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Introduction by the Organizers

The workshopDynamische Systeme, organised by M.-C.Arnaud (Paris), M. Hutch-
ings (Berkeley) and V. Kaloshin (Vienna), was well attended with 46 participants
with broad geographic representation from 12 countries. The workshop covered
a diverse range of topics in dynamical systems and related areas, with a special
emphasis on various kinds of spectra and their applications to dynamics.

Different kinds of results on rigidity were presented. Alena Erchenko proved that
if two smooth compact connected oriented surfaces with boundary of Anosov type
have the same marked boundary distance, then they are isometric. Konstantin
Drach proved several results concerning the Lyapunov rigidity of expanding maps
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of the circle. Ilya Koval proved that almost all billiard maps in an ellipse are such
that their perturbations that have rotational caustics near the boundary are also
ellipses. Alfonso Sorrentino proved some rigidity results concerning the completely
periodic Lagrangian tori of higher dimensional twist maps.

Variational methods were used by several speakers. Using Levi-Civita regu-
larization, Kai Cieliebak proved the existence of periodic orbits for the electrons
of a helium atom. Considering the restricted 3-body problem, Susanna Terracini
proved the existence of orbits having prescribed behavior in the past and the future
for almost all angular momenta.

Using normal forms in infinite dimension, Jessica Elisa Massetti proved stability
in long time for the beam equation and the non linear Schrödinger equation.

Maxime Zavidovique studied the discounted Hamilton-Jacobi PDE, that is as-
sociated to a conformally Hamiltonian dynamics, and proved that it selected one
particular weak KAM solution when the conformal factor tends to 1, and extended
this result to a degenerate setting.

Using qualitative methods and horseshoes, in a problem with 4 planets, Jacques
Fejoz showed the existence of orbits such that the semimajor axis of the outer
planet has very large variations.

Sylvain Crovisier presented results on the relations between Lyapunov expo-
nents and entropy for smooth diffeomorphisms of surfaces. Answering a conjecture
of Viana, he proved that the existence of an empirical Lyapunov exponent almost
everywhere implies the existence of a physical measure. Patrice Le Calvez stated
two results concerning periodic points in conservative surface dynamics. The first
one is that an area-preserving homeomorphism of a hyperbolic closed surface,
whose rotation vector has a nonzero rational direction, has infinitely many peri-
odic orbits with nonzero rotation vector. The second result is that a C∞ generic
Hamiltonian diffeomorphism of a closed surface of genus at least 1 has infinitely
many periodic orbits with nonzero rotation vector. This answers a question of
Viktor Ginzburg and Basak Gurel.

Dmitry Turaev studied reversible vector fields in R2n such that the set of fixed
points of the involutory reversing symmetry is n-dimensional. He proved that
for such systems that have a smooth one-parameter family of symmetric periodic
orbits which is of saddle type in normal directions, the topological entropy is
positive when the stable and unstable manifolds of this family of periodic orbits
have a strongly-transverse intersection. Using Birkhoff sections, Ana Rechtman
explained why every hyperbolic periodic orbit of every C∞ generic Reeb flow has
heteroclinic intersections.

In more symplectic dynamics, Gabriele Benedetti constructed Zoll magnetic
systems on the two-torus by a Nash-Moser construction, generalizing a result of
Guillemin for the two-sphere. Barney Bramham presented a dynamical interpre-
tation of the Calabi invariant in higher dimensions, generalizing a result of Fathi
in the two-dimensional case. Jo Nelson explained a computation of knot-filtered
embedded contact homology for torus knots, with applications to the dynamics
of surface diffeomorphisms in mapping classes arising from fibered knots. Leonid
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Polterovich presented a general theory of big fiber theorems and ideal-valued mea-
sures, with applications to non-displaceability results in symplectic geometry. Ro-
hil Prasad studied the behavior of low energy holomorphic curves with applications
to the dynamics of Reeb pseudorotations.

The meeting was held in an informal and stimulating atmosphere. The weather
was nice and the traditional walk to St. Roman, took place on Wednesday.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Physical measures of smooth surface diffeomorphisms

Sylvain Crovisier

(joint work with Jérôme Buzzi, Omri Sarig)

The dynamics of a diffeomorphism f of a closed manifold M can be described
through its invariant probability measures. Different quantities may be associated

to such a measure µ: its basin B(µ) = {x ∈ M, 1
n

∑n−1
k=0 δfk(x) → µ}, its entropy

h(µ), its upper Lyapunov exponent λ+(µ) := lim+∞
1
n

∫
log ‖Dfn‖dµ.

Some particular measures play an important role: the measures maximizing
the entropy (those satisfying h(µ) = supν h(ν)), and the physical measures (those
satisfying Vol(B(µ)) > 0).

We present two results about these measures whose proofs are similar and are
based on Yomdin’s technique [7]:

Theorem. Let f be a C∞ diffeomorphism of a closed surface and (νk) be a se-
quence of ergodic measures converging towards an ergodic measure µ. Then,

h(νk) →
k
h(µ) > 0 =⇒ λ+(νk) →

k
λ+(µ).

This result (and more precise versions, including the Cr case) has appeared
in [2]. It has strong ergodic consequences, which will be discussed in [4]. In
particular it implies that for smooth surface diffeomorphisms with positive topo-
logical entropy, (up to considering a suitable iterate) the measures maximizing the
entropy are exponentially mixing and satisfy a central limit theorem.

Whereas measures maximizing the entropy do exist for any smooth diffeomor-
phisms (as shown by Newhouse [5]), this is not the case of physical measures:
proving that their existence for a given dynamical system is a major problem.
Viana has conjectured that a smooth diffeomorphism admits a physical measure if
all the Lyapunov exponents are defined and do not vanish for points belonging to
a subset with full volume. We have proved that this is indeed the case on surfaces:

Theorem. Let f be a C∞ diffeomorphism of a closed surface with positive topo-
logical entropy. If the set {x ∈M, lim sup+∞

1
n log ‖Dfn(x)‖} has positive volume,

then f admits a physical measure.

This result has appeared in [3]. Another proof, which also states a Cr-version,
has been given by Burguet in [1].
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Marked boundary rigidity for Anosov type surfaces

Alena Erchenko

(joint work with Thibault Lefeuvre)

Consider a smooth compact connected oriented Riemannian manifold (Σ, g) with
boundary of Anosov type, meaning that the following conditions are satisfied:

• The boundary ∂Σ of Σ is strictly convex, i.e., the second fundamental form
of g is strictly positive on the boundary ∂Σ;

• The metric g has no conjugate points in Σ, i.e., for any two points p, q ∈ Σ
there is no non-zero Jacobi field along a geodesic piece connecting p and
q such that it vanishes at those points;

• Let K be the maximal geodesic flow-invariant set in the interior of the
unit tangent bundle SΣ of (Σ, g). Then, K is hyperbolic, i.e., there exists
a geodesic flow-invariant continuous splitting

T (SΣ)|K = RX ⊕ Es ⊕ Eu,

and uniform constants C, λ > 0 such that

(1)
|dϕt(w)| ≤ Ce−λt|w|, ∀t ≥ 0, ∀w ∈ Es,
|dϕ−t(w)| ≤ Ce−λt|w|, ∀t ≥ 0, ∀w ∈ Eu,

where ϕt : SΣ → SΣ is the geodesic flow.

For any x, y ∈ ∂Σ, let Cx,y be the set of all homotopy classes of curves with fixed
endpoints x and y. Since g is a metric of Anosov type, for every x, y ∈ ∂Σ and for
every homotopy class of curves c ∈ Cx,y, there exists a unique g-geodesic γx,y(c)
joining x to y [5, Lemma 2.2]. We define P := {(x, y, c) | x, y ∈ ∂Σ, c ∈ Cx,y}. The
marked boundary distance function is then defined as

(2) dg : P → [0,∞), dg(x, y, c) := ℓg(γx,y(c)).

An interesting question is if dg determines the “geometry” of (Σ, g) (see, for
instance, [1, Conjecture 1.6])).

Conjecture 1 (Marked Boundary Rigidity Conjecture). Let g1, g2 be two metrics
of Anosov type on Σ. If g1 and g2 have the same marked boundary distance func-
tion, that is dg1 = dg2 , then there exists a smooth diffeomorphism φ : Σ → Σ such
that g1 = φ∗g2 and φ|∂Σ is the identity map.
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When Σ is diffeomorphic to a ball, Conjecture 1 is more concisely known as the
boundary rigidity conjecture [7, 2]. The boundary rigidity conjecture is proved in
dimension 2 [9], and the most general result in dimension ≥ 3 is that boundary
rigidity holds under the extra assumption that the manifold is foliated by strictly
convex hypersurfaces [10]. We note that this problem is closely related to the
Caldéron problem for the Dirichlet-to-Neumann map (see [8, Section 11.1]).

We prove Conjecture 1 for all surfaces.

Theorem 1. [6, Theorem 1.1] Let Σ be a smooth compact connected oriented
surface with boundary. Let g1, g2 be two metrics of Anosov type on Σ. If g1
and g2 have the same marked boundary distance function, that is, dg1 = dg2 ,
then there exists a smooth diffeomorphism φ ∈ Diff0(Σ, ∂Σ) such that g1 = φ∗g2,
where Diff0(Σ, ∂Σ) is defined as the set of all diffeomorphisms of Σ fixing the
boundary, and isotopic to the identity through a path of diffeomorphisms preserving
the boundary.

The main ingredient of the proof is a new transfer principle showing that, in
any dimension, the marked length spectrum rigidity conjecture implies the marked
boundary distance rigidity conjecture under the existence of a suitable isometric
embedding into a closed Anosov manifold.

To formulate the transfer principle, we first introduce some terminology. We
say that (Σ, g) is extendable if there exists a codimension 0 isometric embedding
of (Σ, g) into a smooth closed connected oriented Rimenannian manifold (M, g′)
with Anosov geodesic flow. Two metrics g1 and g2 of Anosov type are consistently
extendable if they are both extendable to the same manifoldM and the extensions
g′1 and g′2 coincide on M \ Σ.
Theorem 2. [6, Theorem 1.4] Let Σ be a smooth compact connected oriented
manifold with boundary. Let g1, g2 be two smooth metrics of Anosov type on Σ.
Assume that g1 and g2 have the same marked boundary distance function, that is,
dg1 = dg2 , and that the metrics are consistently extendable to a closed manifold
M . Further assume that the marked length spectrum is injective on M for Anosov
metrics of finite regularity. Then, there exists a smooth diffeomorphism φ : Σ → Σ
such that φ|∂Σ = 1∂Σ and g1 = φ∗g2.

The conditions in the above theorem are guaranteed for surfaces by the following
two facts.

Theorem 3. [3, Theorem A] Let (Σ, g) be a smooth compact connected oriented
Riemannian manifold with boundary of Anosov type. Further assume that each
component of the boundary is diffeomorphic to a sphere. Then, (Σ, g) is extendable.

Theorem 4. [4, Theorem 1.1, Remark 3.12] Let M be a smooth closed connected
oriented surface. Let g1, g2 be two Ck-metrics with k ≥ 4, Anosov geodesic flow
on M , and the same marked length spectrum. Then, there exists a Ck−1 diffeo-
morphism φ : M →M , isotopic to the identity, such that g1 = φ∗g2.

We note that the condition on the boundary in Theorem 3 is satisfied for sur-
faces. The theorem can be extended to the case with a boundary component
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diffeomorphic to S1 × Sn−2 if Σ is n-dimensional. Moreover, Guedes Bonthon-
neau, in work in progress, is able to fully remove the restriction on the topology
of the boundary components when n = 3.

Finally, recall that boundary rigidity is the case of Conjecture 1 where Σ is
diffeomorphic to a ball. As a corollary of Theorems 2 and 3, we obtain that
marked length spectrum rigidity of manifolds with Anosov geodesic flows implies
boundary rigidity.
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A variational approach to frozen planet orbits in helium

Kai Cieliebak

(joint work with Urs Frauenfelder, Evgeny Volkov)

Frozen planet orbits are periodic orbits of the classical helium atom in which both
electrons move on a line on the same side of the nucleus. Such orbits play a role
in the semiclassical treatment of the helium atom, and numerical results suggest
that they exist and are stable for all negative energy values.

In joint work with Urs Frauenfelder and Evgeny Volkov [2, 3], we develop a
variational framework to algebraically count frozen planet orbits of given energy
(or equivalently, of given period). To regularize collisions of the electrons with
the nucleus, we apply a method by Barutello, Ortega and Verzini [1] separately
to both electrons. This leads to different time reparametrizations for the two
electrons, and thus to a nonlocal functional B which is not smooth in the usual
sense. Nonetheless, this functional has an L2-gradient vector field ∇B with the
following properties:
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(1) ∇B defines a self-adjoint Fredholm section of class C1 whose spectrum is
uniformly bounded from below;

(2) the zero set of ∇B (i.e., the critical point set of B) is compact.

For such a vector field one can define an integer valued Euler number χ(∇B) ∈
Z, counting its zeroes with appropriate signs. This is based on the observation
that the determinant line bundle over the space of essentially positive self-adjoint
Fredholm operators has a canonical orientation.

To compute χ(∇B), we deform B to the functional Bav in which the two elec-
trons interact only by their average positions. It turns out that, restricted to a
suitable space of symmetric orbits, the functional Bav has a unique critical point,
which is nondegenerate of Morse index zero. Homotopy invariance of the Euler
number now gives χ(∇B) = χ(∇Bav) = 1 ∈ Z. In particular, there exists a frozen
planet orbit of given energy.

The existence of a frozen planet orbit of given energy can be proved more di-
rectly, for example by a Birkhoff type shooting method as pointed out by Lei Zhao.
The preceding results should rather be seen as a proof of concept that variational
techniques are applicable to nonlocal functionals such as the one above. Inter-
esting directions for further research include the application of these techniques
to other physical problems, and the development of a Floer theory for nonlocal
functionals.
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Local strong Birkhoff conjecture of almost every ellipse

Illya Koval

Billiard dynamics can be defined on the smooth convex planar domain as follows.
Assume there is a point inside of the domain, that moves with unit speed along a
straight line. Whenever the ball hits the boundary, it reflects, such that the angle
of incidence is equal to that of reflection.

There are many interesting tables one can consider. One of them is an ellipse.
In ellipses, the billiard dynamics allow for the first integral. Moreover, if one draws
another smaller ellipse with the same foci, it would be a caustic for the bigger one.
Namely, if a billiard ball was tangent to the smaller ellipse before the reflection, it
will stay tangent after. This shows that billiards in ellipses are integrable.

Birkhoff conjecture is one of the most famous open problems in billiard dynam-
ics. This conjecture states, that the only integrable billiard domains are ellipses.
In a sense, the conjecture claims that the existence of so many caustics in a single
domain is a very rare phenomenon.



1682 Oberwolfach Report 30/2023

Before tackling the conjecture itself, one should define what exactly does inte-
grability mean. It turns out that the definition of it is not unique. It should involve
the existence of many invariant curves or caustics, and, in the most canonical way,
should only consider the dynamics near the boundary of the domain. Particularly,
only orbits with arbitrary small reflection angles can be studied.

However, there was no result on Birkhoff conjecture, that worked with integra-
bility arbitrary close to the boundary. There were many local and global theorems
proven by various authors, but all of them considered the fixed neighborhoods of
the boundary.

For example, the result of Kaloshin and Sorrentino [3], that shows that the only
integrable deformations of ellipses are ellipses themselves, requires the existence of
a caustic of 3-periodic points, while the new result by Bialy and Mironov [2] that
proves Birkhoff conjecture in the class of centrally symmetric domains, requires
an invariant curve of period 4. Since the period should approach infinity close to
the boundary, these results are not ”canonical”.

Attempts were made to generalize these results to work close to the boundary.
For example, [4] tried to prove the local Birkhoff conjecture for nearly-circular
ellipses near the boundary. This means that one considers an integrable small
deformation of a nearly-circular ellipse and proves that it must be an ellipse itself.
However, this attempt ran into a problem and was only able to reduce the size of
the neighborhood by a fixed amount.

In the talk, we are going to consider the following notion of integrability. We
call a caustic a rational one, if tangent to it orbits are all periodic. Particularly,
the dynamics, restricted to the caustic should have a rational rotation number
ω = p/q, where q is the period of orbits, and p is the number of times they wind
around the boundary. In general, the rotation number can be considered to be
from 0 to 1/2, where smaller rotation numbers correspond to dynamics near the
boundary.

As such, we will call a domain q0-rationally integrable for some q0 ≥ 3 if it
has all the rational caustics with rotation numbers lower than 1/q0. Since ellipses
have all the rational caustics, except the 1/2 one, they satisfy this definition. One
should note that by increasing q0, one makes Birkhoff conjecture harder to prove,
since one requires less caustics to exist.

The main theorem of the talk, stated in [1], finally provides a result arbitrary
close to the boundary. Specifically, it shows that for every q0 ≥ 3, for every ellipse,
every small q0-rationally integrable deformation of it is an ellipse itself, provided
the eccentricity of original ellipse lies outside of a locally finite set in [0, 1).

The proof has two distinct parts. In the first part, the result is proven for
nearly-circular ellipses. The main section of the talk will be devoted to it. There,
we consider a system of linear conditions on a linear part of the deformation to
preserve our family of caustics. The goal would be to prove that this infinite di-
mensional system has trivial kernel, since then in order to preserve all the caustics
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and hence have all functionals be 0, one would have to choose a trivial deforma-
tion. The proof will involve several techniques related to geometry, Jacobi elliptic
functions and algebraic field theory.

However, when eccentricity is away from 0, these methods wouldn’t work, since
we have used asymptotic expansions of various objects, when eccentricity goes
to 0, and hence we were in the perturbative regime. Instead, we consider the
aforementioned system of functionals as a linear operator on the space of defor-
mations, that has the eccentricity as a parameter. We claim that this operator
is holomorphic in eccentricity in certain sense. This allows us to say that the set
of eccentricities, where the operator has non-trivial kernel behaves like the set of
zeros of an analytic function, namely it is either the whole complex domain or
some locally finite set. Since we already know that the kernel is trivial near 0, we
have that the latter option is true.

There are many interesting open questions, associated with this talk. First of
all, this bad set of eccentricities, described in the main theorem, contains 0, so
the local Birkhoff conjecture near the disc remains open. It would be nice to see
what happens near the disc, but this may prove challenging. Secondly, it would be
interesting to know if there are other points in this bad set, except 0. We provide
fast-converging formulas for the entries of that operator, so it is feasible to do some
numerical analysis to check if they actually do exist.
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Zoll magnetic systems on the two-torus: a Nash–Moser approach

Gabriele Benedetti

(joint work with Luca Asselle, Massimiliano Berti)

An autonomous Hamiltonian flow at a given energy is called Zoll if all orbits are
periodic and have the same period (after a global smooth time reparametrization).
Classical examples of Zoll flows are given by the geodesic flow on the round two-
sphere, the magnetic flow induced by a constant field on the flat two-torus, and
the flow of the harmonic and gravitational potential in negative energy. Such
totally resonant flows exhibit the simplest type of dynamics and yet they play a
central role in contact and symplectic geometry, as they are optimal objects for
systolic-type quantities [1, 5].

For this reason, a natural question is to understand how abundant Zoll flows are
within a given class of Hamiltonian systems, e.g., among geodesic flows, magnetic
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systems, or central potentials. Two seminal results show the rigid and flexible side
of this question. Firstly, Joseph Bertrand proved in 1873 that the harmonic and
gravitational potentials are the only central potentials for which all bounded mo-
tions are periodic [6]. Secondly, Otto Zoll constructed in 1903 an explicit infinite-
dimensional family of two-spheres of revolution, parameterized by the space of
odd functions on an interval, whose geodesic flow is Zoll [10]. This result was later
extended to Riemannian metrics on the two-sphere which are close to the round
metric g0 and are not necessarily of revolution: given a function u : S2 → R, there
is a one-parameter family of Riemannian metrics gτ = (1 + τu + o(τ))g0 which
have fixed volume and are Zoll for every τ ∈ (−δ, δ) if and only if u is odd. The
necessity of an odd function was shown by Funk in 1913 [7], while the sufficiency
was proved by Guillemin in 1973 [8]. In particular, Guillemin’s construction of
gτ is not explicit but relies on a beautiful application of the Nash–Moser implicit
function theorem.

Given this background, the focus of our talk is the existence of magnetic flows
on two-tori of revolution which are Zoll at a given positive energy h. These systems
are parametrized by a pair of periodic functions a, b ∈ C∞

0 (T) with zero average
and possess an integral of motion I with values in T, where T denotes the circle. For
example, the trivial magnetic system, in which the torus is flat and the magnetic
field is constant, corresponds to the pair (0, 0). In this case, the system is Zoll at

every energy, trajectories are Euclidean circles of radius 1/
√
2h, and the integral

of motion I yields the horizontal coordinate of the center of the circle. Non-trivial
magnetic systems can be Zoll at energy h only if h is bigger than a certain positive
constant depending on (a, b) [3]. On the other hand, there are explicit examples
on the flat torus (a = 0) which are Zoll for a sequence of energies diverging to
infinity [3], where the sequence is given by the zeros of the first Bessel function J1.

Based on [4], the main result of this talk is the construction, for each fixed
energy h and for each (α, β) belonging to an infinite dimensional linear subspace

Vh ⊂ C∞
0 (T)× C∞

0 (T),

of a one-parameter family of magnetic systems

(aτ , bτ ) =
(
τα + o(τ), τβ + o(τ)

)
, τ ∈ (−δ, δ)

which are Zoll at energy h.
To this purpose, we exploit the integral of motion I and a global torus-like

surface of section for the magnetic flow to define a finite-dimensional reduction of
the action functional Sh(a, b) ∈ C∞

0 (T) with the property that Sh(a, b) = 0 if and
only if (a, b) yields a Zoll flow at energy h. Following Guillemin, we use the implicit
function theorem to find zeros of Sh close to the trivial pair (0, 0). Although the
differential dSh(0, 0) is surjective thanks to the properties of the function J1, the
map Sh is not of class C1 and therefore the standard implicit function theorem
cannot be applied. This problem originates from the fact that Sh and, hence
also dSh(a, b), involves composition operators and such operators lose regularity
when differentiated. To overcome this difficulty the Nash–Moser implicit function
theorem can be applied, provided one can show that dSh(a, b) is surjective and
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satisfies the so-called tame estimates. We can show that these conditions are
indeed met by analyzing the normal operator Nh(a, b) := dSh(a, b)dSh(a, b)

∗ with
respect to the L2-product. Indeed, thanks to the properties of the function J1, the
operatorNh(a, b) is of multiplication-type at the highest order and of composition-
type only at the lower orders, a fact that ensures the necessary regularity.

Now that the existence of exotic Zoll magnetic systems at a given energy is
settled, it will be interesting to understand how large can the set of Zoll energies
of a magnetic system be. In the analytic category, this question seems related
to the work presented by Illya Koval [9] and by Alfonso Sorrentino [2] at this
workshop.
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Existence of Birkhoff sections for C
∞-generic Reeb flows and

geodesic flows

Ana Rechtman

(joint work with Vincent Colin, Pierre Dehornoy, Umberto Hryniewicz)

On a closed 3-manifold, a Reeb vector field is a non-singular vector field defined
by a contact form. Geodesic flows oriented closed surfaces are examples of Reeb
vector fields on closed 3-manifolds. The aim of this report is to present the main
result of [3], about the existence of Birkhoff sections as well as a result using
these surfaces to conclude that entropy is everywhere, for C∞-generic Reeb vector
fields. The generic parts of the following results are explicit hypothesis, that are
presented after each statement. These results are the continuation of the results
presented in the Oberwolfach report [2].
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1. Definitions and results. Consider a closed 3-manifold M . A contact struc-
ture on M is a plane field ξ that is nowhere integrable, as such it can be defined
by the kernel of a differential 1-form α, that is ξ = kerα. The non-integrability
condition implies that α ∧ dα 6= 0. The 1-form α is a contact form and its Reeb
vector field X is defined by the equations

ιXdα = 0 and α(X) = 1.

Observe that there are many contact forms for a given contact structure, if f is a
function on M that is never equal to zero, then fα is a contact form for ξ. The
Reeb vector field depends on the form.

Definition 1. Let (M,X) be a closed 3-manifold with a non-singular vector field.
A Birkhoff section of X is an immersed surface S in M such that:

- the interior of S is embedded and transverse to X ;
- the boundary of S is mapped to a collection of periodic orbits of X ;
- every orbit intersects S in bounded time.

Birkhoff sections allow one to transform the 3-dimensional dynamics of the flow
of X on a problem of a homeomorphism or diffeomorphism of the surface S (given
by the first return map to the surface). These type of sections appear in the works
by H. Poincaré on the restricted circular 3-body problem and were constructed by
Birkhoff for some geodesic flows [1]. The existence of a Birkhoff section implies
that the flow is supported by an open book decomposition: the boundary of S is
the binding of the open book and the pages are diffeomorphic to S. E. Giroux’s
correspondance implies that given a contact structure there is (at least) one of
its Reeb vector fields that admits a Birkhoff section. One can ask if every Reeb
vector field of a given contact structure admits a Birkhoff section, these question
remains unanswered at this point.

The results I want to present are the following:

Theorem 1 (Colin-Dehornoy-Hryniewicz-Rechtman, Contreras-Mazzucchelli).
The set of Reeb vector fields on a closed 3-manifold M that admit a Birkhoff
section contains a C∞-generic set.

Theorem 2 (Colin-Hryniewicz-Rechtman, work in progress). For a C∞-generic
Reeb vector field on a closed 3-manifold M , every hyperbolic periodic orbit has a
homoclinic orbit.

In both cases, the genericity can be considerer for a fixed contact structure. The
Reeb vector fields considered in these theorems are non-degenerate meaning that
all its periodic orbits are either hyperbolic or irrationally elliptic. A hyperbolic
periodic orbit has a homoclinic orbit if there is an orbit contained in the stable
and in the unstable manifolds of the periodic orbit.

2. Comments on Theorem 1. In the C∞-topology, there are now two proofs
of Theorem 1 that are both based in the existence of broken book decompositions
for non-degenerate Reeb vector field [4].
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Definition 2 (Broken book decomposition, informal definition). A broken book
decomposition is given by a link K and a 2D foliation F of M \ K, with the
following properties:

• the leaves of F are properly embedded inM \K and hence their boundary
is contained in K;

• K = Kr ⊔ Kb. The tubular neighborhood of a knot k ∈ Kr is foliated
radially by F . If k ∈ Kb, there is a tubular neighborhood U of k such
that the intersection of any leaf with U is a collection of annuli, there are
two types of annuli in F ∩U : either one boundary component contains k,
or both boundary components are in ∂U . In the first case we speak of
a radial leaf, and in the second of a hyperbolic leaf. We ask further that
there are four sectors of radial leaves and four sectors of hyperbolic leaves
as in Figure 1.

Figure 1. A local picture of a radial component and of a broken
component of the binding.

We say that K is the binding of the broken book decomposition, Kr is the
radial part of the binding and Kb is the broken part of the binding. The leaves of
F are called the pages.

A broken book decomposition (K,F) carries a vector field X if X is tangent to
K and transverse to the leaves of the foliation F . If K has no broken components,
that is Kb = ∅, then one has an open book decomposition and any leaf of F is a
Birkhoff section of X . From a broken book decomposition with Kb 6= ∅, in order
to prove Theorem 1, it is enough to find an immersed compact oriented surface
with boundary S′ such that ∂S′ is mapped to a collection of periodic orbits of X
disjoint from Kb and whose intersection number with each connected component
of Kb is positive. The interior of S′ is assumed to be embedded. Assume, for a
moment, that one finds such a surface S′ and that its interior is always transitive
to X . A process introduced by D. Fried [7], allows one to add this surface to the
foliation F to obtain an open book decomposition whose binding is contained in
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K ∪ ∂S′1. This idea is presented in [4] and accomplished in the two proofs of
Theorem 1 Let me review some differences between the proofs:

(1) G. Contreras and M. Mazzucchelli [6], assume that the Reeb vector field is
strongly non-degenerate meaning that the intersections between stable and
unstable manifolds of the hyperbolic periodic orbits are transverse. Since
the periodic orbits in Kb are hyperbolic, they prove that this orbits have
homoclinic orbits in each branch of their stable and unstable manifolds.
This is one of the conditions needed to then apply the strategy explained
in Section 4.6 of [4].

Thus the C∞-generic here is strongly non-degenerate.
(2) In [3], we employ a new strategy. One can find S′ from null-homologous

link made of periodic orbits of X that links positively with each connected
component of Kb. Using that for C∞-generic Reeb vector fields periodic
orbits are equidistributed [8] and that every invariant measure links posi-
tively with the invariant volume, one can find such a link.

Thus the C∞ generic in this case is non-degenerate plus the equidistri-
bution of periodic orbits with respect to the volume.

The advantage of the strongly non-degenerate hypothesis is that it is also generic
among geodesic flows. There is a proof for geodesic flows using only broken book
decompositions and Birkhoff annuli, that can be achieved from the observations
in [4]. The advantage of the second proof, that is the conditions explained in item
(2) above, is that the linking condition might be computable in explicit examples.
As always, having two proofs of the same results can have advantages.

So the set of Reeb vector fields admitting a Birkhoff section is hence C∞-
generic, and one can prove using the implicit function theorem that is C1-open
(see Section 5 of [3]). The obvious open question is: are there 3D Reeb vector
fields that do not admit a Birkhoff section?

3. Comments on Theorem 2. A Birkhoff section allows to change the study of a
3D flow, to the study of the dynamics of a 2D diffeomorphism or homeomorphism,
that is a priory a simpler problem. In [3], we used the existence of Birkhoff sections
for zero entropy Reeb vector fields (see Theorem 1.4 in [4]) to prove that C∞-
generically a Reeb vector field has positive topological entropy. Having positive
entropy is an open condition by results of A. Katok [9], and this holds true among
Reeb vector fields. The proof of Theorem 2 relies in a fundamental way, in the
techniques developped by P. Le Calvez and M. Sambarino for finding homoclinic
orbits among strongly non-degenerate homeomorphisms of closed surfaces [10].
Again, by A. Katok’s result, the existence of a homoclinic orbit is equivalent to
having positive entropy.

Using the full strength of the techniques in [10], adapted to our setting (the sur-
face we consider has boundary and the homeomorphism might be degenerate along
it), we prove Theorem 2. To finish this report, I want to make a few comments:

1Some technicalities are hidden in this description, for example one needs the surfaces to be
δ-strong along their boundary (see [4] or [3])
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(1) The hypothesis hidden behind the C∞-genericity are the following (con-
dition (1a) and (1b) are both important):
(a) The Reeb vector field has to be strongly non-degenerate;
(b) Equidistribution of periodic orbits with respect to the invariant vol-

ume;
(c) Zehnder condition around elliptic periodic orbits: every tubular neigh-

borhood of the periodic orbit contains another tubular neighborhood
whose boundary is made of finitely pieces of stable and unstable man-
ifolds of a hyperbolic periodic orbit ([11]).

(2) Our proof can be adapted for geodesic flows, hence gives another proof
to the main theorem in [5] and to previous results on the existence of
homoclinic orbits for every hyperbolic periodic orbit of a geodesic flow.
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Degenerate discounted Hamilton-Jacobi equations

Maxime Zavidovique

(joint work with Q. Chen, A. Fathi, J. Zhang)

If M is a compact, connected smooth manifold without boundary, we consider a
HamiltonianH : T ∗M → R that is continuous and verifies the following properties:

• convexity: for all x ∈M , the function p 7→ H(x, p) is convex,
• superlinearity: the limit lim

‖p‖x→+∞
H(x, p)/‖p‖x = +∞ holds.
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The superlinearity condition is stated with the use of an auxiliary riemannian
metric, but the property is independent on the metric.

Given this Hamiltonian comes the Lagrangian function L : TM → R defined
by

∀(x, v) ∈ TM, L(x, v) = max
p∈T∗

xM
p(v)−H(x, p).

It is also convex and superlinear in v.

1. Non-degenerate Hamilton-Jacobi equations

In [1] we obtained the following result:

Theorem 1. For all λ > 0, there exists a unique viscosity solution uλ : M → R

to the discounted Hamilton-Jacobi equation;

(1) λuλ(x) +H(x,Dxuλ) = 0.

Moreover, there is a unique constant c0 and function u0 : M → R such that
uλ + c0/λ uniformly converges to u0 as λ → 0. The function u0 is a weak KAM
solution, that is a viscosity solution of H(x, dxu0) = c0.

• The real novelty in the previous result is the convergence one. The rest was
known since the 80’s and the convergence was known to hold, up to sub-
sequences. Actually, Lions, Papanicolaou and Varadhan introduced this
vanishing discount method to prove the existence of weak KAM solutions.

• The set of weak KAM solutions is never reduced to a single function. For
example one easily checks that this set is invariant by addition of constant
functions.

• All the functions at stake here are automatically Lipschitz, hence differ-
entiable almost everywhere.

• The proof heavily relies on Mather minimizing measures, that are Borel
probability measures µ on TM that are
(1) closed: for all f ∈ C1(M,R),

∫
TM Dxf(v)dµ = 0,

(2) minimizing:
∫
TM

L(x, v)dµ = −c0.
The limit function u0 is actually expressed in terms of those measures.

• When the Hamiltonian H is Tonelli (smooth and strictly convex in the C2

sense), then all the above objects have dynamical meanings.
– The Mather measures are invariant by the Euler-Lagrange flow of L.
– If λ > 0, setting G(duλ) = {(x,Dxuλ), x ∈ D(Duλ)} where D(Duλ)

is set of differentiability points of uλ, then for t > 0 the inclusion

ϕ−t
H,λ

(
G(duλ)

)
⊂ G(duλ) holds, where ϕH,λ is the conformally sym-

plectic flow generated by the equations
{
ẋ = ∂pH(x, p),

ṗ = −∂xH(x, p)− λp.

– Similarly, for t > 0 it holds ϕ−t
H

(
G(du0)

)
⊂ G(du0) where ϕH is the

Hamiltonian flow associated to H .
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• The functions uλ are given by the following formula (that can be taken as
their definition in the present case)

∀x ∈M, uλ(x) = min
γ(0)=x

∫ 0

−∞

eλsL
(
γ(s), γ̇(s)

)
ds,

where the infimum is taken amongst the absolutely continuous curves γ :
(−∞, 0] →M such that γ(0) = x.

• the function u0 verifies a similar property (that characterizes weak KAM
solutions):

∀x ∈M, ∀t > 0, u0(x) = min
γ(0)=x

u0
(
γ(−t)

)
+

∫ 0

−t

L
(
γ(s), γ̇(s)

)
ds+ tc0.

2. Degenerate Hamilton-Jacobi equations

Having in mind the previous results, one may ask what other kind of perturbations
of the stationary Hamilton-Jacobi equation (defining weak KAM solutions) select
a unique weak KAM solution. It can be seen from the theory of viscosity solutions
that it is important to have an equation with a non-decreasing dependance on the
value of the unknown uλ(x). Therefore we will focus here on equations of the form

(2) λα(x)uλ(x) +H(x,Dxuλ) = c0,

where α : M → [0,+∞) is a given continuous function. If α is identically 0
then there is no perturbation and no reasonable result can be expected. On the
countrary, if α > 0 everywhere, then, dividing by α one reduces to the results of the
previous section. Hence one needs to find an appropriate intermediate condition.
We introduce the following:
Non-degeneracy condition: for all Mather measures µ, one has

∫
TM

α(x)dµ > 0.
Note that a Theorem of Mañé asserts that for a generic H , there exists a unique

Mather measure. Hence for most Hamiltonians, the above condition allows α to
vanish on very large sets, hence the equations to be rather degenerate.

Building on the results of [2] and [3], we prove in [4] a generalization of the
following:

Theorem 2. Assume α :M → [0,+∞) verifies the non-degeneracy condition and
H is convex and superlinear as before. For all λ > 0, there exists a unique viscosity
solution ũλ :M → R to the degenerate discounted Hamilton-Jacobi equation;

(3) λα(x)ũλ(x) +H(x,Dxũλ) = c0.

Moreover, there is a unique constant c0 and function ũ0 : M → R such that
ũλ + c0/λ uniformly converges to ũ0 as λ → 0. The function ũ0 is a weak KAM
solution, that is a viscosity solution of H(x, dxũ0) = c0.

Most of the previous Theorem in new, including uniqueness of the ũλ that re-
quires new, dynamically inspired, methods. The functions ũλ no longer verify a
nice explicit representation formula as before. However one recovers (with Gron-
wall’s inequality) properties closer to that of weak KAM solutions: for all x ∈ M
and t > 0,
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ũλ(x) = min
γ(0)=x

eAγ(−t)ũλ
(
γ(−t)

)
+

∫ 0

−t

eAγ(s)
[
L
(
γ(s), γ̇(s)

)
+ c0

]
ds,

where Aγ(s) =
∫ s
0
α ◦ γ(σ)dσ. It can be guessed from the above formula that a

crucial point will be to ensure that minimizing curves γ spend enough time in the
regions where α > 0 to ensure that Aγ(s) goes to −∞ as s→ −∞.
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Torus knotted Reeb dynamics in the standard tight contact 3-sphere

Jo Nelson

(joint work with Morgan Weiler)

Recall that a 1-form λ on a 3-manifold Y is a contact form whenever λ ∧ dλ is a
volume form. The associated Reeb vector field is uniquely determined by

λ(R) = 1, dλ(R, ·) = 0.

A closed Reeb orbit is a map γ : R/TZ → Y for some T > 0 such that γ′(t) =
R(γ(t)), modulo reparametrization. Denote the set of all closed Reeb orbits of λ
by P(λ). Consider the unit 3-sphere S3 in C2 and let JC2 be the standard complex
structure on C2. Then the standard tight contact structure is given by

(ξstd) |p = TpS
3 ∩ JC2(TpS

3)

and may expressed as the kernel of the contact form

λ0 =
i

2
(z1dz̄1 − z̄1dz1 + z2dz̄2 − z̄2dz2) .

We can realize the right handed torus knot T (p, q) in S3 as

T (p, q) =
{
(z1, z2) ∈ S3 ⊂ C2 | zp1 + zq2 = 0

}
;

the projection map π : S3 \ T (p, q) → S1 is the Milnor fibration. Etnyre shows
in [2], that positive transverse torus knots are transversely isotopic if and only if
they have the same topological knot type and the same self-linking number. We
establish the following quantitative existence result.
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Theorem 1. Let λ be a contact form on (S3, ξstd) with Vol(λ) ≤ 1
pq+δ , which

admits the maximal self-linking transverse T (p, q) torus knot as an elliptic Reeb
orbit, denoted by b, with rotation number pq + δ and A(b) :=

∫
b λ = 1, where δ

is either 0 or a sufficiently small positive irrational number. Then there exists a
second Reeb orbit distinct from b and

inf

{ A(γ)

ℓ(γ, b)

∣∣∣∣ γ ∈ P(λ) \ {b}
}
≤
√

Vol(λ)

pq + δ
.

Our result follows from the ECHWeyl law1 and our computation of knot filtered
embedded contact homology of (S3, ξstd) with respect to transverse positive T (p, q)
torus knots having rotation number pq + δ, where the rotation number is well-
defined when using a trivialization which induces the orbit to have push off linking
number zero.

Theorem 2. Let ξstd be the standard tight contact structure on S3. Let b0 be the
standard transverse positive T (p, q) torus knot. Then for k ∈ N,

ECHFb≤K
2k (S3, ξstd, b0, pq) =

{
Z/2 K ≥ Nk(p, q),

0 otherwise,

and in all other gradings ∗, ECHFb≤K
∗ (S3, ξstd, b0, pq) = 0. If δ is a sufficiently

small positive irrational number, then up to grading k ∈ N and knot filtration
threshold K inversely proportional to δ,

ECHFb≤K
2k (S3, ξstd, b0, pq + δ) =

{
Z/2 K ≥ Nk(p, q) + δ($Nk(p, q)− 1),

0 otherwise,

where $Nk(p, q) is the number of repeats in {Nj(p, q)}j≤k with value Nk(p, q), and

in all other gradings ∗, ECHFb≤K
∗ (S3, ξstd, b0, pq + δ) = 0.

Here Nk(p, q) = {pm+ qn | m,n ∈ Z≥0}k and δ has to be small enough so that
Nk(2, q) + δ($Nk(p, q) − 1) ≤ Nk+1(p, q) for all k. We proved Theorem 2 in [5].
To do so, we generalized the definition and invariance of knot filtered embedded
contact homology to allow for degenerate knots with rational rotation numbers and
developed Morse-Bott methods for understanding the embedded contact homology
chain complex of positive torus knotted fibrations of the standard tight contact
3-sphere in terms of their presentation as open books and as Seifert fiber spaces.

Using Theorem 1 for Reeb flows, we generalize work on the relation between
mean action of periodic orbits and the Calabi invariant of area preserving diffeo-
morphisms of the unit disk, to higher genus surfaces, by repackaging the surface
dynamics into of an open book decomposition of (S3, ξstd) along T (p, q). Given an
area preserving diffeomorphism of a surface which is rotation near the boundary,
one can define an action function which agrees with the rotation number on the

1The ECH Weyl law [1], states that if (Y, λ) is a closed contact 3-manifold with nonva-
nishing contact invariant such that the ECH action spectrum ck(Y, λ) < ∞ for all k, then

limk→∞

ck(Y,λ)2

2k
= Vol(Y, λ).
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boundary, and is a measure of how much the diffeomorphism distorts curves. The
Calabi invariant of the diffeomorphism is the average of the action function over
the surface. Before stating our results, we provide some context.

Hutchings developed unknot filtered embedded contact homology for planar
open book decompositions of (S3, ξstd) in [3], to show that for symplectomorphisms
of the unit disk which are rotation near the boundary2 whose Calabi invariant
is less than the rotation number, that there exists a periodic orbit so that the
infimum of its mean action is less than or equal to the Calabi invariant. Le Calvez
established the same result for C1 area preserving diffeomorphisms of the unit disk
using generating functions and foliations [4]. Weiler [8, 9] established results for
annular symplectomorphisms subject to a twist condition using Hopf link filtered
embedded contact homology. Pirnapasov and Prasad established analogous results
for C∞-generic Hamiltonian symplectomorphisms of surfaces of arbitrary genus
and an arbitrary number of boundary components without a rotation condition
on the boundary using a Weyl law for periodic Floer homology [7].

Given an exact symplectomorphisms ψ : (Σ̊g, ω = dβ), where ∂Σ̊g is the positive
T (p, q) torus knot and g = (p − 1)(q − 1)/2 such that ψ is freely isotopic to the
positive pq-periodic Nielsen-Thurston representative of the mapping class group
of Σ̊g and rotation near the boundary by 2π

pq+δ , where δ is either 0 or a sufficiently

small positive irrational number. Since ψ is not Hamiltonian, one must appeal to
a topological argument to show that there exists a primitive β of ω for which ψ is
exact, e.g. [ψ∗β − β] = 0 ∈ H1(Σ̊g;R); any two such primitives β and β′ differ by

dh such that h ≡ c near ∂Σ̊g.
The action function of (ψ, β, θ0) is the unique function f = fψ,β,θ0 for which

df = ψ∗β − β and f |∂Σ̊g
= θ0.

Usually, the Calabi invariant is defined for Hamiltonian symplectomorphisms. Our
definition of the action function f , drops the requirement that ψ be Hamiltonian
(or even isotopic to the identity, although that requirement depends on the free
isotopy class of ψ). We define the Calabi invariant of ψ by

V(ψ) :=
∫

Σ̊g

fω.

In general, the Calabi invariant depends on β (e.g. see [7]). However, the vari-
ance in β is controlled by the homotopy class of ψ, and so in the cases under
consideration, all Vβ(ψ) are equal.

An ℓ-tuple γ = (γ1, . . . , γℓ) of points in Σ̊g is a periodic orbit of ψ if γi+1 mod ℓ =
ψ(γi). It is simple if γi 6= γj for i 6= j. Its total action is

A(γ) :=
ℓ∑

i=1

f(γi).

2Work by Pirnapasov [6] allows one to remove the Hutchings’ condition in [3] that the map
be rotation near the boundary.
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If ℓ(γ) = |(γ1, . . . , γℓ)| then the mean action of γ is the ratio A(γ)/ℓ(γ). As in the
case of the Calabi invariant, the total action and mean action do not depend on β.
Let P(ψ) denote the simple periodic orbits of ψ. Using a suspension construction
and Theorem 1 we establish the following.

Theorem 3. Let ψ be as described above, f > 0, and V(ψ) < 1
pq+δ . Then we have

inf

{A(γ)

ℓ(γ)

∣∣∣∣γ ∈ P(ψ)

}
≤ V(ψ).
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Big fiber theorems and ideal-valued measures

Leonid Polterovich

(joint work with Adi Dickstein, Yaniv Ganor, Frol Zapolsky)

In various fields of mathematics there exist big fiber theorems:

For any map f : X → Y in a suitable category there is y0 ∈ Y such that the fiber
f−1(y0) is “big”.

The notion of being “big” depends on the specific situation. We focus on the
following examples:

(A.) Topological Centerpoint Theorem (Rado, Karasev);
(B.) Maximal fiber theorem for maps of the torus (Gromov);
(C.) Non-displaceable fiber theorem in symplectic topology (Entov–Polterovich).

Theorems A and B can be proved by using cohomological ideal-valued measures
(IVMs), an algebraic tool introduced by Gromov in [3]. Roughly speaking, an
IVM associates to each open subset of a manifold an ideal of a given associative
skew-commutative algebra, and this correspondence behaves nicely under certain
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natural operations on subsets, which is manifested in a number of axioms. In
the talk I discussed an adaptation of this tool to symplectic topology called an
IVQM (an ideal-valued quasi-measure), see [1]. The main feature of IVQMs is
that some of the axioms entering the definition of an IVM are satisfied only for
pairs of Poisson-commuting (in a suitable sense) subsets. Additionally, IVQMs are
invariant under the action of the identity component of the symplectomorphism
group, and vanish on displaceable subsets. The construction of IVQMs is based
on relative symplectic cohomology theory recently introduced by Varolgunes [6].
IVQMs lead to a unified viewpoint at Theorems A,B,C above and have a number
of applications to symplectic rigidity. I presented some of them, following [1].
Furthermore, I discussed some recent results from [4]: a generalization of Theorem
C in terms of relative symplectic cohomology, as well as an application of this result
to the theory of symplectic quasi-states. I concluded with a brief overview of the
theory of quasi-states and its link to the problem of hidden variables in quantum
mechanics [2, 5].
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On the fragility of periodic tori for families of symplectic twist maps

Alfonso Sorrentino

(joint work with Marie-Claude Arnaud, Jessica E. Massetti)

In the study of Hamiltonian systems an important role is played by so-called
integrable systems. These systems – whose dynamics is quite simple to describe
due to the presence of a large number of conserved quantities, i.e., symmetries –
arise quite naturally in many physical and geometric problems.

Integrability appears to be a very fragile property that is not expected to persist
under generic small perturbations: understanding the essence of this fragility is
a very compelling task, which is of interest in various contexts, and provides the
ground for some of the foremost conjectures in dynamics.

In this work we aim to shed more light on this issue in the setting of symplectic
twist maps of the 2d-dimensional annulus Td×Rd, where Td := Rd/Zd, and d ≥ 1.
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Definition 1 (Symplectic twist maps). A symplectic twist map of the 2d-
dimensional annulus is a C1 diffeomorphism f : Td × Rd → Td × Rd that admits
a lift F : Rd × Rd → Rd × Rd, F (q, p) =: (Q(q, p), P (q, p)) satisfying

(i) F (q +m, p) = F (q, p) + (m, 0) ∀m ∈ Zd;
(ii) (Twist condition) the map (q, p) 7→ (q,Q(q, p)) is a diffeomorphism of

Rd × Rd;
(iii) (Exactness) there exists a generating function of the map F , namely a

function S : Rd × Rd → R such that
• S(q +m,Q+m) = S(q,Q), ∀m ∈ Zd,
• PdQ− pdq = dS(q,Q).

Moreover, a symplectic twist map f is said to be strongly positive if there exists
α, β > 0 such that

−β‖v‖2 ≤ ∂q∂QS(q,Q)(v, v) ≤ −α‖v‖2 ∀ q,Q, v ∈ Rd.

In our investigation we will focus on two related issues:

• The persistence and the properties of invariant Lagrangian tori that are
foliated by periodic points. See Theorem 1.

• The rigidity of completely integrable twist maps, namely, to which extent
it is possible to deform them in a non-trivial way, preserving some (or all)
of their features. See Theorem 2.

Let us first introduce our main dynamical objects of interest.

Definition 2 (Periodic and completely-periodic tori). Let F : Rd×Rd → Rd×Rd

be a lift of a symplectic twist map f : Td ×Rd → Td ×Rd. Let γ : Rd −→ Rd be a
Zd-periodic and continuous function, and let L := graph(γ). For (m,n) ∈ Zd×N∗

with m and n coprime, we say that:

• L is a (m,n)-periodic graph of F , if

Fn(q, γ(q)) = (q +m, γ(q)) ∀ q ∈ Rd;

• L is a (m,n)-completely periodic graph of F , if it is invariant by F and a
(m,n)-periodic graph of F .

We refer to the projection of L to Td × Rd as, respectively, (m,n)-periodic torus
or (m,n)-completely periodic torus of f .

Remark 1. One can prove that for strongly positive symplectic twist maps, if one
considers Lipschitz Lagrangian graphs, then the notions of periodic and completely
periodic graphs coincide. See [1, Proposition 2.8].

Given a twist map f and a periodic potential G, we will consider a one-
parameter families of a twist maps obtained by deforming f by G in the following
way.

Definition 3 (Symplectic deformation by a potential). Let G ∈ C2(Td,R) and
f be a symplectic twist map with generating function S(q,Q). A symplectic de-
formation of f by the potential G is given by the family of twist maps fε whose
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generating functions Sε are

(q,Q) 7→ Sε(q,Q) := S(q,Q) + εG(q), ε ∈ R.

In particular, fε(q, p) := f(q, p+ ε∇G(q)).
Let us also specify a regularity assumption on the twist map that will be as-

sumed in our main results.

Definition 4 (Analyticity property). A symplectic twist map f : Td × Rd →
Td × Rd satisfies the analyticity property if there exists a holomorphic map F :
Cd × Cd → Cd × Cd, where F(q, p) =: (Q(q, p), P (q, p)), such that:

(i) F is a holomorphic diffeomorphism of Cd × Cd;
(ii) F|Rd×Rd is a lift of f ;
(iii) (Twist condition) the map (q, p) 7→ (q,Q(q, p)) is a diffeomorphism of

Cd × Cd;
(iv) (Exactness) there exists a generating function S : Cd×Cd → C such that

• S(q +m,Q+m) = S(q,Q) ∀m ∈ Zd;
• PdQ− pdq = dS(q,Q).

We can now state our two main results.

Theorem 1. Let f : Td ×Rd → Td ×Rd be symplectic twist map, F : Rd ×Rd →
Rd × Rd denote its lift and S : Rd × Rd −→ R its generating function. Let
G : Td → R be a potential function.
Consider the family of symplectic twist maps fε : T

d ×Rd → Td ×Rd, with ε ∈ R,
obtained as symplectic deformation of f by G, and denote by Fε a continuous
family of lifts of fε.

Assume that:

(i) f is strongly positive,
(ii) f satisfies the analyticity property,
(iii) G admits a holomorphic extension to Cd.

Then, for every (m,n) ∈ Zd × N∗, with m and n coprime, the set

Im,n(f,G) := {ε ∈ R : Fε has a Lipschitz Lagrangian (m,n)-periodic graph}
is either the whole R or consists of isolated points.

If, in addition, G is non-constant and

(iv) ‖∂q∂qS‖∞ + ‖∂Q∂QS‖∞ is bounded (i.e., f is said to have bounded rate),

then Im,n(f,G) consists of at most finitely many points.

Theorem 2. Let f : Td ×Rd → Td ×Rd be symplectic twist map, F : Rd ×Rd →
Rd×Rd be its lift, and S : Rd×Rd −→ R its generating function. Let G ∈ C2(Td).

Consider the family of symplectic twist maps fε : T
d×Rd → Td×Rd, with ε ∈ R,

obtained as symplectic deformation of f by G, and denote by Fε a continuous
family of lifts of fε.
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Assume that:

(i) f is completely integrable (e.g., S(q,Q) := h(q −Q) for some h : R → R),
(ii) f is strongly positive,
(iii) f satisfies the analyticity property,
(iv) there exist a basis (ρ1, . . . , ρd) of Qd and I1, . . . , Id ⊂ R open intervals,

such that for any m
n ∈ ⋃dj=1 Ijρj ∩ Qd, there are infinitely many values

of ε ∈ R, accumulating to 0, such that the corresponding Fε admits a
Lipschitz Lagrangian (m,n)-periodic graph.

Then, G must be identically constant.
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Low-action holomorphic curves and invariant sets

Rohil Prasad

Fix a closed, smooth, oriented, and connected manifold Y of odd dimension 2n+
1 ≥ 3. A framed Hamiltonian structure on Y is a pair η = (λ, ω) of a smooth 1-form
and smooth 2-form such that dω = 0 and λ ∧ ωn > 0. The framed Hamiltonian
structure η has an associated Hamiltonian vector field Rη defined implicitly by
the equations

λ(Rη) ≡ 1, ω(Rη,−) ≡ 0.

This formalism covers most symplectic dynamical systems of interest, including
Reeb flows and suspension flows of symplectic diffeomorphisms. Groundbreaking
work of Hofer [4] introduced the use of holomorphic curves in R × Y to detect
periodic orbits of the vector field Rη. In this context, a J-holomorphic curve is a
smooth, proper map u : C → R× Y where (C, j) is a punctured Riemann surface
and the map u satisfies the non-linear Cauchy–Riemann equation

Du ◦ j = J ◦Du.
Here J denotes a “η-adapted” almost-complex structure on R× Y . The geometry
of a J-holomorphic curve is controlled by two non-negative quantities called its
action and Hofer energy, defined respectively as

A(u) :=

∫

C

u∗ω, E(u) := sup
t∈Reg(a◦u)

∫

(a◦u)−1(t)

u∗λ

where a : R × Y → R is the projection map. The action controls the average
distance of the tangent planes of u(C) to the “vertical subbundle” Span(∂a, Rη) ⊂
T (R×Y ). Our main technical result is, when C is a cylinder andA(u) is sufficiently
small, an upgrade of this statement to a uniform pointwise bound.

Theorem 1. There exists a geometric constant κ = κ(Y, η, J) ≥ 1 such that the
following holds. Let u : C → R × Y be any J-holomorphic curve such that C is
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homeomorphic to a cylinder and A(u) ≤ κ−1. Then u is an immersion and for any
ζ ∈ C, we have the bound

dist(Du(TζC), Span(∂a, Rη)) ≤ κA(u)1/3.

To give a better feel for the statement of Theorem 1, we present the following
qualitative Corollary.

Corollary 1. Any J-holomorphic cylinder u : C → R×Y of sufficiently low action
is transverse to the level sets of R×Y . Each level set of u(C) is a immersed, closed
ǫ-pseudo-orbit of the vector field Rη, where ǫ→ 0 as A(u) → 0.

We also remark that the main novelty of Theorem 1 is that the estimate does
not depend on E(u). In fact, it does not even require E(u) to be finite. We
apply Theorem 1 to study the orbit structure of Rη when Rη R× Y has plenty of
J-holomorphic cylinders.

Theorem 2. Assume that for a dense set of z ∈ Y , the following holds. There
exists a sequence {uk : Ck → R× Y }k≥1 of J-holomorphic curves such that i) Ck
is a cylinder for each k, ii) (0, z) ∈ uk(Ck), and iii) A(uk) → 0 as k → ∞. Then
the flow of Rη is “nowhere minimal”: for dense y ∈ Y the orbit of y is not dense.

Work in progress aims to improve Theorem 2 by relaxing assumption i) to

i’) the Euler characteristics χ(Ck) admit a finite k-independent lower bound.

We expect this improvement to significantly broaden the scope of Theorem 2.
The primary examples of systems satisfying the current assumptions of Theorem
2 are pseudorotations. More precisely, any non-degenerate Hamiltonian pseudoro-
tations of CPn satisfies the assumptions of Theorem 2, as does any Reeb flow on
a closed 3-manifold with exactly two closed orbits. This assertion follows in the
former case from work of Ginzburg–Gurel [3] and in the latter case from work in
preparation by the author. The latter class of systems contain in particular Ka-
tok’s celebrated examples [5] of Finsler geodesic flows on S2 with two closed orbits.
We also use Theorem 1, embedded contact homology, and holomorphic intersection
theory to derive further dynamical results regarding these “Reeb pseudorotations”.

Theorem 3. Let Y be a smooth, closed, connected, oriented 3-manifold and λ any
contact form whose Reeb flow has two closed orbits. Then there exists a sequence
of vector fields {Rn}n≥1 on Y approximating the Reeb vector field Rλ in the C0

topology such that the flow of Rn is periodic for every n.

Theorem 4. Let Y be a smooth, closed, connected, oriented 3-manifold and λ any
contact form whose Reeb flow {φtλ}t∈R has two closed orbits. Write T1 > T2 > 0
for the actions of the two closed orbits. Assume that T1/T2 is “super-Liouvillean”,
that is the denominators {qn}n≥1 of its continued fraction expansion satisfy the
identity

lim sup
n→∞

q−1
n log(qn+1) = +∞.
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Then there exists a sequence of times tn → +∞ such that the sequence of maps
{φtnλ }n≥1 converges in the C0 topology to the identity. As a consequence, the Reeb
flow is not topologically mixing.

These results are analogous to groundbreaking results of Bramham [1, 2] for
pseudorotations of the closed 2-disk.

References

[1] B. Bramham, Periodic approximations of irrational pseudo-rotations using pseudoholomor-
phic curves, Ann. of Math. 181 (2015), 1033–1086.

[2] B. Bramham, Pseudo-rotations with sufficiently Liouvillean rotation number are C0-rigid,
Invent. Math. 199 (2015), 561–580.

[3] V.L. Ginzburg, B.Z. Gurel, Hamiltonian pseudo-rotations of projective spaces, Invent. Math.
214 (2018), 1081–1130.

[4] H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein
conjecture in dimension three, Invent. Math. 114 (1993), 515–563.

[5] A.B. Katok, Ergodic perturbations of degenerate integrable Hamiltonian systems, Izv. Akad.
Nauk SSSR Ser. Mat. 37 (1973), 539–576.

[6] M. Muster, Computing other invariants of topological spaces of dimension three, Topology
32 (1990), 120–140.

Long time behavior of Sobolev norms: normal forms and
energy methods

Jessica Elisa Massetti

(joint work with Roberto Feola)

We discuss the problem of long time behavior of general initial data of a given PDE
with an elliptic fixed point at the origin and defined on a compact manifold. This
is a longstanding problem in the study of infinite dimensional dynamical systems.
On such a domain, in general, no dispersive effect help to control the evolution of
the Sobolev norm of solutions for long time. On the other hand, at least in the
case of small initial conditions, a Birokhoff Normal Form approach reveals to be
an effective tool in the understanding of the optimal time of stability of solutions
(see [1, 3] and references therein). In contrast with KAM theory, where perpetual
stability can be proved for “special” initial data evolving quasi/almost-periodically
in time (see the recent [2]), normal forms techniques provide information of the
evolution of all initial data, for finite but very long time. Note that it is relatively
simple to prove a polynomial lifespan of solutions (w.r.t. the size of initial data),
while obtaining exponential stability times turns out to be intimately related with
the connection between regularity and size of initial conditions (this is carefully
studied in [4]). This is due to the presence of the so-called “small divisors”, which
arise from (close to) resonant interactions between linear frequencies of oscillations,
that one needs to control during a normal form analysis.
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We shall focus on the following two equations:

(beam)
ψtt + ψxxxx +mψ + f(ψ) = 0, x ∈ T = R/2πZ

ψ = ψ(x, t), m ∈ [1, 2]

where the nonlinearity is given by f(ψ) := ∂ψF (ψ), F being real analytic in the
neighborhood of the origin and such that F (0) = 0, and

(NLS)
iut +∆u± |u|2pu = 0, x ∈ Td , d ≥ 1

u = u(x, t), N ∋ p ≥ 1,

where ∆ is the Laplacian operator.
The nice feature is that both equations1 read as iut = Lu+N(u) where

• u belongs to some Banach space, possibly Hilbert separable as the (scale
of) Sobolev one(s) Hs(Td), s ≥ 0

• L is a typically unbounded self-adjoint operator with pure point spectrum.
This implies that, considering the base {eijx}, the vector field reads iu̇j =
λjuj + Nj(u) , j ∈ Zd where λj are the eigenvalues of L (i.e. for each

Fourier’s mode λj =
√
j4 +m for the beam and λj = |j|2 for the NLS

respectively)
• the nonlinear term N(u) ∼ O(uq+1), q ≥ 1

Given the Cauchy problem
{
iut = Lu+N(u)

u(0, x) = u0(x) ∈ Hs(Td)

we are interested in how the norm ‖ · ‖s := ‖ · ‖L2
+ ‖(

√
−∆)s · ‖L2 of the corre-

sponding solution evolves.
In general, we can phrase the result we aim at as follows: Given ‖u0‖s ≤ ǫ, then

the solution satisfies ‖u(t)‖s ≤ f(t), for any time |t| ≤ T , where T > Tgood(ǫ).
Now, our main questions then are

(1) Who is f(t)? Are we able to prove that f(t) = cǫ, for some absolute
constant c? In this case we would prove stability of the solution, otherwise,
by determining precisely f(t) for all times up to T we would get a control
from above on the possible growth of its Sobolev norm.

(2) Who is Tgood? This question goes in the direction of determining a lower
bound on T that is strictly better than the trivial time of existence which
can easily be proved to be like Tgood & 1/ǫq.

The beam equation: a stability result.

Theorem 1 (Sobolev stability). Let s be large enough and fix 0 < γ < 1. There
are a large measure set Mγ ⊂ [1, 2] and an absolute constant c > 0 such that
∀m ∈ Mγ the following holds.

1concerning the beam equation, after a convenient linear symplectic change of variables
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For any 0 < ǫ ≤ γcs and any initial condition (ψ0, ψ1) ∈ Hs+1 × Hs−1 such
that

(1) ‖ψ0‖s+1 + ‖ψ1‖s−1 ≤ ǫ/8, 2s(‖ψ0‖L2 + ‖ψ1‖L2) ≤ ǫ/8,

the corresponding solution exists and satisfies

‖ψ(t)‖s+1 + ‖∂tψ(t)‖s−1 ≤ 8ǫ ∀ |t| ≤ T0(ǫ) ,

where

T0(ǫ) & Tgood :=
γcs

2

ǫ
(1/ǫ)

(s−1)1/3
.

Corollary 1 (Optimization). Under the hypotheses above, if one sets

s = s(ǫ) ∼c 1 +
(
ln 1/ǫ

ln 1/γ

)3/5

then

T0(ǫ) &γ Tgood := 1/ǫ exp{(ln 1/ǫ)1+1/5}.

The key, non trivial ingredient of the above results is the possibility of im-
posing the following Diophantine condition on the set of admissible frequencies
λ = (λj)j∈Z

Dγ = {λ ∈ RZ : |λ · k| ≥ γd(k)
∏

j

1

(1 + 〈j〉2|kj |2)τ(d(k))
∀k ∈ Λ , |k| <∞},

where 〈j〉 = max{1, |j|}, Λ ⊂ ZZ is a suitable non-resonant sublattice, and
d(k) is the number of nonzero component of k. Note that we are in a degenerate
situation where we have only one parameter (the mass) for tuning infinitely many
frequencies and get a sufficiently non-resonant vector, so that a Birkhoff Normal
Form procedure can be performed (note however that the number of steps N of
BNF is related to the regularity as N ∼ s) . Proving that the measure of possible
masses m ∈ [1, 2] such that the above condition holds is of order 1−O(γ) is highly
nontrivial. Then, taking a sharp care of all the constant’s dependence throughout
the procedure, we are able to perform an optimization regularity-size and achieve
a surprising exponential-type stability time in the Sobolev category (while usually,
only a polynomial type-one is possible at best). This result should be compared
with the one in [3] in the context of the 1-d NLS with convolution potential acting
as a Fourier multiplier that provides infinitely many parameters for the frequency
modulation λj = j2 + Vj , (Vj)j∈Z ∈ ℓ∞.

Control on the (possible) growth of Sobolev norms. In the case of the
completely resonant NLS, the situation is drastically different: too many non-
trivial resonant relations may occur in any n-wave interaction λj1 ±· · ·±λjn , jn ∈
Zd so that a Birkhoff Normal Form is out of reach.
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Theorem 2. Fix 0 < ǫ ≪ 1, p ≥ 1 and s1 > d/2 + 2. There exist absolute
constants C ≥ M > 0 such that ∀s ≥ s1 + 1 and any initial datum u0 ∈ Hs such
that

(2) ‖u0‖s1 ≤ ǫ, (M)s1‖u0‖L2 ≤ ǫ, ‖u0‖s <∞

the following holds. There exist a time T = T (u0,M, s1) > 0 and a unique solution
u = u(x, t) s.t.

u ∈ C0([0, T ], Hs) ∩C1([0, T ], Hs−2) for T ≥ Tgood ∼
22ps1

ǫ2p
.

Moreover one has ∀ t ∈ [0, T ] that

‖u(t)‖s . Cps(s−s1)
(
‖u0‖s + (2M)s‖u0‖L2

)
[
1 +

(
M2p(s−s1)

ǫ2p

22ps1
t

)s−s1]
.

Of course, if restricted to low 2-3-dimensional tori and low degree p, there are
even global in time results, see [4, 7] and references therein. Our aim is to propose
an approach uniform in the space dimension and the degree p of the nonlinearity.
In the above theorem, no normal form is involved. Note that energy estimates plus
a classical Grönwall lemma would give an exponential upper bound. In order to
get a polynomial control from above on all the scale of high norms ‖·‖s we provide
improved energy estimates combining pseudodifferential calculus and tameness
properties enjoyed by our norms. The smallness condition on the L2-norm of the
initial data, which entails that the energy is not concentrated on the low modes,
enables us to determine the time of existence through suitable scaling properties
of the norm combined with the stability of the s1-norm.

The above results are part of the works [5, 6].
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The Calabi homomorphism in higher dimensions as an
average rotation

Barney Bramham

In 1980 Albert Fathi found an expression for the Calabi homomorphism of com-
pactly supported Hamiltonian disc maps as an average rotation number. In this
talk we gave a generalisation of this to higher dimensions which will appear in [1].

Let H : [0, 1] × R2n → R be a smooth function with compact support and
ϕ̃ = {ϕt}t∈[0,1] be the generated path of Hamiltonian diffeomorphisms with respect

to the standard symplectic structure ω0 =
∑n

i=1 dxi ∧ dyi. We use the following
sign convention ιXHtω0 = dHt for the Hamiltonian vector field. The following
space-time integral

Cal(ϕ̃) :=

∫ 1

0

(∫

R2n

H(t, z)ωnz

)
dt ∈ R

which turns out to depend only on the time-1 map ϕ := ϕ1 : R2n → R2n, see for
example [7], defines a group homomorphism [3] from the group of compactly sup-
ported Hamiltonian diffeomorphisms to (R,+), called the Calabi homomorphism.

A. Fathi discovered that in two dimensions the Calabi homomorphism has an
interpretation as the average amount that pairs of trajectories wind around each
other. Alternative proofs were later found by Gambaudo-Ghys in [6], by Deryabin
[4], Shelukhin [8], and by Bechara [2]. Here is the statement:

Theorem 1 (Fathi [5]). If n = 1, and the Hamiltonian isotopy ϕ̃ is compactly
supported in the open unit disc D ⊂ R2, then

(1)

∫

D×D

windϕ̃(z, w) dzdw = 2Cal(ϕ̃)

where windϕ̃ : (D × D)\∆ → R is defined at (z, w) on the complement of the
diagonal, as the change in argument of the continuous path of non-zero vectors
t 7→ ϕt(z)− ϕt(w) ∈ R2\{0}.

More precisely, windϕ̃(z, w) := (θ(1)−θ(0))/2π, where θ : [0, 1] → R is any con-

tinuous function for which ϕt(z)−ϕt(w) = r(t)eiθ(t) for some continuous function
r : [0, 1] → R.

In the talk we explained a generalisation of this result to higher dimensions,
that applies to any compactly supported Hamiltonian isotopy ϕ̃ = {ϕt}t∈[0,1] on

(R2n, ω0). To make sense of a winding or rotation number we project onto a
2-dimensional subspace. More precisely, suppose

V ⊂ (R2n, ω0)

is a symplectic 2-dimensional vector subspace. Let πV : R2n → R2n be the unique
linear projection with image V and kernel the symplectic complement V ω.

Definition 1. We call (z, w) ∈ R2n × R2n a collision pair for ϕ̃ = {ϕt} with
respect to the subspace V , if there exists t ∈ [0, 1] so that πV (ϕt(z)) = πV (ϕt(w)).
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In other words (z, w) is a collision pair if the projections onto V of their trajec-
tories t 7→ ϕt(z), t 7→ ϕt(w) coincide at some parameter t ∈ [0, 1]. Of course the
two trajectories will never coincide in R2n unless z = w. One can show:

Lemma 1. The set of collision pairs C ⊂ R2n×R2n is a closed subset of measure
zero.

Definition 2 (The projected winding number on V ). Let C ⊂ R2n × R2n be the
collision set of ϕ̃ with respect to the subspace V . We define the V -winding function

windVϕ̃ :
(
R2n × R2n

)
\C → R

at a non-collision pair (z, w) to be the change in argument of the continuous path
of non-zero vectors

t 7→ πV (ϕt(z))− πV (ϕt(w)) ∈ V \{0}
with respect to Euclidean angles in V 1.

Here is the main result. As mentioned, ϕ̃ = {ϕt}t∈[0,1] is a compactly supported

Hamiltonian isotopy on R2n, and V ⊂ R2n is a 2-dimensional symplectic vector
subspace.

Theorem 2. The function (z, w) 7→ windVϕ̃ (z, w), defined almost everywhere on

R2n×R2n, is locally integrable. Moreover, if the isotopy ϕ̃ is supported in a bounded
open subset Q ⊂ R2n for which each slice parallel to V ω has ωn−1-volume equal to
1, then ∫

Q×Q

windVϕ̃ (z, w) ω
n
z × ωnw = 2nCal(ϕ̃).

If we restrict attention to symplectic lines V that are also complex, i.e. J0-
invariant, where J0 is the standard complex structure on R2n after identifying
with Cn, then V ω coincides with the orthogonal complement V ⊥, and one can
make a statement where the support is independent of V . For example, if the
isotopy ϕ̃ is supported in the open unit Euclidean ball B2n

1 (0) ⊂ R2n, then for
each complex line V ⊂ R2n we have

∫

Q×Q

windVϕ̃ (z, w) ω
n
z × ωnw = 2nπn−1Cal(ϕ̃)

where Q = B2
1(0)×B2n−2

1 (0) is the product of the Euclidean open balls in V and
V ω with radius 1.
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Lyapunov spectral rigidity of expanding circle maps

Kostiantyn Drach

(joint work with Vadim Kaloshin)

In 1990, Croke [1] and Otal [2] proved a remarkable result on rigidity of negatively
curved metrics in dimension 2. They showed that a smooth metric g of negative
curvature on a closed surface is uniquely defined (up to smooth coordinate changes)
by its marked length spectrum, i.e., by the lengths of closed geodesics for the
metric g ‘marked’ by their respective homotopy types. As it turns out, knowing
just the length spectrum of g, i.e., the set of lengths of all closed geodesics and
‘forgetting’ about their homotopy types is not enough to reconstruct the metric, as
the examples of Sunada [4] and Vignéras [5] show. However, the local (unmarked)
length spectral rigidity question for nearby negatively curved metrics is still widely
open. We study a one-dimensional analog of this question for expanding circle
endomorphisms. Our setup is the following.

Let f : S1 → S1, S1 = R/Z, be a Cr,1-smooth, r > 1, expanding circle endo-
morphism of degree d > 2 normalized so that f(0) = 0 and f ′(x) > 1 for all
x ∈ S1. (Here, Cr,1-smooth means that f has r derivatives and the rth derivative
is Lipshitz.) For brevity, we write Erd for the class of such maps.

Denote by Pfn the set of all periodic points of period n for f ∈ Erd . We assume
that n is the smallest period. The log-multiplier of a periodic point p ∈ Pfn is
defined as

λf (p) := log (fn)
′
(p).

For each n ∈ N, we define the Lyapunov spectrum for period n as the set

Lyapn(f) :=
{
λf (p) : p ∈ Pfn

}
.

The union

Lyap(f) :=
⋃

n∈N

Lyapn(f)

of all these sets yields the Lyapunov spectrum of the expanding circle map f .
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There is a natural marked counterpart of the Lyapunov spectrum. Namely, it
is known that any two expanding circle maps f, g ∈ Erd are topologically conjugate
via an orientation-preserving homeomorphism ϕ : S1 → S1 as follows:

g = ϕ ◦ f ◦ ϕ−1.

This homeomorphism respects the symbolic dynamics and hence provides a natural
marking: we say that pf ∈ Pfn and pg ∈ Pgn are corresponding periodic points if
ϕ(pf ) = pg. We call ϕ the marking conjugacy and say that f and g have the
same marked Lyapunov spectra if λf (pf ) = λg(pg) for every pair of corresponding
periodic points. By the classical result of Shub and Sullivan [3], the marked
Lyapunov spectrum defines an expanding circle map up to a smooth change of
coordinates, namely, if f and g have the same marked Lyapunov spectra, then the
marking conjugacy ϕ is Cr,1-smooth.

We are interested in the following question: does the (unmarked) Lyapunov
spectrum of an expanding circle map uniquely define the smooth conjugacy class of
the map? Similarly to the unmarked length spectrum setup for negatively curved
metrics, in general the answer to the question above is ‘no’:

Proposition 1 (A counterexample to general Lyapunov spectral rigidity). For
every ǫ > 0 there exists a non-linear map f ∈ Erd (that depends on ǫ) and there
exists g ∈ Erd (that depends on ǫ and f) such that

‖f − g‖Cr,1 6 ǫ and Lyap(f) = Lyap(g),

but the marking conjugacy ϕ is not C1. (Here, ‖ · ‖Cr,1 denotes the Cr,1-norm.)

Nonetheless, the following local rigidity result holds. Before stating this result,
let us introduce two notions. We say that the Lyapunov spectrum of f ∈ Erd is
β-sparse if there exist β > 0 and C > 0 such that for every n ∈ N and for all
ℓ1, ℓ2 ∈ Lyapn(f),

|ℓ1 − ℓ2| > C · e−β·n.
We will also say that Lyap(f) is simple if the log-multipliers of periodic orbits are
pairwise distinct.

Theorem 1 (Local Lyapunov spectral rigidity). Let f ∈ Erd be an expanding circle
endomorphism. Assume that the Lyapunov spectrum of f is simple and β-sparse.
Then there exists ǫ = ǫ(f) > 0 with the following property:

If g ∈ Erd is another expanding circle map such that

‖g − f‖Cr,1 6 ǫ and Lyapn(g) = Lyapn(f) ∀n ∈ N,

then g is Cr,1-smoothly conjugate to f , i.e., the marking conjugacy ϕ is a Cr,1-
smooth diffeomorphism.

The proof of Theorem 1 is based on a novel KAM-type iterative scheme which,
in turn, employs a Livsic-type theorem and the Whitney extension theorem as the
main ingredients.
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A counterexample to the theorem of Laplace and Lagrange on the
stability of semi major axes

Jacques Fejoz

(joint work with Andrew Clark, Marcel Guardia)

Consider the Newtonian 4-body problem in space, with positions x0, ..., x3 ∈ R3

and masses m0, ...,m3 > 0. For the sake of simplicity, let us focus on this region
of the phase space which is called the “hierarchical planetary problem”: bodies 0
and 1 revolve around their center of mass, body 2 revolves around and far away
from bodies 0 and 1, and body 3 revolves around and even farther away from
bodies 0, 1 and 2. Each body thus primarily undergoes the attraction of one other
body: bodies 0 and 1 are close to being isolated, body 2 primarily undergoes the
attraction of a fictitious body located at the center of mass of 0 and 1, and body
3 primarily undergoes the attraction of a fictitious body located at the center of
mass of 0, 1 and 2. We think of body 0 as the Sun and of the three other bodies
as planets. The position of the Sun may be recovered from the positions of the
planets and from the conservation of the center of mass in an Galilean frame of
reference attached to it.

The 18-dimensional phase space is the product of the phase spaces of the three
planets, each diffeomorphic to T ×R × S2 × S2, where T ×R is the symplectic
Kepler space (with coordinates the mean anomaly1 ℓ and the semi major axis a)
and where S2×S2 is the symplectic secular space (with coordinate s, determining
the oriented plane of the ellipse and the polar angle of the ellipse in its plane).
Since the Kepler space is a symplectic submanifold, third Kepler law (the period
of revolution depends only on the energy, or, equivalently, on the semi major axis)
may be recast by saying that there are Darboux coordinates (ℓ, L) such that L
depends only on the semi major axis (and not on the other elliptical elements).

In the first approximation, our problem consists of three uncoupled Kepler
problems and is integrable. At the next order of approximation, because of the

1The mean anomaly is the angle determining the position of the planet on its Keplerian
ellipse, which increases linearly with time in the Keplerian dynamics, and which vanishes at the
perihelion.
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mutual attraction of planets 1 and 2, the secular dynamics of the two inner planets
is non trivial anymore. It is described by the first term in the expansion with
respect to ‖x1‖/‖x2‖ of the average

∫

T2

dℓ1 dℓ2
‖x1 − x2‖

,

which can be thought of as a function on the secular space of planets 1 and 2
in the open set where Keplerian ellipses do not intersect one another. This kind
of dynamics had been extensively studied by Lagrange, Laplace and many others
in the neighborhood of circular and coplanar Keplerian ellipses, but much less
globally on the secular space. Surprisingly, as noticed by Harrington in 1966, it
is integrable too. The typical secular motion is that each Keplerian plane rotates
around the total angular momentum vector, and each Keplerian ellipse rotates
in its plane. Computation shows that if the two Keplerian planes are mutually
inclined, there is a hyperbolic singularity, where the inner ellipse instead has its
argument of pericenter blocked. This singularity, in the full phase space, gives rise
to a symplectic, normally hyperbolic, invariant cylinder which is 16-dimensional
or, after the symplectic reduction by the symmetry of rotations, 12-dimensional.

We will focus on instabilities in 5 dimensions, namely the s2 and a3 directions,
over a time interval which is polynomially small with respect to the small distances.
Other directions are either

• s1 (we need to localize at the hyperbolic cylinder, which determines at
least the adiabatic components of s1)

• angles
• or directions in which instabilities would be exponentially slow (e.g. the
semi major axes of the two inner planets)

• or stable directions due to the conservation of the angular momentum, e.g.
e3 (a function of the angular momentum of the third planet and a3).

The s2 direction contains both adiabatic invariants and angles. We could also
control the other angles but the main point is to control adiabatic invariants.

Theorem (A. Clark-J. F.-M. Guardia). Assume m0 6= m1.
2 For every finite

itinerary s12, ...s
k
2 ∈ S2 × S2, a13, ..., a

k
3 ∈ ]0,+∞[ and every ǫ > 0, there exists an

open set of initial conditions whose trajectories realise the prescribed itinerary up
to precision ǫ.

This theorem proves the existence of Arnold diffusion in “celestial mechanics”,
as conjectured by Arnold in 1964.

Some notations: Let ej be the eccentricities and Cj be the angular momenta. In the
hierarchical regime, for eccentricities bounded away from 1, a1 ≪ a2 ≪ a3. Even
further, we consider a strongly hierarchical regime, where not only the semimajor
axes ratios αi = ai/ai+1 are small, but even the ratios of the ratios αi/αi+1 are

2Conjecturally, if m0 = m1, the conclusion of the theorem holds. But the proof would require
additional, significant computations.
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small, in the following quantitative manner:

(1) a1 = O(1) ≪ a2 ≪ a
1/3
3 .

Here is the rough description of the scales of times where the trajectories of the
theorem will be found:

• The fastest frequencies are the mean motions (Keplerian frequencies) of
the two inner planets. Since a1 ≪ a2, these inner mean motions do not
interfere, which allows us to average out the mean anomalies, without
resonances. As a consequence, the conjugate variables L1 and L2, or,
equivalently, the semi major axes a1 and a2, are constant; this is the
content of the Laplace-Lagrange theorem on the stability of semi major
axes, whose conclusion will not extend to a3 (due to the irrelevance of
averaging out ℓ3 in the strongly hierarchical regime).

• The next frequencies are the secular frequencies of the two inner planets.
They govern the rotation of the plane of the ellipses around their angular
momentum vector C1 +C2, and the rotation of the ellipses in their plane,
as well as the quasiperiodic oscillations of the corresponding inclinations
and eccentricities. The dynamics of the truncated relevant normal form
(“quadrupolar dynamics” of planets 1 and 2) is still integrable, as already
mentioned, due to the fact that the quadrupolar Hamiltonian does not
depend on the argument of the outer pericenter g2.

• In the strongly hierarchical regime, the outer semimajor axis is so large
that the mean motion of planet 3 is slower than secular frequencies of the
two inner planets.

• Then come the secular frequencies of the (outer) planet 3, approximately
determined by the quadrupolar Hamiltonian of planets 2 and 3. The con-
servation of the total angular momentum vector C = C1 + C2 + C3 ≃ C3

prevents significant changes in the plane of the outer ellipse, or of the prod-

uct a3
√
1− e23. In contrast, it does not prevent major (joint) changes in

a3 and e3, nor changes in C1 +C2 since C3 is an infinite source of angular
momentum.

Along the orbits we prove the existence of, the two inner planets are close to the
hyperbolic secular singularity of the quadrupolar Hamiltonian or to the associated
stable and unstable manifolds. In particular, their mutual inclination will be large.

Some comments are in order.

• The drifting time needed to follow the prescribed itinerary in the theorem
satisfies

(2) 0 < T < C(m0,m1,m2,m3)
N

δκ
,

where C is a constant depending only on the masses and the exponent
κ > 0 does not depend on N nor on the itinerary. To be more precise,
call αi = ai/ai+1, i = 1, 2, the semimajor axis ratios. As δ tends to zero,
the αi’s will be chosen polynomially smaller, and the drifting time itself
depends polynomially on the αi’s.
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• As stated, the theorem assumes small semi major axis ratios, for fixed
masses. But a refinement shows that the instability mechanism continues
when we let the masses of the planets simultaneously tend to 0, i.e. in
the planetary regime where mj = ρ m̃j for j = 1, 2, 3 with ρ > 0 small.
If planets 1 and 2 are located at a uniform distance (with respect to ρ)
from the Sun and place planet 3 very far away, so that a3 ∼ ρ−2/3, the
instability time is O(N/δ/ρ35/3).

Note that the instability time is polynomial with respect to the masses
of the planets. This is consistent with Nekhroshev theory, because the
standard hypotheses of this theory are not met (due in particular to the
lack of uniform convexity or steepness).

• Let us briefly describe what the changes in C̃2 imply in terms of the or-
bital elements of the second planet. Our prescribed itinerary in particular
determines an itinerary in: the eccentricity ek2 , the mutual inclination θk23
between planets 2 and 3, and the longitude hk2 of the node of planet 2, for
k = 0 . . .N . Then, we can construct an orbit and times t0 < t1 < · · · < tN
such that the osculating orbital elements satisfy

(3) |e2(tk)−ek2 | ≤ δ, |θ23(tk)−θk23| ≤ δ, |h2(tk)−hk2 | ≤ δ for k = 0, 1, ..., N.

As already mentioned, the angular momentum of the third body is almost
constant and therefore, the evolution of e3 is determined by the evolution
of a3.

Finally, the evolution of the eccentricity e1 of the first planet, and the
mutual inclination θ12 between planets 1 and 2, cannot be controled since
they are prescribed by the diffusion mechanism. Let us briefly mention
that:

– The eccentricity e1 does change but it can start arbitrarily close to
0. That is, the initial configuration can have all planets performing
close to circular motion.

– The mutual inclination i12 always stays above 55 degrees.
• In our Solar System, semimajor axes seem very stable. There are some
exceptions. Notably, the semimajor axis of the Moon is drifting. But this
is due to non-Hamiltonian, tidal effects. Also, at the early stages of our
Solar System, planets migrated towards the exterior of the Solar System.
But this migration too is a non-conservative phenomenon, explained by
the interaction with the planetesimal disk.

Orbits described in theorem show wild variations of various elliptical
elements, and, plausibly, subsequent collisions of neighboring planets and
their accretion. We may conjecture that only the observation of many
extra-solar systems might exhibit one day such transient behavior.
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The proof consists in

• analyzing the “inner dynamics” carried on the hyperbolic cylonder
• proving that the invariant manifolds of the hyperbolic cylinder cross trans-
versally along a so-called homoclinic chanel (there are actually two of
them)

• analyzing the “outer dynamics” (or scattering map) obtained by following
the unstable and stable foliations of the cylinder

• showing that any finite random iteration of the the inner and outer dynam-
ics are shadowed by integral curves, following the initial idea of Moeckel.

We refer to the three articles below for further details and references.

References

[1] Andrew Clark, Jacques Fejoz and Marcel Guardia, Diffusion through correctly aligned win-
dows with multiple time scales, Nonlinearity (2022) 36:1

[2] Andrew Clark, Jacques Fejoz and Marcel Guardia, Why inner planets are not inclined?,
submitted (2023), 80 pp.

[3] Andrew Clark, Jacques Fejoz and Marcel Guardia, A counterexample to the Laplace-
Lagrange theorem on the stability of semimajor axes, submitted (2023), 60 pp.

A functional analytic approach to unbounded and oscillating solutions
to the N-body problem

Susanna Terracini

(joint work with Jaime Paradela Dı́az, Davide Polimeni)

We report on the functional-analytic approach to the search of unbounded trajec-
tories in the N -Body problem (hyperbolic, parabolic, parabolic-hypebolic, oscillat-
ing etc.). We explore the use of renormalised energies in various contexts together
with other global variational and topological methods. The same approach is pur-
sued in the search for symbolic dynamics in various relevant models of celestial
mechanics.

At first, we deal with half entire solutions to the N -body problem of Celestial
Mechanics in the Euclidean space Rd of hyperbolic, parabolic or mixed type. We
consider N point masses m1, ...,mN > 0 moving under the action of the mutual
attraction, with the inverse-square law of universal gravitation. We denote the
components of the configuration vector x = (r1, ..., rN ) ∈ RdN of the positions of
the bodies and by |ri − rj | the Euclidean distance between two bodies i and j.
Newton’s equation of motion for the i-th body of the N -body problem reads as

mir̈i = −
N∑

j=1,...,N, j 6=i

mimj
ri − rj

|ri − rj |3
.

Since these equations are invariant by translation, we can fix the origin of our iner-
tial frame at the center of mass of the system. We can thus define the configuration
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space of the system as

X =

{
x = (r1, ..., rN ) ∈ RdN ,

N∑

i=1

miri = 0

}

and denote by Ω = {x ∈ X | ri 6= rj ∀ i 6= j} ⊂ X the set of configurations without
collisions, which is open and dense in X , and with ∆ its complement, that is the
collision set. Now we can write the equations of motion as

(1) ẍ = ∇U(x),

where the function U : Ω → R ∪ {+∞} is the Newtonian potential

(2) U(x) =
∑

i<j

mimj

|ri − rj |

and the gradient is taken with respect to the mass scalar product 〈·, ·〉M , which is
defined as

〈x, y〉M =

N∑

i=1

mi〈ri, si〉

for any x = (r1, ..., rN ), y = (s1, ..., sN ) ∈ X . Newton’s equations define an
analytic local flow on Ω×RdN with a first integral given by the mechanical energy:

h =
1

2
‖ẋ‖2M − U(x),

where ‖ · ‖M is the norm induced by the mass scalar product and h represents the
energy of the motion.

We will be concerned with the class of expansive motions, which is defined in
the following way.

Definition 1. A motion x : [0,+∞) → Ω is said to be expansive when all the
mutual distances diverge, that is, when |ri(t) − rj(t)| → +∞ as t → +∞ for all
i < j. Equivalently, the motion is expansive if U(x(t)) → 0 as t→ +∞.

From the conservation of the energy, we observe that since U(x(t)) → 0 implies

‖ẋ(t)‖M →
√
2h as t → +∞, expansive motions can only occur at nonnegative

energies.
For a given motion, we introduce the minimum and the maximum separation

between the bodies at time t as the two functions

r(t) = min
i<j

|ri(t)− rj(t)| and R(t) = max
i<j

|ri(t)− rj(t)|.

The next fundamental theorems give us a more accurate description of the system’s
expansion.

Theorem 1 (Pollard, 1967 [17]). Let x be a motion defined for all t > t0. If r is
bounded away from zero, then we have that R = O(t) as t → +∞. In addition,
R(t)/t→ +∞ if and only if r(t) → 0.
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Theorem 2 (Marchal-Saari, 1976 [12]). Let x be a motion defined for all t > t0.
Then either R(t)/t → +∞ and r(t) → 0, or there is a configuration a ∈ X such
that x(t) = at+ O(t2/3). In particular, for superhyperbolic motions (i.e. motions
such that lim supt→+∞R(t)/t = +∞) the quotient R(t)/t diverges.

Theorem 3 (Marchal-Saari, 1976 [12]). Suppose that x(t) = at + O(t2/3) for
some a ∈ X and that the motion is expansive. Then, for each pair i < j such that
ai = aj, we have |ri(t)− rj(t)| ≈ t2/3.

Now, let us recall the well known Chazy classification of the expansive motions
for the three-body problem, based on the asymptotic order of growth of the dis-
tances between the bodies. This prevents expansive motion to be superhyperbolic,
so we can assume that it is of the form x(t) = at+ O(t2/3) for some limit a ∈ X .
Assuming that the center of mass of the system is at rest, Chazy classified these
motions as follows.

Theorem 4 (Chazy [5]). Every solution of the Restricted 3-body Problem defined
for all (future) times belongs to one of the following classes

• B (bounded): supt≥0 |q(t)| <∞.
• P (parabolic) |q(t)| → ∞ and |q̇(t)| → 0 as t→ ∞.
• H (hyperbolic): |q(t)| → ∞ and |q̇(t)| → c > 0 as t→ ∞.
• O (oscillatory) lim supt→∞ |q(t)| = ∞ and lim inft→∞ |q(t)| <∞.

Notice that this classification also applies for t → −∞. We distinguish both
cases adding a superindex + or − to each of the cases, e.g. H+ and H−.

In fact, we can more precisely distinguish between:

• Hyperbolic: a ∈ Ω and |ri(t)− rj(t)| ≈ t for all i < j;
• Partially hyperbolic: a ∈ ∆ but a 6= 0;
• Completely parabolic: a = 0 and |ri(t)− rj(t)| ≈ 1t2/3 for all i < j.

The following definition is in order.

Definition 2. A motion x(t) is said to have limit shape when there is a time
dependent similarity S(t) of the space Rd such that S(t)x(t) converges to some
configuration a 6= 0.

In our case, there is a diagonal action of S(t), which means that S(t)x =
(S(t)r1, ..., S(t)rN ) for x = (r1, ..., rN ) ∈ X . In particular, for the case of (half) hy-
perbolic motions, we can say that the limit shape of such a motion is its asymptotic

velocity a = limt→+∞
x(t)
t . Similaily, (half) parabolic motions also possess a limit

shape, which is now bound to be a central configuration, that is, a critical point
of the potential U constrained on the inertia ellipsoid E = {x ∈ X : ‖x‖2M = 1}.

In this talk we are going to tackle the existence of half entire expansive solutions
for the Newtonian N -body problem by a global variational approach, using a
renormalized action functional, as the Lagrangian is not expected to be integrable
on the half line. In particular, referring to Chazy’s classification, we will show a

1Given positive functions f and g, we write f ≈ g when there exist two positive constants α

and β such that α ≤ f
g
≤ β.



1716 Oberwolfach Report 30/2023

proof of existence for each one of the previous three classes of motions. At first,
we shall revisit recent works by E. Maderna and A. Venturelli about the existence
of half hyperbolic and parabolic trajectories.

Theorem 5 (Maderna and Venturelli 2020, [10]). Given d ∈ N, d ≥ 2, for the
Newtonian N -body problem in Rd there is a hyperbolic motion x : [1,+∞) → X of
the form

x(t) = at− log(t)∇U(a) + o(1) as t→ +∞,

for any initial configuration x0 = x(1) ∈ X , for any collisionless configuration
a ∈ Ω.

Theorem 6 (Maderna and Venturelli 2009, [9]). Let us consider d ∈ N, d ≥ 2,
and a Keplerian potential U : X → R∪{+∞}. For Newton’s equations ẍ = ∇U(x)
in Rd there is a parabolic solution x : [1,+∞) → X of the form

x(t) = βbmt
2/3 + o(t2/3) as t→ +∞,

for any initial configuration x0 = x(1) ∈ X , for any minimizing normalized central

configuration bm and for β = 3

√
9
2U(bm).

Here a minimal central configuration is a minimizer of the potential U con-
strained on the inertia ellipsoid E = {x ∈ X : ‖x‖2M = 1}. The existence of
hyperbolic and parabolic solutions for the Newtonian N -body problem has al-
ready been proved by Maderna and Venturelli in 2020 and 2009, respectively.
In [10], they proved the existence of hyperbolic motions for any prescribed limit
shape, any initial configuration of the bodies and any positive value of the en-
ergy by constructing global viscosity solutions for the Hamilton-Jacobi equation
H(x, dxu) = h. In addition, they showed that these solutions are fixed points of
the associated Lax-Oleinik semigroup. In [9], for any starting configuration they
proved the existence of parabolic arcs asymptotic to any prescribed minimizing
normalized central configuration. These solutions, whose actions are infinite, were
found as the limits of converging subsequences in families of minimizing motions,
where the existence of the approximate solutions follows from the application of
the Direct Method of the Calculus of Variations More specifically, these solutions
were obtained as the limits of solutions of sequences of approximating two-point
boundary value problems. Both proofs in [10] and [9] can be seen as applications
of Marchal’s Theorem.

Compared to Maderna and Venturelli’s articles, we show alternative and simpler
proofs for the existence of hyperbolic and parabolic solutions in a unitary context,
which are both based on a straightforward application of the Direct Method of the
Calculus of Variations to minimize the renormalized Lagrangian actions associated
to the problem.

After proving Theorems 5 and 6, we are also able to similarly prove the existence
of partially hyperbolic solutions for the N -body problem. In order to state our
main result we need to introduce the a-cluster partition associated with a ∈ ∆\{0},
where clusters are the equivalence classes of the relation i ≃ j ⇐⇒ ai − aj = 0.
Given a cluster K, we consider the potential UK , where the sum in (2) restricted
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to the cluster K. The a-clustered potential Ua is the sum of all the clustered
potentials of the partition. Now we can state our main theorem:

Theorem 7 (Polimeni and Terracini, 2023). Given d ∈ N, d ≥ 2, for the Newto-
nian N -body problem in Rd there is a partially hyperbolic motion x : [1,+∞) → X
of the form

x(t) = at+ βbmt
2/3 + o(t1/3

−

) as t→ +∞,

for any initial configuration x0 = x(1) ∈ X , for any collision configuration a ∈ ∆,
for any minimizing normalized central configuration bm ∈ X of the a-clustered
potential, and for any choice of the energy constant h > 0.

Partially hyperbolic motions are those expansive motions of the form x(t) =
at + O(t2/3), for t → +∞, such that their limit shapes have collisions, that is,
a ∈ ∆ \ {0}, and a 6= 0. For the Newtonian N -body problem, the existence of
partially hyperbolic solutions for any prescribed positive energy and any given
initial configuration of the bodies has already been proved by Burgos in [2], where
his proof follows from and application of Marchal’s Theorem and Maderna and
Venturelli’s Theorem on the existence of hyperbolic motions. With respect to
Burgos’ result, our approach gives us much more information about the asymptotic
behaviour of the solution and a better description of the motion of the bodies.
Indeed, to prove Theorem 7, we partition the set of bodies following the natural
cluster partition that was presented by Burgos and Maderna in [3] and is defined
as follows: if x(t) = (r1(t), ..., rN (t)) and a = (a1, ..., aN ), then ai = aj if and

only if |ri(t) − rj(t)| = O(t2/3), and the partition of the set of bodies is defined
by this equivalence relation. This means that partially hyperbolic motions can
be viewed as clusters of bodies moving asymptotically with a linear growth, while
the distances of the bodies inside each clusters grow with a rate of order t2/3.
Using this particular partition, we are able to decompose the Lagrangian action
into two terms: one of them is related to the hyperbolic motion of the clusters and
the other one is related to the parabolic motion of the bodies inside the clusters.
Through similar proofs to the ones in Theorems 5 and 6, we can thus apply the
Direct Method of the Calculus of Variation and Marchal’s Theorem also to the
case of partially hyperbolic motions.

Next, we discuss the problem of oscillatory motion in a particular configuration
of the Restricted 3-body Problem known as the Restricted Isosceles 3-body Prob-
lem. In this configuration, the two primaries have equal masses m0 = m1 = 1/2
and move periodically on a degenerate ellipse of eccentricity one (a line), according
to the Kepler laws for the motion of the 2-body Problem. The massless particle
moves on the plane perpendicular to the line along which the primaries move.
In polar coordinates, the Hamiltonian of the Restricted Isosceles 3-body Problem
reads

(3) HG(r, t, y) =
y2

2
+
G2

2r2
− V (r, t) V (r, t) =

1√
r2 + ρ2(t)

.

where G is the modulus of the angular momentum (which is preserved) and 2ρ(t)
is the disctance beteween the two primaries .
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In [8], M. Guardia, J. Paradela, T. Seara and C.Vidal, proved the following
result.

Theorem 8 (Guardia, Paradela Dı́az, Seara and Vidal, [8]). Consider the Hamil-
tonian system HG defined in (3). Denote by X+ (respectively Y −) either H+, P+,
B+ or OS+ (respectively H−, P−, B− or OS−) according to Chazy’s classifica-
tion in Theorem 4. Then, there exists G∗ ≫ 1 such that for all G ∈ R such that
|G| ≥ G∗, the Hamiltonian system HG satisfies

X+ ∩ Y − 6= ∅
for all possible combinations of X+ and Y −.

Theorem 8 is proved by exploiting the fact that for G large enough, in a suitable
region of the phase space, the Hamiltonian HG can be studied as a perturbation of
the (integrable) 2-body Problem. This allowed the authors to prove that the peri-
odic orbit γ∞ posses global stable and unstable invariant manifolds which intersect
transversally. As a corollary of this result, a rather straightforward implementation
of Moser’s ideas shows the truth of Theorem 8.

The following is the first main obtained in collaboration with Jaime Paradela Dı́az.

Theorem 9 (Paradela Dı́az and Terracini 2022). Consider the Hamiltonian sys-
tem HG defined in (3). Denote by X+ (respectively Y −) either H+, P+, B+ or
OS+ (respectively H−, P−, B− or OS−) according to Chazy’s classification in The-
orem 4. Then, for almost all G ∈ R the Hamiltonian system HG satisfies

X+ ∩ Y − 6= ∅
for all possible combinations of X+ and Y −.

To the best of our knowledge, Theorem 9 is the first complete analytic proof
of the existence of oscillatory motions relying upon a global analytical approach
rather than on perturbative techniques. Some interesting related works, where
the existence of oscillatory motions is obtained in a setting which is not close
to integrable, are [13] and [4]. While in [13] the author shows the existence of
oscillatory motions in the 3-body Problem close to triple collision (small values of
the total angular momentum), in [4] the authors obtain a computer assisted proof
of the existence of oscillatory motions in the Restricted Circular 3-body Problem
for small values of the Jacobi constant.

Theorem 9 is indeed obtained as a consequence of the following result.

Theorem 10 (Symbolic Dynamics). Let {lj} ⊂ Z be an increasing sequence and
define the time intervals Ij = [(lj − lj−1)/2, (lj+1 − lj)/2]. Then, for almost all
G ∈ R, all ε > 0 and all R sufficiently large, there exists an orbit rh(s) : R → R+

of (3) homoclinic to γ∞ and a constant L > 0 such that if the sequence {lj} ⊂ Z

satisfies lj+1 − lj ≥ L, then, for any sequence σ = {σj} ⊂ {0, 1}Z there exists an
orbit rσ(s) : R → R+ of (3) such that , if σj = 0

|rσ|C1(Ij) ≥ R
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and if σj = 1

|rσ − rh|C1(Ij) ≤ ε,

Moreover, if σ has only a finite number of non zero entries, then rσ is a homoclinic
solution.

Theorem 10 can be read as follows. For almost all G ∈ R there exist an orbit
rh of (3) homoclinic to γ∞ such that the following holds. Let z∗ = (r, y, t) =
(rh(0), ṙh(0), 0) ∈ R+ × R × T, let z∞ = (r, y, t) = (∞, 0, 0) = γ∞ ∩ {t = 0} ∈
R+ ×R×T and denote by Φ the Poincaré map induced on the section {t = 0} by
the flow to the Hamiltonian (3). Then, for any δ > 0 and any sequence {zk}k∈Z ⊂
{z∞, z∗}Z there exists a point z ∈ Bδ(z0) and a sequence {nk}k∈Z ∈ NZ such that
Φnk(z0) ∈ Bδ(zk)

2. The statement in Theorem 10 is indeed stronger since it also
provides control on the orbit in all the intervals [(nk − nk−1)/2, (nk + nk+1)/2].

The following corollary of Theorem 10 can obtained by nowadays well known
arguments.

Corollary 1. For almost all G ∈ R the Restricted Isosceles 3-body Problem is not
Cω integrable and has positive topological entropy.
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Non contractible periodic points for area preserving surface
homeomorphisms

Patrice Le Calvez

Let S be a smooth connected closed orientable surface of genus g ≥ 2, furnished
with a normalized smooth area form ω. We denote Homeo∗(S) the space of home-
omorphisms of S isotopic to the identity. A continuous path I = (ft)t∈[0,1] joining
the identity to a map f ∈ Homeo∗(S) is called an identity isotopy of f and the
trajectory of a point z ∈ S (defined by I) is the path I(z) : t 7→ ft(z) joining
z to f(z). We write M(f) for the set of f -invariant Borel probability measures.
The rotation vector rotf (µ) ∈ H1(S,R) of a measure µ ∈ M(f) is defined by the
equality

∫

S

(∫

I(z)

α

)
dµ(z) = 〈[α], rotf (µ)〉,

where [α] ∈ H1(S,R) is the cohomology class of a given closed 1-form α and I is
an identity isotopy of f . The term on the left is well defined, where

∫
I(z)

α =
∫
γ
α

for every smooth path homotopic to I(z) (relative to the ends). It does not depend
on the choice of I because we suppose that g ≥ 2, which implies that all identity
isotopies of f are homotopic. It depends linearly on α and vanishes when α is
exact. An interesting case is the case where µ = µω is naturally associated to
ω and f ∈ Sympr∗(S, ω), 1 ≤ r ≤ +∞, the space of Cr-diffeomorphisms of S
preserving ω and isotopic to the identity. In that case we define

Hamr(S, ω) = {f ∈ Sympr∗(S, ω) | rotf (µω) = 0}.
Another interesting case is the case where O is a q-periodic orbit of f and µO =
1
q

∑
z∈O δz. We write rotf (O) instead of rotf (µO), noting that rotf (O) =

1
q [I

q(z)]

if z ∈ O. Here [Γ] ∈ H1(S,Z) is the homology class of a loop Γ.
Let us state the first result proved in [3]:

Theorem 1. For 1 ≤ r ≤ ∞, there exists an open and dense set Or ⊂ Hamr(S, ω)
such that if f ∈ Or, there exist p ≥ g and κ1, . . . , κp in H1(S,Q) linearly inde-
pendent such that

(1) the space H = Vect(κ1, . . . , κp) is a coisotropic subspace of H1(S,R) (for
the natural intersection form ∧);
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(2) for every i ∈ {1, . . . , p}, there exists a positive integer ni and for every
p/q ∈ [0, 1] ∩Q a qni-periodic orbit Oip/q such that rot(Oip/q) =

p
qκi.

The proof uses the following result (see [2])

Theorem 2. Suppose that f ∈ Sympr∗(S, ω) satisfies the following conditions.

(1) Every periodic point is non degenerate.
(2) The branches of hyperbolic points intersect transversally.
(3) If U is a neighborhood of an elliptic periodic point z, then there is a topo-

logical closed disk D containing z, contained in U , and bordered by finitely
many pieces of stable and unstable manifolds of some hyperbolic periodic
point z′.

(4) We have Per(f) > 2g − 2.

Then every hyperbolic point has transverse homoclinic intersection.

To obtain Theorem 1 one must go further in the study of maps satisfying the

previous properties. Denote S̃ the universal covering space of S and G the group
of covering automorphisms. Denote also f̃ the canonical lift of f to S̃. Under the
hypothesis of Theorem 2, denote X the set of f -invariant open sets V that contain
all positive hyperbolic contractible fixed points, and define

H = min{ι∗(H1(V,R)) |V ∈ X},
where ι∗ : H1(V,R) → H1(S,R) is induced by the inclusion map ι : V → S. We
can prove that

• H is coisotropic;
• there exists T1, . . . , Tp in G such that H = Vect([T1], . . . [Tp]) and such
that for every i ∈ {1, . . . , p}, there exists a positive hyperbolic point z̃i of

f̃ and an unstable branch of z̃i that intersects a table branch of Ti(z̃i).

We deduce that the conclusion of Theorem 1 occurs because we have found rota-
tional horseshoes. It becomes easy to get Theorem 1 because a generic Hamiltonian
diffeomorphism has at least 2g+2 fixed points.

Let us now state the second result proved in [1].

Theorem 3. If f ∈ Homeo∗(S) preserves a Borel probability measure λ such that
supp(λ) = S and rotf (λ) ∈ RH1(S,Z), then f has infinitely many periodic points.

More precisely, for every ergodic measure ν ∈ M(f) that is not a Dirac measure
at a contractible fixed point and every neighborhood U of rotf (ν) in H1(S,R), there
exists κ ∈ H1(S,Q) ∩ U and n ≥ 1 such that for every p/q ∈ [0, 1]∩Q there exists
a qn-periodic orbit Op/q such that rot(Op/q) =

p
qκ.

The first statement of Theorem 3 was proved independently by Rohil Prasad [5]
using very strong new results of symplectic topology. The proof given in [1] uses
ergodic arguments and the forcing theory on transverse foliations. In fact it is a
continuation of the works of Gabriel Lellouch [4] who proved that the conclusion
of Theorem 3 occurs if there exists µ ∈ M(f) such that rotf (ν) ∧ rotf (µ) 6= 0. In
this situation he proved that there exist topological rotational horseshoes (which
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generalize the rotational horseshoes seen previously). Under the hypothesis of
Theorem 3 one can construct topological rotational horseshoes, except in a very
special situation, where a generalization of the Poincaré-Birkhoff theorem in a
suitable annulus is needed. This situation concerns the “integrable case” very close
to the case where f is the time one map of a flow induced by a time independent
symplectic vector field X . It must be noted that Theorem 3 is obvious in this last
case because the non trivial dynamics is supported on invariant annuli foliated by
invariant curves whose rotation numbers tend to zero when approaching the ends
of the annulus.
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Chaos in reversible homoclinic tangles

Dmitry Turaev

(joint work with Ale Jan Homburg, Jeroen Lamb)

It is a classical result in the theory of dynamical systems that homoclinic tangles
give rise to hyperbolic horseshoes and thus positive topological entropy. The his-
tory of chaotic dynamics started with the discovery by Poincaré [1] that the stable
and unstable manifolds of a saddle periodic orbit may have a transverse intersec-
tion along a homoclinic orbit. For a sufficiently small neighborhood of the union
of a hyperbolic periodic orbit and its transverse homoclinic, the invariant set that
consists of all orbits that stay entirely in this neighborhood is uniformly hyper-
bolic and admits a symbolic representation by a full shift on two symbols [2, 3].
This result, the Shilnikov-Smale theorem, provides the most fundamental criterion
for chaos in a dynamical system. The fact that the Poincare’s homoclinic tangle
implies positive topological entropy holds true also in the original Hamiltonian
setting. A subtle point here is that the Hamiltonian function is a first integral,
and saddle periodic orbits of a Hamiltonian system arise in families, parameterized
by the value of the Hamiltonian. Such family is a normally-hyperbolic invariant
manifold; the homoclinic tangle corresponds to an intersection of its stable and
unstable manifolds. Formally speaking, each periodic orbit in the family is not hy-
perbolic. However, inside any dynamically invariant level set of the Hamiltonian,
the saddle periodic orbit is isolated and hyperbolic with a transverse homoclinic,
so the Shilnikov-Smale theorem is applied and the positivity of the topological
entropy follows.
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Normally-hyperbolic one-parameter families of periodic orbits with transversely
intersecting stable and unstable manifolds also naturally arise in reversible systems
[4]. Despite the substantial interest in reversible dynamical systems, a concise
characterization of a reversible homoclinic tangle, which we believe deserves to be
central to the theory of chaotic dynamics in reversible systems, has been lacking.

The core issue here is that reversible systems do not need to be Hamiltonian
and, typically, there exists no first integral. For example, if a perturbation of a re-
versible Hamiltonian system preserves the reversibility but breaks the Hamiltonian
structure, then a given family of symmetric periodic orbits and their symmetric ho-
moclinics survives the perturbation. However, the dynamically invariant foliation
by energy levels gets, typically, destroyed, as the energy is no longer conserved.
This provides the possibility that many orbits leave a neighborhood of the homo-
clinic tangle due to the drift in energy, which makes the dynamics near a reversible
homoclinic tangle very much different from those in the Hamiltonian setting. The
a priori non-controllable drift along the central direction means that one should
go beyond the standard hyperbolicity techniques to resolve even the most basic
question – whether the dynamics near the reversible tangle are chaotic?

We answer this question affirmatively for reversible flows for which the dimen-
sion of the set of fixed points of the involutory reversing symmetry is exactly half
the dimension of the phase space. Namely, we prove that the set of orbits that
remain in any given neighborhood of the reversible homoclinic tangle (satisfying
transversality conditions) has positive topological entropy.

Note that we do not establish the existence of finite-type shift dynamics which
are often associated with positive topological entropy. In fact, one can build ex-
amples where there is no semi-conjugacy to a non-trivial Markov chain on any
invariant subset - in such examples no invariant measure with all non-zero Lya-
punov exponents exist in the reversible homoclinic tangle, in spite of the positivity
of the entropy.

As an example of an application of our result, we mention that symmetric
homoclinic tangles of the type we consider arise locally near homoclinic loops to
symmetric equilibria of reversible flows. This includes homoclinic bellows [5] and
a homoclinic loop to a saddle-focus [7, 6] – in both cases there exists a symmetric
homoclinic tangle, which implies the positivity of the topological entropy.

Non-Hamiltonian reversible vector fields with symmetric homoclinic tangles arise
in the study of pattern formation in many classes of partial differential equations
[8, 9] with one spatial variable. For example, for the partial differential equations
of the reaction-diffusion type

ut = Auxx +N(u), x ∈ R1,

a stationary solution satisfies the ODE

u′′(x) = −A−1N(u(x)).

This equation is invariant under the transformation x → −x, i.e., it is reversible.
The time-reversal symmetry acts as u′ → −u′, its set of fixed points is given
by {u′ = 0} and its dimension is half of the dimension of the phase space of
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the ODE (the space of pairs (u, u′)). Thus, our theorem is applicable. It pro-
vides a characterization of the complexity of the set of solutions near a family
of reflection-symmetric solutions that are asymptotically spatially periodic with
a localized ”defect”: the number of different patterns that materialize in a finite
spatial window grows exponentially with the windows size.

Can a similar result be obtained for stationary in time and asymptotically
spatially-periodic solutions of reaction-diffusion systems defined for x ∈ Rm with
m > 1? This question is open.

Another natural setting of non-Hamiltonian reversible dynamical systems where
our theorem may be applied, is that of mechanical systems with non-holonomic
constraints. If the system is defined by a Lagrangian L(q, q̇) with a single con-
straint a(q) · q̇ = 0, then the equations of motion derived from the d’Alembert
principle are

d

dt
∂q̇L− ∂qL = µ(t) a(q),

where the factor µ is such that the equations are consistent with the constraint
at each moment of time. This system preserves the energy E = ∂q̇L · q̇ − L,
but it is not Hamiltonian in general (e.g., the phase volume does not need to be
preserved). However, when the Lagrangian L is an even function of the velocity
vector q̇, the imposition of the constraint keeps the reversibility in tact. If the
space of coordinates q is (n+1)-dimensional, then we have (n+1) coordinates and
(n+1) velocity components subject to 2 constraints – the velocity constraint and
the energy constraint. Thus, the dimension of the phase space for the system at a
fixed energy level is 2n. The set of the fixed points of the involution R : q̇ → −q̇
is given by the equation {q̇ = 0, L(q, 0) = E} and has dimension n (i.e., half
of the dimension of the phase space) if the energy E is in the range of values
of L(q, 0). One concludes that generic reversible Lagrangian systems with one
velocity constraint fall in the class we consider.

An example where our theorem 1 may be applicable is given by a Chaplygin
sleigh [10, 11] moving on a generic surface. If a non-holonomic mechanical system
is symmetric with respect to a continuous group acting on the configuration space,
the symmetry reduction decreases the dimension of the configuration space and,
hence, the dimension of Fix(R), as one can see in the examples of rattlebacks [12].
Adding more velocity constraints increases the dimension of Fix(R) relative to the
dimension of the phase space. Thus, one obtains examples of mechanical systems
where dimFix(R) is strictly less or greater than half of the phase space dimension.
In the latter case, the symmetric periodic orbits go in families that depend on
more than one parameter. The question of whether symmetric homoclinic tangles
involving such families of periodic orbits always yield positive topological entropy
remains open.
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Università degli Studi Roma Tre
Largo S. L. Murialdo, 1
00146 Roma
ITALY

Prof. Dr. Eva Miranda

Laboratory of Geometry and
Dynamical Systems
Department of Mathematics
EPSEB, Edifici P
Universitat Politecnica de Catalunya
and CRM
Av. del Doctor Maranon, 44-50
08028 Barcelona
SPAIN

Prof. Dr. Jo Nelson

Rice University
Department of Mathematics
6100 Main St
MS-136 Houston, TX 77005
UNITED STATES

Yi Pan

Institute of Science and Technology
Austria (ISTA)
Am Campus 1
3400 Klosterneuburg
AUSTRIA

Prof. Dr. Leonid V. Polterovich

Department of Mathematics
Tel Aviv University
Raymond and Beverly Sackler
Faculty of Exact Sciences
Ramat Aviv, Tel Aviv 69978
ISRAEL

Dr. Rohil Prasad

Department of Mathematics
Princeton University
Fine Hall
Washington Road
Princeton, NJ 08544-1000
UNITED STATES



Dynamische Systeme 1729

Dr. Ana Rechtman

Institut de Mathématiques
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