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U-statistics of growing order and sub-Gaussian mean
estimators with sharp constants

Stanislav Minsker

Abstract. This paper addresses the following question: given a sample of i.i.d. random vari-
ables with finite variance, can one construct an estimator of the unknown mean that performs
nearly as well as if the data were normally distributed? One of the most popular examples
achieving this goal is the median of means estimator. However, it is inefficient in a sense that
the constants in the resulting bounds are suboptimal. We show that a permutation-invariant
modification of the median of means estimator admits deviation guarantees that are sharp up to
1C o.1/ factor if the underlying distribution possesses more than 3C

p
5

2
� 2:62 moments and

it is absolutely continuous with respect to the Lebesgue measure. This result yields potential
improvements for a variety of algorithms that rely on the median of means estimator as a build-
ing block. At the core of our argument are the new deviation inequalities for the U-statistics of
order that is allowed to grow with the sample size, a result that could be of independent interest.

1. Introduction

Let X1; : : : ; XN be i.i.d. random variables with distribution P having mean � and
finite variance �2. At the core of this paper is the following: Given 1 � t � tmax.N /,
construct an estimator z�N D z�N .X1; : : : ; XN / such that

P
�
jz�N � �j � �

r
t

N

�
� 2e�t=L (1.1)

for some absolute positive constant L. Estimators that satisfy this deviation property
are called sub-Gaussian. For example, the sample mean NXN D 1

N

PN
jD1 Xj is sub-

Gaussian for tmax � q.N; P /, where q.N; P /!1 as N !1 and the constant L
equals 2; this immediately follows from the fact that convergence of the distribution
functions is uniform in the central limit theorem. However, q.N; P / can grow arbi-
trarily slow in general, and it grows as log1=2.N / if EjX j2C" <1 for some " > 0 in
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view of the Berry–Esseen theorem (for instance, see the book by Petrov [28]). At the
same time, the so-called median of means (MOM) estimator, originally introduced in
[1, 16, 26] and studied recently in relation to the problem at hand satisfies inequal-
ity (1.1) with tmax of order N and L D 24e (see [21]), although the latter can be
improved. A large body of existing work used the MOM estimator as a core subrou-
tine to relax underlying assumptions for a variety of statistical problems, in particular,
the methods based on the empirical risk minimization; we refer the reader to an excel-
lent survey paper by Lugosi and Mendelson [22] for a detailed overview of the recent
advances.

The exact value of constant L in inequality (1.1) is less important in problems
where only the minimax rates are of interest, but it becomes crucial in terms of practi-
cal value and sample efficiency of the algorithms. The benchmark here is the situation
when observations are normally distributed: Catoni [4] showed that no estimator can
outperform the sample mean in this situation. The latter satisfies the relation

P
�
j NXN � �j � �

ˆ�1.1 � e�t=2/
p
N

�
D 2e�t=2;

where ˆ�1. �/ denotes the quantile function of the standard normal law. As we have
ˆ�1.1 � e�t=2/ D .1C o.1//

p
t as t !1, the best guarantee of the form (1.1) one

can hope for is attained for L D 2. It is therefore natural to ask whether there exist
sharp sub-Gaussian estimators of the mean, that is, estimators satisfying (1.1) with
L D 2.1 C o.1//, where o.1/ is a sequence that converges to 0 as N !1, under
minimal assumptions on the underlying distribution. This question has previously
been posed by Devroye et al. [8] as an open problem, and several results appeared
since then that give partial answers. We proceed with a brief review of the state of
the art.

1.1. Overview of the existing results

Catoni [4] presented the first known example of a sharp sub-Gaussian estimator with
tmax D o.N=�/ for distributions with finite fourth moment and a known upper bound
on the kurtosis � (or, alternatively, for distribution with finite but known variance).
Devroye et al. [8] introduced an alternative estimator that also required finite fourth
moment but did not explicitly depend on the value of the kurtosis as an input while
satisfying required guarantees for tmax D o..N=�/2=3/. Minsker and Ndaoud [25]
designed an asymptotically efficient sub-Gaussian estimator z�N that satisfies
p
N.z�N � �/

d
�! N.0; �2/ assuming only the finite second moment plus a mild,

“small-ball” type condition. However, the constants in the non-asymptotic version of
their bounds were not sharp. Finally, Lee and Valiant [20] constructed an estimator
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with required properties assuming just the finite second moment, however, their guar-
antees hold with optimal constants only for tmin � t � tmax, where tmax D o.N / and
tmin !1 as N !1. In particular, this range excludes t in the neighborhood of 0,
which is often the region of most practical interest.

1.2. Summary of the main contributions

The reasons for the popularity of the MOM estimator are plenty: it is simple to define
and to compute, it admits strong theoretical guarantees, moreover, it is scale-invariant
and therefore essentially tuning-free. Thus, we believe that any quantifiable improve-
ments to its performance are worth investigating.

We start by showing that the standard MOM estimator achieves bound (1.1) with
L D �.1C o.1//, where o.1/! 0 as N !1; this fact is formally stated in Theo-
rem 2.1. We then define a permutation-invariant version of MOM, denoted y�N , and
show in Corollary 3.2 that, surprisingly, it is asymptotically optimal in a sense that
p
N.y�N � �/

d
�! N.0; �2/ under minimal assumptions; compare this to the standard

MOM estimator that has a limiting variance �
2
�2. The main result of the paper, Theo-

rem 5.1, demonstrates that optimality of y�N holds in the stronger sense, namely, that
inequality (1.1) is valid for a wide range of the confidence parameters, assuming the
distribution ofX1 possesses q moments for some possibly unknown q > 3C

p
5

2
� 2:62

and that its characteristic function satisfies a mild decay bound.
Analysis of the estimator y�N requires new inequalities for U-statistics of order

that grows with the sample size. Detailed discussion and comparison with existing
bounds is given in Section 4. In particular, we prove novel bounds for large deviations
of the degenerate, higher order terms of the Hoeffding decomposition (Theorem 4.1),
and deduce sub-Gaussian deviation guarantees for the non-degenerate U-statistics
(Corollary 4.2) with the “correct” sub-Gaussian parameter. These bounds could be
of independent interest.

1.3. Notation

Unspecified absolute constants will be denoted C; c; C1; c0, etc., and may take dif-
ferent values in different parts of the paper. Given a; b 2 R, we will write a ^ b for
min.a; b/ and a _ b for max.a; b/. For a positive integer M , ŒM � denotes the set
¹1; : : : ;M º.

We will frequently use the standard big-O and small-o notation for asymptotic
relations between functions and sequences. Moreover, given two sequences ¹anºn�1
and ¹bnºn�1, where bn ¤ 0 for all n, we will write that an � bn if an

bn
D o.1/ as

n!1. Note that o.1/ may denote different functions/sequences from line to line.
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For a function f WR 7! R, f .m/ will denote itsm-th derivative whenever it exists.
Similarly, given gWRd 7!R, @xj g.x1; : : : ; xd /will stand for the partial derivative of g
with respect to the j -th variable. Finally, the sup-norm of g is defined via kgk1 WD
ess sup¹jg.y/j W y 2 Rd º and the convolution of f and g is denoted f � g.

Given i.i.d. random variables X1; : : : ; XN distributed according to P , we will
denote the corresponding empirical measure viaPN WD 1

N

PN
jD1 ıXj , where ıX .f / WD

f .X/. For a real-valued function f and a signed measure Q, we will write Qf forR
f dQ, assuming that the last integral is well-defined. Additional notation and aux-

iliary results will be introduced on demand.

2. Optimal constants for the median of means estimator

Recall that we are given an i.i.d. sampleX1; : : : ;XN from distribution P with mean �
and variance �2. The median of means estimator of � is constructed as follows: let
G1 [ � � � [Gk � ŒN � be an arbitrary (possibly random but independent from the data)
collection of k � N=2 disjoint subsets (“blocks”) of cardinality bN=kc each, NXj WD
1
jGj j

P
i2Gj

Xi and

y�MOM D med. NX1; : : : ; NXk/:

It is known (e.g., [8, 21]) that y�MOM satisfies inequality (1.1) for t D k and L D 8e2.
This value of L appears to be overly pessimistic however: it follows from Theorem 5
in [24] that if k!1 sufficiently slow so that the bias of y�MOM is of order o.N�1=2/,
then

p
N.y�MOM � �/

d
�! N

�
0;
�

2
�2
�

(2.1)

as k; N=k ! 1. In particular, if EjX j2Cı < 1 for some 0 < ı � 1, then k D
o.N ı=.1Cı// suffices for the asymptotic unbiasedness and asymptotic normality to
hold. Asymptotic relation (2.1) suggests that the best value of the constant L in the
deviation inequality (1.1) for the estimator y�MOM is � C o.1/. We will demonstrate
that this is indeed the case. Denote

g.m/ WD
1
p
m

E
h�X1 � �

�

�2
min

�ˇ̌̌X1 � �
�

ˇ̌̌
;
p
m
�i
: (2.2)

Clearly, g.m/! 0 asm!1 for distributions with finite variance. Feller [10] proved
that supt2Rjˆm.t/ �ˆ.t/j � 6g.m/, where ˆm and ˆ are the distribution functions
of 1

�
p
m

Pm
jD1Xj �� and the standard normal law, respectively. It is well known that

g.m/ � CE
ˇ̌̌X1 � �

�

ˇ̌̌q
m�.q�2/=2

whenever EjX1 � �jq <1 for some q 2 .2; 3�. The next result can be viewed as a
non-asymptotic analogue of relation (2.1).
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Theorem 2.1. The following bound holds:

P
�
j
p
N.y�MOM � �/j � �

p
t
�
� 2 exp

�
�
t

�
.1C o.1//

�
: (2.3)

Here, o.1/ is a function that goes to 0 as k;N=k!1, uniformly over t 2 Œlk;N ;uk;N �
for any sequences lk;N � k g2.N=k/ and uk;N � k.

Remark 2.2. (1) Note that the bound of the theorem holds in some range of the
confidence parameter (such estimators are often called “multiple-ı” in the
literature, e.g., see [8]), however, this range is distribution-dependent. In par-
ticular, if

p
k g.N=k/! 0 as k; N !1, the previous bound holds in the

range 1 � t � k, but the function g. �/ depends on P and may converge to 0
arbitrarily slow. Under additional assumptions, more concrete bounds can be
deduced: for instance, if EjX=� j2C" < 1 for some 0 < " � 1, the condi-
tion
p
k g.N=k/! 0 is satisfied if k D o.N

"
1C" / as N !1. In general, by

choosing k appropriately, we can construct a version of the median of means
estimator that satisfies required guarantees for any 1 � t � N .

(2) The exact expression for the function o.1/ appearing in the statement of The-
orems 2.1, as well as other results in the paper (e.g., Theorem 5.1), is not
made explicit. We remark that it depends on the distribution of X1 through
the function g. �/ defined in (2.2), and on the ratios kg

2.N=k/
lk;N

and uk;N
k

.

Proof of Theorem 2.1. As y�MOM is scale-invariant, we can assume without loss of
generality that �2 D 1. Denote m D bN=kc for brevity, let �.x/ D jxj, and note that
the equivalent characterization of y�MOM is

y�MOM 2 argmin
z2R

kX
jD1

�.
p
m. NXj � z//:

The necessary conditions for the minimum of F.z/ WD
Pk
jD1 �.

p
m. NXj � z// imply

that 0 2 @F.y�MOM/ – the subgradient of F , hence the left derivative F 0�.y�MOM/ � 0.
Therefore, if

p
N.y�MOM � �/ �

p
t for some t > 0, then y�MOM � �C

p
t=N and,

due to F 0� being non-decreasing, F 0�.�C
p
t=N / � 0. This implies that

P
�p
N.y�MOM � �/ �

p
t
�

� P

� kX
jD1

�0�.
p
m. NXj � � �

p
t=N // � 0

�
D P

�
1
p
k

kX
jD1

�
�0�.
p
m. NXj � � �

p
t=N // � E�0�

�
� �
p
k E�0�

�
; (2.4)
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where we used the shortcut E�0� in place of E�0�.
p
m. NXj � � �

p
t=N //. Note that

�
p
k E�0�.

p
m. NXj � � �

p
t=N //

D �
p
k
�
1 � 2P

�p
m. NXj � � �

p
t=N / � 0

��
D 2
p
k
�
ˆ
�pt
p
k

�
�ˆ.0/

�
� 2
p
k
�
ˆ
�pt
p
k

�
� P

�p
m. NXj � �/ �

p
t
p
k

��
� 2
p
k � g.m/C 2

p
t

1
p
t=
p
N=m

�
ˆ
� p

tp
N=m

�
�ˆ.0/

�
:

Since

2
p
t

1
p
t=
p
N=m

�
ˆ
� p

tp
N=m

�
�ˆ.0/

�
D 2
p
t .�.0/CO.t=

p
N=m//

D
p
t
�r 2

�
CO.t=

p
N=m/

�
;

where �.t/ D ˆ0.t/, we see that

�
p
k E�0�.

p
m. NXj � � �

p
t=N // � 2

p
k � g.m/C

p
t
�r 2

�
CO.

p
t=k/

�
;

which is
p
t

q
2
�
.1C o.1// whenever t � k and t � k g2.m/. It remains to apply

Bernstein’s inequality to the right-hand side in (2.4). Observe that

Var
�
�0�.
p
m. NXj � � �

p
t=N //

�
D 4Var

�
I ¹
p
m. NXj � �/ �

p
t=kº

�
D 4P

�p
m. NXj � �/ �

p
t=k

��
1 � P

�p
m. NXj � �/ �

p
t=k

��
� 1;

therefore

P
�p
N.y�MOM � �/ �

p
t
�
� exp

�
�

t

�.1C o.1//C 2
p
t
p
2�

3
1p
k
.1C o.1//

�
D exp

�
�
t

�
.1C o.1//

�
whenever

p
kg.m/� t �

p
k. Similar reasoning gives a matching bound for the

lower tail P .
p
N.y�MOM � �/ � �

p
t /, and the result follows.

One may ask whether the median of means estimator admits a more sample-
efficient modification, one that would satisfy inequality (1.1) with a constant L smal-
ler than � . A natural idea is to require that the estimator is invariant with respect
to permutations of the data or, equivalently, it is a function of order statistics only.
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Such an extension of the MOM estimator was proposed by Minsker [24], however,
no provable improvements for the performance over the standard MOM estimator
were established rigorously. The question of such improvements, especially the guar-
antees expressed in the form (1.1), is addressed next. Let us recall the proposed
construction. Assume that 2 �m< N and, given J � ŒN � of cardinality jJ j Dm, set
NXJ WD

1
m

P
j2J Xj . Define A

.m/
N D ¹J � ŒN � W jJ j D mº and

y�N WD med. NXJ ; J 2 A
.m/
N /; (2.5)

where ¹ NXJ ; J 2A
.m/
N º denotes the set of sample averages computed over all possible

subsets of ŒN � of cardinality m; in particular, unlike the standard median-of-means
estimator, y�N is uniquely defined. Note that for m D 2, y�N coincides with the well
known Hodges–Lehmann estimator of location [13]. Whenm is a fixed integer greater
than 2, y�N is known as the generalized Hodges–Lehmann estimator. Its asymptotic
properties are well-understood and can be deduced from results by Serfling [31],
among other works. For example, its breakdown point is 1 � .1=2/1=m and, in case
of normally distributed data, the asymptotic distribution of

p
N.y�N � �/ is centered

normal with variance �2m D m�
2 arctan. 1p

m2�1
/. In particular, �2m D �

2.1C o.1//

asm!1. When the underlying distribution is not symmetric however, y�N is biased
for the mean, and the properties of this estimator in the regimem!1 have not been
investigated in the robust statistics literature (to the best of our knowledge). Only very
recently, DiCiccio and Romano [9] proved that whenever m!1, m D o.

p
N/ and

the sample is normally distributed,
p
N.y�N � �/! N.0; �2/. We will extend this

result in several directions: first, by allowing a much wider class of underlying dis-
tributions, second, by including the case when

p
N � m� N , which is interesting

as bias.y�N / is o.N�1=2/ in this regime, and finally by presenting sharp sub-Gaussian
deviation inequalities for y�N that hold for heavy-tailed data.

Let us remark that an argument behind Theorem 2.1 combined with a version of
Bernstein’s inequality for U-statistics due to Hoeffding [15] immediately implies that
y�N satisfies relation (2.3). Similar reasoning applies to other deviation guarantees for
the classical median of means estimator that exist in the literature, so in this sense y�N
always performs at least as good as y�MOM.

Analysis of the estimator y�N is most naturally carried out using the language of
U-statistics. The following section introduces the necessary background, while addi-
tional useful facts are summarized in Section 7.1.

3. Asymptotic normality of U-statistics and the implications for y�N

Let Y1; : : : ; YN be i.i.d. random variables with distribution PY and assume that hm W
Rm 7! R, m � 1, are permutation-symmetric and square-integrable with respect to
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PmY functions, i.e., hm.x�.1/; : : : ; x�.m// D hm.x1; : : : ; xm/ for any x1; : : : ; xm 2 R

and any permutation � W Œm� 7! Œm�, and Eh2m.Y1; : : : ; Ym/ <1. Without loss of gen-
erality, we will also assume that Ehm WD Ehm.Y1; : : : ; Ym/ D 0. Recall that A

.m/
N D

¹J � ŒN � W jJ j D mº. The U-statistic with kernel hm is defined as

UN;m D
1�
N
m

� X
J2A

.m/
N

hm.Yi ; i 2 J /:

For i 2 ŒN �, let
h.1/m .Yi / D EŒhm.Y1; : : : ; Ym/ j Yi �: (3.1)

We will assume that P .h.1/m .Y1/ ¤ 0/ > 0 for all m, meaning that the kernels hm are
non-degenerate. The random variable

SN;m WD

NX
jD1

EŒUN;m j Yj � D
m

N

NX
jD1

h.1/m .Yj /;

known as the Hájek projection of UN;m, is essentially the best approximation of UN;m
in terms of the sum of i.i.d. random variables of the form f .Y1/C � � � C f .Ym/. We
are interested in the sufficient conditions guaranteeing that UN;m�SN;mp

Var.SN;m/
D oP .1/ as

N;m!1. Such asymptotic relation immediately implies that the limiting behavior
of UN;m is defined by the Hájek projection SN;m. Results of these type for U-statistics
of fixed order m are standard and well-known [14, 18, 30]. However, we are inter-
ested in the situation when m is allowed to grow with N , possibly up to the order
m D o.N /. U-statistics of growing order were studied, for example, by Frees [11],
however, existing results are not readily applicable in our framework. Very recently,
such U-statistics have been investigated in relation to performance of Breiman’s ran-
dom forests algorithm (e.g., see [27,34]). The following theorem is essentially due to
Peng, Coleman and Mentch [27]; we give a different proof of this fact in Section 7.2
as we rely on parts of the argument elsewhere in the paper.

Theorem 3.1. Assume that Var.hm.Y1;:::;Ym//
Var.h.1/m .Y1//

D o.N / as N;m!1.1 Then

UN;m � SN;mp
Var.SN;m/

D oP .1/ as N;m!1:

It is easy to see that asymptotic normality of UN;m=
p

Var.SN;m/ immediately
follows from the previous theorem whenever its assumptions are satisfied. Next, we
will apply this result to establish asymptotic normality of the estimator y�N defined
via (2.5).

1It is well known [14] that Var.h.1/.Y1// � Var.hm/=m, therefore the condition imposed
on the ratio of variances implies that m D o.N /.
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Corollary 3.2. Let X1; : : : ; XN be i.i.d. with finite variance �2. Moreover, assume
that

p
N=mg.m/! 0 as N=m and m!1. Then

p
N.y�N � �/

d
�! N .0; �2/ as N=m and m!1.

Remark 3.3. The requirement
p
N=mg.m/! 0 guarantees bias.y�N /D o.N�1=2/.

Without this requirement, asymptotic normality can be established for the debiased
estimator y�N � Ey�N .

Proof. Let �.x/ D jxj and note that the equivalent characterization of y�N is

y�N 2 argmin
z2R

X
J2A

.m/
N

�.
p
m. NXJ � z//:

The necessary conditions for the minimum of this problem imply that for any fixed
t � 0,

P
� X
J2A

.m/
N

�0�.
p
m. NXJ � � � tN

�1=2// > 0
�
� P

�p
N.y�N � �/ � t

�
and

P
�p
N.y�N � �/ � t

�
� P

� X
J2A

.m/
N

�0�.
p
m. NXJ � � � tN

�1=2// � 0
�
:

Thus, it suffices to show that the upper and lower bounds for P .
p
N.y�N � �/ � t /

converge to the same limit. To this end, we see that

P
� X
J2A

.m/
N

�0�.
p
m. NXJ � � � tN

�1=2// � 0
�

D P

�p
N=m�
N
m

� X
J2A

.m/
N

�
�0�.
p
m. NXJ ���tN

�1=2// � E�0�
�
� �

r
N

m
E�0�

�
; (3.2)

where E�0� stands for E�0�.
p
m. NXJ ��� tN

�1=2//. As it the proof of Theorem 2.1,
we deduce that �

p
N=mE�0�.

p
m. NXJ � � � tN

�1=2// ! t
�

p
2=� whenever we

have
p
N=mg.m/! 0 and N=m!1. It remains to analyze the U-statisticr
N

m
UN;m D

p
N=m�
N
m

� X
J2A

.m/
N

�
�0�.
p
m. NXJ � � � tN

�1=2// � E�0�
�
:

As the expression above is invariant with respect to the shift Xj 7! Xj � �, we can
assume � D 0. To complete the proof, we will verify the conditions of Theorem 3.1,
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allowing one to reduce the asymptotic behavior of UN;m to the analysis of sums of
i.i.d. random variables. For i 2 ŒN �, let

h.1/.Xi / D

r
N

m
E

�
�0�

�
1
p
m

m�1X
jD1

QXj C
Xi
p
m
�

tp
N=m

� ˇ̌̌
Xi

�
�

r
N

m
E�0�;

where . QX1; : : : ; QXm/ is an independent copy of .X1; : : : ; Xm/. Our goal is to under-
stand the size of Var.h.1/.X1//. Specifically, we will show that Var. mp

N
h.1/.X1//!

2=� as both m and N=m!1. Given an integer l � 1, let ẑ l.t/ be the cumulative
distribution function of

Pl
jD1Xj . Then

m
p
N
h.1/.X1/ D

p
m
�
2 ẑm�1

� tm
p
N
�X1

�
� 1

�
�
p
mE �0�

D 2
p
m
�
ẑ
m�1

� tm
p
N
�X1

�
� E ẑm�1

� tm
p
N
�X1

��
D 2
p
m

Z
R

�
ẑ
m�1

� tm
p
N
�X1

�
� ẑm�1

� tm
p
N
� x

��
dP.x/:

We will apply the dominated convergence theorem to analyze this expression. Con-
sider first the situation when the distribution ofX1 is non-lattice.2 Then the local limit
theorem for non-lattice distributions [32, Theorem 2] implies that

ẑ
m�1.aC h/ � ẑm�1.a/ D

hp
2�.m � 1/�

exp
�
�

a2

2.m � 1/�2

�
C o.m�1=2/;

where
p
m � o.m�1=2/ converges to 0 as m ! 1 for every h and uniformly in a.

Therefore, we see that conditionally on X1 and for every x,

ẑ
m�1

� tm
p
N
� x C .x �X1/

�
� ẑm�1

� tm
p
N
� x

�
D

x �X1p
2�.m � 1/�

exp
�
�
.tm=
p
N � x/2

2.m � 1/�2

�
C o.m�1=2/ (3.3)

uniformly in m. Since m D o.N / by assumption,

exp
�
�
.tm=
p
N � x/2

2.m � 1/�2

�
D 1C o.1/ as m;N !1;

hence

2
p
m
�
ẑ
m�1

� tm
p
N
� x C .x �X1/

�
� ẑm�1

� tm
p
N
� x

��
D 2

x �X1
p
2��

C o.1/

2We say that X1 has lattice distribution if P .X1 2 ˛ C kˇ; k 2 Z/ D 1 and there is no
arithmetic progression A � Z such that P .X1 2 ˛ C kˇ; k 2 A/ D 1.
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P -almost everywhere. Next, we will show that

qm.x;X1/ WD
p
m
�
ẑ
m�1

� tm
p
N
�X1

�
� ẑm�1

� tm
p
N
� x

��
admits an integrable majorant that does not depend on m. Note that

jqm.x;X1/j � sup
z

p
mP

�m�1X
jD1

Xj 2 .z; z C jx �X1j�

�
� C jx �X1j;

where the last inequality follows from the well known bound for the concentration
function [29, Theorem 2.20]; here, C D C.P / > 0 is a constant that may depend on
the distribution of X1. We conclude that, by the dominated convergence theorem,

m
p
N
h.1/.X1/!

r
2

�

X1

�

as m;N=m!1, P -almost everywhere. Asˇ̌̌ m
p
N
h.1/.X1/

ˇ̌̌
� 2

ˇ̌̌ Z
R
qm.x;X1/ dP.x/

ˇ̌̌
� C

Z
R
jx �X1j dP.x/

and E.
R

R jx � X1j dP.x//
2 <1; the second application of the dominated conver-

gence theorem yields that Var. mp
N
h.1/.X1//! Var.

q
2
�
X1
�
/ D 2

�
asN=m!1 and

m!1.
It remains to consider the case when X1 has a lattice distribution. In this case, a

version of the local limit theorem [29] states that

P

�m�1X
jD1

Xj D .m � 1/˛ C qˇ

�
D

ˇp
2�.m � 1/ �

e
�
..m�1/˛Cqˇ/2

2�2.m�1/ C o.m�1=2/;

where the o.m�1=2/ term is uniform in q 2 Z. Now, for any given y in the interval
.tm=
p
N � x; tm=

p
N � x C .x � X1/� of the form y D .m � 1/˛ C qˇ, we have

that e�y
2=.2�2.m�1// D 1C o.1/ as m=N ! 0. Therefore, similarly to (3.3), in this

case,

2
p
m
�
ẑ
m�1

� tm
p
N
� x C .x �X1/

�
� ẑm�1

� tm
p
N
� x

��
D 2

x �X1
p
2��

C o.1/

P -almost everywhere, where we also used the fact that the number of points of the
form .m � 1/˛ C qˇ in the interval of interest equals .x �X1/=ˇ. The rest of the
proof proceeds exactly as in the case of non-lattice distributions, and concludes the
part of the argument related to Var. mp

N
h.1/.X1//.
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To finish the proof, note that Var.
p
N=m�0�.

p
m. NXJ � � � tN

�1=2/// � N=m

since k�0�k1 D 1, hence

Var.
p
N=m�0�.

p
m. NXJ � � � tN

�1=2///

Var.h.1/.X1//
�

N=m
2
�
.1C o.1//N=m2

D
m

2
�
.1C o.1//

D o.N /

as m!1 and N=m!1. Therefore, Theorem 3.1 applies and yields thatq
N
m
UN;m �

m
N

PN
jD1 h

.1/.Xj /

m2

N
Var.h.1/.Xj //

D oP .1/;

where m2

N
Var.h.1/.Xj // D 2

�
.1C o.1//. In view of the central limit theorem,

m

N

NX
jD1

h.1/.Xj /
d
�! N

�
0;
2

�

�
;

and we conclude that
q
N
m
UN;m

d
�! N.0; 2

�
/. Recalling (3.2), we see that

P
�rN

m
UN;m �

r
N

m
E�0�

�
! 1 � ẑ

� t
�

�
;

or lim supm;N=m!1 P .
p
N.y�N ��/ � t / � 1� ẑ .t=�/. On the other hand, repeat-

ing the preceding argument for the lower bound for P .
p
N.y�N � �/ � t /, we get

that lim infm;N=m!1 P .
p
N.y�N � �/ � t / � 1 � ẑ .t=�/, whence the claim of the

theorem follows.

Corollary 3.2 implies that asymptotically, the estimator y�N improves upon y�MOM.
The more interesting, and difficult, question is whether non-asymptotic sub-Gaussian
deviation bounds for y�N with improved constant can be established, and to under-
stand the range of the deviation parameter in which such bounds are valid.

4. Deviation inequalities for U-statistics of growing order

The ultimate goal of this section is to establish a non-asymptotic analogue of Corol-
lary 3.2. Recall that its proof relied on the classical strategy of showing that the
higher-order terms in the Hoeffding decomposition of certain U-statistics are asymp-
totically negligible. To prove the desired non-asymptotic extension, one has to be able
to show that these higher-order terms are sufficiently small with exponentially high
probability. However, classical tools used to prove such bounds rely on decoupling
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inequalities due to de la Pena and Montgomery-Smith [7]. Unfortunately, the con-
stants appearing in decoupling inequalities grow very fast with respect to the order m
of U-statistics, at least like mm. As m is allowed to grow with the sample size N
in our examples, such tools become insufficient to get the desired bounds in our
framework. Arcones [2] derived an improved version of Bernstein’s inequality for
non-degenerate U-statistics where the sub-Gaussian deviations regime is controlled
by mVar.h.1/m .X// defined in equation (3.1), rather than the larger quantity Var.hm/
appearing in the inequality due to Hoeffding [15]; however, this result is only useful
whenm is essentially fixed. Maurer [23] used different techniques that yield improve-
ments over Arcones’ result, in particular, with respect to the orderm; bounds obtained
in this work are non-trivial for m up to the order of N 1=3, however, this does not suf-
fice for the applications required in the present paper. Moreover, unlike Theorem 4.1
below, results in [23] do not capture the correct behavior of degenerate U-statistics.
Recently, Song, Chen and Kato [34] made significant progress in studying U-statistics
of growing order and developed tools that avoid using decoupling inequalities, how-
ever, their techniques apply whenmD o.

p
N/, while we only require thatmD o.N /.

We will be interested in U-statistics with kernels of special structure that assumes
“weak” dependence on each of the individual variables. Let the kernel be centered
and written in the form hm.

x1p
m
; : : : ; xmp

m
/, whence the corresponding U-statistic is

UN;m D
1�
N
m

� X
J2A

.m/
N

hm

� Xi
p
m
; i 2 J

�
:

The Hoeffding decomposition of UN;m is defined as the sum

UN;m D
m

N

NX
jD1

h.1/m .Xj /C

mX
jD2

�
m
j

��
N
j

� X
J2A

.j/
N

h.j /m .Xi ; i 2 J /;

where h.j /m .x1; : : : ; xj / D .ıx1 � P / � � � � � .ıxj � P / � P
m�jhm . We refer the

reader to Section 7.1 where the Hoeffding decomposition and related background
material is reviewed in more detail.

We will assume that UN;m is non-degenerate, in particular, one can expect that the
behavior of UN;m is determined by the first term m

N

PN
jD1 h

.1/
m .Xj / in the decompo-

sition. In order to make this intuition rigorous, we need to prove that the higher-order
terms are of smaller order with exponentially high probability. It is shown in the
course of the proof of Theorem 3.1 that

Var
��m

j

��
N
j

� X
J2A

.j/
N

h.j /m .Xi ; i 2 J /

�
� Var.hm/

�m
N

�j
:
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However, to achieve our current goal, bounds for the moments of higher order are
required. More specifically, the key technical difficulty lies in establishing the correct
rate of decay of the higher moments with respect to the orderm of the U-statistic. We
will show that under suitable assumptions,

E1=q
ˇ̌̌̌ �m
j

��
N
j

� X
J2A

.j/
N

h.j /m .Xi ; i 2 J /

ˇ̌̌̌q
D O

�
j �1q�2

�m
N

�j=2�
for some �1 > 0, �2 > 0 and for all q � 2, 2 � j � jmax for a sufficiently large jmax.
The crucial observation is that the upper bound for the higher-order Lq norms is still
proportional to .m=N/j=2, same as the L2 norm. The following result, essentially
implied by the moment inequalities of this form, is a main technical novelty and a
key ingredient needed to control large deviations of the higher order terms in the
Hoeffding decomposition.

Theorem 4.1. Let

VN;j D

�
m
j

�1=2�
N
j

�1=2 X
J2A

.j/
N

h.j /m

� Xi
p
m
; i 2 J

�
;

fj .x1; : : : ; xj / D Ehm
� x1
p
m
; : : : ;

xj
p
m
;
XjC1
p
m
; : : : ;

Xm
p
m

�
and �k D E1=kjX1 � EX1jk . If the kernel hm is uniformly bounded, then there exists
an absolute constant c > 0 such that

P .jVN;j j � t / � exp
�
�min

�
1

c

� t2

Var.hm/

�1=j
;

�
t

khmk1

p
N=j

�2=.jC1/
c.m=j /j=.jC1/

��
whenever min.1

c
. t2

Var.hm/
/1=j ;

. t
khmk1

p
N=j/2=.jC1/

c.m=j /j=.jC1/
/ � 2. Alternatively, suppose that

(i) k@x1 : : : @xj fj k1 � .C1.P /=m/
j=2j 1j for some 1 � 1=2,

(ii) �k � k2M for all integers k � 2 and some 2 � 0, M > 0.

Then there exist constants c1.P /; c2.P / > 0 that depend on 1 and 2 only such that

P .jVN;j j � t /

� exp
�
�min

�
1

c1

� t2

Var.hm/

�1=j
;
� t

p
N=j

.c2Mj 1�1=2/j

�2=.1Cj.22C1//��
(4.1)

whenever min. 1
c1
. t2

Var.hm/
/1=j ; . t

p
N=j

.c2Mj
1�1=2/j

/2=.1Cj.22C1/// � max.2; log.N=j /
2j

/. 3

3In the course of the proof, we show that whenever 2 D 0, corresponding to the case of a.s.
bounded X1, inequality (4.1) is valid for all t > 0.
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The proof of the theorem is given in Section 7.3. Let us briefly discuss the imposed
conditions. The first inequality requires only boundedness of the kernel and follows
from a standard argument; it is mostly useful for the degenerate kernels of higher
order j , for instance, when j �Cm= log.m/). The main result is the second inequality
of the theorem that provides a much better dependence of the tails onm for small and
moderate values of j . Assumption (ii) is a standard one; for instance, it holds with
2 D 0 for bounded random variables, 2 D 1=2 for sub-Gaussian and with 2 D 1 for
sub-exponential random variables. As for assumption (i), suppose that the kernel hm
is sufficiently smooth. In this case,

@x1 � � � @xj fj .x1; : : : ; xj /

D m�j=2E
h
.@x1 � � � @xj hm/

� x1
p
m
; : : : ;

xj
p
m
;
XjC1
p
m
; : : : ;

Xm
p
m

�i
;

which is indeed of orderm�j=2 with respect tom. However, the functions fj are often
smooth even if the kernel hm is not, as we will show later for the case of an indicator
function (specifically, we will prove that required inequalities hold with 1 D 1=2 for
all j �m= log.m/ under mild assumptions on the distribution ofX1). Next, we state a
corollary – a deviation inequality that takes a particularly simple form and suffices for
most of the applications discussed later. It can be viewed as an extension of Arcones
version of Bernstein’s inequality for the case of U-statistics of growing order, see [2].

Corollary 4.2. Suppose that

(i) the assumptions of Theorem 4.1 hold for all 2 � j � jmax with 1 D 1=2,

(ii) the kernel hm is uniformly bounded,

(iii) lim infm!1Var.
p
mh

.1/
m .X1// > 0,

(iv) mM 2 D o.N 1�ı/ for some ı > 0.

Moreover, let q.N;m/ be an increasing function such that

q.N;m/ D o
�

min
�� N

mM 2

�1=.1C22/
; jmax log

�N
m

���
as N=m!1:

Then, for all 2 � t � q.N;m/,

P
�
jUN;mj �

r
tm

N

�
� 2 exp

�
�

t

2.1C o.1//Var.
p
mh

.1/
m .X1//

�
;

where o.1/! 0 as N=m!1 uniformly over 2 � t � q.N;m/. If m D o. N
1=2

log.N/ /,
we can instead choose q.N;m/ such that

q.N;m/ D o
�

min
�� N

mM 2

�1=.1C22/
;
Njmax

m2

��
:
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Remark 4.3. The key point of the inequality is that the sub-Gaussian deviations are
controlled by Var.

p
mh

.1/
m .X1// rather than the sub-optimal quantity Var.hm/ appear-

ing in Hoeffding’s version of Bernstein’s inequality for U-statistics. Moreover, the
range in which UN;m admits sub-Gaussian deviations is much wider compared to the
implications of Arcones’ inequality whenm is allowed to grow with N . Several com-
ments regarding the additional assumptions are in order:

(1) The assumption of uniform boundedness of the kernel hm is needed to ensure
that we can apply Bernstein’s concentration inequality to the first term of the
Hoeffding decomposition. This suffices for our purposes but in general this
condition can be relaxed.

(2) Assumption on the asymptotic behavior of the variance is made to simplify
the statement and the proof; if it does not hold, the result is still valid once
the definition of q.N; m/ is modified to reflect the different behavior of the
this quantity. We include the following heuristic argument which shows that
limm!1 Var.

p
m h

.1/
m .X1// often admits a simple closed-form expression.

Indeed,
p
m.h

.1/
m .X1/ � h

.1/
m .0// D

R X1
0

p
m@uh

.1/
m .u/ du. Therefore, if the

relation k@2uh
.1/
m k1 D o.m

�1=2/ holds, then
p
m j@uh

.1/
m .u/ � @uh

.1/
m .0/j �

p
mk@2uh

.1/
m k1 u! 0

pointwise as m!1. If the limit
p
m@uh

.1/
m .0/ exists, then

p
m.h.1/m .X1/� h

.1/
m .0//! lim

m!1

p
m@uh

.1/
m .0/X1 P -almost everywhere.

Moreover, as
p
mk@uh

.1/
m k1 admits an upper bound independent of m by

assumption (i) of Theorem 4.1 and X1 is sufficiently integrable, Lebesgue’s
dominated convergence theorem applies and yields that Var.

p
mh

.1/
m .X1//!

.limm!1 @uh
.1/
m .0//2Var.X1/. For instance, this heuristic argument can often

be made precise for kernels of the form h.
Pm
jD1 xj =

p
m/.

(3) Finally, the condition requiring that mM 2 D o.N 1�ı/ is used to ensure that
. N
mM2 /

� � log.m/ for any fixed � > 0, which simplifies the statement and
the proof.

Proof. The union bound together with Hoeffding’s decomposition entails that for any
t > 0 and 0 < " < 1 (to be chosen later),

P
�
jUN;mj �

r
tm

N

�
� P

�ˇ̌̌̌
m

N

NX
jD1

h.1/m .Xj /

ˇ̌̌̌
� .1 � "/

p
t

r
m

N

�
C P

�ˇ̌̌̌ mX
jD2

�
m
j

��
N
j

� X
J2A

.j/
N

h.j /m .Xi ; i 2 J /

ˇ̌̌̌
� "
p
t

r
m

N

�
:
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Bernstein’s inequality yields that

P

�ˇ̌̌̌
m

N

NX
jD1

h.1/m .Xj /

ˇ̌̌̌
� .1 � "/

p
t

r
m

N

�
� 2 exp

�
�

.1 � "/2 t=2

Var.
p
mh

.1/
m .X1//C .1 � "/

1
3

p
m=N khmk1 t1=2

�
D 2 exp

�
�

.1 � "/2 t

2Var.
p
mh

.1/
m .X1//.1C o.1//

�
;

where o.1/! 0 as N=m!1 uniformly over s � q.N=m/. It remains to control
the expression involving higher order Hoeffding decomposition terms. Specifically,
we will show that under our assumptions, this expression is bounded from above by
exp.�t=Œ2Var.

p
mh

.1/
m .X1//�/ � o.1/, where o.1/! 0 uniformly over the range of t .

To this end, denote t" WD "2 t and j� WD min.jmax; blog.N=m/c C 1/. Observe that

P

�ˇ̌̌̌ mX
jD2

�
m
j

��
N
j

� X
J2A

.j/
N

h.j /m .Xi ; i 2 J /

ˇ̌̌̌
�
p
t"

r
m

N

�

� P

�ˇ̌̌̌ j�X
jD2

�
m
j

��
N
j

� X
J2A

.j/
N

h.j /m .Xi ; i 2 J /

ˇ̌̌̌
�

p
t"

3

r
m

N

�

C P

�ˇ̌̌̌ jmaxX
jDj�C1

�
m
j

��
N
j

� X
J2A

.j/
N

h.j /m .Xi ; i 2 J /

ˇ̌̌̌
�

p
t"

3

r
m

N

�

C P

�ˇ̌̌̌ X
j>jmax

�
m
j

��
N
j

� X
J2A

.j/
N

h.j /m .Xi ; i 2 J /

ˇ̌̌̌
�

p
t"

3

r
m

N

�
; (4.2)

where the second sum may be empty depending on the value of j�. First, we esti-
mate the last term using Chebyshev’s inequality. Repeating the reasoning leading to
equation (7.5) in the proof of Theorem 3.1, we see that

Var
� X
j>jmax

�
m
j

��
N
j

� X
J2A

.j/
N

h.j /m .Xi ; i 2 J /

�
� Var.hm/

�m
N

�jmaxC1�
1 �

m

N

��1
;

hence

P

�ˇ̌̌̌ X
j>jmax

�
m
j

��
N
j

� X
J2A

.j/
N

h.j /m .Xi ; i 2 J /

ˇ̌̌̌
�

p
t"

3

r
m

N

�
�
18Var.hm/

t"

�m
N

�jmax
D 18Var.hm/ exp

�
�jmax log

�N
m

�
C log.t"/

�
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whenever N=m � 2. Alternatively, we can apply the first inequality of Theorem 4.1
instead of Chebyshev’s inequality to each term corresponding to j > jmax individu-
ally, with t D tj;" WD

p
t"

3j2
.N
m
/.j�1/=2. This implies that

P

�ˇ̌̌̌ X
j>jmax

�
m
j

��
N
j

� X
J2A

.j/
N

h.j /m .Xi ; i 2 J /

ˇ̌̌̌
�

p
t"

3

r
m

N

�

�

X
j>jmax

P

�ˇ̌̌̌ �m
j

��
N
j

� X
J2A

.j/
N

h.j /m .Xi ; i 2 J /

ˇ̌̌̌
�

p
tj;"

3

r
m

N

�

� m max
j>jmax

exp
�
�cmin

�
t1=j"

�N
m

� j�1
j
;
� t"

khk21

� 1
jC1

�Nj
m2

� j
jC1

��
:

This bound is useful when .Njmax=m
2/jmax=.jmaxC1/ � jmax log.N=m/, which is true

whenever m2� N= log2.N /. If moreover "� 1=
p

log.N /, then the last probability
is bounded from above by

max
j>jmax

exp
�
�c0min

�
t1=j"

�N
m

� j�1
j
;
� t"

khk21

� 1
jC1

�Nj
m2

� j
jC1

��
:

Now, to estimate the middle term (the probability involving the terms indexed by
j� C 1 � j � jmax), we apply Theorem 4.1 to each term individually for t D tj;" WD
p
t"

3j2
.N
m
/.j�1/=2, keeping in mind that

P
j�j�C1

tj;" �
�2

18
.N
m
/.j�1/=2

p
t". Note that for

any 2 � t � N=m, " > m=N and j � blog.N=m/c C 1,

min
�
t
2=j
j;"

c
;
� tj;"

p
N=j

.cMj 1�1=2/j

� 2
1Cj.22C1/

�
�

c1

M 2=.1C22/

�N
m

� 1
1C22 ;

whence

P

�ˇ̌̌̌ jmaxX
jDj�C1

�
m
j

��
N
j

� X
J2A

.j/
N

h.j /m .Xi ; i 2 J /

ˇ̌̌̌
�

p
t"

3

r
m

N

�

� jmax exp
�
�

c1

M 2=.1C22/

�N
m

� 1
1C22

�
� exp

�
�

c2

M 2=.1C22/

�N
m

� 1
1C22

�
:

Finally, to estimate the first term in the right-hand side of inequality (4.2), we again
apply Theorem 4.1. With tj;" defined as above,

P

�ˇ̌̌̌ j�X
jD2

�
m
j

��
N
j

� X
J2A

.j/
N

h.j /m .Xi ; i 2 J /

ˇ̌̌̌
�

p
t"

3

r
m

N

�

�

j�X
jD2

P

�ˇ̌̌̌ �m
j

��
N
j

� X
J2A

.j/
N

h.j /m .Xi ; i 2 J /

ˇ̌̌̌
�

6

�2

p
tj;"

3

r
m

N

�



U-statistics and sub-Gaussian estimators 19

�

j�X
jD2

exp
�
�cmin

�
t1=j"

�N
m

� j�1
j
;
t
1=.1Cj.1C22//
"

M 2j=.1Cj.1C22//

�N
m

� j
1Cj.1C22/

��
� j� max

2�j�j�
exp

�
�cmin

�
t1=j"

�N
m

� j�1
j
;
t
1=.1Cj.1C22//
"

M 2j=.1Cj.1C22//

�N
m

� j
1Cj.1C22/

��
:

Whenever " � 1p
N=m

, the last expression is upper bounded by

max
2�j�j�

exp
�
�c3 min

�
t1=j"

�N
m

� j�1
j
;
t
1=.1Cj.1C22//
"

M 2j=.1Cj.1C22//

�N
m

� j
1Cj.1C22/

��
for c3 small enough. Combining all the estimates, we obtain the inequality

P

�ˇ̌̌̌ mX
jD2

�
m
j

��
N
j

� X
J2A

.j/
N

h.j /m .Xi ; i 2 J /

ˇ̌̌̌
�
p
t"

r
m

N

�

� max
2�j�j�

exp
�
�c3 min

�
t1=j"

�N
m

� j�1
j
; t

1
1Cj.1C22/

"

� N

mM 2

� j
1Cj.1C22/

��
C exp

�
�c2

� N

mM 2

� 1
1C22

�
C c4Var.hm/ exp

�
�jmax log

�N
m

�
C log.t"/

�
(4.3)

that holds if " � 1p
N=m

and 2 � t � N
m

. If t < . N
mM2 /

1=.1C22/"4, then the first two

terms on the right-hand side of the previous display are bounded by e�ct"="
3
D e�ct="

each, and if t < ".jmax � 1/ log.N=m/, the same is true for the last term. Therefore,
if

t < "4 min
�� N

mM 2

� 1
1C22 ; .jmax � 1/ log

�N
m

��
;

then

P

�ˇ̌̌̌ mX
jD2

�
m
j

��
N
j

� X
J2A

.j/
N

h.j /m .Xi ; i 2 J /

ˇ̌̌̌
�
p
t"

r
m

N

�

� 3 exp
�
�
ct

"

�
D exp

�
�

t

2Var.
p
mh

.1/
m .X1//

�
� o.1/;

where the last equality holds whenever we choose " WD ".N;m/ such that ".N;m/! 0

as N=m!1. Specifically, take

" D
� q.N;m/

min
�
. N
mM2 /

1=.1C22/ ; jmax log.N=m/
��1=4;

where the function q.N; m/ was defined in the statement of the corollary, and the
conclusion follows immediately. If m2 � N= log2.N /, we can replace the last term
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in equation (4.3) by

max
j>jmax

exp
�
�c0min

�
t1=j"

�N
m

� j�1
j
;
� t"

khk21

� 1
jC1

�Nj
m2

� j
jC1

��
;

which is bounded by e�ct=" whenever t < Njmax
m2

"4. The final result in this case follows
similarly.

5. Implications for the median of means estimator

We are going to apply the results of the previous section to deduce non-asymptotic
bounds for the permutation-invariant version of the median of means estimator. Recall
that it was defined as

y�N WD med. NXJ ; J 2 A
.m/
N /:

Theorem 5.1. Assume thatX1; : : : ;XN are i.i.d. copies of a random variableX with
mean � and variance �2. Moreover, suppose that

(i) the distribution of X1 is absolutely continuous with respect to the Lebesgue
measure on R with density �1,

(ii) the Fourier transform y�1 of the density satisfies the inequality j y�1.x/j �
C1=.1C jxj/

ı for some positive constants C1 and ı,

(iii) Ej.X1 � �/=� jq <1 for some 3C
p
5

2
< q � 3.

Then the estimator y�N satisfies

P
�
j
p
N.y� � �/j � �

p
t
�
� 2 exp

�
�

t

2.1C o.1//

�
;

where o.1/! 0 asm;N=m!1 uniformly for all t 2 ŒlN;m;uN;m� for any sequences
¹lN;mº ; ¹uN;mº such that lN;m � N=mq�1 and uN;m � N

mq=.q�1/_m log2.N/
.

Remark 5.2. (1) Let us recall the Riemann–Lebesgue lemma stating that j y�1.x/j!
0 as jxj !1 for any absolutely continuous distribution, so assumption (ii) is
rather mild.

(2) The inequality q > 3C
p
5

2
assures that lN;m and uN;m can be chosen such that

lN;m � uN;m.

Proof. Throughout the course of the proof, we will assume without loss of generality
that �2D 1; the general case follows by rescaling. Let us also recall that all asymptotic
relations are defined in the limit as both m and N=m tend to infinity. Note that direct
application of Corollary 4.2 requires existence of all moments of X1, which is too
prohibitive. Therefore, we will first show how to reduce the problem to the case of



U-statistics and sub-Gaussian estimators 21

bounded random variables. Specifically, we want to truncate Xj � �, j D 1; : : : ; N ,
in a way that preserves the decay rate of the characteristic function. To this end, let R
be a large constant (that will later be specified as an increasing function of m), and
define the standard mollifier �.x/ via

�.x/ D

´
C1 exp

�
�

1
1�x2

�
; jxj < 1;

0; jxj � 1;

where C1 is chosen so that
R

R �.x/ D 1. Moreover, let �R.x/ D .I2R � �R/.x/ be
the smooth approximation of the indicator function of the interval Œ�2R; 2R�, where
I2R.x/ D I ¹jxj � 2Rº and �R.x/ D 1

R
�. x
R
/; in particular, �R.x/ D 1 for jxj � R

and �R.x/ D 0 for jxj � 3R. Set

 .x/ D C2�1.x C �/�R.x/

where C2 > 0 is such that
R

R  .x/dx D 1. Suppose that Y .R/ has distribution with
density  and note that by construction the laws of X1 � � and Y .R/, conditionally
on the events ¹jX1 � �j � Rº and ¹jY .R/j � Rº, respectively, coincide. Therefore,
there exists a random variable Z independent from X1 such that

Y
.R/
1 WD

´
X1 � �; jX1 � �j � R;

Z; jX1 � �j > R;
(5.1)

also has density  . Observe the following properties of Y .R/1 :

(a) jY .R/1 j � 3R almost surely.

(b) Eh.Y .R/1 /� C2Eh.X1 ��/ for any nonnegative function h. Indeed, this fol-
lows from the inequality  .x/ � C2�1.x C �/.

(c) jEY .R/1 j � .1C C2/
EjX1��j

qI ¹jX1��j>Rº

Rq�1
. Indeed,

jEY .R/1 j D
ˇ̌
EY .R/1 I ¹jX1 � �j � Rº C EY .R/1 I ¹jX1 � �j > Rº

ˇ̌
D
ˇ̌
E.� �X1/I ¹jX1 � �j > Rº C EY .R/1 I ¹jY

.R/
1 j > Rº

ˇ̌
� EjX1 � �jI ¹jX1 � �j > Rº C C2EjX1 � �jI ¹jX1 � �j > Rº;

where the last bound follows from property (b) for h.x/ D jxjI ¹jxj > Rº. It
remains to apply Hölder’s and Markov’s inequalities.

The final property of Y .R/1 is stated in the lemma below and is proven in Section 7.5.

Lemma 5.3. The characteristic function y .x/ of Y .R/1 satisfies

j y 1.x/j �
C

.1C jxj/ı

for all x 2 R and a sufficiently large constant C .
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Define �.x/ D jxj. Proceeding as in the proof of Theorem 2.1, we observe that

P .
p
N.y���/�

p
t /� P

�p
N=m�
N
m

� X
J2A

.m/
N

�0�.
p
m. NXJ���

p
t=N //� 0

�
: (5.2)

Our next goal is to show that for sufficiently large R, the U-statistic with kernel �0�
appearing in (5.2) and evaluated at X1; : : : ; XN can be replaced by the U-statistic
evaluated over an i.i.d. sample Y .R/1 ; : : : ; Y

.R/
N where Y .R/j is related to Xj according

to (5.1). To this end, recall that EjX1 � �jq <1, and choose R as R D cm1=.2.q�1//

for some c > 0. Next, observe thatX
J2A

.m/
N

�0�.
p
m. NXJ � � �

p
t=N //

D

X
J2A

.m/
N

�
�0�.
p
m. NY

.R/
J �

p
t=N // � E�0�;R C E�0�

�
C

X
J2A

.m/
N

�
�0�.
p
m. NXJ � � �

p
t=N //

� �0�.
p
m. NY

.R/
J �

p
t=N // � E�0� C E�0�;R

�
; (5.3)

where E�0� D �
0
�.
p
m. NXJ ���

p
t=N // and E�0

�;R D E�0�.
p
m. NY

.R/
J �

p
t=N //.

It was shown in the proof of Theorem 2.1 thatr
N

m
E�0� � C

p
k � g.m/ �

p
t
�r 2

�
CO

�r t

k

��
D �
p
t

r
2

�
.1C o.1//

whenever t�N=m and t� N
m
g2.m/. Let us remark that in view of imposed moment

assumptions, g.m/ D O.m�.q�2/=2/. Moreover, it follows from Hoeffding’s version
of Bernstein’s inequality for U-statistics [15] thatp
N=m�
N
m

� X
J2A

.m/
N

�
�0�.
p
m. NXJ � � �

p
t=N //

� �0�.
p
m. NY

.R/
J �

p
t=N // � E�0� C E�0�;R

�
� 2E1=2

�
�0�.
p
m. NXŒm����

p
t=N // � �0�.

p
m. NY

.R/

Œm�
�
p
t=N //

�2p
s _

16s

3

r
m

N

with probability at least 1 � e�s . We want to choose s > 0 such that t D o.s/ and

˛.s; R/ WD 2E1=2
�
�0�.
p
m. NXŒm� � � �

p
t=N //

� �0�.
p
m. NY

.R/

Œm�
�
p
t=N //

�2p
s _

16s

3

r
m

N
D o.
p
t / (5.4)
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as m;N=m!1. To estimate

†2m WD E
�
�0�.
p
m. NXŒm� � � �

p
t=N // � �0�.

p
m. NY

.R/

Œm�
�
p
t=N //

�2
;

note that for any a > 0, �0�.
p
m. NXŒm� � � �

p
t=N // D �0�.

p
m. NY

.R/

Œm�
�
p
t=N //

whenever we have j
p
m. NY

.R/

Œm�
�
p
t=N /j > a=2, j

p
m. NXŒm� � � �

p
t=N /j > a=2

and j
p
m. NXŒm� � � � NY

.R/

Œm�
/j � a, hence

†2m � 4
�
P
�
j
p
m. NY

.R/

Œm�
�
p
t=N /j � a

�
C P

�
j
p
m. NXŒm� � � �

p
t=N /j � a

��
C 4P

�
j
p
m. NXŒm� � � � NY

.R/

Œm�
/j > a

�
:

Up to the additive error term Cg.m/ D O.m�.q�2/=2/, the distributions of
p
m NXŒm�

and
p
m NY

.R/

Œm�
can be approximated by the normal distribution, hence

P
�
j
p
m. NY

.R/

Œm�
�
p
t=N /j � a

�
CP

�
j
p
m. NXŒm� ���

p
t=N /j � a

�
� C.aC g.m//:

Moreover, letting E1 denote the event

E1 D
°ˇ̌̌ 1
p
m

mX
jD1

Y
.R/
j I ¹jY

.R/
j j > Rº � E

�
Y
.R/
j I ¹jY

.R/
j j > Rº

�ˇ̌̌
� a �

p
m
ˇ̌
EY .R/j I ¹jY

.R/
j j > Rº

ˇ̌±
;

we deduce that

P
�
j
p
m. NXŒm� � � � NY

.R/

Œm�
/j > a

�
D P

�ˇ̌̌̌
1
p
m

mX
jD1

Y
.R/
j I ¹jY

.R/
j j > Rº

ˇ̌̌̌
� a

�
� P .E1/ � C2

EjX1 � �j2I ¹jX1 � �j > Rº

.a � C2
p
m jE.X1 � �/I ¹jX1 � �j > Rºj/2

�
EjX1 � �jqI ¹jX1 � �j > Rº

Rq�2.a � C2
p
m jE.X1 � �/I ¹jX1 � �j > Rºj/2

; (5.5)

where we used property (b) of Y .R/1 along with Hölder’s and Markov’s inequalities. It
is also clear that

p
mjE.X1 � �/I ¹jX1 � �j > Rºj �

p
mEjX1 � �jqI ¹jX1 � �j > Rº

Rq�1
;

thus, for R D cm
1

2.q�1/ specified before,
p
mjE.X1 � �/I ¹jX1 � �j > Rºj D o.1/.

Setting a D 2C2

p
mE1=2jX1��j

qI ¹jX1��j>Rº

Rq�1
, one easily checks that the right-hand

side in (5.5) is at most CR�.q�2/ D C 0m�
q�2
2.q�1/ . whence †2m D o.1/. Therefore,

there exists a function o.1/ such that setting s D t=o.1/ yields the stated goal, namely,
that t D o.s/ and ˛.s; R/ D o.

p
t / where ˛.s; R/ was defined in (5.4). Combined
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with (5.3), this implies that

P
�p
N.y� � �/ �

p
t
�

� o.1/ � e�t C P

�p
N=m�
N
m

� X
J2A

.m/
N

�
�0�.
p
m. NY

.R/
J �

p
t=N //�E�0�;R/

�
p
t

r
2

�
.1Co.1//

�
: (5.6)

Note that the U-statistic in the display above is now a function of bounded random
variables, hence we can apply Corollary 4.2 with 2D 0. As k�0�k1D 1, condition (ii)
of the corollary holds. Let

p
m=N

PN
jD1 h

.1/.Y
.R/
j / be the first term in Hoeffding

decomposition of the U-statisticp
N=m�
N
m

� X
J2A

.m/
N

�
�0�.
p
m. NY

.R/
J � EY .R/1 �

p
t=N C EY .R/1 // � E�0�;R

�
:

Following the lines of the proof of Theorem 3.2 and recalling that
p
mjEY .R/1 j D o.1/

in view of property (c) of Y .R/1 and the choice of R, we deduce that

Var
�p
mh.1/.Y

.R/
1 /

�
D
2

�
.1C o.1//;

where o.1/ ! 0 as m; N=m ! 1, validating assumption (iii) of the corollary. It
remains to verify assumption (i) and specify the value of jmax. Recall that �0�.x/ D
I ¹x � 0º � I ¹x < 0º and let zY .R/j stand for Y .R/j � EY .R/j . Therefore, the function
fj .u1; : : : ; uj / appearing in the statement of Theorem 4.1 can be expressed as

fj .u1; : : : ; uj /

D E�0�

�
1
p
m

jX
iD1

ui C

r
m � j

m

Pm
iDjC1

zY
.R/
i

p
m � j

�

r
tm

N
C
p
mEY .R/1

�
D E�0�

�
1
p
m

jX
iD1

ui C

r
m � j

m

Pm
iDjC1

zY
.R/
i

p
m � j

�

r
tm

N
C
p
mEY .R/1

�
D 2ˆm�j

�
1

p
m � j

jX
iD1

ui �

r
m

m � j

�r tm

N
C
p
mEY .R/1

��
� 1;

where for any integer k � 1, ˆk stands for the cumulative distribution function of
1p
k

Pk
jD1
zY
.R/
j and �k is the corresponding density function that exists by assump-

tion. Consequently,

@uj : : : @u1f1.u1; : : : ; uj /

D
2

.m � j /j=2
�
.j�1/
m�j

�
1

p
m � j

jX
iD1

ui �

r
m

m � j

�r tm

N
C
p
mEY .R/1

��
:
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The following lemma demonstrates that Theorem 4.1 applies with 1 D 1=2 and that
jmax D

m
log.m/ o.1/ in the statement of Corollary 4.2.

Lemma 5.4. Let assumptions of Theorem 5.1 hold. Then, for m large enough and
j D o.m= logm/,

k�
.j�1/
m�j k1 � C

�2j
e

�j=2
for a sufficiently large constant C D C.P /.

We postpone the proof of this lemma until Section 7.6. As all the necessary
conditions have been verified, the bound of Corollary 4.2 applies. Recalling that
t � N

m
g2.m/ and that g.m/ � CEjX1 � �jq=m.q�2/=2, Corollary 4.2 yields that

the probability in the right-hand side of inequality (5.6) can be bounded from above
by exp.� t

2�2.1Co.1//
/ for all

N

mq�1
� t � q.N;m/ (5.7)

whenever

q.N;m/ D min
� N

mR2
;

N

m log2.N /

�
� o.1/ as N=m!1:

To get the expression for the second term in the minimum above from the bound of the
corollary, it suffices to consider the cases when m �

p
N

log.N/ o.1/ and m �
p
N

log.N/ o.1/

separately; we omit the simple algebra. SinceRD cm1=.2.q�1//, (5.7) in only possible
when q � 2 > 1

q�1
, implying the requirement q > 3C

p
5

2
. The final form of the bound

stating that

P
�p
N.y� � �/ � �

p
t
�
� exp

�
�

t

2.1C o.1//

�
uniformly for all N

mq�1
� t � N

mq=.q�1/_m log2.N/
. The argument needed to estimate

the lower tail P .
p
N.y� � �/ � ��

p
t / is identical.

6. Open questions

Several potentially interesting questions and directions have not been addressed in
this paper. We summarize few of them below.

(i) First is the question related to assumptions in Theorem 5.1: Does it still
hold for distributions with only 2C " moments? And can the assumptions
requiring absolute continuity and a bound on the rate of decay of the char-
acteristic function be dropped? For example, Corollary 3.2 holds for lattice
distributions as well.
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(ii) It is known (see [12]) that the sample mean based on i.i.d. observations from
the multivariate normal distribution N.�;†/ satisfies the inequality

k NXN � �k2 �

r
trace.†/
N

C

r
2tk†k

N

with probability at least 1 � e�t . Does there exist an estimator of the mean
that achieves this bound (up to o.1/ factors) for the heavy-tailed distribu-
tions? Partial results in this direction have been recently obtained in [19].

(iii) Exact computation of the estimator y�N is infeasible, as it requires evalu-
ation and sorting of � .N=m/m sample means. Therefore, it is interesting
to understand whether it can be replaced by med. NXJ ; J 2 B/, where B

is a (deterministic or random) subset of A
.m/
N of much smaller cardinal-

ity, while preserving the deviation guarantees. For instance, it is easy to
deduce from results on incomplete U-statistics in [18, Section 4.3], com-
bined with the proof of Corollary 3.2, that if B consists of M subsets
selected at random with replacement from Am

N , then the asymptotic distri-
bution of

p
N.med. NXJ ; J 2 B/� �/ is still N.0; �2/ as long as M � N .

However, establishing results in spirit of Theorem 5.1 in this framework
appears to be more difficult.

7. Remaining proofs

The proofs omitted in the main text are presented in this section.

7.1. Technical tools

Let us recall the definition of Hoeffding’s decomposition [14] and closely related
concepts that are at the core of many arguments related to U-statistics. Assume that
Y1; : : : ; YN are i.i.d. random variables with distribution PY . Recall that A

.m/
N D ¹J �

ŒN � W jJ j D mº and that the U-statistic with permutation-symmetric kernel hm is
defined as

UN;m D
1�
N
m

� X
J2A

.m/
N

hm.Yi ; i 2 J /;

where we assume that Ehm D 0. Moreover, for j D 1; : : : ; m; define the projections

.�jhm/.y1; : : : ; yj / WD .ıy1 � PY / � � � � � .ıyj � PY / � P
m�j
Y hm: (7.1)

For brevity and to ease notation, we will often write h.j /m in place of �jhm. The vari-
ances of these projections will be denoted by

ı2j WD Var.h.j /m .Y1; : : : ; Yj //:
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In particular, ı2m D Var.hm/. It is well known that h.j /m can be viewed geometrically
as orthogonal projections of hm onto a particular subspace of L2.PmY /, see [18]. The
kernels h.j /m have the property of complete degeneracy, meaning that

Eh.j /m .y1; : : : ; yj�1; Yj / D 0

forPY -almost all y1; : : : ;yj�1 while h.j /m .Y1; : : : ;Yj / is non-zero with positive proba-
bility. One can easily check that h.y1; : : : ;ym/D

Pm
jD1

P
J�Œm�WjJ jDj h

.j /
m .yi ; i 2 J /,

in particular, the partial sum
Pk
jD1

P
J�Œm�WjJ jDj h

.j /
m .yi ; i 2 J / is the best approxi-

mation of hm, in the mean-squared sense, in terms of sums of functions of at most k
variables. The Hoeffding decomposition states that (see [14] as well as [18])

UN;m D

mX
jD1

�
m

j

�
U
.j /
N;m; (7.2)

where U .j /N;m are U-statistics with kernels h.j /m , namely,

U
.j /
N;m WD

1�
N
j

� X
J2A

.j/
N

h.j /m .Yi ; i 2 J /:

Moreover, all terms in representation (7.2) are uncorrelated.
Next, we recall some useful moment bounds, found for instance in the book

by de la Peña and Giné [6], for the Rademacher chaos variables. Let "1; : : : ; "N
be i.i.d. Rademacher random variables (random signs), ¹aJ ; J 2 A

.l/
N º � R, and

Z D
P
J2A

.l/
N

aJ
Q
i2J "i . Here,

Q
i2J "i D "i1 � � � "il for J D ¹i1; : : : ; ilº.

Fact 1 (Bonami inequality). Let �2.Z/DVar.Z/D
P
J2A

.l/
N

a2J . Then for any q > 2,

EjZjq � .q � 1/ql=2.�2.Z//q=2:

Now we state a version of the symmetrization inequality for completely degener-
ate U-statistics due to Sherman [33], also see the paper by Song, Chen and Kato [34]
for the modern exposition of the proof. The main feature of this inequality, put for-
ward in [34], is the fact that its proof does not rely on decoupling, and yields constants
that do not grow too fast with the order of U-statistics.

Fact 2. Let h be a completely degenerate kernel of order l , and let ˆ be a convex,
nonnegative, non-decreasing function. Moreover, assume that "1; : : : ; "N are i.i.d.
Rademacher random variables. Then

Eˆ
� X
1�j1<���<jl�N

h.Yj1 ; : : : ;Yjl /
�
�Eˆ

�
2l

X
1�j1<���<jl�N

"j1 � � �"jlh.Yj1 ; : : : ;Yjl /
�
:
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Next is the well-known identity, due to Hoeffding [15], that allows to reduce many
problems for non-degenerate U-statistics to the corresponding problems for the sums
of i.i.d. random variables.

Fact 3. The following representation holds:

UN;m D
1

N Š

X
�

W� ;

where the sum is over all permutations � W ŒN � 7! ŒN �, and

W� D
1

k

�
hm.Y�.1/; Y�.2/; : : : ; Y�.m//

C � � � C hm.Y�..k�1/mC1/; Y�..k�1/mC2/; : : : ; Y�.km//
�

for k D bN=mc.

Finally, we state a version of Rosenthal’s inequality for the moments of sums of
independent, nonnegative random variables with explicit constants, see [3, 5].

Fact 4. Let Y1; : : : ; YN be independent random variables such that Yj � 0 with prob-
ability 1 for all j 2 ŒN �. Then for any q � 1,�

E

ˇ̌̌̌ NX
jD1

Yj

ˇ̌̌̌q�1=q
�

�� NX
jD1

EYj

�1=2
C 2
p
eq
�
E max
jD1;:::;N

Y
q
j

�1=.2q/�2
:

7.2. Proof of Theorem 3.1

Recall that

h.j /m .y1; : : : ; yj / WD .ıy1 � PY / � � � � � .ıyj � PY / � P
m�j
Y hm;

ı2j WD Var.h.j /m .Y1; : : : ; Yj //:

It is easy to verify that

hm.Y1; : : : ; Ym/ D .ıY1 � PY C PY / � � � � � .ıYm � PY C PY /hm

D

mX
jD1

X
J�Œm�WjJ jDj

h.j /m .Yi ; i 2 J /;

and that the terms in the sum above are mutually orthogonal, yielding that

Var.hm.Y1; : : : ; Ym// D
mX
jD1

�
m

j

�
ı2j : (7.3)
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Moreover, as a corollary of Hoeffding’s decomposition, one can get the well-known
identities

Var.UN;m/ D
mX
jD1

�
m
j

�2�
N
j

� ı2j ; Var.SN;m/ D
m2

N
ı21 ;

Var.UN;m � SN;m/ D Var.UN;m/ � Var.SN;m/ D
mX
jD2

�
m
j

�2�
N
j

� ı2j :
See [18, Chapters 1.6 and 1.7] for detailed derivations of these facts. The simple
but key observation following from equation (7.3) is that for any j 2 Œm�, we have
Var.hm/ �

�
m
j

�
ı2j , or

ı2j �
Var.hm/�

m
j

� : (7.4)

Therefore,

Var.UN;m � SN;m/ D
mX
jD2

�
m
j

�2�
N
j

� ı2j � Var.h/
mX
jD2

�
m
j

��
N
j

�
� Var.h/

X
j�2

�m
N

�j
D Var.h/

�m
N

�2�
1 �

m

N

��1
; (7.5)

where we used the fact that
�
m
j

�
=
�
N
j

�
� .m

N
/j for m � N ; indeed, the latter easily

follows from the identity
�
m
j

�
=
�
N
j

�
D

m.m�1/���.m�jC1/
N.N�1/���.N�jC1/

. It is well known (see [14]) that

Var.h.1/.Y1//�
Var.hm/
m

, therefore the condition Var.hm.Y1;:::;Ym//
Var.h.1/m .Y1//

D o.N / imposed on

the ratio of variances implies that m D o.N /. Therefore, for m;N large enough (so
that m=N � 1=2),

Var.UN;m � SN;m/
Var.SN;m/

� 2
Var.hm/.m=N/2

ı21m
2=N

D 2
Var.hm/
Nı21

D o.1/;

by assumption, yielding that UN;m�SN
Var1=2.SN /

D oP .1/ as N;m!1.

7.3. Proof of Theorem 4.1

We are going to estimate EjVN;j jq for an arbitrary q > 2. It follows from the sym-
metrization inequality (Fact 2) followed by the moment bound stated in Fact 1 that

EjVN;j j
q
� 2jq EXE"

ˇ̌̌̌ �m
j

�1=2�
N
j

�1=2 X
.i1;:::;ij /2A

.j/
N

"i1 � � � "ij h
.j /
m .Xi1 ; : : : ; Xij /

ˇ̌̌̌q
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� 2jq.q � 1/jq=2E

ˇ̌̌̌ �m
j

��
N
j

� X
.i1;:::;ij /2A

.j/
N

.h.j /m .Xi1 ; : : : ; Xij //
2

ˇ̌̌̌q=2
:

Next, Hoeffding’s representation of the U-statistic (Fact 3), together with Jensen’s
inequality, yields that

E

ˇ̌̌̌ �m
j

��
N
j

� X
.i1;:::;ij /2A

.j/
N

.h.j /m .Xi1 ; : : : ; Xij //
2

ˇ̌̌̌q=2
� E

ˇ̌̌̌ �
m
j

�
bN=j c

bN=j cX
iD1

Wi

ˇ̌̌̌q=2
;

where Wi WD .h
.j /
m .X.i�1/jC1; : : : ; Xij //

2. We are going to estimate in two different
ways E maxjD1;:::;bN=j cW

p
j . First, recall that

h.j /m .x1; : : : ;xj / WD .�jhm/.x1; : : : ;xj /D .ıx1 �PX /� � � � � .ıxj �PX /�P
m�j
X hm:

Therefore, .�jh/.x1; : : : ; xj / is a linear combination of 2j terms that have the formQ
i2I ıxi P

m�jI j
X hm, for all choices of I� Œj �. Consequently, j.�jhm/.x1; : : : ;xj /j2�

22j khmk
2
1, and the same bound also holds (almost surely) for the maximum ofWj ’s.

This implies that

E max
jD1;:::;bN=j c

W
p
j � 2

2jp
khmk

2p
1 and E

��
m

j

�
W1

�p
� .2e/2jp

�m
j

�jp
khmk

2p
1 :

Moreover, equation (7.4) in the proof of Theorem 3.1 implies EW1 � Var.hm/=
�
m
j

�
.

Therefore, Rosenthal’s inequality for nonnegative random variables (Fact 4) entails
that for q � 2,

E

ˇ̌̌̌ �
m
j

�
bN=j c

bN=j cX
iD1

Wi

ˇ̌̌̌q=2
� C q=2

�
Varq=2.hm C

�q
2

�q=2� j
N

�q=2
E

��
m

j

�
max

jD1;:::;bN=j c
W1

�q=2�
� C q=2

�
Varq=2.hm/C

�q
2

�q=2� j
N

�q=2
.2e/jq

�m
j

�jq=2
khmk

q
1

�
and

EjVN;j j
q
� .Cq1=2/qj

�
Varq=2.hm/ _

��qj
N

�1=2�m
j

�j=2
khmk1

�q�
:

Markov’s inequality therefore yields that

P

�
jVN;j j � .C1q/

j=2
�

Var1=2.hm/ _
�qj
N

�1=2�m
j

�j=2
khmk1

��
� e�q:
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LetA.q/D .C1q/j=2Var1=2.hm/ and B.q/D khmk1.qj=N /1=2.C1q1=2.m=j /1=2/j .
If t D A.q/_B.q/, then q D A�1.t/^B�1.t/. We can solve the inequalities explic-
itly to get, after some algebra, that

P .jVN;j j � t / � exp
�

min
�
1

c

� t2

Var.hm/

�1=j
;

�
t

khmk1

p
N=j

�2=.jC1/
.cm=j /j=.jC1/

��
: (7.6)

Remark 7.1. Whenever we have that jX1 � EX1j � M almost surely, the inequal-
ity j.�jhm/.x1; : : : ; xj /j � 2j khmk1 can then be replaced by the following bound:
j.�jhm/.x1; : : : ; xj /j � Ck@uj � � � @u1fj k1.2M/j , which follows from Lemma 7.2
below. Combined with the assumption stating that

k@uj � � � @u1fj k1 �
�C1.P /

m

�j=2
j 1j ;

one easily finds that the resulting concentration inequality reads as follows:

P .jVN;j j � t / � exp
�

min
�
1

c

� t2

Var.hm/

�1=j
;
� t

p
N=j

.cMj 1�1=2/j

�2=.jC1/��
:

This bound holds for all t > 0 and is usually sharper than (7.6).

The bound (7.6) is mostly useful only when m=j is not too large. Now we will
present a second way to estimate E maxjD1;:::;bN=j c W

p
j that will yield much bet-

ter inequalities for small values of j and that is valid when X1 is not necessarily
supported on a bounded interval. The key technical element that we rely on is the fol-
lowing lemma that allows one to control the growth of moments of W1 with respect
to m. Define

fj .x1; : : : ; xj / WD Ehm.x1; : : : ; xj ; XjC1; : : : ; Xm/:

Lemma 7.2. Let the conditions of the theorem hold and let �2 DVar.X1/. Then there
exists C D C.P / > 0 such that

j.�jhm/.X1; : : : ; Xj /j � Ck@uj � � � @u1fj k1

jY
iD1

.jXi � EXi j C �/

with probability 1. Moreover, for any p > 2,

Ej.�jhm/.X1; : : : ; Xj /j
p
� Cpj k@uj � � � @u1fj k

p
1.EjX1 � EX1j

p/j :

The proof of the lemma is outlined in Section 7.4. As we have k@uj � � �@u1fj k1 �
.C1.P /

m
/j=2j 1j by assumption, the second bound of the lemma can be written as

Ej.�jhm/.X1; : : : ; Xj /j
p
� C

pj
2 m�jp=2j 1pj .EjX1 � EX1j

p/j :
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Recall that �k DE1=kjX1 �EX1jk and that under the stated assumptions, �k � k2M
for all integers k � 2 and some 2;M > 0. Therefore,

EW p
1 � C

2pj j 21p jm�pj �
2pj
2p � .C

0Mj 1m�1=2p2/2pj ;

and consequently E.
�
m
j

�
W1/

p � .C 0Mj 1�1=2p2/2pj . The rest of the argument pro-
ceeds in a similar way as before. Recall again that EW1 � Var.hm/=

�
m
j

�
. Rosenthal’s

inequality for nonnegative random variables (Fact 4) implies that for q � 2,

E

ˇ̌̌̌ �
m
j

�
bN=j c

bN=j cX
iD1

Wi

ˇ̌̌̌q=2
� C q=2

�
Varq=2.hm/C

�q
2

�q=2� j
N

�q=2
E

��
m

j

�
max

jD1;:::;bN=j c
W1

�q=2�
:

With the inequality for EW p
1 in hand, the expectation E.

�
m
j

�
maxjD1;:::;bN=j cW1/q=2

can be upper bounded in two ways: First, trivially,

E

��
m

j

�
max

jD1;:::;bN=j c
W1

�q=2
� bN=j cE

��
m

j

�
W1

�q=2
� bN=j c.C1Mj

1�1=2q2/qj:

On the other hand, for any identically distributed �1; : : : ; �k and any p > 1, we
have EmaxjD1;:::;kj�j j � k1=pmaxjD1;:::;kE1=pj�j jp . Choosing �j D

�
m
j

�
Wj and pD

blog.N=j /c C 1, we obtain the inequality

E

��
m

j

�
max

jD1;:::;bN=j c
W1

�q=2
� .log.N=j //2qj .C1Mj 1�1=2q2/qj :

The second bound is better for q � log.N=j /
2j log log.N=j / , therefore we get the estimates

E

ˇ̌̌̌ �
m
j

�
bN=j c

bN=j cX
iD1

Wi

ˇ̌̌̌q=2
� C q=2

�
Varq=2.hm/C

�
C
j
3

�qj
N

�1=2
.log2.N=j /Mj 1�1=2q2/j

�q�
and

EjVN;j j
q
� .Cq1=2/qj

�
Varq=2.hm/ _

��qj
N

�1=2�
log2.N=j /Mj 1�1=2q2

�j�q�
that we will use for 2 � q � log.N=j /

2j
, while for larger values of q, .N=j /1=q � e2j

and

EjVN;j j
q
� .Cq1=2/qj

�
Varq=2.hm/ _

��qj
N

�1=2
.Mj 1�1=2q2/j

�q�
:
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Markov’s inequality therefore yields that for small values of q (that is, whenever 2 �
q �

log.N=j /
2j

),

P

�
jVN;j j � .Cq/

j=2
�

Var1=2.hm/_
�qj
N

�1=2
.log2.N=j /Mj 1�1=2q2/j

��
� e�q:

Let

A.q/D .Cq/j=2Var1=2.hm/; B.q/D
�qj
N

�1=2
.Cq1=2 log2.N=j /Mj 1�1=2q2/j :

If t D A.q/ _ B.q/, then q D A�1.t/ ^ B�1.t/. Solving these inequalities explicitly
we get, after some algebra, that

P .jVN;j j � t /

� exp
�

min
�
1

c

� t2

Var.hm/

�1=j
;
� t

p
N=j

.c log2.N=j /Mj 1�1=2/j

�� 2
1Cj.22C1/

�
for values of t satisfying

2 � min
�
1

c

� t2

Var.hm/

�1=j
;
� t

p
N=j

.c log2.N=j /Mj 1�1=2/j

� 2
1Cj.22C1/

�
�

log.N=j /
2j

:

Similarly, for q � max.2; log.N=j /
2j

/, the previously established bounds yield that

P

�
jVN;j j � .Cq/

j=2
�

Var1=q.hm/ _
�qj
N

�1=2
.Mj 1�1=2q2/j

��
� e�q

or, equivalently,

P .jVN;j j � t / � exp
�

min
�
1

c

� t2

Var.hm/

�1=j
;
� t

p
N=j

.cMj 1�1=2/j

�� 2
1Cj.22C1/

�
(7.7)

whenever

min
�1
c

� t2

Var.hm/

�1=j
;
� t

p
N=j

.cMj 1�1=2/j

�� 2
1Cj.22C1/

� max
�
2;

log.N=j /
2j

�
:

Combination of inequalities (7.6) and (7.7) yields the final result.

7.4. Proof of Lemma 7.2

Recall that fj .x1; : : : ; xj / D Ehm.
x1p
m
; : : : ;

xjp
m
;
XjC1p
m
; : : : ; Xmp

m
/, where j < m. It is

easy to see from the definition of �j that .�jh/.x1; : : : ; xj / D .�jfj /.x1; : : : ; xj /.
Next, observe that for any function g W Rj�1 7! R of j � 1 variables such that
Eg2.X1; : : : ; Xj�1/ < 1; �jg D 0 P j�1-almost everywhere. Indeed, this follows
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immediately from the definition (7.1) of the operator �j , since g is a constant when
viewed as a function of yj . Based on this fact, it is easy to see that, for any constant
a 2 R, fj .x1; : : : ; xj / and fj .x1; : : : ; xj / � fj jx1Da.x2; : : : ; xj / are mapped to the
same function by �j , where fj jx1Da.x2; : : : ; xj / WD fj .a; x2; : : : ; xj /,. In particular,
.�jh/.x1; : : : ; xj / D .�j .fj � fj jx1Da//.x1; : : : ; xj /. Moreover,

fj .x1; : : : ; xj / � fj jx1Da.x2; : : : ; xj / D

Z x1

a

@u1fj .u1; x2; : : : ; xj / du1:

Next, we repeat the same argument with fj replaced by

fj;2.x2; : : : ; xj Iu1/ WD @u1fj .u1; x2; : : : ; xj /

and noting that

fj;2.x2; : : : ; xj Iu1/ � f2;j jx2Da.x3; : : : ; xj Iu1/

D

Z x2

a

@u2fj;2.u2; x3; : : : ; xj Iu1/ du2:

The expression
R x1
a
fj;2jx2Da.x3; : : : ; xj I u1/ du1 is a function of j � 1 variables,

hence �j maps it to 0 so that

.�jhm/.x1; : : : ; xj / D �j

� Z x1

a

Z x2

a

@u2fj;2.u2; x3; : : : ; xj Iu1/ du2 du1

�
:

Iterating this process, we arrive at the expression

.�jhm/.x1; : : : ; xj / D �j

� Z x1

a

� � �

Z xj

a

@uj � � � @u1fj .u1; : : : ; uj / duj � � � du1

�
:

Next, observe that for any function g of j variables,

.�jg/.x1; : : : ; xj / D .ıx1 � PX / � � � � � .ıxj � PX /g

D E QX Œ.ıx1 � ı QX1/ � � � � � .ıxj � ı QXj /g�;

where QX1; : : : ; QXj are i.i.d. with the same law asX , and independent fromX1; : : : ;XN .
Therefore, .�jhm/.x1; : : : ; xj / is a linear combination of 2j terms of the form

E QX

�Y
i2I

ıxi

Y
j2Ic

ı QXj
g
�

for all choices of I � Œj �

and g.x1; : : : ;xj /D
R x1
a
� � �
R xj
a
@uj � � �@u1fj .u1; : : : ;uj /duj � � �du1. Take a WDEX1,

and note that

j.�jhm/.x1; : : : ; xj /j � k@uj � � � @u1fj k1
X
I�Œj �

Y
i2I

jxi � aj
Y
j2Ic

Ej QXi � aj
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� k@uj � � � @u1fj k1
X
I�Œj �

Y
i2I

jxi � aj � �
jIc j

D k@uj � � � @u1fj k1

jY
iD1

.jxi � EX1j C �/:

The first claim of the lemma follows. To deduce the moment bound, observe that since
X1; : : : ; Xj ; QX1; : : : ; QXj are i.i.d. and in view of convexity of the function x 7! jxjp ,
for p � 1,

Ej.�jhm/.X1; : : : ; Xj /j
p

� 2.p�1/jE
ˇ̌̌ Z X1

a

� � �

Z Xj

a

@uj � � � @u1fj .u1; : : : ; uj / duj � � � du1

ˇ̌̌p
� 2.p�1/j k@uj � � � @u1fj k

p
1Ej.X1 � EX1/ � � � .Xj � EXj /j

p

for a D EX1.

7.5. Proof of Lemma 5.3

As .x/ is integrable, its Fourier transform equalsC2 y�1 � y�R, while y�RDy�R � yI2R. It
is well known (see [17]) that y�.x/ � C3e�

p
jxj, hence y�R.x/D y�.Rx/ � C3e�

p
Rjxj.

Moreover, yI2R.x/ D sin.2Rx/=x. Therefore, for jxj large enough,

j y .x/j D C2

ˇ̌̌ Z
R

y�1.x � y/y�R.y/ dy
ˇ̌̌

D C2

� Z
yWjy�xj�jxj=2

y�1.x � y/y�R.y/ dy

C

Z
yWjy�xj<jxj=2

y�1.x � y/y�R.y/ dy
�
:

To estimate the first integral, note that y�1.x � y/ � C1
.1Cjxj=2/ı

�
C12

ı

.1Cjxj/ı
whenever

jy � xj � jxj=2, and that yI2R.x/ � 2R, implying thatˇ̌̌ Z
yWjy�xj�jxj=2

y�1.x � y/y�R.y/ dy
ˇ̌̌
�

C4

.1C jxj/ı

Z
R
e�
p
Rjxjd.Rx/ D

C5

.1C jxj/ı
:

On the other hand,ˇ̌̌ Z
yWjy�xj<jxj=2

y�1.x � y/y�R.y/ dy
ˇ̌̌
� C6

ˇ̌̌ Z xCjxj=2

x�jxj=2

e�
p
Rjxj sin.2Rx/

x
dx
ˇ̌̌

� C7

Z 3Rjxj=2

Rjxj=2

e�
p
z dz � C8e

�
p
Rjxj=2

p
Rjxj:

Clearly, the last expression is smaller than C9
.1Cjxj/ı

, implying the desired result.
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7.6. Proof of Lemma 5.4

The proof proceeds using the standard Fourier-analytic tools. Let y�1 WD F Œ�1� be the
Fourier transform of �1, whence F Œ�m�j �.t/ D .y�1.t=

p
m � j //m�j . Therefore,

�
.j�1/
m�j .t/ D

1

2�

Z
R

exp.�i tx/.ix/j�1
�
y�1

� x
p
m � j

��m�j
dx

and

k�
.j�1/
m�j k1 �

1

2�

Z
R
jxjj�1

ˇ̌̌
y�1

� x
p
m � j

�ˇ̌̌m�j
dx

D
.m � j /j=2

2�

Z
R
jxjj�1j y�1.x/j

m�j dx:

As j y�1.x/j � C1
.1Cjxj/ı

by assumption, the integral is finite when ı.m� j / > j (in par-
ticular, this inequality holds whenm is large enough and j D o.m/ asm!1). To get
an explicit bound, we will estimate the integral over Œ��;�� and R n Œ��;�� separately,
for a specific choice of �> 0. To this end, observe that y�1.x/D � .x/C o.x2/, where
 � .x/ D exp.��2x2=2/ is the characteristic function of the normal law N.0; �2/.
Therefore, there exists � > 0 such that for all jxj � �, j y�1.x/j � exp.��2x2=4/, and

.m�j /j=2
Z �

��

jxjj�1j y�1.x/j
m�jdx � .m�j /j=2

Z
R
jxjj�1 exp

�
�
�2x2.m�j /

4

�
dx

D

Z
R
jyjj�1 exp

�
�
�2y2

4

�
dy D

2j

�j
�
�j
2

�
;

where we used the exact expression for the absolute moments of the normal distribu-
tion. As �.x C 1/ � C2

p
2�x.x=e/x for all x � 1 and an absolute constant C2 large

enough, 2
j

�j
�. j

2
/ � C2

�j
.2j
e
/j=2. At the same time,

.m � j /j=2
Z

RnŒ��;��
jxjj�1j y�1.x/j

m�j dx

D .m � j /j=2
Z

RnŒ�.2C1/2=ı ;.2C1/2=ı�
jxjj�1j y�1.x/j

m�j dx

C .m � j /j=2
Z
Œ�.2C1/2=ı ;.2C1/2=ı�nŒ��;��

jxjj�1j y�1.x/j
m�j dx;

whereC1� 1 is a constant such that j y�1.x/j � C1
.1Cjxj/ı

. The first term can be estimated
via

.m � j /j=2
Z

RnŒ�.2C1/2=ı ;.2C1/2=ı�
jxjj�1j y�1.x/j

m�jdx

� C
m�j
1 .m � j /j=2

Z
RnŒ�.2C1/2=ı ;.2C1/2=ı�

jxjj�1

.1C jxj/ı.m�j /
dx
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�
2C

m�j
1 .m � j /j=2

ı.m � j / � j

1

.2C1/2.m�j /�2j=ı
:

When m > 2j C 2j=ı, we can bound the last expression from above by C3mj=22�m.
Finally, as supjxj>� j y�1.x/j � 1 �  for some 0 <  < 1,

.m � j /j=2
Z
Œ�.2C1/2=ı ;.2C1/2=ı�nŒ��;��

jxjj�1j y�1.x/j
m�j dx

� 2.m � j /j=2.1 � /m�j
.2C1/

2j=ı

j
:

Putting the estimates together, we deduce that

k�
.j�1/
m�j k1 �

.m � j /j=2

2�

Z
R
jxjj�1j y�1.x/j

m�j dx

�
C2

�j

�2j
e

�j=2
C C3m

j=22�m C C4..2C1/
4=ım/j=2.1 � /m�j :

Whenever j D o.m= logm/, the last two terms in the sum above are negligible so that
for m large enough,

k�
.j�1/
m�j k1 �

C5

�j

�2j
e

�j=2
;

as claimed.
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