
Elemente der Mathematik 79 (2024), 71–76
DOI 10.4171/EM/505

© 2023 Swiss Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Short note The circle as generator of Pythagorean
triangles

Michael O’Loughlin

1 Introduction

A right-angled triangle whose side lengths are natural numbers is termed a Pythagorean
triangle. The central idea in this paper is that circles generate Pythagorean triangles and
they do so in a systematic way. Every circle of integral radius generates a set number of
such triangles and every Pythagorean triangle is generated by some circle. Thus, circles
provide a simple way of enumerating Pythagorean triangles.

2 Generating right-angled triangles

Starting with any circle, we construct a right-angled triangle whose incircle is the given
circle as follows (Figure 1).

Let r be the length of the radius and let d D 2r be the length of the diameter.
(i) Construct a tangent at any point T1 of the circle.
(ii) From T1, mark off a length r along the tangent giving point C .
(iii) With C as centre, draw an arc of radius length r to intersect the circle at T2.

Draw the ray CT2 to give the second tangent from C . These two tangents are
perpendicular to each other and form the right angle of the triangle.

(iv) From T1 mark off a length, greater than r , along the tangent in a direction opposite
to C , to give the point B . Let the length T1B be r C x, x > 0, x 2 R.

(v) From B , construct a tangent to the circle that intersects the circle at T3 and inter-
sects the tangent CT2 at A. Let the length T2A D r C y, y > 0, y 2 R.

Then 4ABC is the required triangle and the circle is its incircle. By varying x, an
infinite number of triangles arise. From Figure 1, we see that if x is lengthened, y is
shortened, and if x is shortened, y lengthens. We can read off the lengths of the three sides
from Figure 1 as

a D CB D d C x; (1)
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Figure 1. Constructing a right triangle from its incircle

b D CA D d C y; (2)
c D BA D d C x C y (3)

because
AT3 D AT2 D r C y and BT3 D BT1 D r C x:

By adding (1) and (2) and subtracting (3), we can obtain the diameter and hence the radius
in terms of the three sides a, b and c as

aC b D 2d C x C y:

Therefore,
aC b � c D d: (4)

Hence,

r D
aC b � c

2
: (5)

By subtracting (2) from (3) and (1) from (3), we obtain

x D c � b; (6)
y D c � a (7)

in terms of the sides. It follows that c D b C x D aC y. We find the relationship between
x and y by using the theorem of Pythagoras.

From a2C b2D c2, we get .d C x/2C .d C y/2D .d C xC y/2, whence d2D 2xy.
Therefore,

xy D
d2

2
D 2r2: (8)

We have now proved the following theorem.
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Theorem 1. For d; x; y 2 RC, where d is the length of the diameter of a circle, the
triangle with side lengths

.d C x; d C y; d C x C y/; with xy D
d2

2
D 2r2;

is a right-angled triangle whose incircle has diameter length d .

This theorem can be easily verified by using Pythagoras’ theorem and equation (4).
Equation (8) represents a hyperbola whose branches are in the first and third quadrants
and the line y D x is an axis of symmetry. Since x; y > 0, we need only be concerned
with the branch in the first quadrant. For a fixed value of r , each point .x; y/ on that
branch generates a right-angled triangle whose side lengths are a D d C x, b D d C y,
c D d C x C y. Because the hyperbola is symmetric about the line y D x, we can restrict
the point .x; y/ to lie only on that portion of the hyperbola which lies in the upper half of
the first quadrant, i.e., above the axis of symmetry. This is done by making x < y, which
confines x to the interval 0 < x <

p
2r .

3 Generating Pythagorean triangles

A Pythagorean triangle with side lengths .a; b; c/ is such that a; b; c are natural numbers
and a2 C b2 D c2. A Pythagorean triple is an ordered triple .a; b; c/ of natural numbers
such that a2 C b2 D c2. Two Pythagorean triples .a; b; c/ and .b; a; c/ identify the same
Pythagorean triangle. For this reason, we make the arbitrary choice that a Pythagorean
triangle is identified by the single triple .a;b; c/with a < b. This is consistent with restrict-
ing .x; y/ to lie on the upper half of that portion of the hyperbola which lies in the first
quadrant.

The results established in Section 2, that is, equations (1)–(8) and Theorem 1 carry
over to here. Because a; b; c are now natural numbers, equations (5), (6) and (7) show that
r , x and y are natural numbers too. Since all our variables are natural numbers, we shall
make a slight modification; for r , we shall write n, for x, i and for y, j . Hence, equations
(1), (2) and (3) become

a D d C i D 2nC i;

b D d C j D 2nC j;

c D d C i C j D 2nC i C j:

Equations (6) and (7) become
i D c � b; (9)
j D c � a: (10)

Because a < b, it follows that i < j . Equation (8) becomes

ij D
d2

2
D 2n2: (11)

To ensure i < j , i must be in the range 0 < i <
p
2n (see [1]).

Theorem 1 now becomes the following theorem.
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Theorem 2. For n; i; j 2 N; d D 2n, where d is the length of the diameter of a circle,
and i < j , the triangle with side lengths .d C i; d C j; d C i C j /, with ij D d2

2
D

2n2, is a right-angled triangle whose incircle has diameter length d . Furthermore, every
Pythagorean triangle .a; b; c/ is of this form.

Proof. The first two claims are easy to verify, so we prove the third one only.
Take any Pythagorean triangle .a; b; c/. Equations (4), (9) and (10) enable us to calcu-

late d , i and j ; hence, we get

a D .aC b � c/C .c � b/ D d C i;

b D .aC b � c/C .c � a/ D d C j;

c D .aC b � c/C .c � b/C .c � a/ D d C i C j;

which ends the proof of Theorem 2.

Example 1. We take a Pythagorean triangle that was known more than three thousand
eight hundred years ago. It is one of the triangles listed on the Mesopotamian clay tab-
let, known nowadays by its catalogue number in the George A. Plimpton Collection at
Columbia University, New York, as Plimpton 322. The tablet comes from the ancient city
of Larsa [3] and in two of its columns lists the shorter leg and hypotenuse of a Pythagorean
triangle. The triangle, from the fourth row of the tablet, is .12709; 13500; 18541/ written
in modern notation. From a D 12709, b D 13500, c D 18541, we obtain

d D aC b � c D 7668; n D 3834; i D c � b D 5041; j D c � a D 5832:

Hence,
a D d C i D 7668C 5041;

b D d C j D 7668C 5832;

c D d C i C j D 7668C 5041C 5832:

4 Counting the Pythagorean triangles generated by a circle

From equation (11) (ij D 2n2), it is clear that the number of triangles generated by the
circle of radius length n is given by the number of divisor pairs .i; j / of 2n2. To count
the number of divisor pairs of 2n2, we make use of the arithmetical function d.m/ which
counts the number of divisors of m. When m is written as a product of its prime divisors
as m D p˛11 p

˛2
2 : : : p˛k

k
, where each pi , i D 1; : : : ; k, is prime, then

d.m/ D .˛1 C 1/.˛2 C 1/ : : : .˛k C 1/:

Theorem 3. The circle with radius length n D 2mpa11 p
a2
2 : : : pak

k
, where the indices are

non-negative integers and each pi , i D 1; 2; : : : ; k, is an odd prime number, generates

.mC 1/.2a1 C 1/.2a2 C 1/ : : : .2ak C 1/

Pythagorean triangles.
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Proof. From nD 2mpa11 p
a2
2 : : : pak

k
, we get 2n2 D 22mC1p2a11 p2a22 : : : p2ak

k
. The number

of divisors of 2n2 is

d.2n2/ D .2mC 2/.2a1 C 1/.2a2 C 1/ : : : .2ak C 1/:

Therefore, the number of divisor pairs equals .mC 1/.2a1 C 1/.2a2 C 1/ : : : .2ak C 1/.
Hence, the number of Pythagorean triangles is equal to

.mC 1/.2a1 C 1/.2a2 C 1/ : : : .2ak C 1/:

Example 2. In Example 1, we found that the generating circle had a radius length n D
3834. From n D 3834 D 54 � 71 D 2 � 33 � 71, we get 2n2 D 23 � 36 � 712. Therefore,
we have d.2n2/ D 4 � 7 � 3. Consequently, the number of Pythagorean triangles equals
2 � 7 � 3 D 42.

5 Counting primitive Pythagorean triangles generated by a circle

The Pythagorean triangle .a; b; c/ is said to be primitive when a, b and c are relatively
prime, i.e., there is no prime p that divides all three. For a; b; c to be relatively prime,
it is sufficient that a and b are relatively prime. For it is evident from the formulae c2 D
a2C b2, a2 D c2 � b2, b2 D c2 � a2 that if any pair taken from .a; b; c/ shares a common
divisor, d > 1, that the third member also does [2, p. 345].

Lemma 1. Suppose that i , j and n are natural numbers such that ij D 2n2 and i < j .
Then 2nC i and 2nC j are relatively prime if and only if i and j are.

Proof. The condition is necessary: if p is a prime that divides both i and j , then p divides
2n2 as well; hence, p divides 2n because all the prime divisors of 2n2 come from those
of 2n. Hence, p divides 2nC i and 2nC j .

Conversely, if p is a prime that divides 2nC i and 2nC j , then p2 divides

.2nC i/2 C .2nC j /2 D .2nC i C j /2:

Hence, p divides 2n C i C j . Since p divides 2n C i and 2n C i C j , p divides their
difference j . Similarly, p divides i .

Theorem 4. The number of primitive Pythagorean triangles generated by the circle of
radius length n is 2k , where k is the number of odd prime divisors of n.

Proof. By Lemma 1, 2nC i and 2nC j are relatively prime whenever i and j are. Hence,
we need to find the number of divisor pairs .i; j / of 2n2 for which i and j are relatively
prime. Let n D 2mpa11 p

a2
2 : : : pak

k
as before. Therefore, 2n2 D 22mC1p2a11 p2a22 : : : p2ak

k
.

Hence, 2n2 has k C 1 relatively prime divisors which are to be allocated to the divisor
pair .i; j /. Each of these relatively prime divisors is processed in two ways: allocated to i
or to j . Hence, there are 2kC1 ways of allocating them. The number 2kC1 includes the
duplicate pairs i D q, j D r and i D r , j D q. Hence, there are 2k distinct divisor pairs
of relatively prime divisors. Consequently, there are 2k primitive Pythagorean triangles
generated.
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Example 3. Using the same circle from Examples 1 and 2, the radius length is n D
3834 D 2 � 33 � 71. There are two odd prime divisors. Hence, there are 22 D 4 primitive
Pythagorean triangles generated by this circle. One of those is the triangle from Plimp-
ton 322. It is generated by i D 5041 D 712 and j D 5832 D 23 � 36 D 2 � 542. Since i
and j are relatively prime, so are the sides .12709; 13500; 18541/.
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