integrability of '. It is a standard measure-theoretic fact that the density f
belongs to an Orlicz class Lw for some convex increasing weight w W RC ! RC such
that w.t/=t ! C1 as t ! C1. Set �1.t/ WD �.w�/�1.�t /, where w� denotes the
Legendre transform of w. Thus �1 W R� ! R� is a convex increasing weight such that
�1.�1/ D �1 andZ

X

.��1 ı '/.! C dd
c'/n �

Z
X

w ı f dVX C

Z
X

.�'/ dVX � C0;
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as follows from the additive version of the Hölder–Young inequality and the compactness
of sup-normalized !-psh functions.

It follows that ' belongs to a compact subset of the finite energy class E�1.X; !/,
hence for all � 2 R, Z

X

exp.��'/ dVX � C� (3.2)

for some C� independent of ' (see [37, 39] for more information).

The envelope construction. Let u D P.2' � Q / denote the greatest !-psh function that
lies below 2' � Q . Since h D 2' � Q is bounded from below and quasi-continuous, it
follows from Proposition 1.6 that the measure .! C dd cu/n is supported on the contact
set C D ¹u D 2' � Q º. Thus

.! C dd cu/n � 1C .! C dd
c.2' � Q //n � 1C .2! C dd

c.2'//n:

Since v � w on X , it follows from Lemma 1.3 that

1¹vDwº.2! C dd
cv/n � 1¹vDwº.2! C dd

cw/n; (3.3)

where

� v D uC Q is 2!-psh and uC Q � 2' D w on X ;

� ¹uC Q D 2'º coincides with the contact set C .

Therefore, it follows from (3.3) that

1C .2! C dd
c.uC Q //n � 1C .2! C dd

c.2'//n � 1C2
ncge� dVX

� 1C2
ncgeu=ae�2'=a dVX � c1ge

�2'=a dVX ;

since supX u � c2 is uniformly bounded from above, as we explain below.
It follows from the Hölder inequality and (3.2) that the measure ge�2'=adVX satisfies

the assumption of Theorem 2.1. We infer that u��M is uniformly bounded below, hence

2' D .2' � Q /C Q � uC Q �
ı

K
 C � �M:

The desired a priori estimate follows with ˇ DM=2 and ˛ D max.1; ı=.2K//.

Bounding supX u from above. We can assume without loss of generality that supX Q D 0.
ConsiderGD¹ Q >�1º; this is a non-empty plurifine open set. Observe that for all x 2G,
u.x/ � .2' � Q /.x/ � 1, hence

u.x/ � 1 � VG;!.x/ WD sup ¹w.x/ W w 2 PSH.X; !/ with w � 0 on Gº:

It follows from [39, Theorem 9.17.1] that supX VG;! D C is finite since G is non-pluri-
polar, thus

sup
X

u � c2 D 1C sup
X

VG;! D 1C C:
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4. The local context

4.1. Cegrell classes

We fix a bounded hyperconvex domain��Cn, i.e. there exists a continuous plurisubhar-
monic function � W�! Œ�1; 0/whose sublevel sets ¹� <�cºb� are relatively compact
for all c > 0.

Let T .�/ denote the set of bounded plurisubharmonic functions u in � such that
limz!� u.z/ D 0 for every � 2 @�; and

R
�
.dd cu/n < C1. Cegrell [12,13] has studied

the complex Monge–Ampère operator .dd c �/n and introduced different classes of pluri-
subharmonic functions on which the latter is well-defined:

� DMA.�/ is the set of psh functions u such that for all z0 2 �, there exists a neighbor-
hood Vz0 of z0 and a decreasing sequence uj 2 T .�/ which converges to u in Vz0 and
satisfies supj

R
�
.dd cuj /

n < C1.

� A function u belongs to F .�/ iff there exists a sequence uj 2 T .�/ decreasing to u
in all of �, which satisfies supj

R
�
.dd cuj /

n < C1.

� A function u belongs to Ep.�/ if there exists a sequence uj 2 T .�/ decreasing to u
in � with supj

R
�
.�uj /

p.dd cuj /
n < C1.

� A function u belongs to F p.�/ if there exists a sequence uj 2 T .�/ decreasing to u
in � with supj

R
�
Œ1C .�uj /

p�.dd cuj /
n < C1.

Given u 2 Ep.�/ we define the weighted energy of u by

Ep.u/ WD

Z
�

.�u/p.dd cu/n < C1:

The operator .dd c �/n is well-defined on these sets, and continuous under decreasing
limits. If u 2 Ep.�/ for some p > 0 then .dd cu/n vanishes on all pluripolar sets [5, The-
orem 2.1]. If u 2 Ep.�/ and

R
�
.dd cu/n < C1 then u 2 F p.�/. Also, note that

T .�/ � F p.�/ � F .�/ � DMA.�/ and T .�/ � Ep.�/ � DMA.�/:

Cegrell has characterized the range of the complex Monge–Ampère operator acting
on the classes Ep.�/:

Theorem 4.1 ([12, Theorem 5.1]). Let � be a probability measure in �. There exists a
function u 2 F p.�/ such that .dd cu/n D � if and only if F p.�/ � Lp.�/.

A simplified variational proof of this result has been provided in [1].

4.2. Dirichlet problem

We have the following local analogue of Theorem 2.1:

Theorem 4.2. Assume � is a probability measure in � and F .�/ � Lm.�/ for some
m > n. Then there exists a unique bounded function u 2 F .�/ such that .dd cu/n D �.
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The upper bound on sup� juj only depends on Am.�/;m; n, where

Am.�/ WD sup
²Z

�

.�u/m d� W u 2 T .�/ with
Z
�

.dd cu/n � 1

³
:

Proof. We first explain why the integrability condition F .�/ � Lm.�; �/ is equivalent
to the finiteness of Am. Indeed, if Am is not finite then there exists a sequence .uj / in
T .�/ such that

R
�
.dd cuj /

n � 1 but
R
�
juj j

m d� � 4jm. Let u WD
PC1
jD1 2

�juj . Then,
by [13, Corollary 5.6], we have u 2 F .�/, butZ

�

.�u/m d� � 2�jm
Z
�

.�uj /
m d� � 2jm !C1:

It follows from Theorem 4.1 that there exists ' 2 F .�/ such that .dd c'/n D �. We
assume for the moment that u 2 T is bounded and we establish a uniform bound for '.
Set

Tmax WD sup ¹t > 0 W �¹' < �tº > 0º:

Our goal is to establish a precise bound on Tmax. By definition, �Tmax � ' almost every-
where with respect to �, hence .dd c max.';�Tmax//

n � .dd c'/n and the domination
principle, [39, Corollary 3.31] gives ' � �Tmax, providing the desired a priori bound
j'j � Tmax.

We let � W R� ! R� denote a concave increasing function such that �.0/ D 0 and
�0.0/D 1. We set  D � ı ', uD P. / 2 T .�/ the largest psh function in� which lies
below  , and observe that

dd c D �0 ı '!' C �
00
ı 'd' ^ d c' � �0 ı 'dd c':

Since  � �0.�Tmax/' and the latter is in T .�/, we deduce that u � �0.�Tmax/' and
u 2 T .�/.

Although the function  is not psh, this provides a bound from above on the positivity
of dd c which allows us to control the Monge–Ampère measure of its envelope (see
[25, Lemmas 4.1 and 4.2]):

.dd cu/n � 1¹uD º.dd
c /n � .�0 ı '/n�:

The above inequalities hold for smooth functions and the general case of bounded psh
functions can be obtained as in the proof of Lemma 1.7.

We thus get uniform control on the Monge–Ampère mass of u:Z
�

.dd cu/n �

Z
�

.�0 ı '/n d�:

We are going to choose below the weight � in such a way that
R
�
.�0 ı '/n d�D B � 2 is

a finite constant under control. This provides a uniform upper bound on kukLm.�/. Using
the Chebyshev inequality we thus obtain

�¹' < �tº �

R
�
j�.'/jm d�

j�.�t /jm
�

R
�
jujm d�

j�.�t /jm
�

Am

j�.�t /jm
; (4.1)

where Am � 1 is an upper bound for
R
�
jujm d�.
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Choice of �. We use again Lebesgue’s formula: if g W RC ! RC is increasing and nor-
malized by g.0/ D 1 thenZ

�

g ı .�'/ d� D �.�/C

Z Tmax

0

g0.t/�¹' < �tº dt:

Setting g.t/ D �0.�t /n we define � by imposing �.0/ D 0, �0.0/ D 1, and

g0.t/ D

8̂̂<̂
:̂

1

.1C t /2�¹' < �tº
if t 2 Œ0; T0�;

1

.1C t /2
if t > T0:

This choice guarantees thatZ
�

.�0 ı '/n d� � �.�/C

Z C1
0

dt

.1C t /2
D 2:

Conclusion. We set h.t/ D ��.�t / and work with the positive counterpart of �. Note
that h.0/D 0 and h0.t/D g.t/1=n is positive increasing, hence h is convex increasing (so
� is concave increasing and negative).

Together with (4.1) our choice of � yields, for all t 2 Œ0; T0�,

1

.1C t /2g0.t/
D �¹' < �tº �

Am

h.t/m
:

This reads
h.t/m � Am.1C t /

2g0.t/ D nAm.1C t /
2h00.t/h0.t/n�1:

We integrate this inequality as in the proof of Theorem 2.1 and obtain

T0 � C
0

for some uniform constant C 0 depending on n;m;Am.
To finish the proof we write � D f .dd c�/n, where 0 � f 2 L1.�; .dd c�/n/ and

� 2 T .�/. This is known as Cegrell’s decomposition theorem [12, Theorem 6.3]. We
next solve .dd c'j /n D min.f; j /.dd c�/n with 'j 2 T .�/. Since .dd c'j /n � �, our
estimate above shows that j'j j � C for a uniform constant C . The comparison principle
also implies that 'j is decreasing and ' � 'j , thus u WD limj 'j 2 F .�/ is bounded and
.dd cu/nD�. It then follows from [13, Theorem 5.15] that uD ', finishing the proof.
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