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Introduction by the Organizers

The workshop Partial Differential Equations, organized by Guido De Philippis
(Courant), Ailana Fraser (UBC), and Felix Schulze (Warwick) was held July 23–
July 28, 2023. The meeting was attended by 45 participants with broad geographic
representation. The program consisted of 21 talks and left sufficient time for
discussions.

As in the tradition of the workshop, a main theme of the workshop was around
PDE related to geometric and variational problems. Geometric flows were the
topic of several presentations. This included a talk in which existence and unique-
ness results for 2-dimensional Ricci flow from non-compact rough initial data were
established, and used to give a complete classification of all 2-dimensional expand-
ing solitons. Another talk discussed an application of free boundary mean convex
mean curvature flow with surgery to prove the existence of three free boundary
minimal discs in any convex 3-ball with generic boundary. The classification of
ancient curve shortening flows with finite entropy was discussed, and in particu-
lar, uniqueness of the tangent flow at negative infinity. It was presented that all
3-dimensional steady gradient Ricci solitons are O(2)-symmetric, by showing that
all ‘flying wing’ solitons are O(2)-symmetric. Another talk discussed how to use
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mean curvature flow to obtain explicit lower bound for the density of topologically
nontrivial minimal cones in terms of the Colding-Minicozzi entropy of a sphere. A
new weak solution concept for mean curvature flow, which are evolving varifolds
coupled to the phase volumes by a simple transport equation, and which enjoys
both existence and uniqueness properties, was presented.

Several of the talks related to PDE arising from geometric variational problems,
such as minimal surfaces and harmonic maps. Upper and lower bounds on the
index and the nullity for sequences of harmonic maps with uniformly bounded
Dirichlet energy were presented. By combining a Lojasiewicz estimate with a
flow argument, which evolves a given map with a weighted flow, it was shown
that any map with small energy defect is given by a collection of rational maps
that describe the behaviour of the map at different scales. Geometric properties
of complete minimal surfaces in R3 with embedded planar ends were used to get
Morse index estimates of Willmore spheres and Willmore real projective planes. A
gluing procedure to produce a new family of free boundary minimal surfaces in B3

having any sufficiently large genus and three boundary components was presented.
The problem of studying area variations of surfaces under pointwise Lagrangian
constraint was discussed, and in particular a new monotonicity formula for this
problem was derived. A new model for soap films, based on the minimization of
the Allen-Cahn energy under a suitably formulated homotopic spanning condition
was presented; the Euler-Lagrange equations solved by these minimizers arise as
a new class of free boundary problems with a semilinear PDE.

New progress related to regularity theory for solutions of geometric PDE was
announced in several talks. One talk discussed the free boundary regularity of two
phase Bernoulli problem. Generic regularity of minimizing hypersurfaces in dimen-
sions 9 and 10 was presented. Another talk discussed generic regularity of closed
embedded hypersurfaces of constant mean curvature. For minimizers of para-
metric elliptic functionals, a construction of nonlinear entire anisotropic minimal
graphs over R4 was presented, completing the solution to the anisotropic Bernstein
problem. Furthermore, a new approach to ε-regularity for optimal transportation
maps using harmonic approximation was introduced.

Long time behaviour for vortex dynamics in the 2 dimensional Euler equations
was discussed, using gluing methods to describe the global dynamics of the case
of two vortex pairs traveling in opposite directions. The existence of positive crit-
ical points of the Trudinger-Moser embedding for arbitrary Dirichlet energies was
presented. An optimal transport approach to timelike Ricci bounds and Einstein’s
theory of gravity in a non smooth setting was presented, and a new isoperimetric-
type inequality in Lorentzian manifolds with non-negative timelike Ricci curvature
and an application to the geometry of black holes was discussed. Another talk dis-
cussed results on quasiconformal maps and the Burkholder area inequality.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Area Variations under Legendrian Constraint

Tristan Rivière

In the first part of the talk we will adress the problem of studying area variations
of surfaces under pointwise Lagrangian constraint in C2 (or any arbitrary Kähler
Surface). We will explain the challenges of performing analysis (well posedness,
existence, regularity...) with the associated Euler-Lagrange Equation. Then in
trying to find conserved quantities and monotonicity formula for this problem we
will naturally be invited to “lift” our problem to 5 dimensions by introducing a
fifth Legendrian coordinate and to work in the Heisenberg group (or any Sasakian
5-manifold). The Lagrangian constraint is then converted into a Legendrian one.
The area variation under pointwise Legendrian constraint consists in looking for
critical points of the area among surfaces which are horizontal. This is a model of
“extreme anisotropic” variational problem where one direction is forbidden while
total isotropy holds in the remaining 4 directions (which are not integrable). We
will derive a new monotonicity formula for this problem. Ultimately the main re-
sult we would like to explain is the following : In any 5 dimensional closed Sasakian
manifold N5 (e.g. S5, S3×S2, Heisenberg group H2...etc) we prove that any min-
max operation on the area among Legendrian surfaces is achieved by a continuous
conformal Legendrian map from a closed riemann surface S into N5 equipped with
an integer multiplicity bounded in L∞. Moreover this map, equipped with this
multiplicity, satisfies a weak version of the Hamiltonian Minimal Equation. We
conjecture that any solution to this equation is a smooth branched Legendrian
immersion away from isolated Schoen-Wolfson conical singularities with non zero
Maslov class. If time permits we will explain our motivation for studying such
question in relation with the Willmore conjecture in arbitrary co-dimensions.

On the fine structure of the two-phase free boundaries

Bozhidar Velichkov

(joint work with Guido De Philippis, Luca Spolaor)

Let u be a local minimiser of the Alt-Caffarelli-Friedman’s two-phase functional

F(u) =

∫
|Du|2dx + λ1|{u > 0}| + λ2|{u < 0}|.

In Spolaor-Velichkov [2] (2017, d = 2) and De Philippis-Spolaor-Velichkov [3]
(2021, d = 3) we showed that around a contact point x0 ∈ ∂{u > 0} ∩ ∂{u < 0},
the free boundaries ∂{u > 0} and ∂{u < 0} are C1,α-regular manifolds.

In this talk we discuss some first results (obtained recently with Luca Spolaor
and Guido De Philippis) on the structure of the contact set ∂{u > 0} ∩ ∂{u < 0}.
Precisely, we consider the symmetric case in which the problem reduces to the
one-phase problem studied by Chang-Lara and Savin [1], and we will show that,



1794 Oberwolfach Report 32/2023

in dimension d = 2, the contact set is (locally) the union of a finite number of
intervals and that the solution u is analytic at the endpoints of those intervals.
We will also discuss the connection with the (non-linear) thin-obstacle problem
and to a classical result of Levy about the (linear) thin obstacle problem.
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Free boundary flow with surgery and applications

Robert Haslhofer

Mean curvature flow with surgery for closed mean-convex surfaces has been con-
structed by Brendle-Huisken [4] and Kleiner and the author [12]. However, until
recently the construction of a flow with surgery in the setting of mean-convex
surfaces with free boundary seemed inaccessible, since both the approach from [4]
and [12] crucially rely on the noncollapsing result of Andrews [1], which is only
available in the setting without boundary. Recently, we solved this problem for
mean-convex surfaces with free boundary in any strictly convex domain D:

Theorem ([10]). There exists a free boundary flow with surgery starting at any
smooth compact strictly mean-convex free boundary surface M0 ⊂ D.
Moreover, the flow either becomes extinct in finite time or for t → ∞ converges to a
finite collection of stable connected minimal surfaces with empty or free boundary.

Here, a free boundary flow with surgery is a free boundary (δ,H)-flow. In
particular, δ > 0 is a small parameter that captures the quality of the surgery necks
and half necks, and H is a triple of curvature scales Htrigger ≫ Hneck ≫ Hthick ≫ 1,
which is used to specify more precisely when and how surgeries are performed.

To prove the theorem we implemented our recent new approach from [9], which
is based on weak solutions rather than a priori estimates for smooth solutions.
Specifically, we study sequences Mj of free boundary (δ,Hj)-flows, with the same
mean-convex initial condition M0 ⊂ D, where the curvature scales Hj improve
along the sequence. Given any rescaling factors λj → ∞, we consider the blowup

sequence M̃j = Dλj
(Mj − Xj). We establish a hybrid compactness theorem,

which allows us to pass to a limit of M̃j , which is smooth near the surgery regions
but potentially singular elsewhere. Moreover, using Edelen’s monotonicty formula
[6] we rule out microscopic surgeries. We then generalize the theory of mean-
convex Brakke flows with free boundary from [7] to our setting of hybrid limits,
and in particular establish multiplicity-one. As a consequence, taking also into
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account the recent classification of ancient solutions from [2, 3], we then establish
a canonical neighborhood theorem, which allows us to conclude.

As an application, in joint work with Ketover we prove:

Theorem ([11]). Every strictly convex 3-ball B with nonnegative Ricci-curvature
contains at least 3 embedded free-boundary minimal disks in the generic case, and
at least 2 solutions even without genericity assumption. Moreover, the area of our
2nd solution is always strictly less than twice the area of the Grüter-Jost solution.

A natural family of examples of 3-balls to illustrate this are the ellipsoids

E(a, b, c) :=

{
x2

a2
+

y2

b2
+

z2

c2
≤ 1

}
⊂ R

3.

They contain at least 3 obvious ‘planar’ solutions, which are obtained by intersect-
ing E(a, b, c) with the coordinates planes. On the other hand, for a ≥ 2 max(b, c)
our theorem produces a nonplanar embedded free-boundary minimal disk Σ(a).
Moreover, for a → ∞ our surfaces Σ(a) converge in the sense of varifolds to the
planar disk {x = 0} × E(b, c) ⊂ R× E(b, c) with multiplicity-two.

To outline our proof, recall that Grüter-Jost [8] already proved the existence of
at least 1 solution. Moreover, by a beautiful degree theory argument of Maximo-
Nunes-Smith [14] for generic metrics the number of solutions is always odd. Hence,
our task is to produce a 2nd solution. To get started, sliding the Grüter-Jost disk a
bit to both sides we can decompose B = B−∪Z∪B+, where Z is a short cylindrical
region and ∂B± are smooth strictly mean-convex disks with free-boundary. Using
the free boundary flow with surgery from above, and ideas from our earlier work
with Buzano and Hershkovits [5], we produce an optimal free-boundary foliation
of B, namely a foliation {Σt}t∈[−1,1] of B by free-boundary disks, such that the
Grüter-Jost disk sits in the middle of the foliation as Σ0 and all other slices have
strictly less area. As an aside, we mention that these smooth foliations are of
independent interest. Using our optimal foliation we can then form a certain two
parameter family {Σs,t}. Loosely speaking, this family is constructed by joining
the surfaces Σs and Σt by a thin half neck. Establishing a half version of the
catenoid estimate from [13], we can suitably open up the half neck to arrange that

sup
s,t

|Σs,t| < 2|Σ0|.

This guarantees that min-max for our two-parameter family does not simply pro-
duce the Grüter-Jost disk with multiplicity-two, and together with a standard
Lusternik-Schnirelmann argument allows us to conclude.
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Improved generic regularity of minimizing hypersurfaces

Christos Mantoulidis

(joint work with Otis Chodosh, Felix Schulze)

Let Γ be a smooth, closed, oriented, (n − 1)-dimensional submanifold of Rn+1.
Among all smooth, compact, oriented hypersurfaces M ⊂ Rn+1 with ∂M = Γ,
does there exist one with least area?

Foundational results in geometric measure theory can be used to produce an in-
tegral n-current T with least mass (“minimizing”) among all those with boundary
equal to the multiplicity-one current represented by Γ. When n+1 ≤ 7, it is known
that T is supported on a smooth, compact, oriented hypersurface that solves the
original differential geometric problem (see [1, 2, 3, 4, 5]). When n+1 ≥ 8, smooth
minimizers can fail to exist (see [6]) but it is nevertheless known that away from
a compact set sing T ⊂ Rn+1 \ Γ of Hausdorff dimension ≤ n− 7, the support of
T will be a smooth precompact hypersurface with boundary Γ (see [7, 5]).

A fundamental result of Hardt–Simon [8] shows that the singularities of 7-
dimensional minimizing currents in R8, which are necessarily isolated points, can
be eliminated by a perturbation of the prescribed boundary Γ, thus yielding solu-
tions to the original geometric problem in R8 for the perturbed boundary.

In recent work motivated from our past results on mean curvature flow (see, e.g.,
[9, 10]) we obtained a generic regularity result for minimizers in higher ambient
dimensions:

Theorem ([11], [12]) Let Γn−1 ⊂ Rn+1 be a smooth, closed, oriented, submanifold.
There exist arbitrarily small perturbations Γ′ of Γ such that every minimizing
integral n-current with boundary [[Γ′]] is of the form [[M ′]] for a smooth, precompact,
oriented hypersurface M ′ with ∂M ′ = Γ′ and singM ′ = M̄ ′ \M ′ satisfies
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singM ′ = ∅ if n + 1 ≤ 10, otherwise dimH singM ′ ≤ n− 9 − εn

where εn ∈ (0, 1] is an explicit dimensional constant.

Let us discuss what goes into the proof of this theorem. Let us denote

M(Γ) = {minimizing integral n-currents in Rn+1 with boundary [[Γ]]}.

We agree to the following simplifying assumptions (see [12] for the general case):

• Γ is connected.
• M(Γ) is a singleton.

The above and the standard regularity theory guarantee that M(Γ) = {[[M ]]} for
a smooth, precompact, oriented hypersurface M ⊂ Rn+1 with ∂M = Γ, singM =
M̄ \M ⊂⊂ Rn+1 \ Γ, and dimH singM ≤ n− 7.

Now set Γ0 := Γ and perturb Γ smoothly to (Γs)s∈(−δ,δ) by s times the unit
normal to M along Γ (recall that singM∩Γ = ∅) for some small δ > 0. Accordingly,
for each s ∈ (−δ, δ), let M(Γs) be the set of all minimizers with boundary data
Γs; each such is still of the form [[Ms]], with Ms enjoying similar a priori regularity
as M . A cut-and-paste argument implies that

(‡) [[Ms]] ∈ M(Γs), [[Ms′ ]] ∈ M(Γs′), s 6= s′ =⇒ M̄s ∩ M̄s′ = ∅.

Define

L = ∪s∈(−δ,δ) ∪[[Ms]]∈M(Γs) M̄s,

S = ∪s∈(−δ,δ) ∪[[Ms]]∈M(Γs) singMs.

In view of (‡), the following “timestamp” function is well-defined:

t : L → (−δ, δ),

t(x) = s for all x ∈ M̄s, [[Ms]] ∈ M(Γs), s ∈ (−δ, δ).

We are now ready to state the two main tools required for our main theorem.

Tool A ([12]) It holds that dimH S ≤ n− 7.

Tool B ([12]) The timestamp function t : L → (−δ, δ) above is α-Hölder on S for
every α ∈ (0, 2 + εn), where εn ∈ (0, 1] is an explicit dimensional constant.

To obtain the Theorem from Tools A, B one can invoke a Sard-type covering
argument of Figalli–Ros-Oton–Serra, who successfully proved a generic regularity
result for free boundary singularities in the obstacle problem using tools similar
to A, B.

Proposition ([13, Proposition 7.7]) Let S ⊂ Rn, 0 < d ≤ n, and 0 < β < α.
Assume that Hd(S) < ∞ and that f : S → (−1, 1) is α-Hölder continuous.

(1) If d ≤ β, then Hd/β(f(S)) = 0.
(2) If d > β, then for a.e. t ∈ (−1, 1) we have Hd−β(f−1(t)) = 0.
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A mean curvature flow approach to density of minimal cones

Lu Wang

(joint work with Jacob Bernstein)

A hypersurface Σ ⊂ Rn+1 is minimal, if the mean curvature HΣ = 0. Locally, Σ
can be written as a graph of a function u over the tangent plane at p so

div

(
Du√

1 + |Du|2

)
= 0

which is a quasi-linear elliptic equation. By the monotonicity of area ratios, any
minimal hypersurface is asymptotic at infinity to a minimal cone. Similarly, mini-
mal cones also model the behavior of singularities arising in limits of sequences of
minimal hypersurfaces.

Given a minimal cone C ⊂ Rn+1, define the density θ(C) of C to be

θ(C) =
Area(C ∩B1)

ωn
.

Here, without loss of generality assume the vertex of the cone is the origin, B1 ⊂
R

n+1 is the (open) unit ball, and ωn is the volume of the unit n-ball. By Allard’s
regularity (or ǫ-regularity), [1], there exists ǫ = ǫ(n) > 0 such that θ(C) > 1 + ǫ
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unless C is flat. Thus it is very natural to seek more quantitative information of
ǫ. For simplicity we restrict our attention to minimal regular cones, i.e., minimal
cones with isolated singularities. Indeed, this has been explored from different
perspectives, such as application of heat kernel estimates by Cheng-Li-Yau [3],
min-max method for minimal surfaces in sphere by Marques-Neves [7], and mean
curvature flow by J. Zhu [9].

Here we utilize self-expanding solutions to the mean curvature flow (i.e., the
negative L2-gradient flow for area functional) to derive explicit lower bounds on
densities for minimal regular cones. To state the results, we need to recall the
Colding-Minicozzi [4] entropy for hypersurfaces Σ ⊂ Rn+1 which is given by

λ(Σ) = sup
x0∈Rn+1,t0>0

(4πt0)−
n
2

∫

Σ

e
−

|x−x0|2

4t0 .

Entropy is instrumental in the study of singularities for mean curvature flow since
it is monotone decreasing along the flow. It is invariant under rigid motions and
dilations. Stone [8] computes

λ(S1) > λ(S2) > λ(S3) > · · · →
√

2.

As observed by Ilmanen-White [5], for a minimal cone C one has θ(C) = λ(C).
With Jacob Bernstein, we prove in [2] that

Theorem 1. For 3 ≤ n ≤ 6, let C ⊂ Rn+1 be a minimal regular cone.

(1) If at least one of the components of Rn+1 \ C is not contractible, then
θ(C) ≥ λ(Sn−1).

(2) If at least one of the components of Rn+1 \ C is not a homology ball, then
θ(C) ≥ λ(Sn−2).

To certain extent, the theorem complements the analogous results of Ilmanen-
White [5] for area-minimizing cones. Note that minimal cones in R2 are unions of
rays and minimal cones in R3 are planes. When n = 3, both topological restrictions
are equivalent to that the link of the cone has genus at least 1, and the bound given
in the theorem is ≈ 1.52, compared to the optimal one given by Marques-Neves
[7] is ≈ 1.57. The restriction on the upper bound of dimension is closely related
to the regularity for minimal hypersurfaces, however, it would be very interesting
to see if the theorem is true in all dimensions, in light of the recent developments
in minimal hypersurfaces in higher dimensions, e.g., [6].
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Uniqueness of Ricci flows from rough surfaces

Peter M. Topping

(joint work with Hao Yin, Luke T. Peachey)

A Ricci flow on a smooth surface is a time-dependent family of Riemannian metrics
g(t) satisfying the PDE

∂g

∂t
= −2Kgg,

where Kg is the Gauss curvature of g. With respect to local isothermal coordinates
x, y, the conformal factor u then satisfies the logarithmic fast diffusion equation

∂u

∂t
= ∆ log u,

where ∆ is the Laplacian with respect to x and y.
This equation has been studied by many authors in many different contexts.

Hamilton and Chow [8, 1] developed a theory that gave existence of a solution
for a maximal existence time, after a starting metric has been specified. Their
theory also described how the solution became of constant curvature as the final
time was approached. In the case that the domain is R2, there is a large literature
focussed on the logarithmic fast diffusion equation. Particularly relevant to us
are the references [2, 4, 3, 10]. In the general case of arbitrary smooth initial
data, a complete theory has been developed, partly in collaboration with Giesen
[11, 6, 12].

In this talk we were concerned with the case of rough initial data. Because
the Ricci flow in 2D evolves the metric g(t) within the same conformal class, we
can adjust our viewpoint and see the the flow as a combination of a fixed smooth
surface M equipped with a conformal structure, plus an evolving Riemannian
volume measure. The volume measure is effectively determining the conformal
factor. We then attempt to start the Ricci flow with the fixed M , together with a
Radon measure as initial data. Together with Hao Yin, we have recently completed
the proof of the following result.

Theorem 1 (Main existence and uniqueness theorem [13, 14]). Let M be a two-
dimensional smooth manifold equipped with a conformal structure, and let µ be a
Radon measure on M that is nonatomic in the sense that

µ({x}) = 0 for all x ∈ M.
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Writing M̃ for the universal cover of M , and µ̃ for the lift of µ to M̃ , define
T ∈ [0,∞] by

• T = ∞ if M̃ = D;
• T = 1

4π µ̃(M̃) if M̃ = R2;

• T = 1
8π µ̃(M̃) if M̃ = S2.

Then there exists a smooth complete conformal Ricci flow g(t) on M , for t ∈
(0, T ), attaining µ as initial data in the sense that the volume measure µg(t) of
g(t) satisfies

µg(t) ⇀ µ as t ց 0

and so that if g̃(t), t ∈ (0, T̃ ), is any other smooth complete conformal Ricci flow

on M that attains µ as initial data in the same sense, then T̃ ≤ T and

g(t) ≡ g̃(t) for all t ∈ (0, T̃ ).

If T ∈ (0,∞) then µg(t)(M) = (1 − t
T )µ(M) for all t ∈ (0, T ).

To clarify, the condition that µg(t) ⇀ µ as t ց 0 is saying that for every

ϕ ∈ C0
c (M), we have ∫

M

ϕdµg(t) →
∫

M

ϕdµ

as t ց 0.
In even more recent work together with Luke Peachey [9], we demonstrated

that the nonatomic hypothesis is the best one could ever hope to achieve in the
sense that every complete 2D Ricci flow defined on a time interval (0, ǫ) arises
from Theorem 1 for some nonatomic Radon measure µ (and the same conformal
structure as the flow):

Theorem 2 (Time zero limits of complete Ricci flows). Suppose M is a smooth
surface and g(t) is any smooth complete Ricci flow on M for t ∈ (0, ǫ), for some
ǫ > 0. Then there exists a nonatomic Radon measure µ on M such that

(1) µg(t) ⇀ µ

as t ց 0. The measure µ is nontrivial unless the universal cover of M is the disc
and g(t) = 2th for h a complete hyperbolic metric on M .

This result is giving us a converse of short time existence, and implies a one-to-
one correspondence between complete Ricci flows and initial data as in Theorem
1, in a sense that is made precise in [9].

A theory covering Theorem 1 can be extracted from the Kähler Ricci flow
theory of Guedj-Zeriahi [7] and Di Nezza and Lu [5] in the case that M is a
closed manifold. However, noncompactness is essential in the applications we
have in mind. For example, as a first application of Theorem 1, we give a complete
classification of 2D expanding Ricci solitons that was started with Yin in [13] and
completed with Peachey in [9].
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The long time behaviour for vortex dynamics in the 2-dimensional
Euler equations

Monica Musso

(joint work with Juan Dávila, Manuel del Pino, Shrish Parmeshwar)

The evolution of a two dimensional incompressible inviscid ideal fluid with smooth
initial velocity concentrated in small regions is well understood on finite intervals
of time: it converges to a superposition of Dirac deltas centered at collision-less
solutions to the point vortex system, in the limit of vanishing regions. Even though
for generic initial conditions the vortex point system has a global smooth solution,
much less is known on the long time behaviour of the fluid vorticity.

We consider the case of two vortex pairs traveling in opposite directions. Using
the inner-outergluing method adapted to this context, we describe the global dy-
namics of this configuration. This work is in collaboration with J.Dávila (U.Bath),
M.del Pino (U.Bath) and S.Parmeshwar (Imperial College London).
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Free boundary minimal surfaces: advances and perspectives

Alessandro Carlotto

(joint work with Giada Franz, Mario B. Schulz, David Wiygul)

In my lecture I have tried to describe some of the things we have learnt, over
the past few years, about various questions in the global theory of free boundary
minimal surfaces in the Euclidean unit ball (henceforth denoted by B

3). In essence,
I have discussed how to construct such surfaces and how to distinguish them by
virtue of the fine analysis of their (equivariant or absolute) Morse index. As
a byproduct, there starts to emerge a comparative picture of variational versus
perturbative methods, although a lot is still to be understood in that direction.

1. The realization problem

We shall begin our journey with the natural “existence problem” which, in this
specific context, we like to refer to as realization problem:

Given any g ≥ 0 and b ≥ 1 can we embed the surface Σg,b, having genus g and b
boundary components, as a free boundary minimal surface in the unit ball?

Said that till 2010 the only known examples were the rotationally symmetric
ones (i. e. the flat disc (g = 0, b = 1), and the critical catenoid (g = 0, b = 2)),
the question above has lately received great attention, and we have witnessed a
number of significant new results through various methods, that can be grouped in
three classes as follows: optimization of the first Steklov eigenvalue, min-max
methods for the area functional, gluing and/or desigularization methods. Despite
such significant advances, developing techniques to generate examples with “low
topological complexity” i. e. with low genus and few boundary components turned
out to be a very hard problem. In particular, the case of genus one and connected
boundary was considered by most experts to be especially delicate; we first learnt
about this matter at Stanford in 2012 in the context of a graduate class taught by
Schoen, although we later found out this specific question (or variations thereof)
had been mentioned by a number of authors, starting at least with Lin in 1987
[19] (cf. [22]) and ending with the influential survey [17]. After significant efforts,
the problem was finally resolved in 2020 in joint work with Franz and Schulz [3]:

Theorem A. For each g ≥ 1 there exists an embedded free boundary minimal
surface Mg in B3 with connected boundary, genus g and dihedral symmetry Dg+1.

Each surface Mg is constructed via equivariant min-max methods, along lines
initiated by Ketover in [16], building on earlier work by Simon-Smith and Colding-
De Lellis. A well-known drawback of min-max methods for the area functional
is that, since one needs to go through weak notions of convergence (i. e. those
typical of geometric measure theory), they are not topologically effective: they
do not allow to control the topology of the critical points they produce. We
showed, through a (somewhat surprising) chain of ad hoc arguments that the
topological type is actually preserved in the limit, namely that one can first single
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out geometric reasons why the boundary need be connected in the limit, and then
in turn the genus is precisely that imposed at the level of sweepouts we designed.

The idea of extracting a “general theory” from this work has very recently been
developed - at least to some extent - by Franz and Schulz in [12], where they proved
a lower semicontinuity result for the first Betti number (at least in the multiplicity
one case), leading - among other applications - to the variational construction of
free boundary minimal surfaces in B3 having genus zero and any assigned number
b ≥ 3 of boundary components; this is to be compared with [7] (doubling of the
equatorial disk, which only holds for b ≫ 1) and with [11] (which is an abstract
existence result, and thus has the drawback of bearing limited information on the
resulting surfaces).

2. The topological uniqueness problem

Let us move to the natural companion question, that is the topological uniqueness
problem for free boundary minimal surfaces in B3:

Given any g ≥ 0 and b ≥ 1 is there at most (only) one embedding of Σg,b as a
free boundary minimal surface in the unit ball (up to ambient isometry)?

We first note that to date the only unconditional uniqueness theorem was proven
by Nitsche [21] for g = 0, b = 1: the flat disc is the only free boundary minimal
disc in B3. It is widely conjectured (cf. [8]) although still open that the critical
catenoid is the only (embedded, else see [6]) free boundary minimal annulus in B3.
This is partly supported by the theory of minimal cycles in round S3, based on the
uniqueness of the Clifford torus established by Brendle in [2]. In very recent work,
we show that if one does not restrict to “low topological complexity” then the
topological uniqueness question can be answered in the strongest negative terms:

“The topology and symmetry group of a free boundary minimal surface in the
Euclidean unit ball do not determine the surface uniquely.”

More precisely, in [4] we proved the following statement:

Theorem B. For any sufficiently large integer g there exist in the unit ball of Eu-
clidean R3 two distinct, properly embedded, free boundary minimal surfaces having
genus g, three boundary components and symmetry group coinciding with the an-
tiprismatic group Ag+1 of order 4(g + 1).

This results follows from combining the existence theorem in [13] (which is
the desingularization of the union of the equatorial disk and the critical catenoid)
with our own construction of a second sequence, whose limit varifold is instead the
union of the equatorial disk and two catenoidal annuli, symmetric with respect to
the origin, that are singled out by the conditions of passing through the equatorial
circle and meeting again the round unit sphere along another circle (respectively
near the north and south poles) at a right angle. To that aim, we had to develop
adequate machinery for desingularizing sationary varifolds at the free boundary,
which is a significant difference with all earlier literature on the subject.

One important motivation, that lies behind the precise formulation of this theo-
rem, is the recent result by Kapouleas-Wiygul (see [15]), asserting the uniqueness
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of each Lawson surface, in the round three-dimensional sphere, given its topol-
ogy and symmetry group. It is equally unclear whether this polymorphism also
happens for complete, embedded, minimal surfaces in R3 having, say, finite total
curvature: we are unable to tell whether one can construct a non-isometric twin
for each surface belonging to the Costa-Hoffman-Meeks family. In this sense, the
theorem suggests some sort of additional flexibility of free boundary minimal
surfaces in the Euclidean unit ball compared both to the closed case in round S3

and the complete case in Euclidean R3.

3. Morse index, open questions and some results

It is very hard to effectively estimate the Morse index of minimal hypersurfaces,
for whichever class (closed, complete, free boundary . . . ). In B3 it has only been
computed for rotationally symmetric examples, the equatorial disc (= 1) and the
critical catenoid (= 4). Very recently, in the aforementioned paper [12] Franz and
Schulz proved the existence of an index 5 free boundary minimal surfaces in B3

that has either g = 1 and b = 1 or g = 0 and b = 2. There is in fact ample
evidence for the former alternative to hold, and for conjecturing this to be our
M1, mentioned in the main theorem of Section 1.

With Schulz and Wiygul we are currently carrying through a systematic inves-
tigation around this theme, both in the “absolute” case and in the G-equivariant
case (for G a group of isometries of the ambient manifold); our first paper on this
theme, that is [5], is an attempt to vastly generalize ideas that originated in work
by Montiel-Ros [20]. As a sample application, we are able to distinguish (so to say
on purely variational grounds) the two families that came in play in Section 2:

Theorem C.There exist g0 such that for all integers g > g0 the (maximal) equi-
variant Morse index and nullity of the free boundary minimal surfaces ΣKL

g ,ΣCSW
g

⊂ B3 satisfy

indexAg+1(ΣKL
g ) = 1, nullityAg+1

(ΣKL
g ) = 0,

indexAg+1(ΣCSW
g ) = 2, nullityAg+1

(ΣCSW
g ) = 0.

Here g denotes the genus of the surfaces in question.

We note that, a posteriori, this result indicates the way towards a variational
construction of the families; in particular, a variational construction of

{
ΣCSW

g

}

beyond the asymptotic regime (i. e. for all values of g) would necessarily need to
build upon the design of Ag+1-equivariant 2-sweepouts.

Also, let us remark how (with limited effort) the maximally equivariant calcu-
lation above allows to determine effective, two-sided linear bounds on the Morse
index and nullity of the same families of free boundary minimal surfaces mentioned
above, which significantly improve on the general lower bounds obtained in [1] and
the (ineffective) upper bounds obtained in [18] with other methods.
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Sharp quantitative rigidity results for maps from S2 to S2

of general degree

Melanie Rupflin

We discussed how carefully constructed parabolic PDEs, in the present case a
suitably weighted version

(1) ∂tu = τρ2gS2
(u) = ρ−2(∆g

S2u + |∇u|2u)

of the harmonic map flow, can be combined with  Lojasiewicz estimates in order
to prove quantitative rigidity results that give a precise answer to the natural
question of whether a map whose energy is nearly minimal can be expected to be
close to a minimiser of the energy.

We considered these questions for the Dirichlet energy E(u) := 1
2

∫
S2 |∇u|2dvg2

S

of maps u : S2 → S2 for which we know that E(u) ≥ 4π| deg(u)| with equality if

and only if u is a rational map, i.e. given by a meromorphic function from Ĉ to
itself in stereographic coordinates.

For maps with degree ±1 the results of [1] establish that to any such u there is
a degree ±1 rational map ω with

∫

S2

|∇(u − ω)|2dvgS2 ≤ Cδu,

see [3] and [6] for simplified proofs and [2] for an extension to higher dimensions.

The case of degree ±1 maps is special as for such maps with E(u) ≈ 4π energy
cannot concentrate on multiple scales or at multiple points. It is precisely this
feature of different behaviour at different scales which means that a higher degree
map u is not forced to be close to any rational map even if its energy defect is
very small: We can e.g. construct degree 2 maps ua,µ : Ĉ → Ĉ, a 6= 0 and µ ≫ 1,

with energy defect δua,µ
∼ a2

logµ so that ua,µ(z) ≈ z + 1
µz for |z| & 1 but which are

shifted by a for |z| . µ−1 and whose distance to any meromorphic map is hence
at least of order |a|.

The natural question is hence whether for maps of general degree smallness of the
energy defect δu implies that u is essentially given by a collection of rational maps
which represent u at a very different scales and in [4] we indeed proved

Theorem 1. For any α < ∞ and any k ∈ N there exists a constant C so that
for any map u ∈ H1(S2, S2) of degree k there exists a collection of rational maps
ω1, . . . , ωn from S2 to S2 with deg(ωi) ≥ 1 and

∑n
i=1 deg(ωi) = k and a corre-

sponding partition of S2 into disjoint subsets Ωi so that u is essentially given by
ωi on Ωi in the sense that

∫

Ωi

|∇(u− ωi)|2dvg
S2 ≤ Cδu(| log(δu)| + 1) for every i
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and so that ωi is essentially constant outside of Ωi in the sense that
∫

S2\Ωi

|∇ωi|2dvgS2 ≤ C(δu)2α and oscU ωi ≤ C(δu)α

for every connected component U of S2 \ Ωi and every i = 1, . . . , n.

This result is sharp as for a = µ−1 the maps ua,µ described above have distance
of at least cµ−1 from every collection of rational maps and δu ∼ µ−2(log µ)−1.

We also note that these domains Ωi are all obtained from balls by cutting out
a (potentially empty) collection of far smaller balls and that they correspond to
vastly different scales as in any gauge in which at least some of the energy of
ωi appears at scale 1 all other sets Ωj correspond to sets with diameter of order
O(δαu ). In such a viewpoint u is hence essentially described by the corresponding
ωi while the other maps ωj look like they are constant.

We note that while the energy E is conformally invariant with respect to the
domain metric, this symmetry is not present for the corresponding L2-gradient
flow. In the talk we explained how one can exploit the resulting freedom of how
to weigh different parts of the domain in order to design a gradient flow that
allows us to extract the behaviour of a map at different scales. The basic idea
is to consider the domain S2 equipped with a metric (1 +

∑
j ρ

2
j )gs2 that blows

up all regions that contain a certain amount of energy to unit size unless they
are extremely concentrated and to use additional weights ρ2j,∗ to separate the
extremely concentrated regions from the rest of the domain by annuli of order 1.
Using such weights prevents not only the formation of singularities away from the
highly concentrated set, but furthermore deters energy from flowing in to or out
of highly concentrated regions and allows us to obtain pointwise bounds on the
limit on the bulk of the domain.

As  Lojasiewicz estimates can be used to establish a priori bounds on the L2-
distance that a map can travel along a gradient flow, see [5] and [6], we can hence
extract the rational maps ωi that describe u at different scales by carrying out a
three-step procedure in each relevant gauge: we first flow the map with the flow
(1) with weight ρ2 = 1 +

∑
j ρ

2
j +

∑
j ρ

2
j,∗, then cut out all highly concentrated

regions of the resulting limit and finally flow this new map again, now with weight
ρ2 = 1 +

∑
j ρ

2
j , to obtain ωi in the limit t → ∞.
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Quasiconformal maps and the Burkholder Area Inequality

André Guerra

(joint work with K. Astala, D. Faraco, A. Koski, J. Kristensen)

For a map f ∈ W 1,2
loc (C;C) holomorphic outside the unit disc D and with a Laurent

series of the form

(1) f(z) = z +

∞∑

j=1

bj
zj

, if |z| > 1,

the classical Grönwall–Bieberbach Area formula asserts that
∞∑

j=2

j|bj|2 =
1

π

∫

D

[detAf − det Df ] dx,

where Af (z) ≡ z + b1z̄ is a linear map, which can be identified with

Af =
1

π

∫

D

Df dx.

In [2], we found an Lp-version of the area formula, found by replacing the
determinant with the so-called Burkholder function

Bp(Df) ≡
(

1 − p|µf |
1 + |µf |

)
(|fz| + |fz̄|)p , µf ≡ fz̄

fz
,

introduced in [5]. Following [3], we think of Bp as a weighted Lp-norm (with weight
depending on µf and p) and one easily verifies that B2 = det. Recalling that a

homeomorphism f ∈ W 1,2
loc (C;C) is K-quasiconformal if |µf | ≤ K−1

K+1 a.e., we then
have:

Theorem 1. Let f be a K-quasiconformal map with the expansion (1) outside D.
For 2 ≤ p ≤ 2K

K−1 ≡ pK, we have

p

2

Bp(Af )

detAf

∞∑

j=2

j|bj |2 ≤ 1

π

∫

D

[Bp(Af ) −Bp(Df)] dx.

This result has interesting consequences concerning sharp higher integrability
results. Indeed, we have:

Corollary 1. Let f be a map as in the theorem. Then, with 2 ≤ p ≤ 2K
K−1 ≡ pK ,

p

2

Bp(Af )

detAf

∞∑

j=2

j|bj |2 +
1

π

∫

D

|Df |p dx ≤ pK
pK − p

Bp(Af ),

This inequality is sharp.
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This result gives a sharp form of Astala’s higher integrability theorem [1], which

asserts that a K-quasiconformal map, originally assumed to be in W 1,2
loc , is actually

in W 1,p
loc for all p < pK . The simple example of the map f(z) = |z|1/K−1z shows

that this exponent is optimal.
As another consequence of the theorem, we obtain an optimal form of the higher

integrability property of Jacobians, first discovered by Müller [8]:

Corollary 2. Let f ∈ W 1,2
loc (C;C) be a map as in (1), which is also orientation-

preserving, i.e. it satisfies a.e. det Df ≥ 0. Then

[explicit function of (bj)j≥1] +

∫

D

det(Df) log |Df |2 dx ≤
∫

D

|Df |2 dx.

This inequality is sharp.

In fact, equality in both corollaries is attained for an infinite-dimensional fam-
ily of piecewise radial mappings, cf. [3, 4] for further details. This is a mani-
festation of the fact that the energy landscape corresponding to the Burkholder
function is highly degenerate and, in particular, extremely non-concave. In fact,
the Burkholder function is rank-one concave and, conjecturally, quasiconcave.

Recall that a function W : Rn×n → R is said to be rank-one concave if W is
concave along any segment parallel to a rank one matrix, while it is said to be
quasiconcave if

1

|Bn|

∫

Bn

W (Df) dx ≤ W (Af ), Af ≡ 1

|Bn|

∫

Bn

Df dx,

for all f ∈ W 1,∞(Bn;Rn) which are linear (and therefore equal to z 7→ Af (z)) on
Sn−1. Note that the theorem is nothing but a quasiconcavity inequality for Bp,
albeit with two important differences: on the one hand, the inequality only holds
for a suitable class of quasiconformal maps; on the other, we allow for boundary
conditions substantially more general than linear. Indeed, for f as in (1), we have
that

0 = b2 = b3 = · · · ⇐⇒ f(z) = z +
b1
z

= z + b1z̄ = Af (z) on S
1.

In general, when looking at functions W : Rn×n → R for n ≥ 3, rank-one con-
cavity does not imply quasiconcavity, according to Šverák’s example [9]. The case
n = 2, however, remains open, and the Burkholder function is the prime example
of a rank-one concave function which we hope to be quasiconcave. Together with
the results of [6], the theorem gives evidence in this direction. The importance of
deciding on the quasiconcavity of Bp stems from the fact that

Bp is quasiconcave =⇒ ‖S‖Lp→Lp = p− 1 for p ≥ 2,

where S is the Beurling–Ahlfors transform; that the latter should be the case is
an outstanding conjecture due to Iwaniec [7].



Partial Differential Equations 1811

References

[1] K. Astala: Area distortion of quasiconformal mappings. Acta Math. 173 (1994), 37–60.
[2] K. Astala, D. Faraco, A. Guerra, A. Koski, and J. Kristensen, Local Burkholder Functional,

quasiconvexity and Geometric Function Theory, in preparation.
[3] K. Astala, T. Iwaniec, I. Prause, and E. Saksman: Burkholder integrals, Morrey’s problem

and quasiconformal mappings. J. Amer. Math. Soc. 25 (2012), 507–531.
[4] A. Baernstein, and S. Montgomery-Smith: Some conjectures about integral means of ∂f

and ∂̄f . Complex analysis and differential equations (Uppsala, 1997), 92-109. Acta Univ.
Upsaliensis Skr. Uppsala Univ. C Organ. Hist., 64, Uppsala Univ., Uppsala 1999.

[5] D. L. Burkholder: Boundary value problems and sharp inequalities for martingale trans-
forms. Ann. Probab. 12 (1984), 647–702.

[6] A. Guerra and J. Kristensen: Automatic quasiconvexity of homogeneous isotropic rank-one
convex integrands. Arch. Ration. Mech. Anal. 245 (2022), 479–500.

[7] T. Iwaniec: Extremal inequalities in Sobolev spaces and quasiconformal mappings.
Zeitschrift für Anal. und ihre Anwendungen, 1 (1982), 1–16.

[8] S. Müller: Higher integrability of determinants and weak convergence in L1. J. für die reine
und Angew. Math. (Crelles Journal), 1990 (1990), 20–34.
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Harmonic approximation in Optimal transport

Felix Otto

We revisit the variational ε-regularity theory that provides a robust alternative to
the comparison-principle based theory developed by Figalli, Klein & De Philippis.
At the core is an approximation of the displacement by the gradient of a harmonic
function, as obtained from a suitable Neumann-Poisson problem. In recent work
with L.Koch, we simplified the arguments from the work with M.Goldman and
M.Huesmann, working directly on the level of rough measures and transfer plans.

Index estimates for sequences of harmonic maps

Jonas Hirsch

(joint work with Tobias Lamm)

For a closed Riemann surface (M, g) and a closed Riemannian manifold (N, h),
which we assume to be isometrically embedded into some euclidean space Rm, the
Dirichlet energy for maps u ∈ W 1,2(M,N) is given by

E(u) =
1

2

∫

M

|∇u|2 dvg.

Critical points of E are called harmonic maps and they are solutions of the elliptic
partial differential equation

−∆u = A(u)(∇u,∇u),

where A is the second fundamental form of the embedding of N →֒ Rm.



1812 Oberwolfach Report 32/2023

We study sequences of harmonic maps uk ∈ C∞(M,N), k ∈ N, with uniformly
bounded Dirichlet energy. By now it is well-known that such a sequence has a weak
limit u0 ∈ C∞(M,N) which is again a harmonic map and that we actually have
local smooth convergence away from at most finitely many singular points, where
the energy concentrates. Around these finitely many points one can perform a
suitable blow-up and in the limit one finds at most finitely many harmonic spheres
i.e. maps ωi ∈ C∞(S2, N), i = 1, . . . , L, the so called bubbles. Hence one has a
clear understanding of the convergence behaviour of such a sequence of harmonic
maps away from the finitely many singular points and also close to the singular
points via the suitably chosen blow-up. The difficult part is to understand what
is going on in the intermediate region which we call the neck region.

Over the last 25 years many people have contributed to a better understanding
of the convergence in the neck region and it has been shown that the so called
energy identity and the no-neck property hold true, see for example [1, 4, 6, 7, 8,
9, 12, 13, 14, 15, 18, 19]. Here the energy identity corresponds to the fact that in
the limit there is no energy in the neck region and the no-neck property shows that
the weak limit u0 and the bubbles ωi are actually all pointwise connected. Thus
there is a very satisfying theory available for the convergence of the sequence uk.

In contrast to this, we are interested in upper and lower bounds on “the index
of the limiting bubble tree” in fact giving a more precise picture of the convergence
of the “spectrum” of the index form.

Recall that the index Ind(u) is defined to be the dimension of the maximal sub-
space on which the second variation of the Dirichlet energy E is negative definite.
Recall that the second variation of E is given by

D2E(u)(X,X) =

∫

M

(|∇X |2 − 〈A2
u(X), X〉 dvg,

where X ∈ W 1,2(M,u∗TN) := {X ∈ W 1,2(M,Rm) : X(x) ∈ Tu(x)N for a.e. x ∈
M} and

〈A2
u(X), Y 〉 = 〈Au(∇u,∇u), Au(X,Y )〉

for X,Y ∈ W 1,2(M,u∗TN). Additionally, the nullity Nul(u) is defined to be the
dimension of the kernel of the bilinear form associated to D2E(u). We remark
that harmonic maps with a controlled index have been constructed respectively
studied in [11, 16, 17].

To be more precise, the goal of this paper is to show bounds for the index
of the sequence uk in terms of the index (and nullity) of the limiting objects u0

respectively ωi with 1 ≤ i ≤ L. In a first Theorem we recall a lower bound that is
relies on a rather standard capacity argument and has already be observe in [5]:

Theorem 1. Let uk ∈ W 1,2(M,N) be a sequence of harmonic maps with uni-
formly bounded energy E(uk) ≤ C and with a weak limit u0 ∈ C∞(M,N) and
finitely many bubbles ωi ∈ C∞(M,N), 1 ≤ i ≤ L, as described above. Then we
have the estimate
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Ind(u0) +
l∑

i=1

Ind(ωi) ≤ lim inf
k→∞

Ind(uk),

where Ind(·) denotes the index of the corresponding map.

The much harder result is the upper bound for the index along the sequence
uk. The main result of our paper is the following.

Theorem 2. Let uk, u0 and ωi, 1 ≤ i ≤ L be as in Theorem . Then we have the
estimate

lim sup
k→∞

(Ind(uk) + Nul(uk)) ≤ Ind(u0) + Nul(u0) +

L∑

i=1

(Ind(ωi) + Nul(ωi)).

Related results also in the context of harmonic maps [18, 19] and critical points
of conformally invariant variational problems [3] have been obtained recently. See
Remark for further comments on these works.

We note that a similar result has been obtained in the very influential work of
Chodosh and Mantoulidis [2] on the Allen-Cahn approximation of minimal surfaces
and by Marques and Neves [10] in the context of minimal surfaces.

We also remark that in this Theorem we can not get rid of the nullity in general,
since there is apriori no reason which excludes that we can have a sequence of
eigenvalues λk < 0 converging to zero.

The argument for Theorem involves a detailed analysis of the convergence of
eigenfunctions of D2E(uk). In order to do this we first define a family of bilinear
forms associated and varying along the sequence uk. More precisely, we let

〈〈X,Y 〉〉uk
=

∫

M

(〈X,Y 〉 + 〈A2
uk

(X), Y 〉) dvg .

We show that this bilinear form is actually a scalar product once a suitable isomet-
ric immersion N →֒ Rm has been fixed, which we do from then on. It then follows
from the fact that the index and the nullity are independent of the underlying vec-
tor space and the scalar product, that we can diagonalize D2E(uk) with respect
to the scalar product 〈〈·, ·〉〉uk

. In order to study the index and the nullity along
the sequence uk we then study sequences of eigenfunctions Xk ∈ W 1,2(M,u∗

kTN)
corresponding to an arbitrary eigenvalue λk, i.e. solutions of the linear PDE

P (uk)(−∆Xk −A2
uk

(Xk)) = λk(Xk + A2
uk

(Xk)),

where P (uk) denotes the orthogonal projection of Rm onto Tuk
N . Without loss of

generality we assume the Xk to be normalized in the sense that 〈〈Xk, Xk〉〉uk
= 1.

The reason why we choose 〈〈·, ·〉〉uk
as our underlying scalar product has two

main reasons. The first one is that by multiplying the equation for Xk with Xk

itself and using our normalization one directly obtains a uniform lower bound on
the eigenvalues, namely

λk ≥ −1
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and a uniform upper bound for the W 1,2-norm of Xk, namely

‖Xk‖W 1,2(M,u∗
k
TN) ≤

√
2.

These estimates directly imply good convergence properties of the Xk in the region
where uk strongly converges to u0. The second reason for the choice of the scalar
product is the conformal invariance of the second term in its definition. This fact
turns out to be crucial when studying the convergence of the Xk in the bubble
region.

Finally, we show that the energy of the Xk converges to zero in the neck region.
In order to do this we adjust and simplify some of the arguments of [7, 14, 15].
To conclude, we are able to show a variant of the energy identity for the sequence
Xk which together with the fact that we can show that orthogonality is preserved
along the sequence, implies the upper bound which we claim in Theorem .

Remark. While we were finishing our paper we became aware of a Preprint
on the arXiv by Francesca Da Lio, Matilde Gianocca and Tristan Rivière [3], in
which the authors obtain a related result as our Theorem for sequences of critical
points of general conformally invariant quadratic variational problems. The main
difference between the two results is that in [3] the authors assume less regularity
on the data (such as the target manifold and the differential forms involved). The
two results were obtained independently with a rather different proof. We believe
that our argument, especially because of the choice of the globally defined bilinear
form 〈〈·, ·〉〉u, will be of independent interest. We want to highlight again that it
is because of this choice that we get uniform lower bounds for the eigenvalues and
uniform upper bounds for the W 1,2-norm of the eigenfunctions basically for free.

Only recently, we also became aware of two papers of Hao Yin [18, 19] who
also proved Theorem for sequences of harmonic maps. His argument relies on a
rather delicate analysis of the neck region and is also of independent interest. His
analysis was focused on the behavior of harmonic maps in the neck region and in
contrast, we provide a self-contained analysis on all three regions arising via the
bubbling process on M .
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O(2)-symmetry of 3D steady gradient Ricci solitons

Yi Lai

In 1982, Hamilton introduced the Ricci flow equation ∂tg(t) = −2Ric. Ricci
solitons are Riemannian manifolds satisfying

Ric =
1

2
LXg + λ g,

where X is a vector field and λ ∈ R. Ricci solitons generate self-similar Ricci
slows, and often arise as singularity models of compact Ricci flows. In particular,
a steady gradient soliton is a soliton with λ = 0 and X = ∇f for some smooth
function f , and thus satisfies

Ric = ∇2f.

In dimension 2, the only steady gradient Ricci soliton is Hamilton’s cigar soli-
ton, which is rotationally symmetric. In dimension n ≥ 3, Bryant constructed a
steady gradient Ricci soliton which is rotationally symmetric. In dimension 3, all
steady gradient Ricci solitons are non-negatively curved and they are asymptotic
to sectors of angle α ∈ [0, π]. For instance, the Bryant soliton is asymptotic to a
ray (α = 0), and the soliton R× Cigar is asymptotic to a half-plane (α = π).

In dimension 3, Hamilton conjectured that there exists a 3D steady gradient
Ricci soliton that is asymptotic to a sector with angle in (0, π), which is called a 3D
flying wing. We constructed a family of Z2 ×O(2)-symmetric flying wings, which
confirmed Hamilton’s conjecture [5], and the asymptotic cone angles of these flying
wings can take any value in (0, π) [6]. In dimension n ≥ 4, we constructed a family
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of non-collapsed, Z2 × O(n − 1)-symmetric steady gradient solitons with positive
curvature operators, which are not rotationally symmetric [5]. In dimension 3, we
prove

Theorem ([7]). All 3D steady gradient Ricci solitons are O(2)-symmetric.

Figure 1. A 3d flying wing

We give a sketch of the O(2)-symmetry theorem. We may assume without loss
of generality that it is not a Bryant soliton. Then first step is to understand
the asymptotic geometry at infinity. We show there are two “edges”, two limits
(R × Cigar and R2 × S1), one critical point, an “almost” Z2-isometry, including
the equality

lim
s→∞

R(Γ(s)) = lim
s→−∞

R(Γ(s)) = 4,

where R is the scalar curvature and Γ is an integral curve of ∇f . In this step
we used Brendle’s uniqueness of non-collapsed 3D steady solitons [1]. A corollary
of this step is the uniqueness of the Bryant soliton among all 3D steady gradient
solitons on R3 asymptotic to rays.

On the one hand, by a symmetry improvement argument, we can construct
inductively an approximating SO(2)-symmetric metric g satisfying

(1) |g − g|C100 ≤ e−(2+ǫ0) dg(·,Γ),

for some ǫ0 > 0. Let X be the killing field of the approximate metric g. Then
evolve X by the heat equation ∂tX(t) = ∆tX(t) + Ric(X(t)). Then the lie deriv-
ative LX(t)g(t) satisfies the linearized Ricci-Deturck flow ∂th(t) = ∆L,g(t)h(t). By
Anderson-Chow estimate this implies

∂t|h(t)| ≤ ∆t|h(t)| +
2|Ric|2

R
|h(t)|.

The evolution equation of R implies that R is a solution to this linear heat equation,
and we can moreover show that

(2) R(x) ≥ C(ǫ0)−1e−2(1+ǫ0) dg(x,Γ).
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Therefore, by combining (1) and (2), we can use R as an upper barrier function,
and show by a heat kernel argument that |h(t)| decays to zero as t → ∞. So X(t)
converges to a non-zero smooth vector field X∞ satisfying LX∞g = 0. The killing
field X∞ thus generates a SO(2)-isometry, and we can furthermore show that it
is also an O(2)-isometry.

We can compare 3D steady gradient Ricci solitons with convex translators in
R3, under which the O(2)-symmetry is compared with the reflectional symmetry
(i.e. Z2-symmetry). By the classification for the convex translators in R3 [4], I
believe:

Conjecture 1. If two 3D flying wings have the same asymptotic cone angle, then
they are isometric modulo rescalings.

It is also interesting to see whether the O(2)-symmetry holds for 3D ancient
Ricci flows, as well as higher dimensional steady gradient solitons with positive
curvature operator. In dimension 4, one can ask whether the O(3)-symmetry holds
for all non-collapsed 4D steady gradient solitons.

Moreover, the recent breakthrough works of Choi-Haslhofer-Hershkovits classi-
fied all non-collapsed translators in R4 [3, 2], which inspires the following conjecture
in Ricci flow:

Conjecture 2. The only non-collapsed steady gradient solitons with non-negative
curvature operator are the 4DBryant soliton, and the family of Z2×O(3)-symmetric
solitons I constructed in [5]. Moreover, the blow-down of each of the Z2 × O(3)-
symmetric soliton is a ray.
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Critical points of the Moser-Trudinger functional

Andrea Malchiodi

(joint work with Francesca De Marchis, Luca Martinazzi, Pierre-Damien Thizy)

Consider a smooth bounded domain Ω of R2: it is well-known that the Sobolev
space W 1,2

0 (Ω) embeds into any Lp(Ω) with p ∈ [1,∞), but not in L∞. Pohozaev
and Trudinger proved that integrability holds up to exponential class, and later
Moser was able to obtain a sharp inequality in [11]: setting, for Λ > 0,

MΛ =

{
u ∈ W 1,2

0 (Ω) |
∫

Ω

|∇u|2dx = Λ

}
,

he showed that

sup
‖u‖2

W
1,2
0 (Ω

F (u) < +∞; F (u) =

∫

Ω

(eu
2 − 1)dx,

provided that Λ ≤ 4π. The constant 4π is sharp for such an inequality to hold,
and the constrained supremum of F is attained for Λ < 4π.

Carleson and Chang proved in [1] that the supremum of F is attained on the
unit disk also for Λ = 4π, and the result was extended in [6] to general planar
domains.

Struwe showed in [12] that for domains close to the disk in a suitable sense F
possesses a local maximum for Λ slightly larger than 4π, and was able to find a
second constrained critical point using a reversed mountain pass scheme (a.e. in
Λ). This result was refined in [7], where the authors showed existence of a second
critical point for all domains and Λ in a full right-neighborhood of 4π.

For larger values of Λ existence of constrained critical points strongly depends on
the topology of the domain. In [8] it was proven that for the unit disk there exists
Λ♯ such that F has no constrained critical points to MΛ for Λ > Λ♯. On the
other hand, in [4] the authors proved that if Ω is not contractible then there are
constrained solutions developing two peaks if Λ converges to 8π from the right.
This construction was extended to an arbitrary number of peaks with polygonal
symmetry on round annuli. We have the following result.

Theorem 1. ([9]) If Ω is non contractible and Λ > 0, F admits constrained
critical points to MΛ.

A related result was proved in [3] for closed surfaces via a min-max method, and
extending some blow-up analysis results in [5]. A crucial property is that blow-ups
only may occur when Λ approaches multiples of 4π from the right, as proven in
[10] for the radial case.

In [9] the Leray-Schauder degree of the resulting Euler-Lagrange equation was
also computed using a homotopy argument, see [2] for Liouville equations.
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The anisotropic Bernstein problem

Connor Mooney

(joint work with Yang Yang)

A well-known theorem of Bernstein from 1915 asserts that any global solution on
R2 to the minimal surface equation is a linear function. The Bernstein problem
asks whether the same result holds with R2 replaced by Rn. It is known through
spectacular work of Bernstein, Fleming [12], De Giorgi [4], Almgren [1], Simons
[21], and Bombieri-De Giorgi-Giusti [2] that the answer is positive if and only if
n ≤ 7. This body of work introduced a number of ideas (ǫ-regularity, monotonicity
formula, stability inequality, Simons identity, etc.) that are pervasive in the study
of elliptic PDEs and geometric variational problems.

It is natural to ask whether similar results hold for anisotropic minimal surfaces,
which are critical points of functionals of the form

(1) AΦ(Σ) =

∫

Σ

Φ(ν) dA.

Here Σ ⊂ Rn+1 is an oriented hypersurface, ν is the unit normal to Σ, and Φ is an
elliptic integrand, namely, a one-homogeneous function on Rn+1 that is positive
and smooth on S

n, and satisfies in addition that {Φ < 1} is uniformly convex.
Such functionals have attracted attention both for their applied and theoretical



1820 Oberwolfach Report 32/2023

interest ([3], [5], [6], [7], [8], [9], [11], [14]). In particular, they arise in models of
crystal surfaces, and they present important technical challenges not present for
the area functional (especially due to the lack of a monotonicity formula).

The anisotropic Bernstein problem asks whether entire anisotropic minimal
graphs in Rn+1 are necessarily hyperplanes, for a general elliptic integrand Φ. The
answer is positive in dimension n = 2 by work of Jenkins [13] and in dimension
n = 3 by work of Simon [20]. We showed in [15] that the answer is negative
in dimensions n ≥ 6, leaving open the cases n = 4, 5. Finally, in recent work
with Y. Yang we completed the solution to the anisotropic Bernstein problem by
constructing nonlinear entire graphical minimizers in the case n = 4 ([17]):

Theorem 1. There exists a smooth nonlinear function u : R4 → R and an elliptic
integrand Φ on R5 such that the graph of u in R5 minimizes AΦ.

We denote by Ckl the cone over Sk×Sl in Rk+l+2. The first examples of nonlin-
ear entire minimal graphs, constructed in [2], are asymptotic to Ckk ×R ⊂ R2k+3,
where k ≥ 3. The method in [2] is to carefully construct super- and sub-solutions
to the minimal surface equation, with appropriate ordering and symmetries, and
then use the maximum principle. In [2] it is also shown that each side of Ckk

(k ≥ 3) is foliated by smooth minimal hypersurfaces. It is clear that these resem-
ble the level sets of the minimal graphs, but no explicit connection is made.

The anisotropic minimal graph in [15] is asymptotic to C22×R, but the approach
to constructing it is completely different from [2]. In [15], the method is to first
fix a choice of solution u, and then construct the integrand Φ by solving a linear
hyperbolic equation. It turns out that for the choice u = |x|2−|y|2, with x, y ∈ R3,
the equation for Φ reduces after a change of variable to the two-variable wave
equation. This makes the construction significantly shorter and more elementary
than for the case of the area functional. Unfortunately the analogous choice for u
in R4 does not solve an equation of minimal surface type, as shown in [15].

To solve the anisotropic Bernstein problem in lower dimensions we use the max-
imum principle, inspired by [2]. Our approach is to make explicit the connection
between foliations of each side of the cones Ckl by anisotropic minimal hypersur-
faces, and level sets of anisotropic minimal graphs. As a consequence we were able
to construct, in the anisotropic case, examples with many different growth rates
in the optimal dimension n = 4, and to recover the examples from [2].

Our approach consists of four steps. In the first step [16] we prove that the
cones Ckl minimize functionals of the form (1) for all k, l ≥ 1 by constructing
foliations. Morgan [18] previously proved that C11 minimizes such a functional by
constructing a calibration. Although constructing a foliation is more involved, the
leaves in our foliation give a hint as to how to proceed in the anisotropic Bernstein
problem. We showed in particular in [16] that for any µ ∈ (0, 1/2), there is an
integrand Ψ such that the sides of C11 are foliated by minimizers of AΨ that
closely resemble the level sets of functions that are homogeneous of degree 1 + µ,
and smooth with non-vanishing gradient away from the origin.

The second step is to perturb the leaves in the foliation so that they have
the same asymptotic behavior as before, but have strictly positive or negative
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anisotropic mean curvature. The new leaves then define functions w and w that
are homogeneous of degree 1 + µ, constant on the leaves, vanish on C11, and by
virtue of the curvature of their level sets serve as good candidates for super- and
sub-solutions to the equation we eventually wish to solve.

The third step is to make a choice of integrand Φ on R5. Our choice agrees
exactly with Ψ on {x5 = 0}, and can be viewed as way of smoothly extending Ψ to

S4\{x5 = 0}. The case of the area functional suggests taking Φ2|{x5=1} = 1 + Ψ
2
,

and our integrand indeed resembles this choice.
The final step is to “re-stack” the level sets of the functions w and w in a way

that they become legitimate super- and sub-solutions to the equation of minimal
surface type defined by Φ on one side of C11. This is accomplished by composing
w and w with appropriate concave, resp. convex one-variable functions. We can
then proceed as in [2].

We conclude with several open questions. First, our approach works equally
well to construct examples asymptotic to Ckl × R for all k = l ≥ 1, but the
approach does not work when k 6= l, because the argument relies on the odd
symmetry over Ckk of solutions to the PDE associated to Φ. It would be interesting
to build anisotropic minimal graphs asymptotic to any Ckl × R. In [19] Simon
constructs entire minimal graphs that are asymptotic to the cylinders over all
of the area-minimizing Lawson cones, and the ideas in that work may be helpful.
Second, it is known that minimal graphs satisfying the controlled growth condition
|∇u(x)| = o(|x|) are necessarily linear [10]. A key tool in the argument is the
Simons identity for the Laplace of the second fundamental form, which has an
anisotropic analogue (see [22]). Similar arguments might thus be used to prove
controlled growth Bernstein theorems in the anisotropic case. Finally, we remark
that when Φ is close to the area functional on Sn in a strong topology, e.g. C3,
the results are the same as in the area case. For example, the Bernstein theorem
holds up to dimension n = 7 [20]. It would be interesting to weaken the topology
required for such results, and our examples may shed light on this question.
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Ancient finite-entropy curve shortening flow

Kyeongsu Choi

(joint work with Dong-Hwi Seo, Wei-Bo Su, Kai-Wei Zhao)

Let γ : R1 × I → R2 be a smooth solution to

γt = γss,

where s is the arclength parameter. Then, we call M := supt∈I(Mt, t), where
Mt := γ(R1, t), a curve shortening flow.

Along the flow, the Colding-Minicozzi’s Entropy [3] monotone decreases.

Ent(Γ) := sup
λ>0,y∈R2

∫

Γ

(4πλ)−
1
2 e

|x−y|2

4λ ds(x).

Hence, any limit flow of a compact curve shortening flow at a singularity has finite-
entropy. Although we already know that a limit flow from an embedded closed
curve shortening flow is a shrinking circle, the study of the classification of ancient
embedded finite-entropy flows can help us to understand the limit mean curvature
flow.

To study the asymptotic behavior of finite-entropy flows, we recall the rescaled

flow M τ := (−t)−
1
2Mt, where τ := − log(−t). Then, by the Huisken’s monotonic-

ity formula [4], compactness [5], and local regularity [6], we can show that the
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rescaled flow converges to a shrinker with multiplicity in the C∞
loc-topology. Then,

the embeddedness yields

Lemma. As τ → −∞, the rescaled flow converges in the C∞
loc

-topology to a line
with multiplicity m ≥ 2 up to suitable rotations, unless M is a static line or a
shrinking circle.

Next, the linearized operator L of a line is the Ornstein-Uhlenbeck operator.

L := ∂2

∂x2 − 1
2x

∂
∂x + 1

2 ,

which has the integrable kernel kerL = span{x}. Therefore, adopting the Allard-
Almgren’s proof [1] for the uniqueness of tangent cones at singularities of minimal
surfaces, we can obtain the uniqueness of the tangent flow.

Theorem. As τ → −∞, the rescaled flow exponentially fast converges in the C∞
loc

-
topology to a line with multiplicity m ≥ 2, unless M is a static line or a shrinking
circle.

The exponential convergence allows us to deal with the noncompact tangent flow
as like a compact one. Thus, we can solve the dynamics between the Gaussian
L2-norm of the projections P+, P0, P− of profile ~u to unstable, neutral, and stable
spaces, where

P+~u = 〈~u, 1〉H, P+~u = 1
2 〈~u, x〉Hx, P−~u = ~u− P−~u− P0~u

and

〈f, g〉H :=

∫

R1

fg(4π)−
1
2 e−

x2

4 dx,

so that we obtain

~u(x, τ) = ~ae
τ
2 + O(eτ )

on each compact interval. Namely, a nontrivial curve shortening flow Mt converges
to the parallel lines {x2 = ~a} after taking a suitable fixed rotation.

By using this sharp asymptotic behavior of the unnormalized flow, we can
show that each tip converges to the corresponding Grim Reaper curve. Then, the
embeddedness of the flow concludes

Theorem. An ancient closed embedded finite-entropy curve shortening flow is a
shrinking circle or a paper clip.

Theorem. An ancient noncompact complete embedded finite-entropy curve short-
ening flow is a graph over a fixed bounded open interval.

The above theorem does not provide a classification result for noncompact flows.
However, based on the properties we discussed, we can expect that such a flow
would be one of the ancient trombones which are recently constructed in [2].

Conjecture. An ancient noncompact complete embedded finite-entropy curve
shortening flow is a Grim Reaper or an ancient trombone.
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Willmore instability of inverted complete minimal surfaces with
planar ends

Elena Mäder-Baumdicker

(joint work with Jonas Hirsch, Rob Kusner)

Let Σ be a smooth, closed, 2-dimensional manifold and f : Σ → R2 an immersion,
n ≥ 3. We equip Σ with the induced metric g = f∗δRn . Then the Willmore

functional is defined as W(f) := 1
4

∫
Σ | ~H |2dµg, where ~H is the mean curvature

vector of f and dµg the induced area measure. This functional has a non-compact
(ambient) invariance goup – isometries of Rn, scaling and inversions at spheres.
As a consequence, methods from calculus of variations are harder to apply, but
interesting questions arise that are related to geometric PDEs of fourth order,
geometric spectral theory, conformal geometry and minimal surface theory.

In the first half of the talk we gave an overview of results and open questions
about the Willmore functional using methods from these four fields. We first recall
the Li-Yau inequality [12, 9]: For each a ∈ R

n, we have W(f) ≥ 4π♯{f−1(a)} with
equality if and only if f is the inversion (at a sphere) of a complete minimal surface
X with finite total curvature. Note that ∞ is mapped to the center of the inversion
which rises the question whether a Willmore surface (i.e. a critical point of W) on
a punctured disc can be extended across the singularity. The relevant PDE is of
fourth order (in f), quasilinear with a cubic nonlinearity in the lower order term:

∆⊥ ~H + gikgjlA0
ij〈A0

kl,
~H〉 = 0,

where ∆⊥ is the Laplacian on the normal bundle and A0 the tracefree second
fundamental form. Bryant [4] confirmed the extendability of Willmore surfaces
arising as inverted complete minimal surface X in R3 with embedded planar ends.
For general Willmore surfaces, results were obtained in [10, 14, 2] showing also
that extendability is not always possible – the inverted Catenoid is C1,α, but not
C1,1 – but the surface can be extended smoothly when certain residue vanish.
Bryant showed that a Willmore surface in R

3 with the topological type of a sphere
or an RP 2 is always an inverted minimal surfaces with embedded planar ends. As
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a consequence, the energy of these surfaces is quantized W(fS2) = 4πm, where
in fact only m ∈ N \ {2, 3, 5, 7} can be realized [4, 5]. Later in this report we
present results about the Willmore Morse index of these surfaces (also for general
genus). In the overview of results related to W , we also presented results and
conjectures about minimizers of the Willmore functional for a fixed genus. Using
the stereographic projection st : Sn \ {p} → R

n, a computation shows

W(f) =

∫

Σ

(
1

4
| ~Hst−1◦f |2 + 1

)
dµg

st−1◦f
,

which shows that minimal surfaces in S
n are Willmore surfaces after stereographic

projection. In fact, the above formula makes it reasonable to think that the mini-
mizer among surfaces of fixed genus is attained by a minimal surface in a sphere
(except for the RP 2-type with codimension one because there is no such minimal
immersion into S3 [11]). This conjecture remains unsolved so far. Further results
and open problems are:

• For every (orientable) genus g ≥ 1 and every n ≥ 3 there is a smooth
minimizer fn

g : Σg → Rn which attains the infimum of the Willmore
functional among all competitors of the same genus [15, 1]. So far, it
is unclear whether the (orientable) minimizers for different codimension
agree.

• The surfaces ξg,1 of Lawson [11] are conjectured to be the minimizers for
orientable fixed genus g [9]. A weaker, but still open questions is: Is the
minimum of W among surfaces with fixed oriented genus monotone in g?

• The minimizer for all orientable surfaces of genus g ≥ 1 with codimension
one is the Clifford torus [13]. This is an improved version of the Willmore
conjecture saying that the Clifford torus is the minimizer among tori [16].

• Li and Yau [12] proved that W(f) ≥ 6π for all immersions f : RP 2 → Rn.
Equality only holds for (stereographic projections of) the Veronese surface
– an embedded minimal RP 2 in S4.

• For every n ≥ 4 there is a smooth immersed Klein bottle fn : K → R
n

minimizing W among all Klein bottles [3]. A certain minimal Klein bottle
in S4, named τ̃3,1 and originally found by Lawson [11], is the unique mini-
mizer for W in its conformal class [7]. We conjectured that τ̃3,1 is indeed
the unique minimizer for W for arbitrary Klein bottles as competitors [7].

In the second half of the talk we presented results from [8] and [6]. Recall the
inverted minimal surfaces with planar ends are closed Willmore surfaces after
compactification [4]. The Morse index ind(f) is the number of negative eigen-
values of the Jacobi operator (corresponding to the second variation of W at a
Willmore surface). Our three main theorems are the following:

Theorem [8]: Let X : Σ \ {p1, ..., pm} → R3 be a conformal complete minimal
surface with embedded planar ends with 0 6∈ image(X). Then the Willmore Morse
index of the compactified f := X

|X|2 is bounded above by

ind(f) ≤ m− d,
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where d := dim span{nX(p1), ..., nX(pm)} and nX : Σ → S2 is the holomorphically
extended Gauß map of X.

Theorem [6]: Let X : Σ \ {p1, ..., pm} → R
3 be a conformal complete minimal

surface with embedded planar ends with 0 6∈ image(X) and denote gX := X∗δR3 .
If there is a logarithmically growing area-Jacobi field of X, i.e. there is a function
u ∈ C2,α(Σ\{p1, ..., pm}) such that LgXu := ∆gXu−2KgXu = 0 on Σ\{p1, ..., pm}
and u(z) = βi log |z − pi| + ũi(z) near pi in local conformal coordinates z (ũi is
smooth and bounded across pi and not all βi ∈ R vanish), then the Willmore Morse
index of the compactification of X

|X|2 is at least one.

Theorem [8, 6]: Let f : Σ → R3 be a Willmore sphere which is of the topological
type of a sphere or an RP 2. Then its Willmore Morse index is

ind(f) = m− d = m− 3 =
W(f)

4π
− 3.

In particular d = dim span{nf (p1), ..., nf (pm)} = 3 for Willmore spheres and
RP 2s.

Note that dim span{nf (p1), ..., nf (pm)} = dim span{nX(p1), ..., nX(pm)} due to
the conformality of the inversion x 7→ x

|x|2 . Note also that upper index bounds on

inverted minimal surfaces with planar ends are available in [8, 6].

References

[1] Matthias Bauer and Ernst Kuwert. Existence of minimizing Willmore surfaces of prescribed
genus. Int. Math. Res. Not., 2003(10):553–576, 2003.

[2] Yann Bernard and Tristan Rivière. Singularity removability at branch points for Willmore
surfaces. Pacific J. Math., 265(2):257–311, 2013.

[3] Patrick Breuning, Jonas Hirsch, and Elena Mäder-Baumdicker. Existence of minimizing
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A diffused interface model for soap films

Francesco Maggi

(joint work with Michael Novack, Daniel Restrepo)

The Plateau laws postulate that soap films at equilibrium can be modeled as closed
sets S ⊂ R

3 that can be locally described either as smooth minimal surfaces or as
diffeomorphic images of Y -cones or T -cones. A seminal regularity result of Taylor
[5] shows that if S is an Almgren minimizing set, that is, if S is minimizing the 2-
dimensional Hausdorff measure of R3 with respect to local Lipschitz deformations,
then S satisfies the Plateau laws. The problem of proving the existence of Almgren
minimizing sets with a prescribed boundary datum has been recently solved by
Harrison and Pugh [3] with the introduction of a notion of “homotopic spanning”,
which makes precise what it means for a closed set to “span” another closed set,
and which is suitable for the application of the Direct Method.

The motivation of our work [4] is a well-known result of Tonegawa and Wicra-
masekera [6] concerning the limit behaviors of solutions to the Allen–Cahn equa-
tion ε2 ∆uε = W ′(uε) (defined by a double-well potential W ). Their theorem
states that stable solutions to the Allen–Cahn equation with bounded Allen–Cahn
energy

ACε(u) = ε

∫

Ω

|∇u|2 +
1

ε

∫

Ω

W (u)

converge, in the ε → 0 limit, to smooth minimal surfaces (outside of a singular set
with codimension greater or equal than 8). In particular, Plateau-type singularities
cannot arise as limits of stable solutions to the Allen–Cahn equation.

Our main result is that this approximation is possible with the introduction of a
natural volume constraint. More precisely we construct a three-levels hierarchy
of Plateau-type problems, which consists: at the base level, of the Harrison–Pugh
formulation of the Plateau problem; at the intermediate level, of Guass’ sharp
interface capillarity model under a small volume constraint and with an homotopic
spanning satisfied by the “bulk part” of the region bound by the considered soap-
films; and, at the top level, of a diffused interface capillarity model featuring the
minimization of the Allen–Cahn energy of soap-film solution densities under a
small volume constraint and with an homotopic spanning condition formulated on
the super-level sets of the density.

Concretely, given a boundary wire frame W (a compact subset of R
n+1 such

that Ω = Rn+1 \ W in an open set with smooth boundary), and given positive
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parameters v and ε such that ε << v, our approach leads to the construction of
solutions uε to the free-boundary problem

{
ε2 ∆uε = W ′(uε) − λ(ε)V ′(uε) , on Ω \ {uε = 1} ,
|∇+uε| = |∇−uε| , on Ω ∩ {uε = 1}

that minimize the Allen–Cahn energy among functions u satisfying the volume
constraint

v =

∫

Ω

V (u) , V (t) =
(∫ t

0

√
W
)(n+1)/n

,

and such that {u ≥ t} is homotopically spanning W for every t ∈ (1/2, 1).

We prove that, up to extracting subsequences, given a sequence of minimizers
uj = uε corresponding to ε = εj → 0 as j → ∞ and such that

∫
Ω V (uj) = v for

each j, there is a pair (Kv, Ev) where Kv is a relatively closed set in Ω, Ev is an
open subset of Ω with |Ev| = v, Ω ∩ ∂Ev is contained in Kv, K ∩ Ev = ∅, and

K ∪ E
(1)
v is homotopically spanning W (where E(1) denotes the set of points of

density one of a set E). The convergence takes place in the sense that, as Radon
measures in Ω,

{
εj |∇uj |2 +

W (uj)

εj

}
dLn+1⌊Ω ⇀ 2Hn⌊(Kv \ ∂∗Ev) + Hn⌊(Ω ∩ ∂∗Ev)

as j → ∞, where ∂∗E denotes the reduced boundary of E. Moreover, (Kv, Ev) is
a minimizer of the relaxed capillarity energy

F(K,E) = 2Hn(K \ ∂∗E) + Hn(Ω ∩ ∂∗E)

among pairs of Borel sets (K,E) such that Ω ∩ ∂∗E is Hn-contained in K, |E| =
v, and K ∪ E(1) is homotopically spanning W. Finally, it is proved that, up
to extracting subsequences, given a sequence of minimizers (Ki, Ei) = (Kv, Ev)
corresponding to v = vi → 0 as i → ∞, there is a minimizer S in the Harrison–
Pugh formulation of the Plateau problem for W such that, in these sense of Radon
measures in Ω,

2Hn⌊(Ki \ ∂∗Ei) + Hn⌊(Ω ∩ ∂∗Ei) ⇀ 2Hn⌊S ,

as i → ∞. By extracting a diagonal subsequence along (j, i) in the above theo-
rems, one obtains the desired diffused interface approximation of area minimizing
surfaces with Plateau-type singularities.

From the technical viewpoint, the use of the Harrison–Pugh homotopic spanning
condition on Sobolev spaces (which constitute the natural energy spaces for the
Allen–Cahn energy) is particularly delicate, and it calls for a deep revision of
the original notion of homotopic spanning condition which is stable under modi-
fications by Hn-null sets, and still amenable to the implementation of the Direct
Method. A key role in formulating such measure-theoretic notion of homotopic
spanning is played by the concept of essential connectedness introduced in [1, 2]
in the study of rigidity theorems for symmetrization inequalities.
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Timelike Ricci bounds and Einstein’s theory of gravity in a non
smooth setting: an optimal transport approach

Andrea Mondino

(joint work with Fabio Cavalletti, Stefan Suhr)

Optimal transport tools have been extremely powerful to study Ricci curvature,
in particular Ricci lower bounds. The characterization of Ricci curvature lower
bounds for smooth Riemannian manifolds in terms of optimal transport was
obtained by CorderoErausquin-McCann-Schmuckenschäger [3] and vonRenesse-
Sturm [11], after work by McCann [7] and Otto-Villani [10]. A key feature of such
a characterization is that it does not appeal to the smooth structure structure,
and it makes sense in general metric measure spaces. The theory of metric mea-
sure spaces with lower Ricci bounds in a synthetic sense via optimal transport
was pioneered independently by Sturm [12, 13] and Lott-Villani [6], and has been
flourishing in the last 15 years.

Since the geometric framework of General Relativity is the one of Lorentzian
manifolds (or space-times), and the Ricci curvature plays a prominent role in
Einstein’s theory of gravity, it is natural to expect that optimal transport tools
may be useful also in this setting.

The goal of the talk is to introduce the topic and to report on recent progress.
The non-smooth Lorentzian setting is provided by Lorentzian pre-length spaces

(introduced by Kunzinger-Sämann [5] after work of Kronheimer-Penrose [4]). The
characterization of timelike Ricci lower bounds for smooth Lorentzian spacetimes
in terms of optimal transport was obtained in parallel works by McCann [8] and
Mondino-Suhr [9]; the motivation of both [8, 9] was to obtain an optimal transport
formulation of timelike Ricci bounds that does not appeal to a smooth structure to
be stated, so to provide a starting point for developing a theory of timelike Ricci
bounds in Lorentzian pre-length spaces. Such a program was developed in a joint
paper with Cavalletti [1], where:
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• We set foundational results on optimal transport in Lorentzian pre-length
spaces (including cyclical monotonicity, stability of optimal couplings and
Kantorovich duality); several results are new even for smooth Lorentzian
manifolds.

• We give a synthetic notion of “timelike Ricci curvature bounded below and
dimension bounded above” for a measured Lorentzian pre-length space
using optimal transport. The key idea, from the aforementioned smooth
works [8, 9], is to analyse convexity properties of the Boltzmann-Shannon
entropy functional along future directed timelike geodesics of probability
measures. Such a condition is called TCD(K,N) standing for “Timelike
Curvature Dimension” condition; K ∈ R plays the role of lower bound on
the Ricci curvature in the timelike directions and N ∈ (0,∞) plays the
role of upper bound on the dimension, both to be intended in a synthetic
sense.

• This notion is proved to be stable under a Lorentzian analog of measured-
Gromov-Hausdorff convergence, for measured Lorentzian pre-length spaces.

• As applications, we establish a synthetic version of Hawking singularity
Theorem (in sharp form), and we extend to the non-smooth setting several
volume comparison results (of Bishop-Gromov type).

In the final part of the talk, I presented some very recent developments obtained in
collaboration with Cavalletti [2]. Most notably, a new isoperimetric-type inequality
for timelike non-branching TCD(K,N) spaces.

For the sake of this extended abstract, I will briefly present the result in a
simplified form in the smooth framework. For the general statement, see [2].

Let (Mn, g) be a smooth globally hyperbolic Lorentzian manifold. Let V, S be
two Cauchy hypersurfaces, with S ⊂ I+(V ), where

I+(V ) = {y ∈ M : ∃x ∈ V such that x << y}
denotes the chronological future of V . Let

τV (y) := sup
x∈V

τ(x, y), ∀y ∈ I+(V ), time-separation from V ,

dist(V, S) := inf
y∈S

τV (y) “distance” from V to S,

C(V, S) := {γ(t) : t ∈ [0, 1], s.t. γ is a timelike maximizing geodesic with

γ(0) ∈ V, γ(1) ∈ S},
i.e. C(V, S) is region spanned by timelike maximzing geodesics from V to S.

Theorem [Cavalletti-M. 2023, [2]] Let (Mn, g) be a globally hyperbolic Lorentzian
manifold satisfying Hawking-Penrose’s strong energy condition (i.e. Ric ≥ 0 on
timelike vectors). Let V, S ⊂ M be Cauchy hypersurfaces with S ⊂ I+(V ). Then

Area(S) dist(V, S) ≤ n Vol(C(V, S)).

We actually prove a more general result, holding for any timelike Ricci lower
bound K ∈ R, and in the higher generality of timelike non-branching Lorentzian
pre-length spaces satisfying the TCD(K,N) condition. Also the assumptions on V
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can be relaxed: it is enough to assume that V is a Borel, achronal, future timelike
complete subset.

The inequality is sharp (as equality is achieved in conical regions of model
spaces: de Sitter in positive curvature, Minkowski in zero curvature, anti-de Sitter
in negative curvature), and seems to be new even for smooth space-times satisfy-
ing the Hawking-Penrose strong energy condition. When specialised to convenient
domains, it gives apparently new information to the geometry of cosmological
spacetimes and interior regions of black holes. The proof is obtained via disin-
tegration by Lorentzian geodesics maximising τV and localising the TCD(K,N)
condition to each geodesic.

References

[1] F. Cavalletti and A. Mondino, Optimal transport in Lorentzian synthetic spaces, synthetic
timelike Ricci curvature lower bounds and applications, preprint arXiv:2004.08934, (2020),
70 pp.

[2] F. Cavalletti and A. Mondino, A sharp isoperimetric-type inequality for Lorentzian spaces
satisfying timelike Ricci lower bounds, preprint (2023).

[3] D. Cordero-Erausquin, R.J. McCann, and M. Schmuckenschläger, A Riemannian interpo-
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A new varifold solution concept for mean curvature flow

Tim Laux

(joint work with Sebastian Hensel)

Folklore says that mean curvature flow is the “formal” gradient flow of the area
functional with respect to the standard L2 metric tensor on normal velocities.
Indeed, for a smoothly evolving surface (Σ(t))t∈[0,T ), being a mean curvature flow
(i.e., V = −H holds on Σ(t) for all t ∈ (0, T ), where V denotes the normal velocity
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and H the mean curvature of Σ(t)) is equivalent to the energy dissipation relation

(1) Area(Σ(T )) +
1

2

∫ T

0

∫

Σ(t)

(V 2 + H2) dS dt ≤ Area(Σ(0)).

In other words, formally, all information on the evolution equation is contained
in a single inequality. Here, the non-trivial implication follows from inserting
the change of area formula d

dtArea(Σ(t)) =
∫
Σ(t) V H dS into (1), which yields

1
2

∫ T

0

∫
Σ(t)

(V + H)2 dS dt ≤ 0, and hence V = −H on Σ(t) for all t ∈ (0, T ).

However, this computation is only formal and does not apply to weak solutions.
In fact, Brakke flows exhibit a complete failure of uniqueness as they may, for
example, jump to the empty set at any given instant: For any fixed t0 ∈ (0, T ), if

(Σ(t))t∈[0,T ) is a Brakke flow, then so is (Σ̃(t))t∈[0,T ) with Σ̃(t) := Σ(t) for t ≤ t0

and Σ̃(t) := ∅ for t > t0. Another severe obstacle in finding a sound solution
concept is that certain symmetric singular configurations lead to physical non-
uniqueness. Take for example the symmetric cross Σ(0) = {x1x2 = 0} ⊂ R

2 viewed
as the boundary of the union of the first and third quadrants Ω(0) = {x1x2 > 0},
which has two symmetric outflows, either connecting the two components of Ω(0)
or disconnecting them.

Our goal here is to rigorously interpret mean curvature flow as a gradient flow
in light of De Giorgi’s vision for gradient flows despite the fact that the induced
distance on the space of surfaces is completely degenerate. This is a challenge as
the abstract theory of gradient flows works in great generality, but requires the
state space to be a metric space and therefore does not apply here.

In this talk, the new weak solution concept from [2] is presented, which char-
acterizes solutions in terms of an energy dissipation inequality just like (1). It is
phrased in terms of (i) a measure µ = µt ⊗ dt = ωt ⊗λx,t ⊗ dt on space, directions
and time describing a one-parameter family of oriented varifolds which encode the
evolving surfaces Σ(t); and (ii) a characteristic function χ = χ(x, t) on space and
time encoding the volume Ω(t) enclosed by the surface. The natural counterpart
of (1) then is

ωT (Rd) +
1

2

∫ T

0

∫

Rd

(V 2 + |H|2) dωt dt ≤ ω0(Rd).(2)

Here, morally, the normal velocity V is encoded by a transport equation for the
enclosed volume and the mean curvature vector H by the change of area formula.

The former is a modified version of Rayleigh’s theorem inspired by the weak
formulation of Luckhaus and Sturzenhecker [4] in the BV setting of sets of finite
perimeter, in which case it reads ∂tχ + V |∇χ| = 0. In our setting, the total
variation measure |∇χ| is replaced by the base measure ω of the varifold so that
the transport equation becomes

χ0 dx⊗ δ{t=0} + ∂tχ + V ω = 0.(3)

Here, we also allow for test functions that do not vanish at t = 0 in order to encode
the initial condition χ(0) = χ0 in a weak form.
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The latter is completely standard in the geometric analysis community and
states in physical terms that the forces can be written as the divergence of the
stress tensor, i.e., we have the distributional relation

Hω = ∇ ·T, where T(x, t) =

∫

Sd−1

(Id − p⊗ p)µ(x, dp, t).(4)

The only additional condition is the following compatibility between the normals
of the varifold and the set of finite perimeter

∇χ =

∫

Sd−1

p µ(x, dp, t).(5)

Since the central part of [2] is the solution concept itself, we record the precise
weak formulation here.

Definition. A couple (µ, χ) – with µ = ωt⊗λx,t⊗dt ∈ M(Rd×Sd−1×(0,∞)) and
χ ∈ L1

loc(R
d×(0,∞); {0, 1}) which are compatible according to (5) – is a De Giorgi

solution with initial data (ω0, χ0) if (2) holds for a.e. T ∈ (0,∞), where V and H
are given by the distributional relations (3) and (4), respectively.

For a smoothly evolving surface Σ(t) = ∂Ω(t), we may set ωt = Hd−1x∂Ω(t),
λx,t = δνΣ(t)(x), and χ(·, t) = χΩ(t)(·); hence a smooth De Giorgi solution according

to our definition satisfies (1) and is therefore a classical mean curvature flow.
Furthermore, we stress that the initial conditions are only encoded through the
first term in (3) and the right-hand side of (2). We also mention that it is natural
to work with the mean curvature vector instead of the scalar mean curvature as
we allow for general varifolds for which the mean curvature vector may not point
in normal direction. Finally, it is easy to see that the definiton directly implies
Hölder continuity of the volumes,

∫
Rd |χ(x, t) − χ(x, s)| dx ≤

√
2ω0

√
t− s for all

0 ≤ s < t < ∞, so that the example of sudden vanishing above is ruled out.
Our weak formulation of mean curvature flow allows soft existence and conver-

gence results as one only needs to prove lower bounds for the terms on the left-hand
side of (2). As an example, in [2] we show that in the setting of Ilmanen’s funda-
mental work [3], solutions of the Allen–Cahn equation converge to these solutions.
More precisely, denoting by uε = uε(x, t) the solution to the Allen–Cahn equation

∂tuε = ∆uε − 1
ε2W

′(uε), where W (u) := 1
18 (1 − u)2u2,(6)

we have the following convergence result.

Theorem. For well-prepared initial data uε(0) in the sense of Ilmanen [3], the so-
lutions uε are precompact in L1

loc(R
d×(0,∞)) and the associated oriented varifolds

µε are precompact as measures. Furthermore, any limit point (µ, χ) is a De Giorgi
solution with ω0 = limε

(
ε
2 |∇uε(·, 0)|2 + 1

εW (uε(·, 0))
)
dx and χ0 = limε uε(0).
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The varifolds µε = µε
t ⊗ dt above are naturally related to the energy measure

eεt =
(
ε
2 |∇uε(·, t)|2 + 1

εW (uε(·, t))
)
dx. It is convenient to work with the base

measure ωε
t :=

√
2W (uε(·, t))|∇uε(·, t)| dx ≤ eεt which is suggested by the Modica–

Mortola/Bogomol’nyi-trick, and to set µε
t := ωε

t ⊗ δνε(x,t), where νε = ∇uε

|∇uε|
.

Strikingly and in stark contrast to Brakke’s formulation, these evolving varifolds
satisfy a weak-strong uniqueness principle – even without rectifiablity (let alone
integrality) assumptions. Precisely, we show that the following relative energy

E(t) := E
[
(µ, χ), (Σ,Ω)

]
(t) :=

∫

Rd×Sd−1

(1 − ξ(x, t) · p) dµt(x, p)

satisfies an integral version of the estimate d
dtE(t) ≤ CE(t). Here, the vector

field ξ(·, t) is a suitable extension of the normal vector field of Σ(t), reminiscent of
calibrations in the static setting of minimal surface theory.

Theorem. Let Σ(t) = ∂Ω(t), t ∈ [0, T ] be a smooth mean curvature flow and (µ, χ)
be a De Giorgi solution. Then there exists C = C((Σ(t))t∈[0,T ]) < ∞ such that

E
[
(µ, χ), (Σ,Ω)

]
(t) ≤ eCtE

[
(µ, χ), (Σ,Ω)

]
(0) for a.e. t ∈ (0, T ).

Moreover, if χ0 = χΩ(0) and ω0 = Hd−1xΣ(0), then we have χ(·, t) = χΩ(t),

ωt = Hd−1xΣ(t), and λ ·,t = δνΣ(t)(·) for a.e. t ∈ (0, T ).

Hence, our De Giorgi solutions do not exhibit the unphysical non-uniqueness
of Brakke flows although they are evolving varifolds merely satisfying a single
inequality. This second result builds on and extends recent work together with
Fischer and Simon [1], which at the time was only valid for BV solutions as in [4].

One of the motivations for new solution concepts is the multiphase setting to
which our results can be partially generalized: A suitable solution concept and
the corresponding weak-strong uniqueness result is given in the same work [2]
presented here, and – under an energy convergence assumption – Steinke [5] showed
the convergence of the vectorial Allen–Cahn equation to a De Giorgi solution.
Unconditional convergence, however, remains a challenging open problem.
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Hypersurfaces with mean curvature prescribed by an ambient function

Costante Bellettini

(joint work with Kobe Marshall-Stevens, Neshan Wickramasekera,
Myles Workman)

In [6], joint work with N. Wickramasekera (Cambridge), we establish largely by
PDE methods the following existence result for prescribed-mean-curvature hyper-
surfaces:

Theorem 1. Let (N, h) be a compact Riemannian manifold of dimension n + 1,
n ≥ 2, and let g ≥ 0 be a Lipschitz function on N . There exists an immersed
hypersurface M ⊂ N of class C2 such that (i) M is two sided, i.e. there is a global
choice of unit normal ν, (ii) dimH(M \ M) ≤ n − 7, where dimH denotes the
Hausdorff dimension, (iii) the mean curvature vector of M is given by gν. More
precisely, M is quasi-embedded, i.e. for every p ∈ M around which M fails to be
embedded, there exists a neighbourhood Nρ(p) ⊂ N such that M∩Nρ(p) = D1∪D2,
where D1 and D2 are embedded C2 disks lying on one side of each other and
intersecting tangentially (p is contained in the intersection).

Remark 1. When n ≤ 6, M is closed. The failure of M to be closed can only
arise for n ≥ 7, due to the possible presence of ’singular points’. A point p is
singular if M fails to be immersed in any neighbourhood of p. (It follows from the
proof that M admits only non-planar tangent cones at singular points.)

When n = 7 the singularities are, more precisely, isolated points.

A hypersurface M with mean curvature prescribed by g is naturally a critical
point for an area-type functional. Easy examples show that it is in general a saddle-
type critical point, not a minimiser, therefore minmax methods lend themselves
to the construction.

The Almgren–Pitts minmax method was originally developed to solve the case
g ≡ 0 of the above theorem, see [1], [12]. The relevant functional is defined
on a non-linear space and does not satisfy a Palais–Smale condition; substantial
technical machinery is required to compensate for these drawbacks.

A new, more direct proof for the case g ≡ 0 of Theorem 1 has been given in
recent years, by means of what we will refer to as ’Allen–Cahn minmax’. This
was carried out by Guaraco [10] relying on works by Hutchinson, Tonegawa,
Wickramasekera [11] [16] [17]. The idea is to replace the area functional with
a regularised version Eǫ of it, defined for ǫ > 0 on the Hilbert space W 1,2(N):

Eǫ(u) = 1
2σ

(∫
N ǫ |∇u|2

2 +
∫
N

W (u)
ǫ

)
, where W : R → [0,∞) is a C2 ’double well’ po-

tential, i.e. with two nondegenerate global minima at −1 and +1, with W (±1) = 0,
and σ > 0 is a normalising constant (determined by W ). In [11] it is shown that
“critical points of Eǫ converge to critical points of area (stationary integral var-
ifolds) as ǫ → 0”. In [10] a minmax construction is carried out for Eǫ, for each
ǫ > 0, in W 1,2(N), capitalising on the validity of the Palais–Smale condition (so
a standard mountain pass lemma from classical PDE theory can be brought to
bear); then a suitable limit as ǫ → 0 yields a stationary integral varifold ([11]); its
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smooth embeddedness away from a set of dimension ≤ n − 7 is obtained thanks
to the regularity theory in [16], [17].

We employ an Allen–Cahn minmax in establishing Theorem 1. (We refer to [18],
[19] for Almgren–Pitts minmax constructions of prescribed-mean-curvature hyper-
surfaces.) The starting point in [6] is again a classical mountain pass construction
in W 1,2(N), for each ǫ > 0, for the energy Fǫ,g(u) = Eǫ(u) − 1

2

∫
gu. Unlike in the

case g ≡ 0, however, it is not necessarily true that “critical points of Fǫ,g converge
to hypersurfaces with mean curvature g as ǫ → 0” (even in the case g ≡ cnst > 0).
This (major) difficulty (already present in the case in which g is a positive con-
stant) is caused by an underlying phenomenon of cancellation of first variation
paired with the creation of high (even) multiplicity. This phenomenon arises, in
the Allen–Cahn setting (see [11]), even for solutions uǫ that depend on one fixed
variable (in which case, the level sets of the uǫ are hyperplanes, so that the level
set geometry is as easy a it could be).

The strategy in [6] does not require to address the question of whether it may
be possible to rule out the formation of minimal portions for interfaces arising
from stable (or, more generally, with bounds on the index) Allen–Cahn solution
with g > 0 (possibly under some metric assumption).

In recent joint work with M. Workman (UCL) [7] we consider a more special
instance of Theorem 1 and obtain the following refinement:

Theorem 2. Assume, further to the hypotheses of Theorem 1, that h has pos-
itive Ricci curvature and g ≡ λ ∈ (0,∞). Then the interface M arising from
the minmax sequence is smoothly embedded with constant-mean-curvature λ (and
multiplicity 1).

In particular, no cancellation phenomenon happens in this case, giving some
(albeit small) evidence that a more general result in this direction may be valid.

Exploiting the embeddedness (rather than quasi-embeddedness) obtained in The-
orem 2, in recent joint work with K. Marshall–Stevens (UCL) [3], we show that
any isolated singularity that appears in M of Theorem 2 must admit a neigh-
bourhood in which M fulfils a a minimising property (for the natural area-type
functional). This minimisation property is further exploited in [3] to obtain (via
standard surgery) the following result (we recall that for n = 7 only isolated sin-
gularities can arise in Theorem 1). (The case λ ≡ 0 of this result is obtained in
[8], working within the Almgren–Pitts framework.)

Theorem 3. With hypotheses as in Theorem 2, except for n = 7 and λ ∈ [0,∞):
for any λ, there exists a generic set of Ricci-positive metrics on N for which
there exists a smoothly embedded closed (i.e. without any singular points) CMC
hypersurface with mean curvature λ.

The cancellation and multiplicity phenomenon encountered above also arises in
a related and purely geometric setting. One can construct a sequence of CMC
boundaries in R3 with scalar mean curvature constantly equal to 1 (with mean
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curvature vector pointing inward) in such a way that the varifold limit of this
sequence is a double plane (see [9] [13]).

From [14], [15], or [4], [5], we know that uniform Morse index bounds (in ad-
dition to custumary mass bounds) would prevent the cancellation phenomenon in
this geometric setting. In [2] we identify a weaker assumption that rules it out.
We obtain (the following is a special instance of the result in [2]):

Theorem 4. Assume that ∂Eℓ are smooth boundaries in Nn+1, with uniformly

bounded n-area, and mean curvature λ (that is ~Hℓ = λνEℓ
). Assume a uniform

bound on
∫
∂Eℓ

|A∂Eℓ
|q for some q > 1. Then (subsequentially) ∂Eℓ converge to

the boundary (of a Caccioppoli set E) with (generalised) mean curvature λ (that

is, ~H = λνE on the reduced boundary of E).

The proof relies on treating ∂Eℓ as ’oriented varifolds with curvature’.
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