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Short note  The circle as generator of Pythagorean
triangles

Michael O’Loughlin

1 Introduction

A right-angled triangle whose side lengths are natural numbers is termed a Pythagorean
triangle. The central idea in this paper is that circles generate Pythagorean triangles and
they do so in a systematic way. Every circle of integral radius generates a set number of
such triangles and every Pythagorean triangle is generated by some circle. Thus, circles
provide a simple way of enumerating Pythagorean triangles.

2 Generating right-angled triangles

Starting with any circle, we construct a right-angled triangle whose incircle is the given
circle as follows (Figure 1).
Let r be the length of the radius and let d = 2r be the length of the diameter.

(i) Construct a tangent at any point 7 of the circle.
(i) From T3, mark off a length r along the tangent giving point C.

(iii) With C as centre, draw an arc of radius length r to intersect the circle at 75.
Draw the ray C T3 to give the second tangent from C. These two tangents are
perpendicular to each other and form the right angle of the triangle.

(iv) From T; mark off a length, greater than r, along the tangent in a direction opposite
to C, to give the point B. Let the length 71 B be r + x, x > 0, x € R.

(v) From B, construct a tangent to the circle that intersects the circle at 73 and inter-
sects the tangent CT, at A. Let the length T, A =r + y,y > 0,y € R.

Then AABC is the required triangle and the circle is its incircle. By varying x, an
infinite number of triangles arise. From Figure 1, we see that if x is lengthened, y is
shortened, and if x is shortened, y lengthens. We can read off the lengths of the three sides
from Figure | as

a=CB=d+x, (D
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Figure 1. Constructing a right triangle from its incircle

b=CA=d+y, @)
c=BA=d+x+y 3)

because
AT = AT, =r+y and BT3 =BT, =r + x.

By adding (1) and (2) and subtracting (3), we can obtain the diameter and hence the radius
in terms of the three sides a, b and ¢ as

a+b=2d+x+y.

Therefore,
a+b—c=d. 4)
Hence,
a+b—c
= . 5
r 7 %)
By subtracting (2) from (3) and (1) from (3), we obtain
x=c—>b, (6)

in terms of the sides. It follows that ¢ = b + x = a + y. We find the relationship between
x and y by using the theorem of Pythagoras.
Froma? + b? =c2?, we get (d + x)? + (d + y)?> = (d + x + y)?, whence d? = 2xy.

Therefore,
2

Xy == 2r2. (8)

We have now proved the following theorem.
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Theorem 1. For d, x,y € RY, where d is the length of the diameter of a circle, the
triangle with side lengths

2
d+x,d+y,d+x+y), withxy=7:2r2,

is a right-angled triangle whose incircle has diameter length d.

This theorem can be easily verified by using Pythagoras’ theorem and equation (4).
Equation (8) represents a hyperbola whose branches are in the first and third quadrants
and the line y = x is an axis of symmetry. Since x, y > 0, we need only be concerned
with the branch in the first quadrant. For a fixed value of r, each point (x, y) on that
branch generates a right-angled triangle whose side lengths area = d + x,b =d + y,
¢ =d + x + y. Because the hyperbola is symmetric about the line y = x, we can restrict
the point (x, y) to lie only on that portion of the hyperbola which lies in the upper half of
the first quadrant, i.e., above the axis of symmetry. This is done by making x < y, which
confines x to the interval 0 < x < +/2r.

3 Generating Pythagorean triangles

A Pythagorean triangle with side lengths (a, b, ¢) is such that a, b, ¢ are natural numbers
and a? + b? = 2. A Pythagorean triple is an ordered triple (a, b, ¢) of natural numbers
such that a® 4+ b? = ¢2. Two Pythagorean triples (a, b, ¢) and (b, a, c¢) identify the same
Pythagorean triangle. For this reason, we make the arbitrary choice that a Pythagorean
triangle is identified by the single triple (a, b, ¢) with a < b. This is consistent with restrict-
ing (x, y) to lie on the upper half of that portion of the hyperbola which lies in the first
quadrant.

The results established in Section 2, that is, equations (1)—(8) and Theorem | carry
over to here. Because a, b, ¢ are now natural numbers, equations (5), (6) and (7) show that
r, x and y are natural numbers too. Since all our variables are natural numbers, we shall
make a slight modification; for r, we shall write n, for x, i and for y, j. Hence, equations
(1), (2) and (3) become

a=d+i=2n+1i,

b=d+j=2n+j,

c=d+i+j=2n+i+j
Equations (6) and (7) become

i=c—b, 9)
j=c—a. (10)
Because a < b, it follows that i < j. Equation (8) becomes
d2
ij = 5 = 2n2. (11)

To ensure i < j, i mustbeintherange 0 <i < V2n (see [1]).
Theorem 1 now becomes the following theorem.
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Theorem 2. Forn,i,j € N,d = 2n, where d is the length of the diameter of a circle,
and i < j, the triangle with side lengths (d +i,d + j,d +i + j), with ij = %2 =
2n?, is a right-angled triangle whose incircle has diameter length d. Furthermore, every
Pythagorean triangle (a, b, ) is of this form.

Proof. The first two claims are easy to verify, so we prove the third one only.
Take any Pythagorean triangle («, b, ¢). Equations (4), (9) and (10) enable us to calcu-
late d, i and j; hence, we get

a=@+b—-c)+(c—-b)=d+1,
b=@+b—-c)+(c—a)=d+j,
c=@+b—-c)+(c—b)+(c—a)=d+i+],

which ends the proof of Theorem 2. ]

Example 1. We take a Pythagorean triangle that was known more than three thousand
eight hundred years ago. It is one of the triangles listed on the Mesopotamian clay tab-
let, known nowadays by its catalogue number in the George A. Plimpton Collection at
Columbia University, New York, as Plimpton 322. The tablet comes from the ancient city
of Larsa [3] and in two of its columns lists the shorter leg and hypotenuse of a Pythagorean
triangle. The triangle, from the fourth row of the tablet, is (12709, 13500, 18541) written
in modern notation. From a = 12709, b = 13500, ¢ = 18541, we obtain

d=a+b—c=7668, n=23834, i=c—b=5041, j =c—a=5832.

Hence,
a=d+1i=7668+ 5041,
b=d+j=7668 + 5832,
c=d+i+j=7668+ 5041 + 5832.

4 Counting the Pythagorean triangles generated by a circle

From equation (11) (ij = 2n?), it is clear that the number of triangles generated by the
circle of radius length n is given by the number of divisor pairs (i, j) of 2n2. To count
the number of divisor pairs of 22, we make use of the arithmetical function d(m) which
counts the number of divisors of m. When m is written as a product of its prime divisors
asm = p{'ps?... p,‘i‘k, where each p;,i = 1,...,k, is prime, then

dim) = (o1 + (a2 + 1) ... (g + 1).

Theorem 3. The circle with radius length n = 2" p{! p52 ... pik, where the indices are
non-negative integers and each p;, i = 1,2,...,k, is an odd prime number, generates

(m+1)Q2ay + 1)QRaz +1)...Q2ag + 1)

Pythagorean triangles.
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Proof. Fromn = 2" p{' p§> ... pik, we get 2n* = 2241 p2a1 p2az . p2ak The number
of divisors of 2n? is

d(2n?) = 2m +2)Q2a; + 1)(2az + 1) ... 2ay + 1).

Therefore, the number of divisor pairs equals (m + 1)(2a; + 1)(2az + 1) ... 2ag + 1).
Hence, the number of Pythagorean triangles is equal to

(m+1)2a; +1)2az +1)...2ag + 1). |

Example 2. In Example 1, we found that the generating circle had a radius length n =
3834. Fromn = 3834 =54 x 71 =2 x 33 x 71, we get 2n?% = 23 x 3% x 712. Therefore,
we have d(2n?) = 4 x 7 x 3. Consequently, the number of Pythagorean triangles equals
2x7Tx3 =42

5 Counting primitive Pythagorean triangles generated by a circle

The Pythagorean triangle (a, b, ¢) is said to be primitive when a, b and ¢ are relatively
prime, i.e., there is no prime p that divides all three. For a, b, ¢ to be relatively prime,
it is sufficient that a and b are relatively prime. For it is evident from the formulae ¢? =
a? +b?,a? = c? — b2, b? = ¢? — a? that if any pair taken from (a, b, ¢) shares a common
divisor, d > 1, that the third member also does [2, p. 345].

Lemma 1. Suppose that i, j and n are natural numbers such that ij = 2n? andi < j.
Then 2n + i and 2n + j are relatively prime if and only if i and j are.

Proof. The condition is necessary: if p is a prime that divides both i and j, then p divides
2n? as well; hence, p divides 2n because all the prime divisors of 212 come from those
of 2n. Hence, p divides 2n + i and 2n + j.

Conversely, if p is a prime that divides 2n + i and 2n + j, then p? divides

Cn+i)+Q2n+ ) =0Qn+i+j)>

Hence, p divides 2n + i + j. Since p divides 2n + i and 2n + i + j, p divides their
difference j. Similarly, p divides i. ]

Theorem 4. The number of primitive Pythagorean triangles generated by the circle of
radius length n is 2, where k is the number of odd prime divisors of n.

Proof. By Lemma 1, 2n 4 i and 2n + j are relatively prime whenever i and j are. Hence,
we need to find the number of divisor pairs (i, j) of 2n? for which i and j are relatively
prime. Let n = 2™ p{' p§> ... p{k as before. Therefore, 2n* = 2241 p2a1 p2az  p2ak,
Hence, 2n? has k + 1 relatively prime divisors which are to be allocated to the divisor
pair (i, j). Each of these relatively prime divisors is processed in two ways: allocated to i
or to j. Hence, there are 25*1 ways of allocating them. The number 21 includes the
duplicate pairsi = ¢, j =r andi = r, j = q. Hence, there are 2¥ distinct divisor pairs
of relatively prime divisors. Consequently, there are 2% primitive Pythagorean triangles
generated. ]



M. O’Loughlin 76

Example 3. Using the same circle from Examples 1 and 2, the radius length is n =
3834 = 2 x 33 x 71. There are two odd prime divisors. Hence, there are 22 = 4 primitive
Pythagorean triangles generated by this circle. One of those is the triangle from Plimp-
ton 322. It is generated by i = 5041 = 712 and j = 5832 = 23 x 3% = 2 x 542, Since i
and j are relatively prime, so are the sides (12709, 13500, 18541).
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