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Pierre Dèbes, Villeneuve d’Ascq
Yuichiro Hoshi, Kyoto
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Abstract. This report presents a general panorama of recent progress in
the arithmetic-geometry theory of Galois and homotopy groups and its ram-
ifications. While still relying on Grothendieck’s original pillars1, the present
program has now evolved beyond the classical group-theoretic legacy to result
in an autonomous project that exploits a new geometrization of the original
insight and sketches new frontiers between homotopy geometry, homology
geometry, and diophantine geometry.

This panorama “closes the loop” by including the last twenty-year progress
of the Japanese arithmetic-geometry school via Ihara’s program and Nakamura-
Tamagawa-Mochizuki’s anabelian approach, which brings its expertise in terms
of algorithmic, combinatoric, and absolute reconstructions. These methods
supplement and interact with those from the classical arithmetic of covers
and Hurwitz spaces and the motivic and geometric Galois representations.

This workshop has brought together the next generation of arithmetic
homotopic Galois geometers, who, with the support of senior experts, are
developing new techniques and principles for the exploration of the next re-
search frontiers.

Mathematics Subject Classification (2020): Primary: 12F12, 14G32, 14H30, 14H45. Secondary:

14F05, 55Pxx, 14F22, 14G05, 14D15, 11F70.

1That are, as presented in “Récoltes et semailles”, the resolution of the discrete and the
continuous, the local-to-global thinking by generization-specialization, and the quintessential
intersection of arithmetic and geometry – see § 2.10 ibid.
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Introduction by the Organizers

The absolute Galois group GQ of rational numbers is the seed of number theory.
Its study by homotopic and geometric means is at the heart of modern arithmetic
geometry. Building on the result of previous investigations, we report on recent
progress on the development of a new geometry of Galois theory and homotopy
symmetries of spaces. Relying on the unexploited work of Grothendieck’s descen-
dants, this results in a new “geometrization” of arithmetic geometry based on the
homotopy insight2.

This workshop, together with three previous ones3, has led to the following cross-
bridging principles:

(1) The application of classical approaches beyond their original geometric frontier
(e.g. patching, Hilbert realization, Hurwitz spaces, section conjecture);

(2) Some enriched approaches to linear Galois representations (e.g. local systems
via analytic automorphic forms, via the derived category of perverse sheaves,
and via Tannaka symmetries);

(3) The research of an intermediate new type of arithmetic geometry (e.g. in terms
of abelian-by-central extensions, of simplicial geometry in between étale and
motivic theories, of the homotopy-homology frontier);

(4) The absolute reconstruction of anabelian arithmetic-geometry in a context that
goes beyond the ring structure (e.g. applications in Diophantine geometry, an-

abelian combinatorial understanding of ĜT and GQ.)

In the present report, these principles are supported further by the integration of
such techniques as p-adic Hodge theory (for (2) and (3)), the monodromy method
for dynamic arithmetic (for (1)), the development of ℓ-adic Galois theory and
anabelian representations (for (3) and (4)), the development of anabelian recon-
struction over algebraically closed field of positive characteristic (for (3)), and the
introduction of indeterminacies for the uncoupling of multiplicative and additive
structures in anabelian geometry and K-theory (for (1), (3) and (4)).

Joint together, these principles and techniques further indicate the following new
research frontiers in arithmetic geometry:

(a) Arithmetic & rationalization: Hurwitz-Hilbert geometry, realization-lifting-
parametrization program for covers, and rational obstruction;

(b) Homology & homotopy: Galois and p-adic Hodge representations, monodromy
and Tannaka symmetries, the meta-abelian frontier;

2 Under this form this trend takes the denomination of “Arithmetic and homotopic Galois
theory” (AHGT).

3MFO workshop – Homotopic and Geometric Galois Theory (org.: B. Collas, P. Dèbes,
H. Nakamura, J. Stix) in 2021; “Rencontres Arithmétiques de Caen” on Field Arithmetic
and Arithmetic Geometry in 2019; MFO mini-workshop Arithmetic Geometry and Symmetries
around Galois and Fundamental Groups (org.: B. Collas, P. Dèbes, M. Fried) in 2018.

https://publications.mfo.de/handle/mfo/3857
https://bosser.users.lmno.cnrs.fr/ra2019/
https://publications.mfo.de/handle/mfo/3639
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(c) New geometries: in higher dimension and with respect to stack symme-
tries, over algebraically closed and finite fields, for multiplicative and additive
monoids (with indeterminacies).

For a better measure of the progress of this workshop, we keep the three classical
and historical approaches, that are the arithmetic of Galois covers and Hurwitz
spaces, the geometric and motivic Galois representations and the anabelian arith-
metic geometry as a structuring guide. Given the constant mutual interactions of
these topics, this categorization must be read up to certain mild indeterminacies;
we refer to the original reports for details.

Arithmetic of Galois covers and Hurwitz spaces. Geometry of Hurwitz
spaces and concatenation within their boundary are exploited for building new
rational irreducible components (Seguin). A refined version of the ring of compo-
nents and splitting number are developed, which has already ramified in algebraic
topology and for enumerative questions in number theory – see the work of Bianchi
and Ellenberg-Venkatesh-Westerland respectively. The latter, with the systemic
use of homological stability, has since established in a well-identified program of
“arithmetic statistic of function fields”, with, among others, applications to Malle’s
conjecture and the distribution of Selmer group (Westerland et al.)

Originally motivated by question from arithmetic dynamic, structural results
are obtained for the monodromy group of iterated polynomials in terms of Hilbert
irreducibility theorem, largeness, and arboreal representations (König, Neftin
et al.). In a similar but distinct probabilistic direction, we also refer to Bary-
Soroker.

The development of two in-progress projects around properties of torsion points
of the jacobian of curves have been reported: one on the extension of previous
results of Greenberg which, in the spirit of Ihara’s program, tightly intertwines
number theory and arithmetic geometry (Pries et al.), and a second, by building
on previous insight of Raynaud, Tamagawa and Hoshi, on possible strategies for
solving the Coleman conjecture (Takao).

Geometric and motivic Galois representations. Concerning the “homology
vs homotopy” frontier, this workshop has seen the path between linear and an-
abelian methods – a path initiated in the 90’s on one side with the integration of
Falting’s p-adic Hodge method in anabelian geometry by Mochizuki and one the
other side by Kim’s non-anabelian approach of Chabauty-Coleman for rational
points – to be pushed closer to a loop4. At the intersection of Lawrence-Venkatesh
method for the proof of the Mordell conjecture and of Chabauty-Kim theory,
progress was reported on the rational obstruction to Selmer sections that exploits
the whole arsenal of p-adic Hodge theory (Betts et al.). A synthetic panorama
of properties of the degeneracy/toric locus of ℓ-adic local systems that build on
similar approaches based on variational p-adic Hodge theory and period map was

4This topic will be the object of a dedicated AHGT workshop in Oberwolfach, “Anabelian Ge-
ometry and Representations of Fundamental Groups” Sep. 29 - Oct. 4, 2024 (Org.: A. Cadoret,
F. Pop, J. Stix, A. Topaz; ID: 2440).
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also presented (Cadoret et al.). Exploiting a special type of geometric Galois
representations (of Barsotti-Tate type), report was presented on how arithmetic in-
variants resulting from explicit and computational approach lead to new geometric
and arithmetic results in the p-adic Langlands program (Mézard et al.)

On the classical topic of Artin L-functions, and as motivated by potential appli-
cations of anabelian geometry to analytic number theory, some investigations were
presented that reflect the use of purely group-theoretic method (Yamashita).

In the direction of étale cohomology and the structure of Massey products, and
with motivation from the embedding problem, an extensive and solid state-of-the-
art of the most recent results was presented for Galois cohomology in terms of
formality and with application to Koszulity (Quick et al.) and for cohomology
of curves in various geometric situations (Bleher et al.). A synthetic report was
given on finitness results of Galois cohomology and Tate-Shafarevich groups, a key
tool whose properties ramifies in multiple aspects of the AHGT program (Harari
et al.)

Anabelian arithmetic geometry & ramifications. This workshop has been
the opportunity to report on two recent breakthroughs : the construction, as a con-
sequence of the anabelianity of the Grothendieck-Teichmüller group, of a com-
binatorial model of Q̄ (Tsujimura et al.), a decisive step toward the Galois-
Grothendieck-Teichmüller conjecture, and the resolution of non-singularities
(Lepage), an algebraic geometry statement originally formulated by Tamagawa,
with implications in anabelian geometry, Grothendieck-Teichmüller theory, and
the section conjecture.

A certain thematic group has appeared, that exploits various flavors of anabelian
ℓ-adic Galois representations, in terms of purely anabelian methods (Iijima et
al.), of the symmetries of spaces (applied to associators, Shiraishi or to Oda’s
conjecture, Philip et al.), or in relation with Deligne-Ihara’s conjecture pushed
from genus zero to one (Ishii).

The emergence of a new geometry of monoids with indeterminacies provides
new connections between anabelian geometry, diophantine geometry and analytic
number theory (Mochizuki et al.), a principle that can also be found in the
reconstruction of function fields via K-theory (Topaz).

New geometric frontiers were exploited: higher homotopy and motivic rational
obstructions via the simplicial homotopy method (Corwin), the nearly-abelian
study of local-global properties of Galois sections (Porowski), and a reconstrution
program over algebraically closed fields of positive characteristic, with in particular
a new proof of Mochizuki’s seminal anabelian result (Yang et al.).

A bridge between Europe and Japan. Following the Oberwolfach tradition,
the workshop was opened with a few words of Prof. Klaus on behalf of MFO and
of Prof. K. Ono on behalf of RIMS, both present at RIMS Kyoto. The workshop
was structured over 2 sites, one in Japan and one in Germany, with a Zoom bridge
for live interaction and a dedicated Discord forum for sharing video recordings of
the talks, slides, and asynchronous comments. The crossover of some Japanese
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researchers at the MFO and of some French researchers in Japan ensured the
dissemination of ideas between the two sites.

The week gathered a total of 58 participants – 25 participants at RIMS Kyoto
and 33 participants at Oberwolfach Germany – around 25 one-hour long talks (5
each day). An extended break time after lunch – under the form of a “Bento”
time with MFO-like random seating at RIMS – supported informal interactions
and discussions during the event.

Speakers, rather than to restrict themselves to their individual work, reported
on recent progress of entire subtopics. Scientific exchanges reached the next stage,
where participants would send video recordings of their comments and questions
on blackboard to the other site.

Poster session for Oberwolfach Leibniz Fellows. The oral presentations
above were complemented with online poster sessions on the dedicated MFO-RIMS
Discord forum for the OWLG fellows to introduce their research topics and latest
results: (1) Assoun (Lille) uses Galois theory of skew fields for the inverse Galois
problem, (2) Holzschuh (Heidelberg) develops the étale homotopy type of spaces
in terms of infinity categories for a higher-dimensional result on Grothendieck’s
section conjecture, and (3) Shmueli (Tel Aviv) obtains probabilistic results on
the residue degree and ramification of p-adic splitting field of polynomials.

A decisive opus within the AHGT project. This third opus has confirmed
the dynamic initiated with the 2018 mini-workshop “Arithmetic Geometry and
Symmetries around Galois and Fundamental Groups” and developed in the 2021
workshop “Homotopic and Geometric Galois Theory”. A shared feeling of the
participants on both sites is that a new common culture has been built, a structured
program has appeared that paves the way to future collaboration and a network
of conjectures. Following the strong support and feedback of the participants,
and as part of the “Arithmetic and Homotopic Galois Theory” project (AHGT)5,
agreement has been made to meet again within the next 2 years for reporting on
the latest progress of the field.

Acknowledgement: This workshop was supported by the Research Institute for
Mathematical Sciences, an International Joint Usage/Research Center located in
Kyoto University, and by the CNRS-RIMS “Arithmetic and Homotopic Galois
Theory” (AHGT) International Research Network. The MFO and the workshop
organizers would like to thank the National Science Foundation for supporting the
participation of junior researchers in the workshop by the grant DMS-2230648,
“US Junior Oberwolfach Fellows”.

5For updated information on workshops, seminars, and publications of the AHGT project,
we refer to https://ahgt.math.cnrs.fr

https://ahgt.math.cnrs.fr
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Séverin Philip (joint with B. Collas)
Oda’s problem for cyclic special loci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2446

Yu Yang
Towards Grothendieck’s anabelian dream for curves over algebraically
closed fields of characteristic p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2450

David Corwin
The étale homotopy obstruction and its applications . . . . . . . . . . . . . . . . . . 2454

Joachim König (joint with Danny Neftin, Shai Rosenberg)
On the largeness or arboreal Galois representations . . . . . . . . . . . . . . . . . . 2460

Emmanuel Lepage
Resolution of Non-Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2463

Lior Bary-Soroker
Past and Present of Probabilistic Galois Theory:
A Comprehensive Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2468

Wojciech Porowski
Locally conjugate Galois sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2469

Densuke Shiraishi (joint with Hiroaki Nakamura)
On functional equations of ℓ-adic Galois polylogarithms . . . . . . . . . . . . . . 2472

Naotake Takao
Quasi-supersingular finite flat commutative group schemes and the
Coleman conjecture on torsion points on curves . . . . . . . . . . . . . . . . . . . . . 2476

Adam Topaz
Algebraic Dependence and Milnor K-theory . . . . . . . . . . . . . . . . . . . . . . . . . 2480



Arithmetic Homotopy and Galois Theory 2385

Abstracts

On the Grothendieck-Teichmüller group via combinatorial
anabelian geometry

Shota Tsujimura

(joint work with Yuichiro Hoshi, and Shinichi Mochizuki)

The Grothendieck-Teichmüller group ĜT , which was originally introduced by
V. Drinfel’d [Dri90], is a purely combinatorial object and may be regarded as
a closed subgroup of the outer automorphism group of the free profinite group of
rank 2. On the other hand, it is well-known – and proved rigorously by Y. Ihara –

that the absolute Galois group GQ
def
= Gal(Q/Q) of the field of rational numbers,

which is a purely arithmetic object, may be embedded into ĜT via the natural
outer action on the étale fundamental group π1(P1

Q
\ {0, 1,∞}) of the projective

line minus three points.

In light of this embedding, the group ĜT has been thought of as a sort of a purely
combinatorial approximation of GQ. However, it is still totally unknown to which
extent this approximation is strong. We report on recent progress surrounding
this topic that is based on an approach via combinatorial anabelian geometry.

1. Harbater-Schneps’ definition of ĜT

Let us first recall one of the definitions of ĜT , as given by D. Harbater and
L. Schneps, which is known to be equal to Drinfeld’s original one, cf. [HS00].
Write

X
def
= P1

Q
\ {0, 1,∞}; X2

def
= X ×X \∆,

where ∆ denotes the diagonal divisor. Note that X2 is isomorphic to the moduli
stackM0,5 of hyperbolic curves of genus 0 over Q with 5 ordered punctured points.
Note also that, in light of the notion of pointed stable curves, M0,5 admits the

natural compactification M0,5 whose complement is a normal crossing divisor.

In particular, M0,5 ⊆ M0,5, hence also X2, admits the natural action of the
symmetric group S5. Then the Grothendieck-Teichmüller group

ĜT ⊆ Out(π1(X2))

may be defined as a closed subgroup of Out(π1(X2)) consisting of the elements
σ ∈ Out(π1(X2)) satisfying the following conditions:

(1) Let δ be an irreducible component ofM0,5 \M0,5; Iδ ⊆ π1(X2) an inertia
subgroup associated to δ [determined up to conjugate]; σ̃ ∈ Aut(π1(X2))
a lifting of σ. Then σ̃(Iδ) and Iδ are conjugate.

(2) σ commutes with the natural outer action ofS5, i.e., σ ∈ ZOut(π1(X2))(S5).



2386 Oberwolfach Report 42/2023

Here, by applying the first condition, we have a natural injective homomorphism

ĜT →֒ Out(π1(X)) whose image coincides with the original one. Moreover, if we
adopt this definition, the existence of the natural embedding

GQ ⊆ ĜT

follows immediately from Belyi’s theorem.

2. Results via combinatorial anabelian geometry

In this section, we introduce recent results surrounding the inclusion GQ ⊆ ĜT
obtained by applying combinatorial anabelian geometry.

The first result proved by Y. Hoshi, A. Minamide, and S. Mochizuki is the follow-
ing, cf. [CbGT, Corollary C]:

Theorem 1. The equality

Out(π1(X2)) = ĜT ×S5

holds.

In light of the above equality, one may observe that there is almost no scheme-

theoretic restriction on ĜT . In particular, if GQ = ĜT , then this may be a
really surprising phenomenon! As an application of Theorem 1, one may give a
purely group-theoretic algorithm whose input data is (the underlying topological

group structure of) π1(X2) and whose output data are the subgroups ĜT ,S5 ⊆
Out(π1(X2)), cf. [CbGT, Corollary C].

Next, we briefly mention combinatorial Belyi cuspidalization developed by the au-
thor in [Tsu20]. In general, a cuspidalization in anabelian geometry is a procedure
to reconstruct, from the étale fundamental group π1(S) of a connected scheme S,
the (outer) surjections to π1(S) that arise from open subschemes of S. Roughly
speaking, combinatorial Belyi cuspidalization is a purely combinatorial/group-
theoretic procedure – that is closely related to Belyi maps – to reconstruct, from

the data (π1(X), ĜT ⊆ Out(π1(X))), the outer surjections to π1(X) that arise
from open subschemes of X , cf. [Tsu20, Theorem A].

In the remainder, we introduce two applications of this combinatorial Belyi cusp-
idalization.

2.1. Galois as retract within ĜT . Let p be a prime number. Recall that there
exists a certain p-adic analogue

GQp

def
= Gal(Qp/Qp) ⊆ ĜT p

of the inclusion GQ ⊆ ĜT defined by Y. André via the notion of tempered fun-
damental groups [And03]. Then the first application is the following, cf. [Tsu20,
Corollary B]:
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Theorem 2. The inclusion GQp
⊆ ĜT p admits a natural retraction, i.e., there

exists a natural surjection

ĜT p ։ GQp

whose restriction to GQp
is the identity automorphism.

Here, we note that there exist various versions of p-adic analogue of ĜT in
the literatures, see [MT23, Theorem G]. However, in a recent joint work with
Mochizuki, we proved that all of them are equal, see ibid.

On the other hand, it is natural to ask how small the kernel of the surjection

ĜT p ։ GQp
is. With regard to this question, in light of various rigidity results

concerning geometric tempered fundamental groups of hyperbolic curves, the au-

thor expects that this kernel is trivial, hence that the inclusion GQp
⊆ ĜT p is, in

fact, bijective.

2.2. BGT – A combinatorial model of GQ. The second application, which is
a joint work with Hoshi and Mochizuki, is the following, cf. [CbGal, Theorem C,
(ii)]:

Theorem 3. There exists a purely combinatorial/group-theoretic algorithm whose
input data is (the underlying topological group structure of) π1(X2) and whose

output data is the conjugacy class of GQ in ĜT .

Theorem 3 may be regarded as a conditional surjectivity of the inclusion GQ ⊆
ĜT in the sense that if we replace ĜT by a smaller – but still combinatorially de-

fined! – closed subgroup of ĜT , then this subgroup coincides with a ĜT -conjugate
of GQ.

Note that since π1(X) is center-free, every ĜT -conjugate, or more generally
Out(π1(X))-conjugate, of GQ determines a profinite group isomorphic to π1(P1

Q \
{0, 1,∞}). On the other hand, from the viewpoint of mono-anabelian geome-
try, every Out(π1(X))-conjugate of GQ corresponds to a scheme isomorphic to
P1
Q \ {0, 1,∞}. In particular, Theorem 3 is equivalent to construct, in a purely

combinatorial/group-theoretic way, from (the underlying topological group struc-
ture of) π1(X2), a suitable set of schemes isomorphic to P1

Q \ {0, 1,∞} or X .

Such a construction may be realized by the following two steps as in [AbsTopIII] § 1:

(1) Combinatorial construction of base fields, i.e., fields isomorphic to Q.
(2) Combinatorial construction of function fields, i.e., fields isomorphic to the

function field of X .

The first step is achieved by introducing certain (combinatorially defined!) class

“BGT”, for “Belyi-Grothendieck-Teichmüller”, of closed subgroups of ĜT . By a
slight abuse of notation, we also write BGT for any element of the class BGT.

Roughly speaking, BGT ⊆ ĜT is a closed subgroup that enables us to take a
“limit” of combinatorial Belyi cuspidalizations in a suitable sense. Once one ob-
tains such a “limit”, one may define the inductive limit QBGT of the conjugacy
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classes of cuspidal inertia subgroups (that do not associated to ∞) of cuspidal-
izations. Then, by using the subgroup S5 ⊆ Out(π1(X2)), cf. the discussion
immediately after Theorem 1, one may also define a field structure on the set
QBGT isomorphic to Q. Here, we note that one may not exclude the possibility
that a “domination relation” (used to define the “limit”) between two cuspidal-
izations does not arise from an open immersion. In particular, the fact that QBGT

is isomorphic to Q is a nontrivial statement. Finally, with regard to the second
step, after introducing certain abstract functions and Kummer classes of them,
the function fields are constructed in a similar spirit to [AbsTopIII] §1.
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An example of potentially Barsotti–Tate deformation ring

Ariane Mézard

Potentially Barsotti-Tate representations are a special type of geometric Galois
representations which can be described by simple objects of p-adic Hodge theory
on which explicit calculations can be carried out. It is therefore an ideal case for
testing conjectures and highlighting new geometric structures.

The object of this note is to illustrate how the explicit and combinatorial approach
leads to new conjectures and new arithmetic results in the context of p-adic Lang-
lands program.

1. Potentially Barsotti–Tate deformation ring

1.1. Notation. Let p be a prime number, K/Qp a finite unramified extension

of degree f , GK = Gal(Qp/K) its absolute Galois group. Let K ′ be the unique

unramified extension of degree 2, GK′ = Gal(Qp/K
′). Let E/Qp be a sufficiently



Arithmetic Homotopy and Galois Theory 2389

large finite extension with ring of integers O and residue field F. Let F be an
algebraic closure of F.

Let ωf (resp. ω2f ) be the Serre fundamental character of GK′ of level f (resp.
2f), and, for θ ∈ F∗, let nr′(θ) denote the unique unramified charater of GK′ that
sends the arithmetic Frobenius to θ. We fix an irreducible Galois representation

ρ̄ : GK −→ GL2(F), ρ̄ = IndGK

GK′

(
ωh
2f × nr′(θ)

)
,

with h ∈ Z/(p2f − 1)Z, pf + 1 does not divide h, and a non-scalar tame inertial
type

τ = ωγ
f ⊕ ωγ′

f ,

with γ, γ′ ∈ Z/(pf − 1)Z, γ 6= γ′.

1.2. Moduli stack and deformation ring. To such type τ , Caraiani, Emerton,
Gee and Savitt associated the moduli stack Zτ of potentially Barsotti–Tate Galois
representations of with inertial type τ [CEGS20]. By construction, the potentially
Barsotti-Tate deformation ring Rη,τ

ρ̄ of ρ̄ with inertial type τ defined by Kisin is a
versal ring to Zτ at ρ̄, [Ki08].

These objects1, Zτ and Rη,τ
ρ̄ , play an important role in the p-adic Langlands

program. Understanding the structure of the moduli stack and the geometric
deformation ring is a challenging question related to many important arithmetic
open problems among them the Fontaine Mazur conjecture, weight part of Serre
conjecture, the Breuil-Mézard conjecture, multiplicity one conjecture or R = T
theorems.

The weight part of Serre conjecture, the Buzzard-Jarvis conjecture [BDJ10] and
the Breuil-Mézard conjecture [BM02] have been proved by Gee and Kisin [GK14]
under a genericity hypothesis on the inertial type. Kisin [Ki09] deduced new cases
of the Fontaine-Mazur conjecture via a proof of the Breuil-Mézard conjecture
combining a global argument with the p-adic local Langlands correspondence of
Colmez [Co10] and Berger-Breuil [BB10].

In potentially Barsotti-Tate context, the Breuil-Mézard conjecture can be ex-
pressed as a numerical equality between:

• the number of irreducible components of Rη,τ
ρ̄ /(πE) and

• the cardinal of the set W (τ, ρ̄) of common weights of ρ̄ and τ .

1.3. A combinatorial approach. In a series of articles in collaboration with
Caruso and David [CDM18, CDM23], we studied the deformation ring Rη,τ

ρ̄ in the
non-generic case. Our calculations highlighted the importance of an associated
combinatorial object X(τ, ρ̄) associated to ρ̄ and τ . We called X(τ, ρ̄) the ”gene”
because it encodes the liftings of ρ̄. From the gene, we deduced several algorithms
determining important arithmetic objects associated to ρ̄ and τ :

(1) the set of common weights W (τ, ρ̄) in [CDM23], and

1These objects can be defined in a more general geometric context notably for potentially
semi-stable deformations. The notation η in Rη,τ

ρ̄ refers to ”potentially Barsotti-Tate” case.
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(2) the equations of the Kisin variety [CDM18] associated to ρ̄ and τ defined
by Pappas and Rapoport in [PR09].

Moreover the gene allowed us to formulate and to test several conjectures that we
present in the following section.

2. Genetic conjectures

To data (γ, h) ∈ Z/(pf − 1)Z× Z/(p2f − 1)Z such that h 6≡ 0 modulo pf + 1 and

h− 2γ− (
∑f−1

j=0 pj) 6≡ 0 modulo pf − 1, Caruso David and the author associate2 in

[CDM18, CDM23], a combinatorial data said to be the gene in the following way,
Consider the p-expansion

(1) h− (pf+1)

(
h− γ −

f−1∑

j=0

pj
)
≡

p2f−1v0 + p2f−2v1 + · · ·+ pv2f−2 + v2f−1 (mod p2f − 1)

with vj′ ∈ {0, . . . , p− 1} for all j′ ∈ Z/2fZ.

The gene X associated to such a pair (γ, h) ∈ Z/(pf − 1)Z × Z/(p2f − 1)Z is a
Z/2fZ-tuple of symbols X = X(γ, h) = (Xj′ )j′∈Z/2fZ ∈ {A, B, AB, O}Z/2fZ which
satisfies the following properties, see [CDM23, Lemma B.1.3]:

(1) if vj′ = 0 and Xj′+1 = O, then Xj′ = AB;
(2) if vj′ = 0 and Xj′+1 6= O, then Xj′ = A;
(3) if vj′ = 1 and Xj′+1 = O, then Xj′ = O;
(4) if vj′ = 1 and Xj′+1 6= O, then Xj′ = B;
(5) if vj′ ≥ 2, then Xj′ = O.

The gene is related to several conjectures presented succinctly in the following
statement:

Conjecture 1 (Conjecture 5.1.6 [CDM18], Conjecture 3.1.2 [CDM23]).

(1) The deformation ring Rη,τ
ρ̄ depends only on X(τ, ρ̄).

(2) There is a decomposition X(τ, ρ̄) = ∪ri=0(Xji ,Xji+f )ji≤i≤ji+1 such that

Rη,τ
ρ̄ = ⊗̂r

i=0Ri, where Ri is a complete local Noetherian O-algebra de-
pending only on (Xji ,Xji+f )ji≤i≤ji+1 .

(3) The formation of Rη,τ
ρ̄ is ”independent of p”.

With B. Le Hung and S. Morra ([LHMM23]), we developed a local model theory
for the moduli stack Zτ of 2-dimensional non-scalar tame potentially Barsotti–Tate
Galois representations of GK . Let Gr1 be the cover of the affine Grassmannian
over Zp associated to the group GL2/Zp

, with loop variable v(v + p) and first
principal congruence level with respect to v. The main result of [LHMM23] estab-
lishes a smooth locally isomorphism between Zτ and a closed irreducible subvari-
ety of (Gr1)

f obtained as the p-saturation of explicit schemes of group theoretic

2Note that we may assume that γ′ ≡ h − γ −
∑f−1

j=0 pjmodpf − 1 since otherwise the ring

Rη,τ
ρ̄ is known to be zero, see [CDM23].
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nature. Our model is “really” explicit: for p > 16 + 7 and any 2-dimensional
F-representation ρ̄ of GK (without assumption of irreducibility), it allows us to
determine the deformation ring Rη,τ

ρ̄ .

As a corollary, for any gene X, we constructed a ring RX quotient of polynomial
ring over Z[t] modulo an ideal IX ⊂ RX ([LHMM23]). This ring is independent of
p and conjecture 1 is proved by showing that Rη,τ

ρ̄ is isomorphic to the completion
of RX/(t − p) ⊗ O at the ideal generated by t and the variables of RX, where
X = X(τ, ρ̄).

Theorem 1 (Theorem 5.4.16 [LHMM23]). Conjecture 1 is true.

In fact, we obtain in [LHMM23] a more general version of Theorem 1 also valid
for reducible Galois representations.

3. An example

Take f = 6, p > 103, h = p5 − p4 + 2p2 + 1 and

γ = −p4 − p3 + p2 − p+ 1 and γ′ = −p4 − 1.

Then, for this explicit example, we obtain X = X(τ, ρ̄) a given below:

X0 = B X1 = A X2 = AB X3 = O X4 = AB X5 = O

X6 = A X7 = B X8 = A X9 = A X10 = A X11 = B

3.1. The Kisin variety. By [CDM18], we can extract from X(τ, ρ̄) the explicit
description of the Kisin variety associated to ρ̄ and τ as a subvariety of ([xi :
yi])0≤i≤5 ∈ (P1

F
)f given by the following equations y3 = 0 = y5 = 0, x0y1 =

y1x2 = x2y3 = x3y4 = 0. Hence, for our explicit example, the Kisin variety
associated to ρ̄ and τ is the union of a projective line and a projective plane:

{

[x0 : y0]× [1 : 0]× [x2 : y2]× [1 : 0]× [1 : 0]× [1 : 0]
∪[0 : 1]× [x1 : y1]× [0 : 1]× [1 : 0]× [1 : 0]× [1 : 0]

, [xi : yi] ∈ P
1

F
, 0 ≤ i ≤ 2

}

.

3.2. Common weights and irreducible components. In [CDM23], we give
an algorithm to construct the set W (τ, ρ̄) of common weighs of ρ̄ and τ from X.
It is given up to torsion by some powers of the determinant by ⊗5

i=0(Sym
riF2)τi

for

(ri)0≤i≤5 ∈

{

(1, p− 1, p− 2, 0, p− 2, p− 1), (1, p− 1, 0, p− 1, p− 1, p− 1),
(0, p− 1, p− 2, 0, 0, 0), (1, p− 1, p− 2, p− 2, p− 1, p− 1)

}

.

By [LHMM23], we have

Rη,τ
ρ̄ =

O[[Y5, X0, X1, X2, X3]]

(X1X2X3Y5 + p(X1 +X2)Y5 + p2X2X3 + p3)
⊗̂O[[X5, Y3]]

where the first and second summand are respectively the rings R0 and R1 associ-
ated to:

X11 = B X0 = B X1 = A X2 = AB X3 = O

X5 = O X6 = A X7 = B X8 = A X9 = A
 R0
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and to

X3 = O X4 = AB X5 = O

X9 = A X10 = A X11 = B
 R1

We immediately check that the number of irreducible components of Rη,τ
ρ̄ /(πE)

is 4 and is equal to the cardinal of W (τ, ρ̄).
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Galois action on cyclic Beyli curves

Rachel Pries

By Grothendieck’s philosophy, the absolute Galois group of Q is determined by
how it acts on curves that are covers of the projective line branched at {0, 1,∞}.
There are open questions about this even in the most simple case, when the cover
is cyclic with prime degree. For example, consider the curve Xk : y

p = x(x − 1)k

for p prime and 1 ≤ k < p− 1; it is a quotient of the Fermat curve of degree p.

We report on work in progress to reprove, and extend, some previous results of
Greenberg [Gre81] and Kurihara [Ku92] on the arithmetic properties of p-torsion
points of the Jacobian of certains families of curves via explicit methods on the
étale homology of Fermat curves in [DPSW18].
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In the first part of this report, I review a theorem of Greenberg [Gre81] and
Kurihara [Ku92], about the p-torsion points of the Jacobian of Xk that are defined
over the cyclotomic field K = Q(ζp); the proof of this theorem relies on many
foundational topics in algebraic number theory. In the second part of this report,
I review some work of Anderson [And87] about the action of GK on the étale
homology of the Fermat curve of degree p with coefficients in Z/pZ; in earlier joint
work with Davis, Stojanoska, and Wickelgren [DPSW18], we implemented and
investigated this action. In future work, I will use this material to reprove and
extend the result of Greenberg.

1. On arithmetic jacobian properties of a certain family of curves

In his paper, Greenberg establishes multiple results on the p-power torsion points
of the Jacobian of the curve:

X ′
a : y

p = xa(1− x) 1 ≤ a ≤ p− 2

which is isomorphic to the curve Xk : y
p = x(1− x)k when k = a−1, a quotient of

a Fermat curve.

The Jacobian Jk = Jac(Xk) is a principally polarized abelian variety of dimension
g = (p − 1)/2. Let γ ∈ Aut(Xk) be the automorphism γ((x, y)) = (x, ζy), where
ζ is a pth-root of unity, and consider π = γ − 1 ∈ End(J(Xk)). Since

1 + γ + · · ·+ γp−1 = 0 in End(Jk)

one has that Z[ζ] ⊂ End(Jk), and we deduce that Jk has complex multiplication
by K = Q(ζp).

For an integer s, let Jk[π
s] denote the kernel of πs. Note that

Jk[π] ⊂ Jk[π
2] ⊂ · · · ⊂ Jk[π

p−1] = Jk[p].

A goal is to determine the field of definition of Jk[π
s] for each 1 ≤ s ≤ p− 1.

1.1. Some number fields. Recall that K = Q(ζp). Let K
+ = Q(ζp + ζ−1

p ). Let

E = O∗
K (resp. E+ = O∗

K+) denote the group of units in OK (resp. OK+).

Let V ⊂ K∗ be the subgroup generated by {±ζ, 1−ζi | 1 ≤ i ≤ p−1}. Consider
the cyclotomic units C = V ∩E of K and the real cyclotomic units C+ = C ∩E+

of K+.

For an integer j, consider the real cyclotomic unit ηj = ζ(1−j)/2(1 − ζj)/(1 − ζ).
Then C+ is generated by {−1, ηj | 1 < j ≤ (p− 1)/2}.
Let L be the splitting field of 1−(1−xp)p overQ. Let Lcyc+ = K( p

√
ηj)1<j≤(p−1)/2.

1.2. Some Theorems of Greenberg. Among the many results of Greenberg,
the three in our field of interest are as follows.

Theorem 1 (Greenberg Theorems [Gre81]). For the curve Xk and with the pre-
vious notations as above:

(1) Jk[π
3] ⊂ Jk[p](K).
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(2) There is an equality if and only if (E+/C+)p−3 is trivial, where the sub-
script p− 3 denotes the p− 3 eigenspace for the Gal(K/Q) action.

(3) The field of definition of ⊕p−2
k=1Jk is Lcyc+.

We refer to Theorem 1 ibid. for (1), and to Theorem 4 ibid for (3).

The paper [Gre81] is only 15 pages, but it uses a wide variety of techniques in
arithmetic geometry and algebraic number theory.

1.3. A plethora of arithmetic geometry and number theory techniques.
I include an outline of Greenberg’s proof below. I first recall how to obtain part
(1) of Theorem 1.

(1) Weil divisors. The p-torsion Jk[p] can be described using Weil divisors.
(2) Galois representations. Let F be a number field and GF its absolute Galois

group. Let ρ be the Galois representation of GF on the Tate module.
Then J [p∞](F ) = J [πs] if and only if s is the maximum integer such that
ρ(σ) ≡ 1 mod πs for all σ ∈ GF .

(3) One can show Jk[π] = J [p](Q) using the degree 0 divisor η0 − η∞; here η0
is the point (0, 0) and η∞ is the point at infinity on Jk.

(4) Weil pairing. Using the Weil pairing, Greenberg shows that Jk[p](K) =
Jk[π

s] for an odd integer s.
(5) Norm computation. A longer calculation with unit groups and norms

shows that s > 1. This stage completes the proof of (1) in Theorem 1,
that is Jk[π

3] ⊂ Jk[p](K).

Let us sketch how to obtain parts (2) and (3) of Theorem 1.

(1) Zeta functions and Jacobi sums. Working with the zeta function of Xk

over a finite field, Greenberg shows that the value ρ(σ) can be expressed
as the conjugate of a Jacobi sum g(1)g(k)/g(1 + k).

(2) Artin map. Using the Artin map, he computes the rank dk over Zp of
the field generated by all points of p-power order over K̄. By [Gre81,
Theorem 2], one obtains that 0 ≤ dk ≤ (p+ 1)/2.

(3) Working over the local field Kp = Qp(ζp), Greenberg shows that Jk[π
4] ⊂

Jk(Kp) if and only if p divides the Bernouilli number Bp−3, which can
happen, e.g. when p = 16843.

(4) Eigenspace decompositions. Finally, Greenberg considers L(k), the field
of definition of Jk[p]. He decomposes the Galois group of L(k)/K into
eigenspaces for the action of Gal(K/Q).

(5) Artin–Hasse reciprocity law, and Bauer’s theorem. The ith eigenspace
determines an extension of K which equals K or K( p

√
ηj) where i+ j = p.

To prove this, Greenberg uses power residue symbols, the Artin–Hasse
reciprocity law, and Bauer’s theorem about a Galois field extension being
determined by the set of primes that split completely. This stage yields
parts (2) and (3).
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Remark 1.

(1) On the Zp-rank in (2) of Theorem 1. One shows that dk < (p + 1)/2 in
numerous examples.

(2) Later, Tzermias found explicit divisors that generate Jk[π
2] and Jk[π

3],
see [Tz00].

1.4. A p-Sylow Class group condition. Let (ClK)p denote the p-Sylow sub-
group of the class group ofK. Then (E+/C+)p−3 is trivial if and only if (ClK)p,p−3

is trivial. Using Quillen K-groups, Kurihara proved that (ClK)p,p−3 is trivial for
all p, see [Ku92, Corollary 3.8].

First, Lee and Szczarba proved that K4(Z) = 0 modulo 2 and 3 torsion. Then,
Kurihara proved that K2r−2(Z) contains H2(Z[1/p],Zp(r)) as a summand.

When r = 3, this shows that H2(Z[1/p],Zp(3)) = 0, which implies that (ClK)p,p−3

is trivial.

2. Explicit Galois action via étale homology

For the Fermat curve X : xp + yp = 1 of degree p and the cyclotomic field K =
Q(ζp), Anderson described the action of GK on the étale homology H1(X ;Z/pZ);
he proved that it factors through L/K where L is the splitting field of 1 − (1 −
xp)p [And87, Section 10.5]. Anderson shows that this action is determined by
an analogue of the classical gamma function. It can be analyzed by taking a
logarithmic derivative and working in the module of Kähler differentials. We refer
to [AI88] for similar results.

In [DPSW18, Theorem 1.1], the authors found an explicit formula for the action
of each σ ∈ Gal(L/K) on H1(X ;Z/pZ), when p satisfies Vandiver’s conjecture.
This proof uses Kummer maps and motivic homology. We refer to [AHGT21] for
an overview of this work.

This talk was an announcement of work that will appear in a future paper. In this
paper, I will use the material in Section 2 to reprove and extend the Theorem in
Section 1 about the field of definition of Jk[π

s]; specifically, I reprove the theorem
for s = 3 and extend it for s = 5.

The main point is that the proof does not need most of the results in algebraic
number theory listed in Section 1. Instead, it is possible to: first identify the
kernel of πs with a subspace of the homology of Jk with coefficients in Z/pZ; and
second to use the explicit formulas for the action found in [DPSW18, Theorem
1.1] to determine the subgroup of the absolute Galois group GK that fixes that
subspace. Stay tuned!

Acknowledgement. This research was supported in part by NSF grant DMS-22-
00418.
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On the geometric outer monodromy representation associated to the
moduli stack of hyperbolic curves

Yu Iijima

We give a panorama of recent progress on some properties of geometric and non-
geometric universal outer monodromy representations for the moduli stack of hy-
perbolic curves in their pro-Σ and pro-l versions. This includes results on the
universal fixed field including a conjecture due to Oda, see [Tak12, §0], on the
congruence subgroup problem, see [Iva06, §1], and on the geometric version of
the Grothendieck conjecture for hyperbolic curves via the combinatorial anabelian
geometry.

Throughout this report, we consider Σ a nonempty set of prime numbers, we fix
l a prime number, (g, r) a pair of nonnegative integers such that 2g − 2 + r is a

positive integer, and we take k a field of characteristic zero, with k an algebraically
closure of k. We shall denote by P the set of all prime numbers.

1. The geometric outer monodromy representation associated to
the moduli stack of hyperbolic curves

The moduli stackMg,r of r-pointed smooth proper curves of genus g over k whose
r marked points are equipped with an ordering comes with an universal curve
Cg,r →Mg,r overMg,r. This provides an exact sequence of profinite groups

(1) 1 // Πg,r
// π1(Cg,r) // π1(Mg,r) // 1

where Πg,r denotes the étale fundamental group of a geometric fiber of Cg,r →
Mg,r (which is the hyperbolic curve obtained by removing r distinct points from

a smooth proper curve of genus g over k).
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We further write Γg,r for the étale fundamental group ofMg,r ⊗k k, Π
Σ
g,r for the

maximal pro-Σ quotient of Πg,r, and ΠΣ
g for the quotient of ΠΣ

g,r determined by
the smooth compactification of the geometric fiber of Cg,r →Mg,r.

Definition 1. With the notations above, we shall write

ρΣg,r : π1(Mg,r) −→ Out(ΠΣ
g,r) and ρΣ-geo

g,r : Γg,r −→ Out(ΠΣ
g,r)

for the outer action determined by the exact sequence (1) and for the restriction
of ρΣg,r to Γg,r respectively. We shall refer to ρΣg,r as the universal pro-Σ outer

monodromy representation associated toMg,r, and ρΣ-geo
g,r as the geometric pro-Σ

outer monodromy representation associated toMg,r.

Note that M0,3, and C0,3 is naturally isomorphic to Spec k, and T := P1
k \

{0, 1,∞}, respectively. In particular, ρΣ0,3 may be identified with the pro-Σ outer

Galois representation associated to T . Thus, we shall write also ρΣT := ρΣ0,3.

Remark 1. Write MCGg,r for the mapping class group of an r-pointed Riemann
surface of genus g whose r marked points are equipped with an ordering, and
Πdisc

g,r for the topological fundamental group of an r-punctured Riemann surface of
genus g. Then Γg,r is naturally isomorphic to the profinite completion of MCGg,r,
and the natural faithful outer representation MCGg,r →֒ Out(Πdisc

g,r ) fits into a
commutative diagram of groups

MCGg,r
� � //

� _

��

Out(Πdisc
g,r )
� _

��
Γg,r

ρΣ-geo
g,r

// Out(ΠΣ
g,r),

where the upper horizontal arrow and the vertical arrows are injective.

Write Gk := Gal(k/k). The following theorem is fundamental for ρΣg,r and

ρΣ-geo
g,r .

Theorem 1 (Ihara, Oda, Nakamura, Takao,Ueno, Matsumoto, Hoshi–Mochizuki).
Suppose that Σ is equal to either P or {l}. Then the kernel of the natural homo-
morphism Gk ։ im(ρΣg,r)/im(ρΣ-geo

g,r ) is equal to the kernel of ρΣT .

In the above, one has identified Gk ≃ π1(Mg,r)/Γg,r. We refer to [Tak12,
Theorem 0.5, (2)], [NodNon, Corollary 6.4] for proof and original statements.

Remark 2. It is well-known that the kernel of ρPT is equal to the kernel of the
natural homomorphism Gk → GQ (cf. [Bel79, Corollary to Theorem 4]). Also,

the field corresponding to the kernel of ρ
{l}
T is generated by the higher circular

l-units, i.e., the elements of k obtained from the set {0, 1,∞} by iterated processes
of taking l-power and cross ratios (cf. [AI88, Theorem B]).

In the rest of this report, we assume that k = k, hence also, π1(Mg,r) = Γg,r

and ρΣg,r = ρΣ-geo
g,r .
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2. The congruence subgroup problem of the mapping class group

The following problem is known as the congruence subgroup problem of the map-
ping class group.

Problem 1. Is the universal pro-P outer monodromy representation ρPg,r injec-
tive?

For the congruence subgroup problem of the mapping class group, the following
affirmative results are known.

Theorem 2 (Asada, Boggi). Suppose that g ≤ 2. Then ρPg,r is injective.

We refer to [Asa01, Theorem] for genus 0, 1 and [Bog20, Theorem 1.4, (ii)] for
g = 2 for proofs and original statements. See also to [DDH89] for g = 0.

Let us introduce a pro-l version of the congruence subgroup problem of the map-
ping class group.

Definition 2. We shall write Γg,r[l] for the kernel of the natural action Γg,r →
Aut((Π

{l}
g )ab ⊗Zl

(Z/l)) determined by ρ
{l}
g,r , and Γg,r{l} for the maximal pro-{l}

quotient of Γg,r[l]. Note that the restriction ρ
{l}
g,r |Γg,r [l] : Γg,r[l] → Out(Π

{l}
g,r ) of

ρ
{l}
g,r to Γg,r[l] factors through Γg,r[l]։ Γg,r{l}. We shall write

ρl-cspg,r : Γg,r{l} −→ Out(Π{l}
g,r )

for the resulting homomorphism.

The following problem may be regarded as a pro-l version of the congruence
subgroup problem of the mapping class group.

Problem 2. Is ρl-cspg,r injective?

For the pro-l congruence subgroup problem of the mapping class group, the
following affirmative results are known.

Theorem 3 (Asada, Hoshi–Iijima, Boggi). Suppose that one of the following two
conditions is satisfied: (a) g = 0 or (b) g ≤ 2 and l = 2. Then ρl-cspg,r is injective.

We refer to the remark at the end of [Asa01, §1], [Bog20, Theorem 1.4, (ii)] for
proof and original statements.

On the other hand, for the pro-l congruence subgroup problem of the mapping
class group, the following negative result is also known.

Theorem 4 (Hoshi–Iijima). Suppose that g = 1, and that l > 7. Then ρl-cspg,r is
not injective.

We refer to [HI19, Theorem A, (ii)] for proof and original statement.
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3. A geometric version of the Grothendieck conjecture for the
moduli stack of hyperbolic curves

We introduce a subgroup of Out(ΠΣ
g,r) for the study of the universal pro-Σ outer

monodromy representation.

Definition 3. We shall write OutC(ΠΣ
g,r) for the group of C-admissible outer

automorphisms of ΠΣ
g,r, i.e., outer automorphisms which induce self-bijections of

the set of conjugacy classes of cuspidal inertia subgroups of ΠΣ
g,r.

Note that ρΣg,r : Γg,r −→ Out(ΠΣ
g,r) factors through OutC(ΠΣ

g,r) →֒ Out(ΠΣ
g,r).

Let H be an open subgroup of Γg,r. We consider the group AutMg,r
(Cg,r) of auto-

morphisms of the universal curve Cg,r overMg,r, and the group AutΓg,r
(π1(Cg,r))

of automorphisms of π1(Cg,r) over Γg,r and the natural surjection π1(Cg,r)։ Γg,r.
We then obtain a composition of natural homorphisms

(2) AutMg,r
(Cg,r) −→ AutΓg,r

(π1(Cg,r))/Inn(Πg,r)

−→ ZOut(ΠΣ
g,r)

(im(ρΣg,r)) ⊆ ZOut(ΠΣ
g,r)

(ρΣg,r(H))

where Z(·)(·) denotes the centralizer.

The following theorem is known as a geometric version of the Grothendieck con-
jecture for the moduli stack of hyperbolic curves which may be regarded as an
analogue of the Grothendieck conjecture for a single hyperbolic curve.

Theorem 5 (Hoshi–Mochizuki). Let H be an open subgroup of Γg,r, and suppose
that 2g − 2 + r > 1. Then the composite of natural homomorphisms of Eq. (2)
determines an isomorphism

AutMg,r
(Cg,r) ∼−→ ZOutC(ΠΣ

g,r)
(ρΣg,r(H)).

In the case above, note that AutMg,r
(Cg,r) is isomorphic to





Z/2× Z/2 if (g, r) = (0, 4);

Z/2 if (g, r) ∈ {(1, 1), (1, 2), (2, 0)};
{1} if (g, r) /∈ {(0, 4), (1, 1), (1, 2), (2, 0)}.

For proof and original statement, we refer to [CbTpI, Theorem D, (i)].

The author proved the following theorem which is a generalization of Theorem 5.

Theorem 6 (Iijima). Let H be an open subgroup of Γg,r, and suppose that 2g −
2 + r > 1. Then the composite of natural homomorphisms of Eq. (2) determines
an isomorphism

AutMg,r
(Cg,r) ∼−→ ZOut(ΠΣ

g,r)
(ρΣg,r(H)).

We refer to [Iij23, Theorem A] for a proof and original statement.
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Remark 3. By combining Theorem 3 with the commutative diagram of groups of
Remark 1, we may obtain an isomorphism

AutMg,r
(Cg,r) ∼−→ ZOut(Πdisc

g,r )(MCGg,r)

even if r > 0, cf. [Iij23, Corollary 4.2].
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Covers of P1 and their moduli: where arithmetic, geometry and
combinatorics meet

Béranger Seguin

During the last fifty years, the theory of finite branched covers of the projective
line has played a major role in inverse Galois theory. The main reason behind this
success is that this theory makes it possible to use topological and geometric argu-
ments to study Galois theory over function fields (with consequences over number
fields because of Hilbert’s irreducibility theorem). Moreover, the topological ob-
jects involved admit combinatorial descriptions — this has allowed computational
approaches to shed new light on various aspects of inverse Galois theory.

In this report, we present two contributions: the first one is the description
of combinatorial objects generalizing dessins d’enfants to covers of the line with
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arbitrary numbers of branch points, the second one is a patching result over number
fields for components of Hurwitz spaces, i.e. irreducible families of covers.

For the whole report, we fix a finite group G and an integer n.

1. Covers of the line

We fix a set t = {t1, . . . , tn} of n distinct points of the complex projective line
P1(C) (which we call a configuration) and a basepoint t0 ∈ P1(C) \ t. We start by
recalling some terminology to avoid any ambiguity.

1.1. G-covers. In this report, a cover (branched at t) always refers to a finite
covering map p : Y → P1(C) \ t. A marked cover comes with a point in the
fiber p−1(t0). A G-cover comes with a group morphism G → Aut(p) inducing
a simply transitive action of G on p−1(t0). We do not require connectedness.
Connected G-covers are Galois covers with automorphism group isomorphic to G.

The monodromy morphism of a markedG-cover is a group morphism π1(P1(C)\
t, t0) → G, which is surjective if and only if the cover is connected. Its image is
the monodromy group of the cover. Each group morphism π1(P1(C) \ t, t0) → G
is the monodromy morphism of a marked G-cover, unique up to isomorphism.

Since the fundamental group of P1 \ t is generated by loops γ1, . . . , γn subject to
the sole relation γ1 · · · γn = 1, isomorphism classes of marked G-covers branched at
t correspond to n-tuples (g1, . . . , gn) of elements of G (the monodromy elements)
satisfying g1 · · · gn = 1. Connectedness corresponds to the condition that the
monodromy elements generate G.

1.2. Generalized dessins. In the case n = 3, a combinatorial model of covers of
P1(C)\{0, 1,∞} has been introduced in [Gro97] under the name dessins d’enfants.
The case n = 3 is special in two ways:

(1) Since PSL2(C) acts 3-transitively on points, all choices of t are equivalent.
(2) This case is universal for the study of algebraic curves: by Bely̆ı’s theorem,

every curve defined over Q̄ covers P1(C) with at most 3 branch points.

However, if one is interested not in algebraic curves, but in covers (morphisms
between curves) with arbitrary numbers of branch points, which many applications
in inverse Galois theory involve, then this description is not enough. For example,
there are no connected G-covers when n = 3 and G is not 2-generated.

In ongoing work1, we define and study a notion of “generalized dessins”. These
objects may be described as (n−1)-partite “rainbow-colored” hypermaps (instead
of being edges, the “hyperedges” are (n− 1)-gones with one vertex of each color,
and there are n− 1 colors) embedded on surfaces. One hope is that, starting with
this description, a program to describe the Galois action on covers combinatorially
is developed, in the spirit of Grothendieck-Teichmüller theory which has basically
(although this is a vast simplification) come out of the case n = 3.

Here is an example:

1At the moment, this work has only been made public as a series of blog posts, accessible at
the following URL: https://lebarde.alwaysdata.net/blog/2023/dessins-1/.

https://lebarde.alwaysdata.net/blog/2023/dessins-1/
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2

4
6 3

5

1

Fig 1. A generalized dessin corresponding to the case n = 4, where we
have labeled the hyperedges (grey triangles)

Write down the cycles corresponding to the appearance order of the hyperedges
during a counterclockwise rotation around each white vertex. The product of
these cycles defines a permutation σ◦ = (152)(364) of the hyperedges. Doing
the same for crossed and black vertices yields σ⊗ = (14) and σ• = (16)(24)(35).
Finally, let σ∞ = (σ◦ σ⊗ σ•)

−1 = (13)(45), whose four cycles correspond to the
four connected components of the complement of the dessin (i.e. the white areas)
– depending on which component the •−◦ boundary of a given hyperedge touches.
The permutations σ◦, σ⊗, σ•, σ∞ are the monodromy elements of a cover: this
dessin corresponds to a non-Galois connected cover of degree 6 of the projective
line branched at four points. Its monodromy group is the subgroup ofS6 generated
by σ◦, σ⊗, and σ•, which is isomorphic to Z/2Z×S4. This cover has genus 0 (it
is embedded in this page!).

t3

t2

t1

∞

Fig 2. A triangle, drawn on P1(C) \ {t1, t2, t3,∞}, whose preimage
under a covering map gives the corresponding dessin.

2. Patching components of Hurwitz spaces over number fields

In this section, we present Hurwitz spaces, their components, and the gluing of
components, and we give number-theoretical applications of these objects. The
original results in this section are all in [Seg22, Seg23b, Seg23a]. We fix a number
field K.

2.1. Hurwitz spaces. Riemann’s existence theorem implies that covers form a
category equivalent to that of algebraic covers, i.e. generically étale finite mor-
phisms from a smooth curve to P1

C. Since smooth curves are determined by their
function fields, connected G-covers correspond to Galois extensions of C(T ) with
Galois group G. If a G-cover is moreover defined over K, it corresponds to a
regular extension F |K(T ), where regular means that F ∩ K̄ = K.
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There is a Z[1/|G|]-scheme Hur∗G,n, the Hurwitz space, whose C-points corre-
spond to marked G-covers branched at n distinct points. Moreover, K-points of
this scheme correspond to regular Galois G-extension of K(T ) having an unrami-
fied prime of degree 1. To put it shortly, this turns instances of the inverse Galois
problem into Diophantine problems: do Hurwitz spaces have rational points?

2.2. Fields of definitions of concatenated components. From now on, we
call component a geometrically connected component of the Hurwitz space Hur∗G,n.
Since a K-point must lie in a component defined over K, fields of definition of
components are of special interest for inverse Galois theory: they tell us where to
look for. There is a topological gluing operation on components, induced in terms
of tuples by the concatenation:

(g1, . . . , gn), (g
′
1, . . . , g

′
n′) 7→ (g1, . . . , gn, g

′
1, . . . , g

′
n′).

We denote by xy the component obtained by gluing two components x and y. The
focus of [Seg23b] is the following question:

Problem 1. Are components obtained by gluing components defined over K
themselves defined over K?

Previous work on this question includes [Cau12], where Cau obtains some pos-
itive results generalizing those of [DE06]. The following result is [Seg23b, Theo-
rem 5.4]:

Theorem 1. Let x, y be components defined over K with respective monodromy
groups H1, H2 (⊆ G). Let H = 〈H1, H2〉. Then there is an element γ ∈ H such
that H = 〈H1, H

γ
2 〉 and such that xyγ is defined over K.

The proof of the theorem is in three steps:

Step 1 – construct infinitely many linearly disjoint extensions of K over
which x and y have points. Take arbitrary geometric points in the components
x and y lying above a K-rational configuration, and denote by K1 the smallest
Galois extension of K over which they are rational. By Hilbert’s irreducibility
theorem, there is a K-rational configuration above which the fibers of x and y are
both irreducible over K1. Choose arbitrary geometric points in the fibers of x and
y above t. Let K2 be the smallest Galois extension of K over which these points
are both rational. By irreducibility of the fibers, K2 and K1 are linearly disjoint
over K. Iterate this process to define an infinite sequence K1,K2, . . . of pairwise
linearly disjoint extensions of K such that for all i ≥ 1, the components x, y both
have Ki-points, denoted respectively fi and gi.

Step 2 – patching. See fi and gi as covers over the complete valued fieldKi((X)).
Use the algebraic variant of Harbater’s theory of patching (cf. [HV96]) to patch
them into a cover defined over Ki((X)) with monodromy group H . By a result of

Cau [Cau12, Prop. 3.9], the patched cover is in a component ci of the form xγ′

iyγi .

Step 3 – pigeonhole. Since there are finitely many components of the form xγ′

yγ ,
there are distinct i, i′ such that ci = ci′ . The component ci = ci′ is defined over
K̄ ∩Ki((X))∩Ki′((X)) = K. Finally, conjugate ci by (γ′

i)
−1 to ensure γ′ = 1. �
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This theorem may be used to construct components defined over Q with relatively
few branch points compared to those constructed in [Cau12]:

Corollary 1 ([Seg23a, Proposition 8.4.8]). If G is generated by elements g1, . . . , gn
among which m(i) elements are of order i, there is a component defined over
Q of the Hurwitz space of connected G-covers whose number of branch points is
2m(2) +

∑
i≥3 m(i)ϕ(i), where ϕ denotes Euler’s totient function.

For example, if the group G is generated by two elements with orders in
{2, 3, 4, 6}, then there are components defined over Q of connected G-covers with
four branch points (of Harbater-Mumford type). This applies to the Mathieu
group M23 and to the group PSL2(16)⋊ Z/2Z.

2.3. The use of gluing for enumerative problems, and extensions of Fq(T ).
Besides allowing to construct components with small fields of definition, the gluing
operation also helps in estimating the asymptotical homology of Hurwitz spaces,
which is key to the study of Malle’s conjecture over function fields over finite fields.
We refer to [ETW23] or to Westerland’s talk in the present volume for additional
details.

The gluing operation on components of Hurwitz spaces induces a ring structure
on the set of formal sums of components (the “ring of components”). In [Seg22],
we studied this ring closely in order to compute both the exponent (the “splitting
number”) and the leading coefficient of the asymptotical number of components
as the number of branch points increases. This estimate has been applied in the
updated version of [ETW23] to the question of the distribution of G-extensions of
Fq(T ).
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Twisted Heilbronn Virtual Characters

Go Yamashita

This report deals with some analyticity of Artin L-functions. We discuss a twisted
version of Heilbronn characters, used for establishing zero-poles and analycity
properties of Artin L-functions via group-theoretic machinery. We establish gen-
eralisations of (untwisted) theorems of Heilbronn, Stark, and Foote-Murty on
holomorphicity and report generalisations of (untwisted) theorems of Hu-Kaneko-
Martin-Schildkraut and Browkin on the zeros and poles of Artin L-functions. The
proofs are similar as the ones in the untwisted versions except that we use a the-
orem in the finite group theory as a new ingredient in the theory of Heilbronn
virtual characters, cf. [Yam23].

The original motivation of this study to provide complementary information to
forthcoming developments of inter-universal Teichmüller theory, especially appli-
cations to L-functions and their distribution of zero-poles. However, at the time
of writing, this study has no logical relation to them.

1. Analyticity results for Artin L-functions

Let F be a number field, and fix an algebraic closure F of F . Set GF := Gal(F/F )
and consider K a finite Galois extension of F in F . Set GK := Gal(F/K). We
recall that to an Artin representation (= a continuous action on a finite dimen-
sional C-vector space) α of the Galois group GK , one attaches an Artin L-function
LK(s, α) defined as an Euler product. Recall that an A-group is a group whose
Sylow subgroups are all abelian (see also Definition 1 below):

Theorem 1 (Theorem 1.4 of [Yam23]). Let F , K, and the Galois groups GF

and GK as above. Let α be an Artin representation of GF . We further assume
that Im(α|GK

) is an A-group. Then, for any irreducible Artin representation ρ of
Gal(K/F ), we have the following:

(1) A generalisation of Heilbronn-Stark’s theorem. If s = s0 6= 1 is not a zero
of LK(s, α|GK

), then LF (s, ρ⊗ α) is holomorphic at s = s0 and does not
vanish at s = s0.

(2) A generalisation of Stark’s theorem. If LK(s, α|GK
) has a simple zero at

s = s0 6= 1, then LF (s, ρ ⊗ α) is holomorphic at s = s0, and the order of
zero at s = s0 is at most 1.

(3) A generalisation of Foote-Murty, Aramata-Brauer’s theorem. Both of
LK(s, α|GK

)LF (s, ρ⊗α) and LK(s, α|GK
)LF (s, ρ⊗α)−1 are holomorphic

at s 6= 1.

Here, note that ρ⊗α is the tensor product representation of GF when we regard
ρ as the Artin representation of GF via the natural quotient GF ։ Gal(K/F ).
For classical case (i.e., the case where α is the trivial representation), we refer
to Heilbronn-Stark’s theorem cf. [FGM15, p.471, l.12], Stark’s theorem [Sta74,
Theorem 3], and Foote-Murty, Aramata-Brauer’s theorem [FM89, Corollary 4].
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One also has the following two related results on zero and poles of Artin L-
functions.

Theorem 2 (A generalisation of Hu-Kaneko-Martin-Schildkraut’s theorem, The-
orem 1.6 of [Yam23]). Let K be any non-abelian finite Galois extension of F . Let
χ be an Artin representation of GK such that Im(χ) is an A-group, and χ is ex-
tendable to GF . Then, LK(s, χ) has infinitely many zeros of order > 1 in the
critical strip 0 < Re(s) < 1.

We refer to [HKMS22, Theorem 1.1] for the classical case (i.e., the case where
χ is the trivial representation).

Theorem 3 (A generalisation of Browkin’s theorem, Theorem 1.7 of [Yam23]).
For any number field F and any natural number n, there exists a finite Galois
extension K of F such that, for any Artin representation χ of GK whose image is
an A-group and which is extendable to GF , LK(s, χ) has infinitely many zeros of
order ≥ n in the critical strip 0 < Re(s) < 1.

We refer to [Bro13, Th. 5.1] for the classical case (i.e., the case where χ is the
trivial representation).

2. Finite Group Properties

We recall some basic definitions in the theory of finite groups that will be applied
to the case where G is a finite subquotient of the Galois group GF .

Definition 1. Let G be a finite group.

(1) G is called supersolvable, if there exist subgroups H0 ⊂ H1 ⊂ · · · ⊂
Hn ⊂ G such that H0 = {1}, Hn = G, all Hi’s are normal subgroups of
G, and all Hi+1/Hi’s are cyclic.

(2) G is called an A-group, if all Sylow subgroups are abelian (Following P.
Hall cf. [Ito52]).

(3) G is called monomial, or M-group, if any irreducible representation of
G is the induced representation of a one-dimensional representation of a
subgroup of G.

It is well-known that any supersolvable group is monomial. Ito’s theorem says
that any A-group is monomial [Ito52]. Taketa’s theorem says that any monomial
group is solvable [Tak30].

Remark 1. We have the following implications for finite groups:

nilpotent +3 supersolvable +3 monomial
Taketa +3 solvable

abelian +3

KS

A-group,

Ito

KS

where the left bottom is a cartesian, i.e., a nilpotent group is an A-group if and
only if it is abelian. Note that all implications are strict and that there is no
implication between supersolvable groups and A-groups.
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The following is a key ingredient for the generalisation to the twisted version of
the theory of Heilbronn virtual characters.

Theorem 4. Let G be a finite group, and H a normal subgroup of G. If we assume
that H is an A-group, and that G/H is supersolvable, then G is monomial.

This result is indeed Huppert’s theorem [Hup53] combined with Ito’s theorem
[Ito52] and Taketa’s theorem [Tak30].

3. Twisted Heilbronn Virtural Characters

Let K ⊂ L (⊂ F ) be finite Galois extensions of F in F . We write G := Gal(K/F ),

and G̃ := Gal(L/F ). Fix 1 6= s0 ∈ C. Put

nG̃(α) := ords=s0LF (s, α)

for any Artin representation α of G̃, where LF (s, α) is the Artin L-function at-

tached to α. For any subgroup H ⊂ G, let H̃ ⊂ G̃ denote the pullback of H via

the canonical quotient G̃։ G (Hence, {̃1} = Gal(L/K)).

Definition 2. For an Artin representation α of G̃, we define

θαG :=
∑

ρ∈Irr(G)

nG̃(ρ
G̃ ⊗ α)Tr(ρ)

that we call Heilbronn virtual character twisted by α.

Here, we write ρG̃ for the representation of G̃ obtained by the composition of

the canonical quotient G̃։ G and ρ. Note that while θαG is a virtual character of

G, ρG̃ ⊗ α is however not a representation of G in general, but a representation

of G̃. Note also that, when α = 1 and G̃ = G, then θ1G is the usual (untwisted)
Heilbronn virtual character θG so far, cf. [FGM15].

We further write

rα := n
{̃1}

(α|
{̃1}

) = n
{̃1}

(α|ker(G̃։G)) = ords=s0LK(s, α|GK
).

By the decomposition of the regular representation of G and the projection for-
mula, we can show a Takagi-type equality

(Tak)
∑

ρ∈Irr(G)

(dim ρ)nG̃(ρ
G̃ ⊗ α) = rα

In the untwisted case, this equality comes from the (Artin-)Takagi’s decomposition
ζK(s) =

∏
ρ∈Irr(G) LF (s, ρ)

dim ρ.

The following lemma, which comes from the compatibility of induced representa-
tions with Artin L-functions and the projection formula in the twisted case, is a
key in the theory of Heilbronn virtual characters:
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Lemma 1 (Lemma 3.2, (3), (5) of [Yam23]). For any Artin representation α of

G̃ and any subgroup H ⊂ G, we have

ResGH(θαG) = θ
ResG̃

H̃
α

H .

In particular, we have θαG(1) = θαG|{1}(1) = θ1{1}(1) = rα.

Remark 2. We can also show that for any subgroup H ⊂ G and any Artin repre-

sentation β of H̃ , one has

IndGH(θβH) = θ
IndG̃

H̃
β

G

cf. [Yam23, Lemma 3.2, (4)]. Unlike the usual (untwisted) Heilbronn virtual
characters, the twisted Heilbronn virtual characters are stable under taking the
induced representations. This is a characteristic advantageous property of the
twisted Heilbronn virtual characters, and further research and applications of
using this stability property is awaited, because this property is not used in the
current study yet.

By combining Theorem 4 and Lemma 1, we have the following corollary:

Corollary 1 (Corollary 3.3, (1), (2), (4) of [Yam23]). Let α be an Artin representa-
tion α of GF , and K a finite Galois extension of F . We write L := K(F )ker(α) (⊂
F ), and put G̃ = Gal(L/F ) and G = Gal(K/F ). We assume that

Im(α|
{̃1}

) (∼= Gal(L/K) = ker(G̃։ G)) is an A-group.

Then, for any supersolvable subgroup H ⊂ G, θαG|H is a (genuine) character
of degree rα. In particular, for any g ∈ G, we have |θαG(g)| = |θαG|〈g〉(g)| ≤ rα,
where 〈g〉 (⊂ G) denotes the subgroup of G generated by g. Hence, we obtain a
Heilbronn-type inequality

(Heil)
∑

ρ∈Irr(G)

nG̃(ρ
G̃ ⊗ α)2 = 〈θαG, θαG〉G ≤ r2α.

We can easily deduce Theorem 1 from the above two formulae (Tak) and (Heil)
that we recall below:∑

ρ∈Irr(G)

(dim ρ)nG̃(ρ
G̃ ⊗ α) = rα and

∑

ρ∈Irr(G)

nG̃(ρ
G̃ ⊗ α)2 ≤ r2α.

Note that the assumption in the Theorem 1 implies that ker(G̃։ G) is monomial
by Ito’s theorem [Ito52], hence, rα ≥ 0.
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Large monodromy groups of polynomial compositions

Danny Neftin

(joint work with Joachim König and Shai Rosenberg)

1. Background

The study of monodromy groups Mon(f) := Gal(f(x) − t,Q(t)) of polynomial
maps P1

Q→P1
Q, x 7→ f(x) for f ∈ Q[x], lies at the heart of many problems in

number theory, dynamics, complex analysis, and other subjects.
One of the original motivating questions in arithmetic dynamics is the following:

Given a ∈ Z and a sequence (an)
∞
n=0, such as an orbit an+1 = f(an) of f ∈ Z[x],

what is the (natural) density δc(f, a, a0) = δcongruence(f, a, a0) of primes p such
that an ≡ a mod p for some n ∈ N? For example, when a = −1, a0 = 2, and
an+1 = a2n is an orbit of f(x) = x2, the quantity δc(x

2,−1, 2) is the density
of primes p which divide some Fermat number an + 1 = 22

n

+ 1. In this case
δc(x

2,−1, 2) = 0. Although δc(f, a, a0) is often expected to be small, finding δc for
an arbitrary polynomial f ∈ Z[x] for a positive proportion of a ∈ Z and a0 ∈ Z, is
a widely open problem [Jon08].

On the other hand, the (natural) densities δns(f, a) = δnon-stable(f, a) of primes
p such that the fiber of f◦n over a ∈ Q is reducible mod p for some n ∈ N, are
“usually” expected to be 1. Here, the fiber of f◦n over a is said to be reducible
mod p if f◦n(x)− a is reducible mod p.

Consequences regarding the above densities and many other problems follow from
“largeness” properties of Mon(f◦n): Namely, these are encoded in the action of

the image Im ρ
(n)
a,f := Gal(f◦n(x) − a,Q) of an arboreal representation on the

tree T
(n)
a,f =

⋃n
i=0(f

◦n)−1(a) of preimages of a, and as a varies, in the action of

Mon(f◦n) = Gal(f◦n(x) − t,Q(t)) on T (n) = T
(n)
t,f . When the image is the full

group Aut(T (n)), or under mild conditions even merely if its index in Aut(T (n))
is bounded independently of n, it is known that δc(f, a, a0) = 0, and δns(f, a) =
1. Note that Aut(T (n)) is well known to be the n-fold iterated wreath product
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[Sd]
n = Sd ≀ · · · ≀ Sd, where Sd ≀ Sd = Sd

d ⋊ Sd is the (standard imprimitive) wreath
product and d := deg f .

Much of the difficulty in the above problems lies in determining when Im ρ
(n)
a,f

and Mon(f◦n) are “large” in a sense compatible with the problem. The groups
Mon(f), f ∈ Q[x] were classified for indecomposable f by Feit and Müller, but up
until recently little was known on the possibilities for Mon(f) for decomposable
f ∈ Q[x]. Most of the work towards determining Mon(f◦n) is devoted to quadratic
polynomials. One exception is the recent work of Bouw-Ejder–Karemaker [BEK21]
who show that Mon(f◦n) are “large” for so called normalized Belyi maps f , that
is, maps with three ramification points that map to themselves. For such maps,
Γ := Mon(f) is alternating or symmetric and Mon(f◦n) is either the full group
[Γ]n or a large subgroup En ⊇ [Ad]

n.

2. Results and applications

2.1. Monodromy. It turns out that in various aspects it is easier to show that
Mon(f) is “large” for compositions f = f1 ◦ · · ·◦fr of indecomposable polynomials
which are not xd or a Chebyshev polynomial Td up to composition with linear
polynomials. In this paper, we prove a strong largeness property of Mon(f) for
such polynomials f . When Mon(fi) is alternating or symmetric, it takes the form:

Theorem 1. Suppose f = f1 ◦ · · · ◦ fr for fi ∈ Q[x] of degree di ≥ 5 with
Mon(fi) ∈ {Adi

, Sdi
}, i = 1, . . . , r. Then Mon(f) contains Adr

≀ · · · ≀Ad1 .

To word the analogous property when the groups Γi := Mon(fi), i = 1, . . . , r are
not necessarily alternating or symmetric, recall the following. Given a sequence of
polynomials fn ∈ Q[x], n ∈ N, one has natural epimorphisms πn : Mon(f1 ◦ · · · ◦
fn) → Mon(f1 ◦ . . . fn−1), with kernel embedding into Γ

deg(f1◦···◦fn−1)
n . Say that

ker(πn) is large, if it contains the full direct product of socles soc(Γn)
deg(f1◦···◦fn−1),

where the socle soc(Γ) of a group Γ is the subgroup generated by the minimal
normal subgroups of Γ.

Assume now fi ∈ Q[x], i = 1, . . . , r are indecomposable of degree ≥ 5 and are
not linearly related to xd or Td over C, that is, there are no linear µ1, µ2 ∈ C[x] such
that fi = µ1 ◦xd ◦µ2 or µ1 ◦Td ◦µ2, for d = deg fi. Our generalization of Theorem
1 states that under these conditions (and with the above notation), ker(πn) is
large for all n ∈ N. This amount to saying that for all n ∈ N, Mon(f1 ◦ · · · ◦ fn)
contains the multiset of (Jordan-Hölder) composition factors of [soc(Γi)]

r
i=1 =

soc(Γr) ≀ · · · ≀ soc(Γ1).

2.2. Application to arboreal representations. For iterates of an indecompos-
able polynomial f ∈ Q[x] of degree d ≥ 5 with nonsolvable monodromy group Γ,

it follows by Hilbert’s irreducibility theorem that Im ρ
(n)
a,f contains the composi-

tion factors of [soc(Γ)]n for a Hilbert subset of a ∈ Q, that is, for any a ∈ Q in
the complement of a union of finitely many value sets of morphisms gi : Xi→P1

Q,
yielding immediately:
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Corollary 1. Let n ≥ 2 be an integer and f ∈ Q[x] be indecomposable of degree
d ≥ 5 that is not linearly related to xd or Td over C. Set Γ := Mon(f). Then

Im ρ
(n)
a,f contains the composition factors of [soc(Γ)]n for all a in a Hilbert subset

of Q.

For more details and further applications in this direction we refer to König’s
report [Kön23] in this volume. Furthermore, see [DK22] for the incompatibility of
the problem with Hilbert’s irreducibility theorem.

2.3. Largeness and prime density. These largeness properties for Mon(f◦n)

and Im ρ
(n)
f,a are compatible with bounding the above prime densities. For “non-

special” f and most a ∈ Z, the density δc(f, a, a0) of primes for which a meets an
orbit of f mod p is arbitrary small, and the density δns(f, a,N) of primes p over
which the fiber of f◦N (and hence of f◦n for n ≤ N) over a is reducible mod p is
arbitrary large:

Corollary 2. Suppose ε > 0, N ∈ N, and f ∈ Z[x] is indecomposable of degree
d ≥ 5 which is not linearly related to xd or Td over C. Then there exists

(1) a Hilbert subset AN
ε ⊂ Q such that δns(f, a,N) > 1 − ε for all a ∈ AN

ε ;
and

(2) a Hilbert subset Aε ⊂ Q such that δc(f, a, a0) < ε for all a ∈ Aε, a0 ∈ Z.

Further applications to explicit versions of Hilberts irreducibility appear in
[KN20] and the relevant counterexamples are given in [DF99].

3. Methods

3.1. Obstructions to largeness. The main theorem is of group theoretic nature
and applies much more generally to decompositions f = f1 ◦f2 for finite surjective
morphisms f1 and f2 of varieties over arbitrary fields of characteristic 0, when-
ever Γ := Mon(f2) is nonsolvable with a unique minimal normal subgroup. For
such decompositions, there are several obstructions that may occur and prevent
Mon(f) from being large, that is, prevent it from containing soc(Γ)deg f1 . The
theorem asserts that unless certain obstructions occur, Mon(f) is indeed large.
For simplicity in what follows, we assume f1, f2 are indecomposable.

The first obstruction is a Ritt type of decomposition for f . Namely, if f = f1 ◦
f2 = g1 ◦ g2 are sufficiently different decompositions of f , i.e. f1 ◦ f2 is not an
invariant decomposition, then they yield distinct minimal normal subgroups of
Mon(f) which necessarily centralize each other, contradicting that one of them
is the large subgroup soc(Γ)deg f1 . The second and third obstructions are related
to trivial extensions of monodromy groups. Namely, it could happen that f1 ◦ f2
is a subcover of the Galois closure of f1 in which case Mon(f1 ◦ f2) = Mon(f1);
and it could happen that Mon(f1) preserves the Galois closure of f2 in which case
Mon(f1 ◦ f2) coincides with a subgroup of Aut(Mon(f2)). It is easy to see that in
both cases soc(Γ)deg f1 cannot be contained in Mon(f).

The last obstruction, conjugation compatibility, is more intricate and relates to
the conjugation action of Mon(f) on a minimal normal subgroup of the kernel of
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the projection Mon(f)→Mon(f1). Let U := Mon(f2) and assume soc(U) ∼= LI

for a nonabelian simple L. Then Mon(f) ∩ soc(U)m = Mon(f) ∩ L[m]×I ∼= LP for
a partition P of [m] × I. Let π : P→{Subsets of [m]} be the projection. We say
f = f1 ◦f2 is conjugation-compatible if π induces a partition of [m]. Note that this
is automatic if #I = 1.

3.2. Sufficiency of obstructions. When all obstructions vanish we get:

Theorem 2. Let f = f1 ◦ f2 be a conjugation-compatible decomposition. Set
U := Mon(f2). Assume soc(U) is a power of a nonabelian simple group. For all
decompositions f1 = g1 ◦ g2, deg g2 > 1, assume g2 ◦ f2 is proper, invariant, with
monodromy not embedding in Aut(soc(U)). Then Mon(f) ⊇ soc(U)m.

It is rather easy to deduce from theorems of Ritt and Burnside that the above
obstructions vanish for polynomial compositions f1 ◦ · · · ◦ fr when Mon(fi) are
nonsolvable, and even under more relaxed conditions. Namely, Ritt’s theorem
implies that decompositions of such polynomials are unique up to composition
with linear polynomials, and Burnside’s theorem implies that the above groups Γ
are almost simple, so that the conjugation compatibility condition holds trivially.
The polynomial case seems like the opposite scenario of the above phenomena
occurs, and we expect that the above phenomena will not occur for much wider
classes of rational functions and morphisms.
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On pro-p outer Galois representations associated to once-punctured
CM elliptic curves

Shun Ishii

Let p be an odd prime. We present recent progress on the outer action of Galois
groups on the maximal pro-p quotients of the geometric étale fundamental groups
of CM elliptic curves minus their origins (once-punctured CM elliptic curves).

In the case of the projective line minus three points, Anderson and Ihara asked
if the field Ω∗ corresponding to the kernel of the associated pro-p outer Galois
representation is equal to the maximal pro-p extension of the p-th cyclotomic
field Q(µp) unramified outside p. Later, Sharifi proved that for p regular their

https://arxiv.org/abs/2001.03630
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question is affirmative under the Deligne-Ihara conjecture (now Hain-Matsumoto’s
and Brown’s theorem) on the structure of a graded Lie algebra over Qp associated
to a certain filtration on GQ := Gal(Q̄/Q).

In this report, we enounce a conjecture analogue to Deligne-Ihara and establish an
analogue of Sharifi’s result for once-punctured CM elliptic curves over imaginary
quadratic fields when p is ordinary.

1. The projective line minus three points

In this section, we review previous results on P1
Q\{0, 1,∞}. We denote the maximal

pro-p quotient π1(P1
Q̄
\ {0, 1,∞})(p) of the geometric étale fundamental group of

P1
Q \ {0, 1,∞} by Π0,3. The étale homotopy exact sequence determines the pro-p

outer Galois representation

ρ0,3 : GQ → Out(Π0,3).

Then one can observe that

(1) The field Ω∗ is a pro-p extension over Q(µp), and
(2) the extension Ω∗/Q is unramified outside p.

Anderson and Ihara [AI88] studied the pro-p outer Galois representation asso-
ciated to hyperbolic curves of genus zero and proved that Ω∗ is generated by all
higher circular p-units. In that paper, they posed the following question:

Is Ω∗ equal to the maximal pro-p extension of Q(µp) unramified
outside p?

which has motivated further work of Rasmussen and Tamagawa [RT08], and also
of Matsumoto, Nakamura, Takao and other on the related Oda’s problem, see
Philip’s report in this volume.

1.1. The Deligne-Ihara conjecture. To consider this question, let us firstly ob-
serve that the Galois groupGQ comes equipped with a descending central filtration
{FmGQ}m≥1 induced by the descending central series {Π0,3(m)}m≥1 of Π0,3:

FmGQ := ker
[
GQ

ρ0,3−−→ Out(Π0,3)→ Out(Π0,3/Π0,3(m+ 1))
]
.

It is known that

(1) grmGQ := FmGQ/F
m+1GQ is isomorphic to a finite direct sum of the m-th

Tate twist Zp(m), and
(2) For each odd m ≥ 3, the m-th Soulé character κm : GQ(µp∞ ) → Zp(m)

restricted to FmGQ is nontrivial and factors through FmGQ ։ grmGQ.

Here, the m-th Soulé character κm : GQ(µp∞ ) → Zp(m) is a certain nontrivial
Kummer character which is described in terms of cyclotomic p-units. For its
fundamental properties, we refer to Ichimura-Sakaguchi [IS87].

The direct sum g := ⊕m≥1gr
mGQ is a graded Lie algebra over Zp whose brackets

are induced by commutators on GQ. For each odd m ≥ 3, let σm ∈ grmGQ be
an arbitrary element such that κm(σm) generates κm(FmGQ). Such a generator
κm(σm) is usually called an m-th Soulé element.
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The following was established by Hain-Matsumoto [HM03] and Brown [Bro12].

Conjecture (Deligne-Ihara). Soulé elements {σm}m≥3,odd freely generate g⊗Qp

as a graded Lie algebra over Qp.

In this result, Hain and Matsumoto establish the generating part and, as a
consequence of properties of motivic periods of mixed Tate motives over Spec(Z),
Brown establishes the freeness part.

1.2. Anderson-Ihara’s question, a blueprint proof. Sharifi obtained the fol-
lowing affirmative result for Anderson-Ihara’s question.

Theorem 1 (Theorem 1.1 in [Sha02]). Let p be an odd irregular prime. Then the
equality Ω∗ = Ω holds.

We explain the strategy of Theorem 1 since the proof of our main result follows
this strategy. First, we choose an appropriate lift σ̃m ∈ FmGQ of an m-th Soulé
element to FmGQ for m = 3, 5, . . . , p. If we take a lift γ ∈ Gal(Ω/Q(µp)) of
a generator of Gal(Q(µp∞)/Q(µp)), one can show that γ, σ̃3, . . . , σ̃p form a free
basis of the Galois group Gal(Ω/Q(µp)) since p is odd and regular.

Moreover, one can inductively construct a lift σ̃m ∈ FmGQ of an m-th Soulé el-
ement for every odd m > p from γ, σ̃3, . . . , σ̃p with the property that {σ̃m}m≥3,odd

forms a free basis of Gal(Ω/Q(µp∞)), cf. [Sha02, §2 and §3].
Then the filtration {FmGal(Ω/Q(µp∞))}m≥1 induced by {FmGQ}m≥1 coincides

with the fastest descending central filtration with the property that σ̃m is contained
in the m-th component of the filtration for every odd m ≥ 3 (here we use the
Deligne-Ihara conjecture). Since the intersection of such the fastest filtration is
trivial, we have ∩m≥1F

mGal(Ω/Q(µp∞) = Gal(Ω/Ω∗) = {1} as desired.
Remark 1.

(1) As a byproduct, one can show that Soulé elements freely generate g if p is
odd and regular.

(2) Conversely, Sharifi [Sha02, Theorem 1.3] observed that the Soulé elements
do not generate g if p is irregular and Greenberg’s generalized conjecture
holds for Q(µp).

2. The case of once-punctured CM elliptic curves

Let k be an imaginary quadratic field and (E,O) an elliptic curve over k, with
origin O ∈ E[k], and which has complex multiplication by the ring of integers of k.
Moreover, assume that p ≥ 5 and E has good ordinary reduction at primes above
p. Then p splits into two primes in k as (p) = pp̄ and we have two characters
χ1, χ2 : Gk → Z×

p corresponding to the p-adic and p̄-adic Tate module Tp(E) and
Tp̄(E) of E, respectively.

In this section, we denote the pro-p geometric étale fundamental group of E \O
by Π1,1. We have the associated outer representation

ρ1,1 : Gk → Out(Π1,1).
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As in the previous section, Gk comes with a descending central filtration
{FmGk}m≥1 on Gk associated to the descending central series {Π1,1(m)}m≥1 of
Π1,1. We denote the m-th associated graded quotients by grmGk.

2.1. Fixed field, Kummer characters, and a conjecture. Regarding the
fixed field of the outer Galois pro-p representation ρ1,1, the following holds.

Lemma 1 (Lem. 2.11 and Lem. 2.12 in [Ish23b]). With the notations above:

(1) The field Q̄ker(ρ1,1) is a pro-p extension over k(E[p]), and
(2) Q̄ker(ρ1,1) is a compositum of k(E[p]) and of the field Ω∗

k which is a pro-p
extension of the mod-p ray class field k(p) of k unramified outside p.

The second claim is different from the one in the previous section. This follows
since the image of the outer action of Aut(E\O) on Π1,1 is contained in ρ1,1(Gk(p)).

In [Nak95], Nakamura proved that certain Kummer characters associated to special
values of the fundamental theta functions can be regarded as analogues of Soulé
characters, and observed that certain linear combinations of them are nontrivial.
In our situation, they are elliptic Soulé characters:

κm1,m2 : Gk(E[p∞]) → Zp(m1,m2) := Zp(χ
m1
1 χm2

2 )

where (m1,m2) ∈ Z2
≥1 \ {(1, 1)} satisfies m1 ≡ m2 mod |O×

k |. By using Iwasawa

main conjecture for imaginary quadratic fields proved by Rubin [Rub91], we es-
tablish that:

Theorem 2 (Theorem 1.4 (1) in [Ish23a]). The elliptic Soulé character κm1,m2 is
nontrivial if H2

ét(Spec(Ok[
1
p ]),Zp(m1,m2)) is finite.

The finiteness of the second cohomology group is a special case of a conjecture
of Jannsen [Jan89, Conjecture 1]. We remark that H2

ét(Spec(Z[
1
p ]),Zp(m)) for

m ≥ 2 was already proved to be finite by Soulé and is crucially used to establish
the nontriviality of the usual Soulé character κm, cf. [IS87].

Moreover, we also observed the surjectivity of κm1,m2 is deeply related to the
p-part of the class number of k(p), see Theorem 1.4 in [Ish23a].

The following properties lead to our analogue of Deligne-Ihara Conjecture.

(1) grmGk ⊗ Qp is isomorphic to a finite direct sum of Qp(m1,m2) where
(m1,m2) ∈ Z2

≥1 \ {(1, 1)} satisfies m1 +m2 = m, and

(2) If κm1,m2 is nontrivial, then κm1,m2 |Fm1+m2Gk
is also nontrivial and fac-

tors through Fm1+m2Gk ։ grm1+m2Gk.

Conjecture 1 (Conjecture 2.10 in [Ish23b]). For each (m1,m2) ∈ Z2
≥1 \ {(1, 1)}

such that m1 ≡ m2 mod |O×
k |, fix an element σ(m1,m2) in the χm1

1 χm2
2 -isotypic

component of grm1+m2Gk such that κm1,m2(σm1,m2) generates κm1,m2(F
m1+m2Gk).

Then {σm1,m2}(m1,m2) freely generates
⊕

m≥1 F
mGk⊗Qp as a graded Lie algebra.

It seems that Hain-Matsumoto’s technique is also applicable to prove that
{σm1,m2}(m1,m2) generates the Lie algebra, assuming that κm1,m2s are nontriv-
ial. The speaker hopes to relate the freeness portion of Conjecture 1 with certain
properties of elliptic multiple zeta values at CM points.
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2.2. Characterization of the kernel. In the same way that Sharifi’s Theorem 1
relates Anderson-Ihara’s question and Deligne-Ihara conjecture, we relate Conjec-
ture 1 to the fixed field of outer Galois representations ρ1,1 of Lemma 1.

Theorem 3 (Theorem 2.14 in [Ish23b]). Assume that

(1) the class number of k(p) is not divisible by p,
(2) there are exactly two primes of the mod-p∞ ray class field k(p∞) of k above

p, and
(3) Conjecture 1 holds.

Then Ω∗
k is equal to the maximal pro-p extension Ωk of k(p) unramified outside p.

In paricular, the equality Q̄ker(ρ1,1) = k(E[p]) · Ωk holds.

Basically, we follow the strategy of Theorem 1. However, there are several
differences from the previous situation. For example:

• the Galois group Gal(Ωk/k(p)) is not free. Therefore, we have to take the
existence of a nontrivial relation into consideration when choosing lifts of
Soulé elements. Here we use the first two assumptions.
• the construction of such a lift requires to introduce a two-variable version of
the filtration {FmGk}m≥1 coming from a certain two-variable descending
central filtration {Π1,1(m1,m2)} on Π1,1. This is because each graded
quotient grmGk ⊗Qp may contain several kinds of twists by powers of χ1

and χ2.

In [Ish23a] and [Ish23b], we further construct a particular basis {x1, x2} of Π1,1

such that the image of x1, resp. x2, in Πab
1,1
∼= Tp(E) generates Tp(E), resp.

Tp̄(E). Using this basis, the filtered part Π1,1(m1,m2) is defined as follows: first,
let Π1,1(1, 0) (resp. Π1,1(0, 1)) be the normal closure of x1 (resp. x2). In general,
Π1,1(m1,m2) is inductively defined as the normal closure of the subgroup generated
by all [Π1,1(m

′),Π1,1(m
′′)]s where m′,m′′ ∈ Z2

≥0 \ {(0, 0)} satisfy m′ + m′′ =

(m1,m2). By introducing this two-variable filtration, we can construct lifts of
Soulé elements in the same way.

As in the previous section, an integral version of Conjecture 1 can be related to
Greenberg’s generalized conjecture for k(p) (manuscript in preparation).
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Formality and strong Massey vanishing for real projective groups

Gereon Quick

(joint work with Ambrus Pál)

1. Formality and Massey vanishing

A differential graded algebra C• is called formal if there is a zig-zag of quasi-
isomorphisms of differential graded algebras between C• and its cohomology al-
gebra with trivial differential. Formality is a rather strong property and implies,
for example, the vanishing of all Massey products. Hence one may view Massey
products as invariants which detect whether a differential graded algebra may
contain more information than its cohomology. While there are many examples
of non-vanishing Massey products in arithmetic, Hopkins and Wickelgren showed
in [HW15] that all triple Massey products of degree one classes in the mod 2-
Galois cohomology of global fields of characteristic different from 2 vanish, i.e.,
contain zero, whenever they are defined. Mináč and Tân then showed the vanish-
ing of mod 2-triple Massey products of degree one classes for all fields. Moreover,
they formulated the Massey vanishing conjecture stating that, for all fields k, all
n ≥ 3 and all primes p, the n-fold Massey product of degree one classes in mod
p-Galois cohomology should vanish whenever it is defined (see [MT16]). The work
of Hopkins–Wickelgren and Mináč–Tân has inspired a lot of activity in recent
years. We now list the main cases we are aware of for which the Massey vanishing
conjecture is now known to be true, in addition to our own work which we will
describe below:

• By the work of Matzri [Mat14], Efrat–Matzri [EM17] and Mináč–Tân
[MT16] for all fields, all primes p and n = 3.
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• By the work of Harpaz–Wittenberg [HW23] for all number fields, all primes
p and all n ≥ 3.
• By the work of Pál–Szabó [PS18] for all fields with virtual cohomological
dimension at most one and all pseudo p-adically closed fields, all primes
and all n ≥ 3.
• By the work of Guillot–Mináč–Topaz–Wittenberg [GMT18] for number
fields and by Merkurjev–Scavia [MS16] for all fields, p = 2 and n = 4.
• Quadrelli shows that Efrat’s Elementary Type Conjecture for pro-p-groups
implies the Massey vanishing conjecture and proves the Massey vanishing
conjecture in several further cases (see [Quad22, Corollary 1.4] for a list).

We note that Ekedahl showed in [Eke86] that there are non-vanishing triple
Massey products of classes in H1

et(X,Fp) for X an absolutely irreducible smooth
projective variety of dimension two over C. Bleher–Chinburg–Gillibert show in
[BCG23] that triple Massey products of classes in H1

et(X,Fp) for X an absolutely
irreducible smooth projective curve over a field of characteristic different from p
may not vanish.

Based on their computations of Masseyproducts in Galois cohomology,Hopkins–
Wickelgren asked in [HW15] whether the mod 2-Galois cohomology algebra of fields
actually is formal. Positselski showed in [Pos17] that the answer to this question
is negative in general, as there are local fields which are not formal. Harpaz–
Wittenberg show in [GMT18, Example A.15] that certain fourfold Massey products
are not defined, even though the neighbouring cup products vanish, and thereby
show that Q(

√
2,
√
17) is not formal. Further examples of non-formal fields have

recently been discussed by Merkurjev–Scavia in [MS22].
In [PQ22], however, we show that there is a large class of fields for which

formality holds. In particular, this implies the Massey vanishing conjecture for all
primes p and all n ≥ 3 and all nonzero cohomological degrees for these fields. We
will now briefly describe the main results of [PQ22].

2. Formality of real projective groups

Let G be a profinite group. An embedding problem for G is a solid diagram

G

φ

��

φ̃

~~
B

α // A,

where A,B are finite groups, the solid arrows are continuous homomorphisms and
α is surjective. A solution of this embedding problem is a continuous homomor-

phism φ̃ : G→ B which makes the diagram commutative. The embedding problem
above is called real if for every involution t ∈ G with φ(t) 6= 1 there is an involution
b ∈ B with α(b) = φ(t). Following Haran and Jarden [HJ85], a profinite group G
is called real projective if G has an open subgroup without 2-torsion, and if every
real embedding problem for G has a solution. In [PQ22] we prove the following
result:
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Theorem 1 ([PQ22]). Let G be a real projective profinite group and p be a prime
number, and let C•(G,Fp) denote the differential graded Fp-algebra of continuous
cochains of G with values in Fp. Then C•(G,Fp) is formal.

To prove the theorem we use the work of Scheiderer on the cohomology of real
projective groups and calculate the graded Hochschild cohomology groups of a
sum of certain quadratic algebras. Then we apply a criterion for formality due to
Kadeishvili which states that the formality of a dg-algebra C• is implied by the
vanishing of the Hochschild cohomology groups HHn,2−n(H•(C•), H•(C•)) for all
n ≥ 3.

3. Implications for absolute Galois groups of fields

Now we describe the implications of Theorem 1 for fields. By the work of Haran
and Jarden, the class of real projective groups is associated to the following class
of fields. Recall that a field k has virtual cohomological dimension ≤ 1 if there is
a finite separable extension K/k with cd(K) ≤ 1. Since the only torsion elements
in the absolute Galois group of k are the involutions coming from the orderings of
k, it is equivalent to require cd(K) ≤ 1 for any fixed finite separable extension K
of k without orderings, for example for K = k(i) where i =

√
−1. In particular, if

k itself cannot be ordered (which is equivalent to −1 being a sum of squares in k),
this condition is equivalent to cd(k) ≤ 1. Since by classical Artin–Schreier theory
every involution in the absolute Galois group of a field is self-centralising, Haran’s
work [Ahr93, Theorem A on page 219] implies that the absolute Galois group of
a field k is real projective if and only if k satisfies cd(k(i)) ≤ 1.

Example 1. Examples of fields k which can be ordered with cd(k(i)) ≤ 1 include
real closed fields, function fields in one variable over any real closed ground field,
the field of Laurent series in one variable over any real closed ground field, and the
field Qab ∩ R which is the subfield of R generated by the numbers cos(2πn ) where
n ∈ N.

Furthermore, Haran and Jarden show in [HJ85] that the following important
class of fields has real projective absolute Galois groups. For a field k, let Spr(k)
denote the real spectrum of k, i.e., the set of all orderings of k. For an ordering
<∈ Spr(k), let k< denote the real closure of the ordered field (k,<). A field k
is called pseudo real closed if every absolutely irreducible variety defined over k
which has a k<-rational simple point for every <∈ Spr(k) has a k-rational point.
In particular, a pseudo real closed field with no orderings is pseudo algebraically
closed, i.e., every absolutely irreducible variety defined over the field has a rational
point. Moreover, if k is pseudo real closed, then k(i) is pseudo algebraically closed,
as k<(i) is algebraically closed for every <∈ Spr(k) by Artin–Schreier theory.
Hence k has virtual cohomological dimension ≤ 1, and in particular the absolute
Galois group Γ(k) is real projective by Haran’s work. In [HJ85, Theorem on page
450] Haran–Jarden show that the absolute Galois group Γ(k) of a pseudo real
closed field k is real projective, and conversely, if G is a real projective group, then
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there is a pseudo real closed field k such that Γ(k) ∼= G. Therefore, the Hopkins–
Wickelgren formality conjecture for the class of fields of virtual cohomological
dimension ≤ 1 is the same as for the class of pseudo real closed fields, and it is a
purely group-theoretical problem for the class of real projective profinite groups.
As a consequence of Theorem 1 we then obtain the following result, which provides
the first example of a class of fields with infinite cohomological dimension for which
formality holds.

Theorem 2 ([PQ22]). Let k be a field with virtual cohomological dimension ≤ 1
and let Γ(k) denote its absolute Galois group. Then, for all primes p, C•(Γ(k),Fp)
is formal and satisfies strong Massey vanishing, i.e., whenever the Massey product
of any number of elements of any nonzero cohomological degrees is defined then it
contains zero.

4. Koszulity conjecture

Another consequence of our methods is a positive case of a conjecture by Positselski
and Voevodsky on the Koszulity of Galois cohomology [Pos14, §0.1, page 128]. One
way to formulate the conjecture is that, for every field k containing a primitive pth
root of unity and absolute Galois group Γ(k), the algebra H•(Γ(k),Fp) is Koszul
(see also [MPQT21]). One of the significances of the conjecture is that Positselski
and Vishik show in [PV95] that Koszulity of the Galois cohomology would be
a key ingredient in a potential alternative way to prove the Milnor–Bloch–Kato
conjecture, i.e., the Norm Residue Theorem. In [PQ22] we prove the following
result:

Theorem 3 ([PQ22]). Let k be a field with virtual cohomological dimension ≤ 1
and p be a prime number. Then the cohomology algebra H•(Γ(k),Fp) is Koszul.

Recently, other positive cases of the Koszulity conjecture of Positselski and
Voevodsky were proven in [MPQT21, Theorem D].
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Finiteness theorems in Galois cohomology over function fields

David Harari

Let G be an algebraic group over a field K. Let K be a separable closure of K,
with Galois group ΓK := Gal(K/K). The Galois cohomology set

Hi(K,G) := Hi(ΓK , G(K))

is defined for i = 0, 1. If G is commutative, it is defined for all non negative i
and is an abelian group. The set H1(K,G) is especially interesting, as it classifies
G-torsors (that is: principal homogeneous spaces of G) over K. It is therefore
natural to ask about the finiteness of H1(K,G).

The first important results are due to Borel and Serre, in a 1964 paper ([BS64]):

Theorem 1 (Borel-Serre). If K is a p-adic field and G is linear, then the set
H1(K,G) is finite.

For G finite, this follows from the fact that a p-adic field is of type (F) (for every
d > 0, it has only finitely many extensions of degree d up to isomorphism). The
proof then proceeds by devissage: the case of tori easily reduces to finite commu-
tative groups; for a semi-simple group L, one can either use that H1(K,L) = 0
for L simply connected (Kneser), or show that the map H1(K,N)→ H1(K,L) is
onto, where N is the normalizer of a maximal K-torus of L (which follows from
conjugacy of maximal tori over K).

https://arxiv.org/abs/1411.4146
https://arxiv.org/abs/2208.13011
https://arxiv.org/abs/2301.09290
https://arxiv.org/abs/2206.14645
https://arxiv.org/abs/1811.06192
https://arxiv.org/abs/2203.16232v6


2422 Oberwolfach Report 42/2023

The case of a number field k (with ring of integers Ok) is more complicated. Obvi-
ously H1(k,G) is not finite in general (this already fails for G = Z/2). One is led
to introduce the Tate-Shafarevich set (analogue of the classical Tate-Shafarevich
group of an abelian variety)

X
1(G) := ker[H1(k,G)→

∏

v∈Ω

H1(kv, G)],

where Ω is the set of all places of k and kv is the completion of k at v. In their
1964 article, Borel and Serre give a global version of the previous theorem:

Theorem 2 (Borel-Serre). If G is linear, then X
1(G) is finite.

In general X1 does not behave well by devissage, but étale cohomology does.
If G is a smooth model of G over some non empty Zariski open subset U of
SpecOk, it is actually sufficient to prove that the image of the étale cohomology
set H1(U,G) into H1(K,G) is finite. The commutative case reduces to Dirichlet’s
theorem on units plus the finiteness of the ideal class group. The case when G
is semi-simple was done by Borel via harmonic analysis on adeles. It can also be
settled by application of Kneser-Harder-Chernousov theorem, which asserts the
nullity of X1(G) if G is semi-simple and simply connected (only a case by case
proof is known; the case of type E8 was done by Chernousov at the end of the
eighties).

Here are a few other cases over local fields and global fields :

• For an abelian variety A of positive dimension over a p-adic field K, the
group H1(K,A) is always infinite (it is dual to the profinite group At(K),
where At is the dual abelian variety of A, by a classical theorem of Tate).
The finiteness of X1(A) over a number field is a conjecture, known in a
few cases.
• In positive characteristic, one has to work with the flat cohomology set
instead of the étale one (they coincide if the group G is smooth). Over
a local field K of characteristic p like Fp((t)), the set H1(K,G) might be
infinite if there is no smoothness assumption (ex. G = µp). However, the
analogue of the Borel-Serre theorem still holds (Conrad, [Con12]) over a
global field of characteristic p like Fp(t).

From now on we consider the case of the function field K of a curve C defined over
a field k of characteristic zero. Let X be a projective and smooth compactification
of C. For any algebraic K-group G, we define

X
1
C(G) := ker[H1(K,G)→

∏

c∈C(1)

H1(Kc, G)],

where C(1) is the set of closed points of C and Kc the completion of K for the
discrete valuation associated to C. Set X1(G) = X

1
X(G).

Theorem 3 (Saidi-Tamagawa [ST20]). Assume that k is finitely generated over
Q and that G = A is an abelian variety. Then the N -torsion part of X1

C(A) is
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finite for every positive N , and X
1
C(A) itself is finite if A is isotrivial (that is:

AK = A×K K is defined over k̄).

Saidi-Tamagawa’s result is motivated by the anabelian section conjecture (to
reduce it from finitely generated fields to number fields). It seems reasonable to
conjecture that X

1
C(A) is always finite (they make similar conjectures in their

paper).

Theorem 4 (Harari-Szamuely [HS22]). Let Gk be a commutative algebraic group
over a number field k, set G = Gk ×k K. Then X

1
C(G) is finite (and this extends

to finitely generated fields k if C(k) 6= ∅).
Using Saidi-Tamagawa’s theorem, the crucial case is when Gk is an algebraic

torus. Whence the following conjecture :

Conjecture 1. Assume that k is a number field. For every K-torus (or even
group of multiplicative type) T , the group X

1
C(T ) is finite.

In [HS22], examples with X
1
C(T ) 6= 0 are given, even for C = X (with isotrivial

or non-isotrivial tori). Also, observe that the local groupsH1(Kc, T ) are in general
infinite. The conjecture is known for a stably rational K-torus T (loc. cit.). The
similar question for a non commutative linear group G is completely open.

Finally, a specialization argument and Hilbert’s irreducibility Theorem show that if
M is a finite type ΓK-module and k is finitely generated overQ, thenX

1
C(M) = 0.

For M finite, A. and I. Rapinchuk recently showed that for a finite ΓK-group G
(and k arbitrary), the map

H1(K,G)→
∏

c∈C(1)

H1(Kc, G)

is proper.

Suppose now that k is a p-adic field, hence K is the function field of a p-adic
curve. Here the local groups H1(Kc, G) are finite because Kc, which is a finite
extension of k((t)), is of type (F ). Thus the finiteness of X1

C(G) is equivalent to
the finiteness of X1(G) = X

1
X(G).

Theorem 5 (Harari-Szamuely [HS16]). If G is commutative and linear, then
X

1(G) is finite.

Again, examples with X
1(T ) 6= 0 do exist with T a K-torus. The proof of the

theorem uses duality theorems à la Poitou-Tate. It has been extended by A. and
I. Rapinchuk to X of arbitrary dimension (using points of codimension 1 instead
of closed points to define X

1) and any k of type (F).

It is reasonable to conjecture that the previous theorem still holds for a non com-
mutative linear group (but this has been shown by Izquierdo to fail in general
for an abelian variety [Izq17]). This can be reduced to G semi-simple and simply
connected. A few cases are known by work of Yisheng Tian. The answer is also
positive for all quasi-split groups (except of E8 type) if the curve X has good
reduction, see [HS16].
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On the toric locus of ℓ-adic local systems arising from geometry

Anna Cadoret

(joint work with Jakob Stix)

For an algebraic group G, let G◦ denote its neutral component. Let k be a number
field. Let X be a smooth, separated, geometrically connected variety over k and
let |X | denote the set of closed points of X . For an infinite ∞ : k →֒ C (resp.
finite v : k →֒ kv) places, let X ❀ X∞ ❀ Xan

∞ (resp. X ❀ Xv ❀ Xan
v ) denote the

base-change and analytification functors. Fix a prime ℓ and a Qℓ-local system Vℓ
on X viz a continuous representation of the étale fundamental group π1(X, x̄) on
Vℓ := Vℓ,x̄. Write Gℓ, Gℓ ⊂ GLVℓ

for the Zariski-closure of the images of π1(Xk̄)
and π1(X) acting on Vℓ and, for x ∈ X , write Gℓ,x ⊂ GLVℓ

for ”the”1 Zariski-
closure of the image of π1(x) acting on Vℓ via π1(x) → π1(X). The degeneracy
locus of Vℓ is the set

|X |Vℓ
:= {x ∈ |X | | G◦

ℓ,x ( G◦
ℓ}

For a smooth projective morphism f : Y → X , the Qℓ-local systems of the form
Vℓ = Rif∗Qℓ(j) control certain arithmetico-geometric invariants of the Yx, x ∈ |X |
(e.g. ℓ-primary torsion of the Picard variety or of the Brauer group, rank of the
Néron-Severi group, of motivated cycles, rank of the the Picard variety etc.) and
understanding |X |Vℓ

amounts to understanding how those invariants degenerate
in the family Yx, x ∈ |X | - see [Cad23, §3] for details.

The leading conjecture about |X |Vℓ
is the following. For every integer d ≥ 1 let

|X |≤d denote the set of all x ∈ |X | such that [k(x) : k] ≤ d. Then

Conjecture 1. Assume Gℓ has finite abelianization. Then |X |Vℓ
∩ |X |≤d is not

Zariski-dense in X.

For X a curve, Conjecture 1 is proved in [CT13]. In contrast, if X has dimension
≥ 2, it is widely open. Actually, the strategy of [CT13] provides a heuristic for
Conj. 1 when d = 1 - see [Cad23, §4]; this heuristic relies on the diophantine

1Actually only well defined up to conjugacy.
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Lang conjecture (that on a number field k the set of k-rational point of a variety
of general type is not Zariski-dense), which seems currently out of reach, even for
surfaces.

Assume Vℓ = Rif∗Qℓ(j) for some smooth projective morphism f : Y → X . In this
case Gℓ is known to be semisimple - hence, in particular, to have finite abelianiza-
tion; assume furthermore it is not finite. In this work, we investigate a weaker form
of Conj. 1, replacing |X |Vℓ

by the toric locus |X |torVℓ
:= {x ∈ |X | | G◦

ℓ,x is a torus},
which, informally, corresponds to the most degenerate members of the family of
motivated motive hi(Yx)(j).

Conjecture 2. With the above assumptions, |X |torVℓ
∩ |X |≤d is not Zariski-dense

in X.

Conjecture 2 follows from Conjecture 1 but it is also a consequence of the Mumford-
Tate conjecture and the generalized André-Oort conjecture (an unlikely intersec-
tion type conjecture); this implication is deep as it involves the average Colmez
conjecture. Actually, the Mumford-Tate conjecture predicts that the points x ∈
X∞(C) lifting those of |X |torVℓ

are exactly the CM points of the polarizable Q-VHS

V∞ := Rif an
∞Q(j) and that |X |torVℓ

should play a similar part in controlling the
geometry of the exceptional locus |X |Vℓ

as the CM points do in controlling the
geometry of the Hodge locus.Unfortunately, in general, we do not know how |X |torVℓ

compares with the CM locus; actually, we do not even know if |X |torVℓ
is independent

of ℓ.

The only things which are known are that

(1) the solvable locus |X |solvVℓ
:= {x ∈ |X | | G◦

ℓ,x is solvable} ⊂ |X |Vℓ
, is

independent of ℓ; this follows from class field theory [Se68] (and is true
more generally for anyQℓ-local system which is almost pointwise geometric
in the sense of Fontaine-Mazur).

(2) For every prime ℓ, |X |torVℓ
contains the set |X |torVmot

of all x ∈ |X | such that

the connected component of the motivated Galois group (in the sense of
André) of the motivated motive hi(Yx)(j) is a torus.

Our main result is the following. We keep the assumptions in Conjecture 2. Con-
sider the level condition: (Levℓ) The image of π1(Xk̄) acting on Vℓ is a pro-ℓ
group.

Theorem 1. Assume (Levℓ) holds for at least two primes ℓ1 6= ℓ2. Then there
exists a set L of primes of positive Dirichlet density such that for every ℓ ∈ L the
set |X |tor−Vℓ

∩X(k) is not Zariski-dense in X. Furthermore, if the complex period

map describing V∞ is finite-to-one, then |X |tor−Vℓ
∩X(k) is finite.

Here, |X |tor−Vℓ
denotes the subset of all x ∈ |X |torVℓ

such that x ∈ |X |torVℓx
for another

ℓx 6= ℓ. In particular, |X |torVmot
∩X(k) is not Zariski-dense in X .

Remark 1. We hope our strategy to prove Theorem 1 can be extended to prove
Conjecture 2 in general (namely for arbitrary d ≥ 1 and without level conditions)
but still with the restriction that ℓ belongs to a subset L of primes of positive
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Dirichlet density. For the time being, treating all primes ℓ seems to require a
truely new idea.

1. Brief sketch of proof

Step 1: “toric points are integral”. Fix a non-empty open subscheme U ⊂
spec(Ok) and Y f→ X →֒ X cpt → U with X cpt → U smooth, projective, X →֒ X cpt

an open immersion such that Z := X cpt \ X → U is a relative normal crossing
divisor and f : Y → X a smooth projective morphism with generic fiber f : Y →
X . Let Z+ ⊂ Z denote the union of those irreducible components around which
the monodromy of V∞ is trivial and set X+ := X ∪ Z+. It is not difficult to
check that Vℓ extends to a Qℓ-local system on the generic fiber X+ of X+. By the
nilpotent orbit theorem, V∞ also extends to a polarizable Z-VHS on X+an

∞ .

The key lemma is the following. Fix v ∈ U , v|p let Ov, kv denote respectively the
completions of Ok, k at v.

Lemma 1 (Good reduction criterion). Let ℓ 6= p be a prime such that the image
of π1(Xkv

) acting on Vℓ is of prime-to-p order. Then for every x ∈ X+(kv),
x ∈ X+(Ov) iff x∗Vℓ is unramified at v.

The proof of Lemma 1 is similar to [PST21, §4]; it relies on the interpretation
of Kummer theory in terms of intersection data and the nilpotent orbit theorem.
That Lemma 1 applies to toric points follows from the theory of complex multipli-
cation [Se68], Serre-Tate criterion [SeT68], and the level assumption in Theorem 1.
It is to apply Lemma 1 that we have to replace |X |torVℓ

with |X |tor−Vℓ
.

Step 2: “Integral toric points are not Zariski-dense”. This step follows the
strategy of [LawV20] using the enhanced version of the local v-adic period map
constructed in [BS22] (building on recent development in variational p-adic Hodge
theory - [LiZ17], [Shi20], [DLanLiZ23]).

Write VdR := Rif∗ΩY |X for the relative de Rham cohomology; this is a filtered
vector bundle with flat connexion. The strategy of [LawV20] relies on the motivic
properties of the collection Vp, VdR, V∞ - in particular that Vp be pointwise pure
with characteristic polynomial of Frobenius in Q[T ] and with bounded denomi-
nators, that (V∞,Van

dR,∞) is a polarizable Z-VHS on Xan
∞ , that (Vp,Van

dR,v) is a de

Rham pair on Xan
v etc. In step 1, we have extended Vp from X to X+ but there

is no reason why f : Y → X should extend to a smooth projective morphism
over X+ (and it does not in general) so, to run the [LawV20] strategy, we have
to check that Vp, VdR, V∞ extend from X to X+ with all the expected proper-
ties; this involves the nilpotent orbit theorem (as already mentioned in step 1),
the companion conjecture [Laf02, Thm. VII.6] and the rigidity of the de Rham
property [LiZ17, Thm. 3.9 (iv)].

Once this is done, fix v ∈ Up. Let r be the type of the filtration on VdR and let Ď(r)
denote the Grassmaniann over k classifying filtration of type r on VdR,x ≃ k⊕r.
The crux of the argument is that for every x0 ∈ Σ := |X+|torVp

∩X(k) there exists
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an admissible open neighbourhood Uv of x0 in X+an
v and a v-adic analytic period

map Φv : Uv → Ď(r)anv such that the fibers of Φv : Uv → Ď(r)anv above points
in Φv(X(k) ∩ Uv) are not-Zariski dense in X (see [LawV20, §9.2]), and which, for
every x ∈ Uv, fits into a commutative diagram:

(∗)

Uv
Φet //

��
Φv

##

ΦpH

((◗◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗

Repcris

Qp
(π1(kv))

π0 //
� _

Dcris

��

π0(Rep
cris

Qp
(π1(kv)))
� _

Dcris

��
FMkv

(M0,x, r)
� � //

��

FMkv
(φ)

π0 // π0(FMkv
(φ)),

Ď(r)anv

αx

22❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

where Φet : Uv → Repcris

Qp
(π1(kv)) is the map that sends x ∈ Uv to x∗Vv, which is

automatically crystalline - [Shi20], Dcris : Rep
cris

Qp
(π1(kv))→ FMkv

(φ) is Fontaine’s

crystalline period functor Vp → (Vp ⊗Qp
Bcris)

π1(kv) (with value in the category
FMkv

(φ) of filtered φ-modules); FMkv
(Mcris,x, r) denotes the set of filtered φ-

modules with fixed underlying φ-module (M0,x, φx) and filtration of fixed type r
and π0(−) denotes the set of isomorphism classes (of p-adic π1(kv)-representations
and filtered φ-modules respectively). From step 1, Σ ⊂ X+(Ov) hence, as X+(Ov)
is compact, one can cover Σ by finitely many Uv as above. This reduces the proof
of Theorem 1 to showing that (1) π0 ◦ Φet(Σ ∩ Uv) is finite and (2) for every
x ∈ Σ ∩ Uv, the set α−1

x (αx ◦ Φv(x)) is finite
2.

Assertion (1) follows from a classical lemma of Faltings [FW84, V.5]. The proof of
Assertion (2) is more demanding; the rough idea is as follows. Let Gcris,v denote
the Galois group of ΦpH(x) = (M0,x, φx, F

•
x ) in FMkv

(φ) extended from Qp to
kv so that, tautologically its centralizer Z(Gcris,v) stabilizes F •

x and is contained
in the centralizer Z(ϕx) of the linearized crystalline Frobenius ϕx. Assertion (2)
amounts to showing that Z(ϕx) stabilizes F

•
x so that to conclude, it is enough to

show Z(ϕx) = Z(Gcris,v). By the fully faithfullness of Dcris : Repcris

Qp
(π1(kv)) →

FMkv
(φ), and the fact that x ∈ |X |torVp

, we already know that Gcris,v is a torus so

that it is actually enough to show that ϕx has maximal rank in Gcris,v. This is
to ensure the later hold for every (a priori infinitely many!) x ∈ Σ that we have
to restrict to a subset L of primes of positive Dirichlet density. On top of several
ingredients already mentioned, the proof uses Frobenius tori, [KM74] and, as one
can guess, the Cebotarev density theorem.

2By construction, the fibers of αx : Ď(r)anv → π0(FMkv
(φ)) are homogeneous spaces under

the centralizer Z(φx) of the crystalline Frobenius so, another way to phrase (2) is to say that
points in αx ◦ φv(Σ ∩ Uv) have finite Z(φx)-orbits.



2428 Oberwolfach Report 42/2023

References

[BS22] A. Betts and J. Stix Galois sections and p-adic period mappings, Preprint
arXiv:2204.13674 [math.NT] (2022).

[Cad23] A. Cadoret, Degeneration locus of Qp local systems: conjectures, Expositiones
Math. vol. 41, Iss. 3 - Special issue in the memory of Bas Edixhoven, p. 675–708,
2023

[CT13] A. Cadoret and A. Tamagawa , A uniform open image theorem for l-adic repre-
sentations II Duke Math. Journal 162, p. 2301–2344, 2013.

[DLanLiZ23] H. Diao, K.W. Lan, R. Liu and X. Zh,. Logarithmic Riemann–Hilbert correspon-
dences for rigid varieties, Journal of the American Math. Soc. 36, p. 483–562,
2023.
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p-adic Hodge Theory and obstructions to rational points

L. Alexander Betts

(joint work with Theresa Kumpitsch, Martin Lüdtke, and Jakob Stix)

Let K be a number field and Y/K a smooth projective curve of genus ≥ 2. One
common approach to studying the K-rational points on Y is to try to define an
obstruction locus : a subset

Y (AK)(?) ⊆ Y (AK)

of the adelic points of Y containing the K-rational points. The idea here is that
by understanding or computing the locus Y (AK)(?), we can obtain some control
on the K-rational points of Y , and thereby prove results about them.

The most famous examples of these kinds of obstruction loci are those cut out
by the Brauer–Manin or finite descent obstructions [Sko01, Sto07]. However, other
well-known techniques also fall within this general paradigm. The Chabauty–Kim
method for a curve over K = Q attempts to compute Y (Q) via the Chabauty–Kim
locus [Kim09]

Y (Qp)
CK ⊆ Y (Qp) ,

https://arxiv.org/abs/2204.13674
https://arxiv.org/abs/2109.08788
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a subset of the p-adic points of Y containing the rational points, which is often
computable in practice. (Here, due to current limitations of the method, the
prime p needs to be of good reduction for Y .) Similarly, the recent re-proof of
the Mordell Conjecture by Lawrence and Venkatesh [LV20] can be construed as
studying a certain Lawrence–Venkatesh locus

Y (Kv)
LV ⊆ Y (Kv)

for v a finite place of K, containing the rational points. The overall structure
of their argument shows that, for suitably chosen places v, the obstruction lo-
cus Y (Kv)

LV is finite, and hence so too is Y (K).

1. Rational points and Selmer sections

In the context of this workshop, the relevance of this perspective is that these kinds
of obstructions do not just constrain rational points, but also Selmer1 sections :
sections s of the fundamental exact sequence for Y/K which come from a Kv-point
yv ∈ Y (Kv) at every place v of K. For v a finite place, we call the point yv the
localisation locv(s) of s. One can show, for every Selmer section s, that:

• the associated adelic point (yv)v ∈ Y (AK) lies in the finite descent locus
(this is a result of Harari–Stix [HS12]);
• the associated Kv-point yv ∈ Y (Kv) lies in the Lawrence–Venkatesh locus
Y (Kv)

LV for all finite places v of K;
• when K = Q, the associated Qp-point yp ∈ Y (Qp) lies in the Chabauty–
Kim locus for all primes p of good reduction.

Thus, these obstructions do not just allow us to study rational points, they allow us
to study Selmer sections in quite an explicit manner. Following this idea with the
Lawrence–Venkatesh and Chabauty–Kim methods yields the following two results:

Theorem 1 (B.–Stix, [BS22]). For all number fields K and all smooth projective
curves Y/K of genus ≥ 2, the image of the localisation map

locv : {Selmer sections} → Y (Kv)

is finite for all self-conjugate2 places v.

Theorem 2 (B.–Kumpitsch–Lüdtke, [BKL23]). For Y = P1
Z[1/2] r {0, 1,∞} the

thrice-punctured line over Z[1/2], the set of Z[1/2]-Selmer3 sections on Y has
exactly three elements, namely the sections attached to the three Z[1/2]-integral
points −1, 2 and 1/2 on Y .

1or locally geometric in S. Mochizuki’s talk
2This is a technical condition required to make the argument work. Over K = Q, all finite

places are self-conjugate, so in this case there is no restriction.
3i.e. coming from a Q2-point of Y at 2 and coming from a Zℓ-point of Y at all odd primes ℓ
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2. Local systems: obstructions with additional structures

The subject of my talk in this workshop is a rather technical dive into the kinds of
theoretical tools one uses to study the Chabauty–Kim and Lawrence–Venkatesh
loci. For this, we recall in outline how these obstructions are defined.

2.1. Obstructions from local systems. Let E be a Qp-local system on Y in
the étale topology. For any K-rational point y ∈ Y (K), the fibre Ey of E at (the
geometric point corresponding to) y is a continuous representation of the absolute
Galois group GK of K. So one can associate to E an obstruction locus

Y (Kv)E ⊆ Y (Kv) ,

namely the set of all v-adic points yv for which the fibre Eyv
is the restriction of

a GK -representation satisfying appropriate local properties. (In all our cases, we
will want to choose the place v to divide p.) This locus clearly contains the set of
K-rational points.

2.2. Extra structures on local systems. If E comes with extra structures,
then one can give a variant of this definition where one requires that Eyv

is the
restriction of aGK -representation with the corresponding structures. For example,
in the Lawrence–Venkatesh method, the local system one considers is the first
relative étale cohomology of a smooth proper family X → Y , where X → Y is
the composite of a finite étale covering Y ′ → Y and a polarised abelian scheme
X → Y ′.

In this case, E comes endowed with the structure of a symplectic module over
the 0th relative étale cohomology, and the Lawrence–Venkatesh locus is defined
to be the set of local points yv ∈ Y (Kv) for which Eyv

is the restriction of a
symplectic module object in the category of GK-representations, again satisfying
some local conditions.

In the Chabauty–Kim method, E is taken to be the universal pro-unipotent
Qp-local system, and this comes with an extra structure in the form of an action
of the Qp-pro-unipotent étale fundamental group of YQ̄.

3. Fontaine’s theory of potentially semistable representations

In order to study an obstruction locus Y (Kv)E of this kind, we need to understand
for which points yv ∈ Y (Kv) the local representation Eyv

lies in some fixed collec-
tion of isomorphism classes. In other words, we want to understand how the local
representation Eyv

varies as we vary the point yv ∈ Y (Kv).
To make sense of this question, we use Fontaine’s theory [Fon94b]. To any de

Rham representation V of the local Galois group Gv, we can associate a filtered
(ϕ,N,Gv)-module DpH(V ), i.e. a vector space D over the maximal unramified
extension Qnr

p of Qp, endowed with a semilinear Frobenius automorphism ϕ, a
monodromy endomorphism N , a semilinear action of Gv, and a Kv-linear filtra-
tion on DKv

= (K̄v ⊗Qnr
p
D)Gv , satisfying certain compatibility properties. Using

work of Shimizu [Shi22], one can show that if the local system E is de Rham (in the
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sense of Scholze’s relative p-adic Hodge theory [Sch13, Sch16]), then the isomor-
phism class of DpH(Eyv

) as a (non-filtered!) (ϕ,N,Gv)-module is locally constant
on Y (Kv) for the v-adic topology.

3.1. Period map and filtration. Thus, if we restrict to yv lying in a suitably
small v-adic disc in Y (Kv), then DpH(Eyv

) is independent of yv provided we ignore
filtrations, and it only remains to understand how the filtration varies on this
constant (ϕ,N,Gv)-module. This is controlled by the theory of period maps. If E
denotes the filtered vector bundle with integrable connection on YKv

associated
to E by Scholze’s theory, then for yv in a sufficiently small disc, we may identify
the fibres Eyv

via parallel transport. Shimizu’s theory tells us that DpH(Eyv
)Kv

may be identified with the fibre Eyv
in a manner compatible with filtrations. Thus,

understanding how the filtration on DpH(Eyv
) varies with yv becomes the same as

understanding how the filtration on Eyv
varies with yv.

This latter problem is well-studied. Explicitly, for a fixed basepoint y0 ∈ Y (Kv),
the set of filtrations on the fibre Ey0 is a certain flag variety Gy0 , and the map
sending a point yv nearby y0 to the filtration on Ey0 = Eyv

identified via parallel
transport, is known as the period map Φy0 . The period map is Kv-analytic.

3.2. Finiteness results via period maps. In practice, what this means is the
following. For any of our v-adic obstructions (e.g. Lawrence–Venkatesh, Chabauty–
Kim), we are interested in studying the set of local points yv for which Eyv

lies
in a certain set of isomorphism classes. Restricting to a small neighbourhood
of a point y0 ∈ Y (Kv), this becomes equivalent to the problem of determining
when Φy0(yv) lies in a particular subset Gy0(Kv)

glob ⊆ Gy0(Kv). In the cases of
interest, we take care to ensure that the following key condition is satisfied:

The Zariski-closure of Gy0(Kv)
glob inside Gy0 does not contain the

image of the period map Φy0 .

(This condition holds in the Chabauty–Kim setting when a certain dimension
inequality holds, and holds in the Lawrence–Venkatesh setting when the abelian-
by-finite family is chosen suitably. In both cases, this is a delicate argument, using
that one knows what the vector bundle E is in both cases.) The significance of
this condition is that it ensures that

Y (Kv)E ∩ (small disc about y0) = Φ−1
y0

(Gy0(Kv))

is contained in the vanishing locus of a non-zero rigid-analytic function on a small
neighbourhood of y0, so is finite. This is what ultimately allows one to prove
finiteness results for the v-adic obstruction loci Y (Kv)E.
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Inter-universal Teichmüller Theory as an Anabelian Gateway to
Diophantine Geometry and Analytic Number Theory

Shinichi Mochizuki

(joint work with Yuichiro Hoshi, Arata Minamide, Shota Tsujimura,
and Go Yamashita)

1. Overview via a famous quote of Poincaré

One question that is frequently asked concerning inter-universal Teichmüller the-
ory (IUT) is the following:

Why/how does IUT allow one to apply anabelian geometry to
prove diophantine results?

In this report, we address this question by giving an overview of various aspects
of IUT, many of which may be regarded as striking examples of the famous quote
of Poincaré to the effect that

“mathematics is the art of giving the same name to dif-
ferent things”

— which was apparently originally motivated by various observations on the part of
Poincaré concerning certain remarkable similarities between transformation group
symmetries of modular functions such as theta functions, on the one hand, and
symmetry groups of the hyperbolic geometry of the upper half-plane, on the other
— all of which are closely related to IUT (cf. [EssLgc], §1.5; the discussion sur-
rounding (InfH) in [EssLgc], §3.3; [EssLgc], Example 3.3.2). Here, we note that
there are (at least) three ways in which this quote of Poincaré is related to IUT:

(1) the original motivation of Poincaré (mentioned above),
(2) the key IUT notions of coricity/multiradiality (cf. §2.1, §2.2, §3.2 below),

and
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(3) new applications of the Galois-orbit version of IUT (cf. §4 below).

One important theme in this context consists of the observation that one may
acquire a rough survey-level understanding of IUT using only a knowledge of such
elementary topics as

(a) the notions of rings/fields/groups/monoids (cf. §2 below; [EssLgc], Exam-
ple 2.4.8) and

(b) the elementary geometry of the projective line/Riemann sphere/analytic
continuation (cf. §3 below; [EssLgc], Example 2.4.7).

A more detailed exposition of IUT may be found in the survey texts [Alien],
[EssLgc], as well as, of course, in the original papers [IUTch], which are exposed
in the videos/slides available at [ExHr21a, ExHr21b].

2. The N-th power map and Galois groups as abstract groups

Let R be an integral domain (such as Z ⊆ Q) equipped with the action of a group
G, (Z ∋) N ≥ 2. For simplicity, we assume that N = 1 + · · · + 1 6= 0 ∈ R, and
that R has no nontrivial N -th roots of unity. Write R⊲ ⊆ R for the multiplicative
monoid R \ {0}.
Then let us observe that the N -th power map on R⊲ determines an isomorphism
of multiplicative monoids equipped with actions by G, i.e.,

G y R⊲ ∼→ (R⊲)N (⊆ R⊲) x G,

that does not arise from a ring homomorphism, i.e., is clearly not compatible with
addition (cf. our assumption on N !).

2.1. Distinct ring structures. Next, let †R, ‡R be two distinct copies of the
integral domain R, equipped with respective actions by two distinct copies †G,
‡G of the group G. We shall use similar notation for objects with labels “†”,
“‡” to the previously introduced notation. Then one may use the isomorphism of
multiplicative monoids arising from the N -th power map discussed above to glue
together

†G y †R ⊇ (†R⊲)N
∼← ‡R⊲ ⊆ ‡R x ‡G

the ring †R to the ring ‡R along the multiplicative monoid (†R⊲)N
∼← ‡R⊲.

This gluing is compatible with the respective actions of †G, ‡G relative to the
isomorphism †G

∼→ ‡G given by forgetting the labels “†”, “‡”, but, since the N -th
power map is not compatible with addition (!), this isomorphism †G

∼→ ‡G
may be regarded either as an isomorphism of (“coric”, i.e., invariant with respect
to the N -th power map) abstract groups (cf. the notion of “inter-universality”,
as discussed in [EssLgc], §3.2, §3.8) or as an isomorphism of groups equipped with
actions on certainmultiplicative monoids, but not as an isomorphism of (“Galois”
— cf. the classical inner automorphism indeterminacies of SGA1) groups equipped
with actions on rings/fields.
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2.2. The multiradial algorithm. The problem of describing (certain portions
of the) ring structure of †R in terms of the ring structure of ‡R — in a fashion that
is compatible with the gluing and via a single algorithm that may be applied to the
common (cf. “logical AND ∧”!) glued data to reconstruct simultaneously (certain
portions of) the ring structures of both †R and ‡R, up to suitable relatively mild
indeterminacies (cf. the theory of crystals !) — seems (at first glance/in general)
to be hopelessly intractable1 (cf. the case where R = Z)!

This is precisely what is achieved in IUT (cf. the quote of Poincaré!) by means
of the multiradial algorithm for the Θ-pilot via

• anabelian geometry (cf. the abstract groups †G, ‡G!),
• the p-adic/complex logarithm and theta functions, and
• Kummer theory (to relate Frobenius-/étale-like versions of objects).

Thus, in summary,

the multiplicative monoid and abstract group structures (but not
the ring structures!) are common (cf. “logical AND ∧”!) to †, ‡.

On the other hand, once one deletes the labels “†”, “‡” to secure a “common
R”, one obtains a meaningless situation, where the common glued data may be
related via “†” OR “∨” via “‡” to the common R, but not simultaneously to both.

When R = Z (or, more generally, the ring of integers “OF ” of a number field F —
cf. the multiplicative norm map NF/Q : F → Q), one may consider the “height”
log(|x|) ∈ R for 0 6= x ∈ Z. Then the N -th power map corresponds, after passing
to heights, to multiplication by N ; the multiradial algorithm corresponds to saying
that the height is unaffected (up to a mild error term!) by multiplication by N ,
i.e., that the height is bounded.

3. Conceptual analogies with the projective line/Riemann sphere

Let k be a field (which, in fact, could be taken to be an arbitrary ring), R a
k-algebra. Denote the units of a ring by a superscript “×”. Write A1 for the
affine line Spec (k[T ]) over k, Gm for the open subscheme Spec (k[T, T−1]) of
A1 obtained by removing the origin.

Recall that the standard coordinate T on A1 and Gm determines

natural bijections A1(R)
∼→ R, Gm(R)

∼→ R×

that are compatible with the well-known natural structures on A1 and Gm, respec-
tively, of ring scheme/(multiplicative) group scheme over k.

1One well-known example may be seen in the situation where, when N = p, one works modulo
p (cf. the point of view of indeterminacies, the analogy with crystals!), so that there is a common
ring structure that is compatible with the p-th power map.
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3.1. Gluing together distinctly labeled ring schemes. Next, write †A1, ‡A1

for the k-ring schemes given by copies of A1 equipped with labels “†”, “‡”. Observe
that there exists a unique isomorphism of k-ring schemes †A1 ∼→ ‡A1; moreover,
there exists a unique isomorphism of k-group schemes (−)−1 : †Gm

∼→ ‡Gm that

maps †T 7→ ‡T−1. Note that (−)−1 does not extend to an isomorphism †A1 ∼→ ‡A1

and is clearly not compatible with the k-ring scheme structures of †A1 (⊇ †Gm),
‡A1 (⊇ ‡Gm).

The standard construction of the projective line P1 may be understood as the
result of gluing †A1 to ‡A1 along the isomorphism

†A1 ⊇ †Gm
(−)−1

−→ ‡Gm ⊆ ‡A1

— i.e., at the level of R-rational points †R ⊇ †R× (−)−1

−→ ‡R× ⊆ ‡R — where
�R = �A1(R), �R× = �Gm(R), for � ∈ {†, ‡} (cf. the gluing situation discussed
in §2, where “(−)−1” corresponds to “(−)N”!). In particular, relative to this gluing,
we observe that there exists a single rational function on the copy of “Gm” that
appears in the gluing that is simultaneously equal to the rational function †T on
†A1 AND [cf. “∧”!] to the rational function ‡T−1 on ‡A1. Thus, in summary,

the standard construction of P1 may be regarded as consisting of
a gluing of two ring schemes along an isomorphism of multiplica-
tive group schemes that is not compatible with the ring scheme
structures on either side of the gluing.

Here, we observe that if, in the gluing under discussion, one arbitrarily deletes
the distinct labels “†”, “‡” (e.g., on the grounds that both ring schemes represent
“THE” structure sheaf “OX” of a k-scheme X !), then the resulting “gluing without
labels” amounts to a gluing of a single copy of A1 to itself that maps the standard
coordinate T on A1 (regarded, say, as a rational function on A1) to T−1. That is
to say, such a deletion of labels (even when restricted to the (abstractly isomor-
phic) multiplicative monoids †T Z, ‡T Z!) immediately results in a contradiction
(i.e., since T 6= T−1!), unless one passes to some sort of quotient of A1, e.g., by
introducing some sort of indeterminacy, which amounts to the consideration of
some sort of collection of possibilities [cf. “∨”!].

3.2. Analogy with the geodesic flow on the Riemann sphere. When k = C
(i.e., the complex number field), one may think of P1 as the Riemann sphere
S2 equipped with the Fubini-Study metric and of the gluing under discussion as
the gluing, along the equator E, of the northern hemisphere H+ to the southern
hemisphere H−.

Then the above discussion of standard coordinates “†T ”, “‡T ” translates into the
following (at first glance, self-contradictory!) phenomenon: an oriented flow along
the equator — which may be thought of physically as a sort of east-to-west wind
current — appears simultaneously to be flowing in the clockwise direction, from
the point of view of H+ ⊆ S2, AND in the counterclockwise direction, from the
point of view of H− ⊆ S2. Indeed, if one arbitrarily deletes the labels “+”, “−”
and identifies H− with H+, then one literally obtains a contradiction.
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On the other hand, one may relate H− to H+ (not by such an arbitrary dele-
tion of labels (!), but rather) by applying the well-known metric/geodesic ge-
ometry/isometric symmetries of S2 — i.e., by considering the geodesic flow
along great circles/lines of longitude — to represent, up to a relatively mild
distortion, the entirety of S2, i.e., including H− ⊆ S2, as a sort of deforma-
tion/displacement of H+ (cf. the point of view of cartography!).

It is precisely this metric/geodesic/symmetry-based approach that corresponds to
the anabelian geometry-based multiradial algorithm for the Θ-pilot in IUT (cf.
the analogy discussed in [Alien], §3.1, (iv), (v), as well as in [EssLgc], §3.5, §3.10,
between multiradiality and connections/parallel transport/crystals !).

3.3. Foundational aspects: universes, diagrams, and data types. In this
context, it is important to remember that, just like SGA, IUT is formulated entirely
in the framework of “ZFCG” (i.e., ZFC, plus Grothendieck’s axiom on the exis-
tence of universes), especially when considering various set-theoretic/foundational
aspects of “gluing” operations in IUT (cf. [EssLgc], §1.5, §3.8, §3.9, as well as
[EssLgc], §3.10, especially the discussion of “log-shift adjustment” in (Stp 7)),
such as the following:

• gluings are performed at the abstract level of diagrams (cf. graphs of groups/
anabelioids) and are not equipped with any embedding into some familiar am-
bient space (like a sphere);
• the output of reconstruction algorithms is only well-defined at the level of ob-
jects up to isomorphism (up to suitable indeterminacies), i.e., “types/ packages
of data” (such as groups, rings, monoids, diagrams, etc.) called “species” —
one consequence of which is the central importance of closed loops in order to
obtain set-theoretic comparisons that are not possible at intermediate steps.

Here, we note the importance of working with

• “types/packages of data” (cf., e.g., the diagrams referred to above), as opposed
to certain particular underlying sets of interest (cf. the classical functoriality
of resolutions up to homotopy in cohomology, as well as of algebraic closures
of fields up to conjugacy indeterminacies — which become unnecessary, e.g.,
if one considers norms), as well as
• the importance of working with “closed loops” (cf. norms in Galois theory;
the classical theory of analytic continuation/Riemann surfaces — which is rem-
iniscent of the classical Riemann-Weierstrass dispute! (cf. [EssLgc], §1.5); the
geodesic completeness/closed geodesics/isometric symmetries of the sphere).

4. New enhanced versions of IUT and related work in progress

Recent joint work in progress focuses on the Section Conjecture (“SC”) in an-
abelian geometry and allows one (cf. [GSCsp]), using “resolution of nonsingulari-
ties (RNS)” (cf. [RNSPM]), together with a result of Stoll,

to reduce the geometricity of an arbitrary Galois section of a hy-
perbolic curve over a number field to local geometricity at each
nonarchimedean prime, together with 3 global conditions, which
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correspond, respectively, to 3 new enhanced versions of IUT
that are currently under development.

Moreover, this theory of [GSCsp], when combined with other joint work in progress
(cf. [AnPf]), has led to substantial progress on the p-adic SC that is closely related
to the use of Raynaud-Tamagawa “new-ordinariness” in the theory of RNS (cf.
[RNSPM]), and which is noteworthy in that it functions as a sort of local p-adic
analogue of IUT, via the following analogy: “Norm(−) = (−)”←→ “N ·(−) ≈ (−)”
(cf. §2.2).

4.1. Applications of the Galois-orbit version of IUT. One such new en-
hanced version of IUT is the Galois-orbit version of IUT (GalOrbIUT), which
implies the following:

• “intersection-finiteness”, one of the 3 global conditions mentioned above in the
discussion of the SC,
• the nonexistence of Siegel zeroes of Dirichlet L-functions associated to imagi-
nary quadratic number fields (i.e., by applying the work of Colmez/Granville-
Stark/Táfula), and
• a numerically stronger version of the abc/Szpiro inequalities.

That is to say, we obtain three a priori different applications to anabelian geometry
(the “local-global” SC), analytic number theory (nonexistence of Siegel zeroes), and
diophantine geometry (abc/Szpiro inequalities) — a striking example of Poincaré’s
quote, i.e., all three are essentially the same mathematical phenomenon of
bounding heights, i.e., bounding “local denominators”.

Indeed, one key aspect of the local-global SC application is

to exhibit IUT as “anabelian geometry applied to obtain more
anabelian geometry”

(hence is less psychologically/intuitively surprising than the other two applica-
tions). Other noteworthy aspects include the following:

• it is technically the most difficult/essential of the three, i.e., to the extent that
the other two applications may be thought of, to a substantial extent, as being
“inessential by-products”;
• it is similar in spirit to the historical point of view (cf., e.g., of Grothendieck’s
famous “letter to Faltings”) that suggests (without any proof!) that the SC
might imply results in diophantine geometry (such as the Mordell Conjecture).

4.2. Anabelian conceptualization of the abc inequality. Finally, in this
context, it is interesting to recall (cf. [Alien], §3.11, (iii)) that the essential content
of anabelian geometry may be understood as a sort of “conceptual translation”
of the abc inequality:

indeed, just as anabelian geometry centers around reconstruct-
ing addition from multiplication, the abc inequality may be
thought of as a bound on the height (or “additive size”) of a
number by the conductor (or “multiplicative size”) of the num-
ber,
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i.e., both of these situations exhibit addition as being “dominated by” multi-
plication. This “conceptual”/“numerical” correspondence is reminiscent of the
well-known correspondence between the conceptual nature of the Weil Conjectures
and the corresponding numerical inequalities for the number of rational points of
a variety over a finite field.
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While many famous problems in number theory are about the existence of cer-
tain arithmetic objects, arithmetic statistics addresses questions of the probability
or frequency of their occurrence. For instance, a positive solution to the inverse
Galois problem for a finite group G and a field K would furnish a field extension
L/K whose Galois group Gal(L/K) is isomorphic to G. In contrast, when K is a
global field, Malle has conjectured an asymptotic formula for the number of such
extensions, as a function of the discriminant ∆L/K of the extension.

More precisely, we letG be a transitive subgroup of Sm, and letK be a separable
closure of K. Define a function which counts degree n extensions of K inside of
K with Galois group G:

(1) NG,K(X) := #{L ≤ K | deg(L/K) = m, Gal(L/K) ∼= G, |∆L/K | ≤ X}.
Here the isomorphism Gal(L/K) ∼= G is required to be one of groups acting on
the set of m embeddings of L into K. In [Mal04], Malle conjectures an asymptotic
for this quantity:

NG,K(X) ∼ cXa log(X)b−1,

where the constants a and b are given in terms of the group theory of G ≤ Sm

and the action of Gal(K/K) on G = Hom(Ẑ, G) through the cyclotomic character.
When G is abelian, this conjecture is a theorem of Wright’s [Wri89] proven using
methods of the class field theory.

In the number field setting, Malle’s conjecture is supported by a weight of
computational evidence, but has been proven in very few non-abelian cases; see,
e.g., [DH71, Bha05, Bha10, Wan21]. In joint work with Ellenberg and Tran, we
proved an upper bound when K is taken to be the function field Fq(t):

Theorem 1. For each integer m and each transitive G ≤ Sm, there are constants
C(G), Q(G), and e(G) such that, for all q > Q(G) coprime to #G and all X > 0,

NG,Fq(t)(X) ≤ C(G)Xa(G) log(X)e(G)

Here the exponent e(G) is always at least as large as Malle’s b− 1.
The main distinction between the number field and function field settings is

geometric. By definition, function fields are tied to the geometry of curves, and
their extensions correspond to ramified covering maps between curves. Specifically,
extensions L/k(t) correspond to curves Σ = Spec(OL) defined over k, and maps
Σ → A1

k = Spec k[t]. When K = Fq[t], the set being counted in Eq. (1) can be
reinterpreted as the set of isomorphism classes of such branched covers. This,
in turn, may be identified as the set of Fq-points of a moduli space of branched
covers.

Explicitly, we make the following definition: for n ∈ Z≥0, the Hurwitz moduli
space HurG,n is a scheme whose k points (with char(k) coprime to #G) parame-
terize {(π, τ)}/ ∼=, where

• Σ is a smooth projective curve, and π : Σ→ P1
k is a branched cover:

• Away from a reduced divisor D ⊆ P1
k, π is a G-Galois cover.

• deg(D ∩ A1) = n.
• π is tamely ramified at D.
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• τ : π−1(v) ∼= G is a trivialization of the fibre over a tangential point
v : Spec(k((t)))→ A1

k at ∞.

Write CHurG,n for the subscheme where Σ is geometrically connected. G acts on
these schemes by changing τ . By replacing a G-Galois cover Σ with the degree m
cover Σ×G [m], we may show

NG,Fq(t)(X) =
∑

|∆|≤X

#[CHurG,n /G](Fq).

where the sum is over those components of [CHurG,n /G] whose associated exten-
sions have discriminant less than X . This discriminant may be computed as a
product over the branch locus of π of qm−d, where d is the number of cycles in the
ramification above the branch point; thus to obtain |∆| = X , n ranges between
logq(X)/(m − D) and logq(X), where D is the largest possible number of cycles
allowed by elements of G ≤ Sm. In this language, the constant a(G) in Theorem
1 is easy to explain: a(G)−1 = m−D.

To prove Theorem 1, then, we must bound the quantity #[CHurG,n /G](Fq)
as a function of n; it suffices to do so for the larger scheme HurG,n. To do this,
we employ the Grothendieck-Lefschetz trace formula. In our setting, this is the
statement that

#HurG,n(Fq) = qn
2n∑

i=0

(−1)i tr(Frobq � Hi
et(HurG,n |Fq

,Qℓ))

The trace on H0
et is the number of Fq-rational components. Deligne shows that

the eigenvalues on Hi
et are bounded above by q−i/2, so

#HurG,n(Fq)− qn#π0(HurG,n |Fq
) ≤

2n∑

i=1

qn−i/2 rkQℓ
(Hi

et(HurG,n |Fq
,Qℓ))

Further, comparison theorems identify

rkQℓ
(Hi

et(HurG,n |Fq
,Qℓ)) = rkQ(H

i
sing(HurG,n(C),Q)) =: r(i, n).

Thus, our task is to show that r(i, n) does not grow too quickly: at worst expo-
nentially in i polynomially in n (of growth rate at worst that of #π0(HurG,n |Fq

)).
Notice that at this point, the problem has been reduced to a computation purely

within the realm of algebraic topology. In particular, the function HurG,n(C) →
Confn(C) which carries a branched covering to its branch locus is a covering space.
Further, the configuration space Confn(C) = K(Bn, 1) is an Eilenberg-MacLane
space for the nth braid group Bn. Thus the computation of Hi

sing(HurG,n(C),Q)
may be rephrased as a group cohomology computation for Bn with coefficients in
the Hurwitz representation.

In [EVW16], Ellenberg, Venkatesh, and I gave the desired cohomological bound
whenG is drawn from a certain class of generalized dihedral groups; our application
was to a function field version of Cohen-Lenstra’s conjecture on the distribution of
class groups of imaginary quadratic fields. In [ETW23] with Ellenberg and Tran,
we extended these results (using new topological methods) to the general setting.
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In the first case, our methods built on classical homological stability for braid
groups. In the second, we used the Fuks/Fox-Neuwirth cellular stratification of
configuration space to give an interpretation of the computation in terms of the
cohomology of objects arising in the theory of quantum groups. Unfortunately, our
cohomological calculations are insufficient to provide the lower bound in Malle’s
conjecture.

This method may be summarized as follows:

(1) Translate the statistical question over Fq(t) into a question about (asymp-
totically) estimating #Mn(Fq), where Mn is a moduli stack parameterizing
the objects of interest of “complexity” n.

(2) Compute #Mn(Fq) in terms of Lefschetz numbers in étale cohomology.
(3) The contribution from H0(Mn) is usually the main term in the asymptotic.
(4) To establish this, one must show that rkH>0(Mn) isn’t too large.
(5) Conclude that the contribution from H>0(Mn) is of lower order via Deligne’s

bounds on the eigenvalues of Frobenius.

There are by now a number of other examples where this method has been
employed to establish arithmetic statistical results over function fields:

• In [EL23], Ellenberg and Landesman study the distribution of Selmer
groups of elliptic curves over Fq(t) as they vary in quadratic twist families.
They establish that the Bhargava-Kane-Lenstra-Poonen-Rains heuristics
(see [BKL+15]) hold for these families. Their homological method is very
closely based on that of [EVW16].
• In [Das21], Das shows that (except at a finite number of characteristics) the
average number of points on a smooth cubic surface S ⊂ P3

Fq
is precisely

q2 + q + 1 = #P2(Fq). He does so by analyzing the cohomology of the
moduli spaceM of such surfaces, as well as the cohomology of the universal
surface U overM. Then

average number of points on S =
#U(Fq)

#M(Fq)
.

But Das shows that the map U →M× P3 induces an isomorphism

H∗(U(C),Q) ∼= H∗(M(C),Q)⊗H∗(P2(C),Q),

from which the result follows.
• In [Che17], Chen studies the related question about the average number of
points on a superelliptic curve. For a monic squarefree polynomial f(x) of
degree n and integer e, there is an (affine) superelliptic curve Xf defined
by

Xf := {(x, y) | ye = f(x)}.
Chen shows that if n or e is odd, the average number of Fq-points on
Xf is precisely q. To do so, we think of Confn as the space of monic
squarefree polynomials of degree n (by sending f to its roots). Then there
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is a universal superelliptic curve π : En,e → Confn; as before,

average number of points on Xf =
#En,e(Fq)

#Confn(Fq)
.

Chen computes H∗(En,e(C),Q) in terms of the cohomology of the Burau
representation, specialized at eth roots of unity. He shows that π∗ is an
isomorphism, which gives the result.
• On a related subject, in [BDPW23], Bergström, Diaconu, Petersen, and I
study the moments of quadratic Dirichlet L-functions over Fq(t). The cen-
tral value of such an L-function is closely related to the central value of the
zeta function of the associated hyperelliptic curve. As the the curves range
over the hyperelliptic ensemble, the associated moments can be computed
in terms of the trace of Frobenius on the cohomology of Confn(C) (in its
guise as a hyperelliptic moduli space) with coefficients in certain Schur
functors applied to the Burau representation. We compute the stable co-
homology, but are currently lacking a strong enough homological stability
result to yield the desired asymptotics as conjectured in papers of Andrade,
Conrey, Farmer, Keating, Rubinstein, and Snaith [AK14, CFK+05].
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Massey products for curves

Frauke M. Bleher

(joint work with Ted Chinburg, Jean Gillibert)

1. Motivation

The application of Massey products to understand the Galois groups of extensions
of number fields is a longstanding research topic. We consider triple and higher
Massey products on H1(X,Z/ℓ) when ℓ is an odd prime number and X is a smooth
projective variety over a field F in which ℓ is invertible. When d = dim(X) = 0,
Mináč and Tân showed in [MT16] that triple Massey products always vanish for
arbitrary F . This followed earlier work by Hopkins andWickelgren [HW15], Matzri
[Mat14], Efrat and Matzri [EM17], and others. When d = 0 and F is a number
field, Harpaz and Wittenberg showed in [HW23] that all t-fold Massey products
vanish for t ≥ 3. Ekedahl gave an example in [Ekd86] showing that triple Massey
products need not vanish when d = 2 and F = C.

It is thus a natural question to ask what happens when d = 1. Our main results
show that in fact triple Massey products need not vanish when X is an elliptic
curve.

2. Massey products and embedding problems

Suppose now that X is a smooth projective geometrically irreducible curve over
an arbitrary field F , let F̄ be the separable closure of F , and let X̄ = X ⊗F F̄ .
It follows from [Ach15, §2.1.2] that if X̄ is not isomorphic to P1

F̄
then there is a

natural isomorphism

Hi(X,Z/ℓ) ∼= Hi(π1(X),Z/ℓ)

for all i ≥ 1.
For t ≥ 3, let χ1, . . . , χt ∈ H1(X,Z/ℓ). The t-fold Massey product 〈χ1, . . . , χt〉

is a subset of H2(X,Z/ℓ) which could be empty. For example, if t = 3 then
〈χ1, χ2, χ3〉 6= ∅ if and only if the cup products χ1 ∪ χ2 = χ2 ∪ χ3 = 0. We say
〈χ1, χ2, χ3〉 does not vanish if 〈χ1, χ2, χ3〉 6= ∅ and 〈χ1, χ2, χ3〉 does not contain
the zero element of H2(X,Z/ℓ).

We get the following connection to embedding problems (see [Dwy75]) where
U4(Z/ℓ) denotes the group of 4 × 4 upper triangular unipotent matrices with
entries in Z/ℓ:

Suppose 〈χ1, χ2, χ3〉 6= ∅. Then 〈χ1, χ2, χ3〉 vanishes if and only if the finite
weak embedding problem determined by
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• χ : π1(X) → (Z/ℓ) × (Z/ℓ) × (Z/ℓ), given by σ 7→ (χ1(σ), χ2(σ), χ3(σ)),
and

• π : U4(Z/ℓ)→ (Z/ℓ)× (Z/ℓ)× (Z/ℓ), given by




1 a d f
0 1 b e
0 0 1 c
0 0 0 1


 7→ (a, b, c),

has a weak solution, i.e. there exists a continuous group homomorphism ρ :
π1(X)→ U4(Z/ℓ) such that π ◦ ρ = χ.

3. Overview of results

We have the following results:

3.1. When F = F̄ then all t-fold Massey products vanish for t ≥ 3.

3.2. When F 6= F̄ then this does not have to be true, and we have examples
of non-vanishing triple Massey products when X is an elliptic curve and F is a
number field or a finite field.

3.3. More specifically, when X = E is an elliptic curve, we classify precisely when
triple Massey products do not vanish in the following two cases:

(a) the ℓ-torsion Ē[ℓ] is defined over F , or
(b) F is a finite field.

4. More details

In the case 3.3 (a), i.e. when Ē[ℓ] is defined over F , we show that the only case in
which a non-empty triple Massey product 〈χ1, χ2, χ3〉 does not vanish is when ℓ = 3
and each of χ1, χ2, χ3 generates the same one-dimensional subspace of H1(E,Z/ℓ).
We prove the following result, where G

(3)
F denotes the pro-3 completion of the

absolute Galois group of F :

Theorem 1. If Ē[3] is defined over F and char(F ) 6= 3, then there exists a
character χ ∈ H1(E,Z/3) such that 〈χ, χ, χ〉 does not contain zero if and only if
either

(i) the action of G
(3)
F on Ē[9] is not given by multiplication by scalars in

(Z/9)×, or
(ii) the action of G

(3)
F on Ē[9] is given by multiplication by scalars in (Z/9)×

and there exists a primitive ninth root of unity ζ9 ∈ F̄ such that ζ9 6∈ F
and F (ζ9) is not the only cubic extension of F inside F̄ .

For example, if E is the elliptic curve over F = Q(
√
3,
√
−1) with model y2 =

x3 − 1, then Ē[3] is defined over F and F does not contain a primitive ninth root
of unity. Hence there exists a character χ ∈ H1(E,Z/3) with non-vanishing triple
Massey product.

Another family of examples is constructed as follows:
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Example 1. Let t be an indeterminate, and let Et be the generic Legendre elliptic
curve over Q(t) defined by the equation

y2 = x(x − 1)(x− t).

For an odd integer n, let k := Q(ζn, t), and let k(Ēt[n]) be the field obtained from
k by adjoining the coordinates of the n-torsion points of Ēt. By Igusa [Igu59,
Theorem 3], the Galois representation

Gal(k(Ēt[n])/k)→ GL2(Z/n)

has image equal to SL2(Z/n). Considering n = 9 and n = 3, we get an exact
sequence

1→ Gal(k(Ēt[9])/k(Ēt[3]))→ SL2(Z/9)→ SL2(Z/3)→ 1.

According to Hilbert’s irreducibility theorem, these Galois groups remain the same
for infinitely many rational specializations t0 of the parameter t. Therefore, one ob-
tains infinitely many (non-isomorphic) elliptic curves Et0 over Ft0 := Q(ζ9, Ēt0 [3])
that satisfy condition (i) of the previous theorem. In particular, there exists a
character χ ∈ H1(Et0 ,Z/3) with non-vanishing triple Massey product.

In the case 3.3 (b), i.e. when F is a finite field, we also consider the case when
Ē[ℓ] is not defined over F , so ℓ > 3 is possible. We obtain the following result:

Theorem 2. Suppose ℓ > 3. There exist a prime number p 6= ℓ, an elliptic curve
E defined over Fp, and non-trivial characters χ1, χ2, χ3 ∈ H1(E,Z/ℓ) such that
〈χ1, χ2, χ3〉 is not empty and does not contain zero.

These results have recently been published in [BCG23].

5. Outlook

We are currently working on the following problems and questions:

5.1. Study vanishing and non-vanishing of triple Massey products for curves X
of genus g(X) ≥ 2, especially when ℓ > 3. In particular, is it more likely for triple
Massey products to not vanish for higher genus?

5.2. Study vanishing and non-vanishing of t-fold Massey products for curves X
when t ≥ 4. In particular, is it more likely for higher Massey products to vanish?

5.3. Relate Massey products on integral models X of curves X over a number
field F to Massey products in the fibres. In particular, what can we say about the
classes in H2(X ,Z/ℓ) that are trivial on all fibres?
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Oda’s problem for cyclic special loci

Séverin Philip

(joint work with B. Collas)

We report on recent progress on the arithmetic of ℓ-outer monodromy representa-
tions of moduli stacks of curves in relation with a question of Oda on the associated
monodromy fixed fields and with the stack structure of moduli space of curves,
see [CP23].

1. The classical Oda’s problem

LetMg,m be the moduli space of curves of genus g with mmarked points satisfying
the hyperbolicity condition 2g − 2 + m ≥ 1. Oda showed in [Oda97] that there
is an exact sequence of étale fundamental groups induced by the point forgetting
map

1 π1(CQ) π1(Mg,m+1) π1(Mg,m) 1

where C/Q is a hyperbolic curve represented on Mg,m. From this exact se-
quence and by pro-ℓ completion we obtain a universal ℓ-monodromy outer action
Φℓ

g,m : π1(Mg,m) → Outπℓ
1(CQ) for any fixed prime ℓ. The universality is to be

understood by the fact that for any such curve C/Q the usual ℓ-monodromy outer
action ϕℓ

C : GQ → Outπℓ
1(CQ)1 induced by the homotopy exact sequence of C

1Contrary to the profinite case where injectivity follows from Belyi’s theorem, the kernel of
the pro-ℓ outer action is non-trivial.

https://arxiv.org/abs/1411.4146
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factors through Φℓ
g,m in the following commutative triangle

GQ Outπℓ
1(CQ

)

π1(Mg,m)

sC

ϕℓ
C

Φℓ
g,m

where sC is the section of the canonical projection p : π1(Mg,m) → GQ induced
by the rational point representing C.

From these outer actions we define ℓ-monodromy fixed fields Qℓ
g,m := Q

p(KerΦℓ
g,m)

and Qℓ
C := Q

Kerϕℓ
C . Note that by the universality of Φℓ

g,m we have the in-

clusion Qℓ
g,m ⊂ Qℓ

C and also that by specifying to (g,m) = (0, 3) we have

Φℓ
g,m = ϕℓ

P1
Q
\{0,1,∞}

.

Oda’s problem is then concerned by the independence in (g,m) of the ℓ-monodromy
fixed fields Qℓ

g,m. The complete proof of independence has been obtained through
different techniques such as computations with Lie algebras [Ma96], consideration
of divisorial stratifications of the moduli spaces [IN97] and combinatorial anabelian
geometry [HM11], we refer to [Tak14] for a survey.

Theorem 1 (Hoshi, Ihara, Matsumoto, Mochizuki, Nakamura, Oda, Takao,Ueno).
For all (g,m) of hyperbolic type we have

Qℓ
g,m = Qℓ

0,3.

2. A cyclic special loci version of Oda’s problem

For G a finite group letMg,[m][G] be the moduli space of triples

(C/S,D, ι : G →֒ AutS C)

with C a curve of genus g and D a divisor on C of degree m. The G-special loci
is defined as the imageMg,[m](G) ofMg,[m][G] inMg,[m] by the map induced by
forgetting the G-action. From the work of Collas-Maugeais in [CM15] the irre-
ducible components of the G-special loci for cyclic G are geometrically irreducible
and classified by a combinatorial data noted kr, we denote them byMg,[m](G)kr .

Similarly to the classical situation there is a universal ℓ-monodromy outer action
Φℓ

g,m(G)kr and thus ℓ-monodromy fixed fields Qℓ
g,m(G)kr . Oda’s problem for the

cyclic special loci is then the question of the independence of these fields, at fixed
cyclic G, in the data (g,m) and kr. For simple cyclic groups this question can be
resolved.

Theorem 2 (Theorem 5.3 of [CP23]). For G = Z/ℓZ, (g,m) of hyperbolic type
and associated abstract Hurwitz data kr such that Mg,[m](G)kr is non-empty, we
have

Qℓ
g,m(G)kr = Qℓ

0,3.
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3. The maximal degeneration method with
Matsumoto-Seyama curves

The proof is made by an adaptation of the method of maximal degeneration by
Ihara and Nakamura in [IN97]. We produce a curve Xη represented on the moduli
stack Mg,[m](G)kr such that ϕℓ

Xη
= Qℓ

0,3 as the generic curve of a degenerat-

ing family X with special fiber Xs on the boundary of the compactification of
Mg,[m](G)kr . The construction of X is made explicit by first constructing the sin-
gular curve Xs as a G-stable diagram, i.e. a specific gluing of curves represented
by the following figure.

Fig 1. Z/ℓZ-stable diagram

The curves depictured are one of the Cr curves given by

• The smooth G-curve birational to yr(y − 1) = xℓ, with 3 ramified points
represented by black dots for 1 ≤ r ≤ ℓ− 2.
• The projective line P1 with its G-action having 2 ramified points as black
dots 0 and ∞ and ℓ unramified points given by µℓ and represented by
dashes for r = 0.

The curves Cr are called Matsumoto-Seyama curves and have the specific property
that Qℓ

Cr
= Qℓ

0,3.

A one-dimensional deformation familyX is then explicitly given through formal ge-
ometry and affine patches. In order to relate the Galois action of the generic curve
Xη to the one of the irreducible components of the special fiber (i.e. Matsumoto-
Seyama curves by construction) we use Grothendieck-Murre theory. At each dou-

ble point µ of Xs we construct a fiber functor ~µ for the category RevD(X) of
étale covers of X tamely ramified at the divisor D made of Xs and the marked
points. The construction of such fiber functors comes with a choice of Galois ac-
tion on the étale fundamental group. In our situation the following facts follow
from Grothendieck-Murre theory:

(i) There are Galois equivariant isomorphisms

πD
1 (X) ≃ πD

1 (X) ≃ π1(Xη \ {P1, . . . , Pm})
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where X is the formal scheme underlying X with its corresponding divisor
D and P1, . . . , Pm are the marked points of the geometric generic fiber Xη.
Remark that the Galois action on π1(Xη \{P1, . . . , Pm}) given by the fiber
functors ~µ is a choice of a lift of the usual outer Galois action.

(ii) The groupoid ΠD
1 ((X), ~µ, ~µ′) is generated by the images of all the maps

coming from the irreducible components.

By pullbacks to the irreducible components of Xs the formal double-points µ
give rise to tangential basepoints that fit in a commutative square

SpfQ[[T1, T2]]/(T1T2) SpecQ((X))

X Cr

tµ

The construction of the family X is made explicit specifically in order to control
the Galois action obtained on π1(CrQ) from the tangential basepoints tµ. This is
done so in a way such that tµ is a lift of one of Deligne’s tangential basepoint on
P1 \ {0, 1,∞}. This assures that the fixed field of the resulting Galois action is
again Qℓ

0,3 and thus by the fact (ii) we are done.

In relation to the Anderson-Ihara question of identifying the field Qℓ
C , we refer

to Ishii’s report in this volume for ℓ ≥ 5 and C an elliptic curve with complex
multiplication.

Acknowledgement. This work is supported by JSPS KAKENHI Grant number
22F22015.
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Towards Grothendieck’s anabelian dream for curves over algebraically
closed fields of characteristic p

Yu Yang

1. Anabelian geometry: towards positive characteristic

1.1. Grothendieck’s anabelian philosophy. In 1980s, in his famous letter to
Faltings, Grothendieck suggested the theory of “anabelian geometry”. This theory
aims to reconstruct algebraic varieties from their algebraic fundamental groups.
In particular, for the case of 1-dimensional schemes, Grothendieck’s anabelian phi-
losophy is as follows:

The set of dominate morphisms of hyperbolic curves can be com-
pletely determined by the set of open continuous homomorphisms
of their algebraic fundamental groups (e.g. étale, tame, etc.).

Since Grothendieck introduced the theory of anabelian geometry, this philoso-
phy offers a framework for theoretical progression and serves as a guiding principle
for the development of this field (in particular, for studying anabelian geometry
of curves over arithmetic field of characteristic 0).

The various formulations based on the above anabelian philosophy are called
Grothendieck’s anabelian conjectures. It’s worth highlighting that the most signif-
icant instances of Grothendieck’s anabelian conjectures over arithmetic fields, such
as number fields, p-adic fields, and finite fields, have been proved by H. Nakamura,
S. Mochizuki and A. Tamagawa1. Note that the Galois actions play the crucial role
in their proofs of Grothendieck’s anabelian conjectures for curves over arithmetic
fields.

1.2. Fundamental groups in positive characteristic. In 1996, Tamagawa
made a surprising discovery, suggesting the possible existence of anabelian phe-
nomena for curves over algebraically closed fields of characteristic p > 0 (note
that no anabelian phenomena exist for curves over algebraically closed fields of
characteristic 0). Subsequently, from 1996 to 2001, these anabelian phenomena
were deeply investigated by F. Pop, M. Säıdi, M. Raynaud, and A. Tamagawa.
All of their researches focus on the so-called “the weak Isom-version conjecture”
which was formulated by Tamagawa [Tam02] based on the anabelian philosophy
mentioned in § 1.1. Roughly speaking, this conjecture says that the isomorphism
classes of hyperbolic curves over algebraically closed fields of characteristic p can
be reconstructed group-theoretically from their geometric fundamental groups (i.e.
without using Galois actions).

While the weak Isom-version conjecture remains a wild open problem at present,
Tamagawa has nonetheless achieved an important result known as the “finiteness
theorem” [Tam04]:

1We refer to “H. Nakamura, A. Tamagawa, S. Mochizuki, The Grothendieck conjecture on
the fundamental groups of algebraic curves, Sugaku Expo. 14, No. 1 (2001), 31–53; translation
from Sūgaku 50, No. 2, 113-129 (1998)” for a panorama of techniques, principles and results.
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Over Fp, only finitely many isomorphism classes of hyperbolic
curves have the same tame fundamental groups.

This result is one of the highest achievements in the theory of anabelian geometry.

2. Moduli spaces of fundamental groups

Let X•
i

def
= (Xi, DXi

), i ∈ {1, 2}, be a pointed stable curve of type (g, n) over an
algebraically closed field ki of characteristic p > 0. Here,Xi denotes the underlying
semi-stable curve of X•

i of genus g, and DXi
denotes the set of marked points of

cardinality n.

2.1. Mysterious phenomena and the fundamental question. By choosing
suitable base point xi ∈ Xi \ DXi

, we have the so-called admissible fundamental
group (or geometric log étale fundamental group) πadm

1 (X•
i , xi) of X•

i (see [Ya18]
for more details about admissible fundamental groups). The admissible fundamen-
tal groups are natural generalizations of the tame fundamental groups of smooth
pointed stable curves to the case of arbitrary (possibly singular) pointed stable
curves. In particular, πadm

1 (X•
i , xi) = πtame

1 (X•
i , xi) if X

•
i is smooth over ki.

Moreover, the structure of the maximal pro-prime-to-p quotient of πadm
1 (X•

i , xi)
is well-known if p > 0 (resp. the structure of πadm

1 (X•
i , xi) is well-known if p =

0), and it is isomorphic to the pro-prime-to-p completion (resp. the profinite
completion) of the topological fundamental group of a Riemann surface of type
(g, n). Since we only focus on the isomorphism class of πadm

1 (X•
i , xi), for simplicity,

we omit the base point xi and use the notation ΠX•

i
to denote πadm

1 (X•
i , xi).

In 1990s, Tamagawa noted that the following phenomenon exists in positive
characteristic:

Homdom(X•
1 , X

•
2 ) = ∅ but Homop(ΠX•

1
,ΠX•

2
) 6= ∅.

Here, Homdom(X•
1 , X

•
2 ) denotes the set of dominate morphisms of curves, and

Homop(ΠX•

1
,ΠX•

2
) denotes the set of open continuous homomorphisms of profi-

nite groups. The above phenomenon means that anabelian philosophy suggested
originally by Grothendieck mentioned in § 1.1 does not hold for curves over alge-
braically closed fields of characteristic p.

Now, the author considered the following the fundamental question:

Does there exist anabelian explanation for Homop(ΠX•

1
,ΠX•

2
)?

The theory of “moduli spaces of fundamental groups” and its main conjecture “the
homeomorphism conjecture” established by the author provide a reasonable answer
to this fundamental question.

2.2. Anabelian philosophy via moduli spaces of fundamental groups. In
[HYZ23], the author discovered a new kind of anabelian phenomenon that shows
that the sets of open continuous homomorphisms of admissible fundamental groups
contains deformation information of curves. This new anabelian phenomenon can
be precisely captured by using the so-called “moduli spaces of fundamental groups”
and “the homeomorphism conjecture”.
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Roughly speaking, in [Ya20a], the author introduced

Πg,n, the moduli space of admissible fundamental groups of type (g, n),

a topological space whose underlying set is the set of the isomorphism classes of
admissible fundamental groups of curves of type (g, n) over algebraically closed
fields of characteristic p, and whose topology can be completely determined by the
set of finite quotients of admissible fundamental groups.

Let Mg,n be the coarse moduli spaces of the moduli stack over Fp classify-
ing pointed stable curves of type (g, n). By introducing the so-called “Frobenius
equivalence ∼fe” on Mg,n [Ya21], the author proved the existence of a continuous
map

πadm
g,n : Mg,n

def
= Mg,n/ ∼fe։ Πg,n, [q] 7→ [Πq],

where [q] denotes the equivalence class of q ∈ Mg,n, Πq denotes the admissible
fundamental group of a curve corresponding to a geometric point over q, and [Πq]
denotes the isomorphic class of Πq. The main conjecture of the theory of moduli
spaces of fundamental groups is the following:

Homeomorphism conjecture: The continuous map πadm
g,n : Mg,n ։ Πg,n is a

homeomorphism.

Note that the weak Isom-version conjecture only says that πadm
g,n is a bijection

as sets. This conjecture generalizes all the known conjectures concerning tame
anabelian geometry of curves over algebraically closed fields of characteristic p.
Furthermore, it supplies a viewpoint to consider anabelian geometry of curves over
algebraically closed fields of characteristic p based on the following new anabelian
philosophy:

The anabelian properties concerning pointed stable curves over
algebraically closed fields of characteristic p are equivalent to the
topological properties of moduli spaces of admissible fundamental
groups.

The above philosophy tells us what are the anabelian phenomena that we can rea-
sonably expect for pointed stable curves over algebraically closed fields of charac-
teristic p. This means that the homeomorphism conjecture is a dictionary between
the geometry of pointed stable curves (or moduli spaces of curves) and the an-
abelian properties of pointed stable curves. It has raised a host of new questions
and new conjectures concerning anabelian phenomena in positive characteristic
which cannot be seen if we only consider the weak Isom-version conjecture.

The author believes that the theory of moduli spaces of fundamental groups
and the homeomorphism conjecture offer an approach towards Grothendieck’s an-
abelian dream for curves over algebraically closed fields of characteristic p > 0.

2.3. Fundamental groups in positive characteristic as local moduli. By
using the new anabelian philosophy mentioned above, the author obtained the
following insight:
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The admissible fundamental groups of pointed stable curves over
algebraically closed fields of characteristic p can be regarded as an
analogue of local moduli spaces of the curves.

Roughly speaking, this means that for q′ ∈ Mg,n an arbitrary point and X•
q′ the

curve corresponding to a geometric point over q′:

(1) We can group-theoretically detect, “up to Frobenius”, whether or not X•
q′

is a deformation of X•
q from Homop(Πq′ ,Πq) – i.e. “up to Frobenius”,

q is a specialization (in the sense of moduli space) of q′ if and only if
Homop(Πq′ ,Πq) 6= ∅.

(2) The deformations of X•
q can be reconstructed group-theoretically from

Homop(−,Πq) – with certain addition conditions.

3. A series of evidences for the anabelian insight

The following results obtained by the author provide strong evidence for the above
insight:

(1) The homeomorphism conjecture holds for 1-dimensional moduli spaces,
see [Ya20a, Ya21a].

(2) (With Y. Hoshi) A new proof of Mochizuki’s famous result on (Isom-
version) Grothendieck’s anabelian conjecture for curves over sub-p-adic
fields [Moc99], see [HY22]. Note that our proof does not rely on Faltings’
p-adic Hodge theory.

Furthermore, in [Ya21b], the author posed an ultimate generalization of the so-
called “combinatorial Grothendieck conjecture in positive characteristic” [Tam03,
Ya18] which we call “the group-theoretical specialization conjecture”. Roughly
speaking, this conjecture means that open continuous homomorphisms of ad-
missible fundamental groups can completely determine the topological and group-
theoretical degeneration of curves. We have the following result:

(3) In [Ya23], the author proved that the group-theoretical specialization con-
jecture holds. As an application, one obtains that the combinatorial strati-
fication (i.e. the stratification by using dual semi-graphs) of moduli spaces
of curves can be completely reconstructed group-theoretically (as topolog-
ical spaces!) from admissible fundamental groups.
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The étale homotopy obstruction and its applications

David Corwin

1. Introduction

1.1. The Hasse Principle. Let K be a number field, AK the adèle ring of K,
and X a variety over K. Clearly, if X(AK) = ∅, then X(K) = ∅. The Hasse-
Minkowski Theorem states that the converse holds if X is a quadric hypersurface.
Lind, Reichardt, Selmer, and many others subsequently found examples of X for
which the converse is false; such an example is known as a counterexample to the
Hasse principle or local-global Principle.

1.2. Obstructions to the Hasse Principle. Yuri Manin initiated the notion of
an obstruction to the Hasse principle: a subset of X(AK), functorial in X , that al-
ways contains X(K). Manin’s obstruction [Man71] is known as the Brauer-Manin
obstruction and denoted X(AK)Br. Others include the finite abelian descent ob-
structionX(AK)f−ab, the finite descent obstructionX(AK)fin, the descent obstruc-
tion X(AK)descent, and the étale-Brauer obstruction X(AK)ét,Br of Skorobogatov
[Sk99].

Harpaz and Schlank defined the étale homotopy X(AK)h and étale homol-
ogy X(AK)Zh obstructions using a more general and less ad hoc procedure than
the previous obstructions. However, they found (at least for number fields) that
X(AK)Zh = X(AK)Br, and X(AK)h = X(AK)ét,Br, which follow from cohomo-
logical duality for number fields. Nonetheless, these obstructions have provided
insight into these already-known obstructions and suggested new avenues of attack
for related problems, such as existence of rational 0-cycles and rational points over
higher-dimensional function fields K.

https://arxiv.org/abs/2010.01806
http://www.kurims.kyoto-u.ac.jp/~yuyang/
http://www.kurims.kyoto-u.ac.jp/~yuyang/
http://www.kurims.kyoto-u.ac.jp/~yuyang/
http://www.kurims.kyoto-u.ac.jp/~yuyang/
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2. Etale Homotopy Obstructions

A series of obstructions is defined in [HS13]:

X(AK)h ⊆ · · · ⊆ X(AK)h,2 ⊆ X(AK)h,1 ⊆ X(AK)

and

X(AK)Zh ⊆ · · · ⊆ X(AK)Zh,2 ⊆ X(AK)Zh,1 ⊆ X(AK)

such that X(AK)h,n ⊆ X(AK)Zh,n for all n, X(AK)Zh =
⋂

n X(AK)Zh,n, and
X(AK)h =

⋂
n X(AK)h,n.

2.1. Homotopy Fixed Points. They are defined by first defining a sequence of
sets and maps

X(K) // X(hK) //

��

· · · // X(h3K) //

��

X(h2K) //

��

X(h1K) //

��

X(h0K)

��
X(ZhK) // · · · // X(Zh3K) // X(Zh2K) // X(Zh1K) // X(Zh0K),

for any variety X over a field K of characteristic 0, all of which are functorial
in both X and K. Here, X(h0K) is π0(X)GK , the set of GK -fixed geometric
connected components, while for X geometrically connected, X(h1K) is the set
of fundamental group sections familiar from anabelian geometry. To go further,
there are exact sequences

Hn(GK ;πet
n (X))→ X(hnK)→ X(hn−1K)(1)

(2) Hn(GK ;Het
n (X))→ X(ZhnK)→ X(Zhn−1K),

the former of pointed sets and the latter of abelian groups. In particular, X(hK) =
X(hnK) and X(ZhK) = X(ZhnK) for n at least the cohomological dimension of
K.

More precisely, X(hK) is defined by applying a homotopy fixed-point construction
hGK to the étale homotopy type ÊtXK and taking π0. There is a (non-abelian)
descent spectral sequence

Es,t
2 (X, b) = Hs(K;πet

t (X, b)) =⇒ πt−s((ÊtXK)hGK , b)

relative to a homotopy basepoint b (c.f. [CS20] §8.1), along with a related (abelian)

spectral sequence Hs(K;Het
t (X)) =⇒ πt−s((Z ÊtXK)hGK ), where X(ZhK) =

π0(Z ÊtXhGK ). The latter in fact has a more classical description in terms of

hypercohomology: we have X(ZhK) = H0(GK ; H̃et
• (X)), where H̃et

• (X) is viewed
as an object of the derived category of continuous profinite GK -modules. We refer
to [CS20] § 8 for technical details, which uses the theory of [Qui08, Qui11].
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2.2. Obstructions. For α of the form h, hn, Zh, Zhn, we set X(AK)α to be the
subset of X(AK) whose image in the lower right object is in the image of loc in
the diagram

X(K) −−−−→ X(AK)
y

y

X(αK)
loc−−−−→ ∏

v X(αKv).

Note that X(AK)α is functorial in X for morphisms of K-schemes.

2.3. Comparison with Classical Obstructions. The main theorem of [HS13]
is:

Theorem 1 ([HS13] Theorem 9.136). For a smooth geometrically connected va-
riety X over a number field K,

X(AK)h = X(AK)ét,Br = X(AK)descent

X(AK)Zh = X(AK)Br = X(AK)c−descent

X(AK)h,1 = X(AK)f−cov

X(AK)Zh,1 = X(AK)f−ab.

3. Consequences for Classical Obstructions

While the previous theorem is disappointing in the sense that it implies the étale
homotopy obstruction gives nothing new, the reinterpretation in terms of étale
homotopy sometimes elucidates the properties of and connections between the
obstructions.

Thus the following results can be proven otherwise but are simpler to prove
using the étale homotopy obstruction formalism.

3.1. Basic Comparisons. The fact that X(AK)Zh,2 ⊆ X(AK)Zh,1 gives us:

Theorem 2. For a variety X over K, X(AK)Br ⊆ X(AK)f−ab.

The exact sequence (2) tells us:

Theorem 3 ([HS13] Theorem 9.152). If Het
2 (XK) = 0, then

X(AK)Br = X(AK)Zh,2 = X(AK)Zh,1 = X(AK)f−ab

The exact sequence (1) similarly tells us:

Theorem 4 ([HS13] Theorem 9.148). If πet
2 (XK) = 0 (e.g., X a nonrational

curve), then

X(AK)ét,Br = X(AK)h,2 = X(AK)h,1 = X(AK)fin.
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3.2. Products. The homotopy fixed point construction hGK is a kind of higher-
categorical limit and therefore commutes with products. Since π0 also commutes
with products, we have, for varieties X and Y over K, that (X × Y )(hK) =
X(hK)× Y (hK). This then implies:

Theorem 5 ([HS13] Theorem 9.147). For varieties X and Y over K, we have

(X × Y )(AK)ét,Br = X(AK)ét,Br × Y (AK)ét,Br

It is not obvious how to prove this otherwise, since the Brauer group of a product
is not the product of the Brauer groups.

3.3. Fibrations. The theorems above are fairly simple consequences of the ho-
motopy formalism. We now mention a result about the étale-Brauer obstruction
that fundamentally uses étale homotopy but is less immediate. We denote by

X(Af
K)ét,Br the projection of X(AK)ét,Br along X(AK)→ X(Af

K).

Theorem 6 ([CS20] Theorem 1.2). Let f : X → S be a geometric fibration (),

and suppose that S(K) = S(Af
K)ét,Br and that for all a ∈ S(K), we have Xa(K) =

Xa(A
f
K)ét,Br.

Suppose furthermore that conditions (2)-(5) of [CS20] Theorem 9.7 holds - for
example, if S is an elliptic curve with finite Tate-Shafarevich group or a hyperbolic
curve satisfying the Section Conjecture, and K is totally imaginary or S(R) is
simply-connected. Then

X(K) = X(Af
K)ét,Br.

4. Stable Homotopy Obstructions to Zero-Cycles

4.1. More on the Etale Homology Obstruction. Given a topological space
Y , there is an associated HZ-module spectrum (equivalently, a complex of abelian
groups up to quasi-isomorphism:

ZY := Σ∞Y ∧HZ

such that πi(ZY ) = Hi(Y ;Z).

In fact X(ZhK) is most naturally defined by applying this construction to the
étale homotopy type of X and then applying the same construction that defines
X(hK); i.e.,

X(ZhK) = H0(GK ; H̃et
∗ (XK)) = π0((Z Êt(XK))hGK )

The category of HZ-module spectra is additive, which makes X(ZhK) into
an abelian group (a fact that can also be seen by the description X(ZhK) =
H0(GK ;Het

• (X))). This means that X(ZhK) receives a map not just from X(K)
but from linear combinations ZX(K). More importantly, by a Galois descent
argument, it receives a map from the group CH0(X) of zero-cycles and thus can
be used to define an obstruction to the existence of zero-cycles of degree 1 (or any
degree d). This obstruction the produces a set CH0(XAK

)Br
deg=1 of adelic zero-cycles

orthogonal to BrX .
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In fact, it was realized before the advent of the étale homotopy obstructions
that the Brauer-Manin obstruction obstructs 0-cycles. By a similar argument as
for rational points, the étale homology obstruction to zero-cycles is the same as the
Brauer-Manin obstruction. The stronger étale-Brauer obstruction, on the other
hand, is not additive and thus applies only to rational points.

4.2. From Homology to Stable Homotopy. If we look back at the formula
ZY = Σ∞Y ∧ HZ, something is staring at us: Σ∞Y is a spectrum, which is
already additive! In other words, we don’t have to smash with HZ to get an
additive object. In other words, we can define an intermediate

X(hK)→ X(ΣhK) := π0((Σ
∞ Êt(XK))hGK )→ X(ZhK)

One might ask what more this gives us beyond the Brauer-Manin obstruction.
In fact, one may show that the additional obstruction is 2-torsion, and for a
surprising reason: because π4(S

3) = πst
1 (S) ∼= Z/2Z!

5. Non-Local-Global Etale Homotopy Obstructions

The local-global obstruction is mediated by X(hK), which serves as a kind of
container for rational points and is filtered by Hi(GK ;πet

i (XK)).
X

��
SpecK

On the other hand, if we think of the question of finding a rational
point on a smooth variety X/K as finding a section of the fibration
and apply ideas from classical obstruction theory to the étale homology
type, one finds there are obstruction classes in Hi+1(GK ;πet

i (XK)). For example:

The class in H2(GK ;πet
1 (XK)) is the class of the extension

0→ πet
1 (XK)→ πet

1 (X)→ GK → 0.

We mention two applications of these ideas:

5.1. Obstructions for Arithmetic Spheres. The paper [ACS19] considers étale
homotopy obstruction classes for varieties of the form a0x

2
0+a1x

2
1+· · ·+amx2

m = 1,
known as arithmetic spheres. One may think of such a variety as a sphere bundle
over SpecK, and sphere bundles have associated Stiefel-Whitney classes. It turns
out that there is an étale version of these Steifel-Whitney classes, and the main
result of loc.cit. is that they are related to classical Hasse-Witt classes.

5.2. Applications to Galois embedding problems. Carlson and Schlank ap-
ply étale homotopy obstruction classes to inverse Galois problems. For example,
they prove the following:

Theorem 7 ([CS17] Corollary 3.2). Let p1, p2, p3 be three primes such that p1p2p3
∼= 3 (mod 4) and

(
pi

pj

)
= −1. Then Aut(PSL2(Fq2)) cannot be realized as the

Galois group of an unramified extension of Q(
√−p1p2p3), but (Z/2Z)2 can.
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6. Obstructions over Higher Dimensional Fields

6.1. Number Fields Revisited. The proof of the equalityX(AK)Zh = X(AK)Br

for K a number field uses cohomological (Poitou-Tate) duality. The proof that
X(AK)h = X(AK)ét,Br then uses this fact along with the fact that number fields
have cohomological dimension 21 The cohomological dimension implies that only
π1 and π2 play a role, and the former may be accessed by finite étale covers while
the latter is the second homology of the universal cover and thus may be accessed
via H2 of finite étale covers.

6.2. Higher Dimensional Global Fields. There are many fields K for which
there is a notion of completions Kv and adele ring AK but for which K has
cohomological dimension > 2. A natural example comes from considering a curve
C over a field k and taking K = k(C); then K has cohomological dimension one
higher than that of k. In particular, if we take k/Qp finite, then there is a Poitou-
Tate duality where we take the places of K to be the closed points of C. This can
even be used to show that X(AK)Zh is the same as an analogue of the Brauer-
Manin obstruction using H3(X ;Q/Z(2)) in place of BrX = H2(X ;Q/Z(1)).

6.3. Obstruction from π3. But what’s more is that over such a field, it is con-
ceivable to get a nontrivial obstruction coming from the (geometric étale) π3 of
X . The simplest test-case is a (geometrically) simply-connected variety with triv-
ial H3. This happens if X is a smooth projective geometrically rational sur-
face or a homogeneous space under a simple simply connected algebraic group
with stabilizer a sufficiently large torus. In this case, the triviality of π1 implies
Het

2 (X;Z) = πet
2 (X), and along with the triviality of H3, this means

X(AK)Zh = X(AK)Zh,2 = X(AK)h,2.

A natural question is to find examples where X(AK)h ( X(AK)h,2. There is
already some progress as part of a larger work-in-progress by Carlson-C.-Schlank.
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On the largeness or arboreal Galois representations

Joachim König

(joint work with Danny Neftin, Shai Rosenberg)

Let f ∈ K[X ] be a degree-d polynomial over a number fieldK, and f◦n := f ◦· · ·◦f
its n-th iterate. The study of arithmetic properties of f◦n as n → ∞ has been
one of the main objectives of the rapidly growing field of arithmetic dynamics.
In particular, the structure of the Galois group Ga,∞ := lim←−Gal(f◦n(X)− a/K),
where a ∈ K, is of relevance to a great variety of problems, but still mysterious in
general. It is clear that this group is bounded in size by Gt,∞ := lim←−Gal(f◦n(X)−
t/K(t)) (where t is a transcendental over K), which in terms is a subgroup of
Aut(Td,∞) = [Sd]

∞ := lim←−n
Sd ≀ · · · ≀ Sd︸ ︷︷ ︸

n times

, the automorphism group of an infinite

rooted d-ary tree. For this reason, the epimorphism ρf,a : GK → Ga,∞ is called an
arboreal Galois representation. These representations have obtained a great deal
of attention recently, see e.g. [BJ07] or [Jon13].

Among the key questions commonly asked about this representation are the fol-
lowing:

1) Under what conditions is Gt,∞ “large” (in one of various possible senses)
inside Aut(Td,∞)?

2) Under what conditions is Ga,∞ “large” inside Gt,∞?

Particular instances of “largeness” include “finite index” conditions, but also the
notions of stability (resp., eventual stability) of iterates. Here (f, a) is called stable
(resp., eventually stable), if all f◦n(X)− a are irreducible (resp., have a bounded
number of irreducible factors). In particular, stability translates to transitivity of
Ga,∞ on each layer of the arboreal representation.

There are by now quite concrete conjectures regarding the above notions (see, e.g.,
[Jon13]); however, the gap between conjectural and proven results is very large.

1. New existene results for large arboreal representations

In joint work with Danny Neftin and Shai Rosenberg [KNR], we pursue the fol-
lowing notion of “large” arboreal representation: Given an indecomposable poly-
nomial f and a value a ∈ K, one has, for every n ∈ N, a projection πn :

Gal(f◦n(X) − a/K) → Gal(f◦n−1(X) − a/K), with kernel ker(πn) ≤ Γdeg(f)n−1

,
where Γ denotes the monodromy group of f .

Definition 1. With the above notions, call the associated arboreal representation

ρf,a “large” if, for every n ∈ N, the kernel ker(πn) contains all of soc(Γ)
deg(f)n−1

,
where soc(Γ) denotes the socle of Γ.
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This turns out to be a very useful condition for many arithmetic applications.
To give an example, if the monodromy group of f is the symmetric group Sd

(d ≥ 5), as is the case for a generic degree-d polynomial, then this notion of
largeness translates to saying that Gal(f◦n(X)−a/K) contains all the alternating
composition factors of the n-fold iterated wreath product of symmetric groups Sd,
for all n ∈ N.

Regarding the above question on largeness of Ga,∞, we have the following result,
whose proof builds on recent results by the same authors on largeness of Gt,∞, see
the abstract by D. Neftin in this volume:

Theorem 1 (K.-Neftin-Rosenberg, 2023). Let F be a number field and f ∈ F [X ]
an indecomposable polynomial with nonsolvable almost simple monodromy group
S ≤ Γ ≤ Aut(S), where S denotes the (simple) socle of Γ. Assume furthermore
that

i) every critical value of f is also a critical point, and
ii) the inertia groups of the map x 7→ f(x) invariably generate a group con-

taining S.

Then there exist infinitely many a ∈ F such that the associated arboreal repesen-
tation ρf,a is large (in the sense defined above). In particular (f, a) is stable for
all these a.

Note that the assumption on f having almost simple monodromy group is not
at all a strong extra assumption; in fact the only polynomials failing it are those of
degree 4 and those linearly related (over C) to monomials, Chebyshev polynomi-
als. The above theorem subsumes previously considered cases such as the case of
“normalized Belyi maps” considered in [BEK21]. Still, Condition i) is somewhat
restrictive, since it implies in particular that f is a PCF map. Future work will
aim at relaxing this condition as much as possible. Note also that the stability
conclusion, i.e., the conclusion of irreducibility of f◦n(X)− a for all n ∈ N simul-
taneously may be seen as a strengthening (for this concrete scenario) of Hilbert’s
irreducibility theorem, which would give infinitely many a rendering f◦n(X) − a
irreducible for a fixed n. For the related problem of determining the set of excep-
tional values (in the sense of Hilbert’s irreducibility theorem) for a fixed n, very
general results were previously obtained in [KN01].

2. Applications to questions on mod-p behavior

A large arboreal representation also has concrete implications on the mod-p be-
havior of f◦n(x)− a, cf. [Jon07]. This is relevant, e.g., for the following problems
which have received considerable attention in special cases, without a full answer
being in sight.

1) (“mod-p stability”): Given f ∈ K[X ] and a ∈ K, what is the density of
the set of stable (resp., almost stable) primes of (f, a), i.e., the primes p
of K such that all polynomials f◦n(X)− a, n ∈ N, are irreducible (resp.,
have a bounded number of irreducible factors)?
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2) (“prime divisors in dynamical sequences”): Given f ∈ K[X ] and a0 ∈ K,
what is the density of the set of primes dividing at least one non-zero term
f◦n(a0), n ∈ N?

Both of these problem translate naturally (via Chebotarev’s density theorem)
to statements about elements of certain cycle types in the associated dynamical
Galois groups.

For both problems, it is expected that “usually” the respective sets of primes
are of density 0, see e.g., [MOS85] or [Jon08] for results on the first, resp. the
second problem in the special case of quadratic polynomials. It should be noted
that for both problems, explicit examples yielding positive density sets of primes
are also known.

It turns out that the notion of largeness discussed above is useful for deducing
density-0 results for problems such as the above. In particular, we have the fol-
lowing two results, see [KNR]:

Theorem 2. Assume f ∈ K[X ] to be indecomposable and a ∈ K to be such that
the arboreal representation ρf,a is large.

(1) Then for any fixed integer N , the density of the set of primes modulo which
the number of irreducible factors of f◦n(X)− a is universally bounded by
N is 0. In particular, the set of stable primes of (f, a) is of density 0.

(2) If f is of degree ≥ 5 and not linearly related to a monomial or Chebyshev
polynomial, then for any a0 not lying in the backward orbit of a under f ,
the set of primes p such that f◦n(a0) ≡ a mod p for some n ∈ N is of
density 0.

In fact, both conclusions hold under weaker “largeness” assumptions as well.
Notably, a sufficient assumption for the set of stable primes of (f, a) to be of
density 0 is that the number of nonsolvable composition factors of Gal(f◦n)(X)−a
is unbounded as n→∞ , cf. [K]; this widely generalizes previous density-0 results
such as [Fer18], and is relevant in particular because it is at least conveicable
and consistent with current knowledge (cf. [BDGHT21]) that outside of some very
concrete and well-understood exceptions (all of which can be verified to still yield
the same density-0 conclusion), every arboreal representation ρf,a for a polynomial
f with nonsolvable monodromy group might fulfill this weakened assumption.

Building on this, a somewhat more detailed analysis, cf. [K], gives rise to the
conjecture that in fact any polynomial f which achieves a positive density propor-
tion of stable primes must be a composition of linears, monomials and Chebyshev
polynomials.

Note: This report forms the second part of a two-part project, the first part of
which is summarized in the report by D. Neftin “Large monodromy groups of
polynomial compositions” in this volume.
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Resolution of Non-Singularities

Emmanuel Lepage

Given a hyperbolic curve X over an algebraically closed non-archimedean field
of mixed characteristics, we want to understand where can appear irreducible
components of the special fiber of the stable model of finite étale covers of X .
This is of anabelian interest in contexts where the dual graph of the special fiber
of the stable model can be reconstructed from anabelian data (it is for example the
case when this datum is the étale fundamental group of a hyperbolic curve over
a finite extension of Qp or the tempered fundamental group): the tower of dual
graphs gives a finer combinatorial approximation of the curve, that is ultimately
related to the Berkovich topological space of the curve.

This problem originates as a by-product of S. Mochizuki’s seminal anabelian ap-
proach [pGC] and was first formulated by A. Tamagawa in [Tam04], which estab-
lishes the first result related to resolution of non-singularities (RNS) in the case of
stable model of hyperbolic curves, that is:

For every hyperbolic curve X over an algebraic closure Qp of Qp and every
closed point x of the stable model X of X , there exists a finite étale cover
f : Y → X such that its extension to the stable models f̃ : Y → X has a
fiber f̃−1(x) of dimension 1,

i.e. some irreducible component of the special fiber of Y lies above x.

https://arxiv.org/abs/2001.03630
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This report presents S. Mochizuki and S. Tsujimura’s result [RNS] which extends
Tamagawa’s result to arbitrary semi-stable models of X (see Theorem 2 for a pre-
cise statement) and provides a final answer to this problem over finite extensions
of Qp. Such an extension to arbitrary semi-stable models was first considered,
and proven for Mumford curves, in [Lep13] using analytic techniques. The RNS
has consequences in Grothendieck’s section conjecture [PS17] and [RNS, Theo-
rem F], for the Grothendieck-Teichmüller group ibid. Theorem G, and establish
Grothendieck’s absolute anabelian conjecture over Qp, see ibid. Theorems D-E and
below.

1. Absolute anabelian reconstruction

We first explain how the RNS given by Theorem 2 implies Grothendieck’s absolute
anabelian conjecture, see also [Lep23, Thm 0.2]:

Theorem 1. [RNS, Thm D] Let X/K and Y/L be hyperbolic curves over fi-
nite extensions of Qp. Then every isomorphism of étale fundamental groups
φ : π1(X)→ π1(Y ) is geometric, i.e. it is induced by an isomorphism X → Y .

The term absolute refers to the fact φ is not supposed a priori to be compatible
with an isomorphism of base fields. More precisely, under the assumptions of
Theorem 1, the morphism φ induces an isomorphism of absolute Galois groups
φbase : GK → GL. If φbase is geometric, i.e. induced by an isomorphism K → L,
then the relative anabelian conjecture, proven by Mochizuki in [pGC], shows that
φ is also geometric. Mochizuki proved that to show that φbase is geometric, it is
enough to show that φ preserves geometric Galois sections [AbsTopII, Thm 2.9]:
a closed subgroup D ⊂ π1(X) is the decomposition group of a closed point x ∈ X
if and only if φ(D) is the decomposition group of a closed point in Y .

1.1. A Berkovich homeomorphism. Let X̃ be a pro-universal étale cover of

X : X = lim←−S where S goes through pointed finite étale cover of X . Let X̃an =

lim←−S
S
an
, where S

an
denotes the Berkovich space of the compactification S of

S. Let GX be the dual graph of the stable reduction of X
Qp

. Then, there is a

natural continuous map fX : X̃an → lim←−S
GS , and Theorem 2 implies that fZ is a

homeomorphism – see [Lep13, Thm 3.10], [Lep23, Prop 2.1], and [RNS, Prop 3.5].

1.2. Decomposition groups reconstruction. There is a functorial group-theo-
retic reconstruction G(π1(X)) of GX from π1(X) considered as an abstract topo-
logical group [AbsAnAb, Thm 2.7]. By passing to the inverse limit along open

subgroups of π1(X), one obtains a group-theoretic topological space G̃(π1(X)) :=
lim←−H

G(H), where the projective limit is indexed by open subgroups of G, and

the natural map X̃an → G̃(π1(X)) is an isomorphism. This map is π1(X)-

equivariant. The rigid points x̃ ∈ X̃an are characterized by the fact that their
stabilizer Dx̃ := {g ∈ π1(X), g(x̃) = x̃} injects in GK and has open image, see
[Lep23, Prop 4.3], and [RNS, Prop 3.9]. In particular, φ preserves decomposition

groups of rigid points of X̃an.
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The RNS for hyperbolic curves over p-adic fields

While the original approach of [RNS] is purely written in the language of schemes
and formal schemes, our presentation borrows to the Berkovich theory of analytic
spaces and valuations as in [Lep23].

We will say that a valuation on K(X) extending the valuation on Qp is of type
2 if its residue field is of transcendance degree 1 over Fp (this is equivalent to
the fact that its valuation ring is the stalk OX,z at the generic point z of some
irreducible component of the special fiber of some semi-stable model X of X). If v
is a valuation of type 2, then its residue field is isomorphic to the function field of
a curve over an algebraic closure Fp of Fp, and gv will denote the geometric genus
of that curve.

Theorem 2. [RNS, Thm A] Let X be a hyperbolic curve over an algebraic closure
Qp of Qp and v a valuation 2 on K(X). Then there exists a finite étale cover Y of
X and an extension w of v to K(Y ) such that gw 6= 0 (in particular, its valuation
ring is the stalk OY,z at the generic point z of some irreducible component of the
special fiber of the stable model Y of Y ).

1.3. A log-differential existence criterion. In terms of the notations of The-
orem 2, it is enough to proof that the valuations v of type 2 satisfying the wanted
property are dense for the Berkovich topology. The proof of Theorem 2 relies on
a local criterion in terms of the Hodge-Tate map

HTX : H1(X,Zp(1))→ H0(X,Ω1
XCp

),

which locally for the rigid topology sends the Kummer class of f ∈ O×(U) to
df
f ∈ H0(U,Ω1

XCp
) (actually, the proof of [RNS] only uses this local ad hoc definition

on small disks and one does not need to know that the Hodge-Tate map is globally
defined).

Let x ∈ X(Cp) and let D be a closed analytic disk containing x. A valua-
tion v on K(X) is in D if v(f) ≥ infy∈D(Cp) vCp

(f(y)) for all f ∈ K(X). Let

c ∈ H1(X,Zp(1)) s.t. HTX(c) 6= 0. Let φn,c : Yn,c
µpn→ X be the µpn -torsor

corresponding to c.

Lemma 1 ([Lep13, Prop 2.4], [Lep23, Prop 1.3], and [RNS, Prop 1.6, Rem 1.6.2]).
Assume e := multxHTX(c) is not of the form pk− 1 for any integer k ≥ 0. Then,
for n big enough, there is a valuation vn of type 2 in D and an extension wn of
vn to K(Yn,c) such that gwn

6= 0.

To show this lemma, up to reducing to a smaller disk, one can assume that c is
the Kummer class of some f ∈ O×(D). Then wn is an extension to K(Yn,c) of the
Gauss valuation vn of the disk of convergence of a pnth root of f , and the extension

of residue fields ˜K(Yn,c)wn
/K̃(X)vn is an explicit Artin-Schreier extension, so that

one can directly calculate gwn
.



2466 Oberwolfach Report 42/2023

1.4. Dimensional criterion. Let x ∈ X(Qp) and let K be a finite extension

of Qp such that X is the pullback to Qp of a hyperbolic curve XK over K and
x ∈ XK(K). Let t be a local parameter at x. Then the composite

H1(XCp
,Zp(1))

HTX→ H0(X,Ω1
XCp

)
evx,d→ Ω1

XCp ,x
/md

XCp ,x
Ω1

XCp ,x
≃ Cp[[t]]/t

d

is GK-equivariant. For d ≥ 2gX , the evaluation map evx,d is injective by Riemann-
Roch theorem [RNS, Lem 2.14]. In particular, one gets an injective map of finite
dimensional Qp-vector spaces:

VX := (H1(X,Qp(1))/Ker(HTX))GK → K[[t]]/t2gX .

If the assumption of Lemma 1 is satisfied for no c ∈ H1(X,Qp(1)), then VX must
be small: dimQp

VX ≤ C[K : Qp] log(gX) for some constant C independent of X
and K, see [RNS, Lem 2.15].

1.5. Dimensional estimation.

1.5.1. Ordinary case. The dimension of VX can be for example explicitly computed
if XK has split stable reduction and all the irreducible components of the special
fiber of the stable model X are ordinary.

Let JK be the Jacobian of XK . Then J has a rigid uniformisation by a semi-
abelian variety J∞, which is an extension of an abelian variety B with good
reduction Bs by a split torus. The Tate module TpJ of J is an extension of its
étale part by its connected part:

1→ T cnn
p J → TpJ → T et

p J → 1

and the isomorphism H1(X,Qp(1)) ≃ Hom(TpJ,Qp(1)) maps the subgroup
Ker(HTX) to Hom(T et

p J,Qp(1)), so that VX ≃ HomGK
(T cnn

p J,Qp(1)). Moreover,

self-duality on J induces a map Hom(T cnn
p J,Qp(1)) → T et

p,QJ that is an isomor-

phism under the ordinary assumption. The action of GK on T et
p,QJ factors through

an action of the absolute Galois group GK̃ of the residue field K̃ of K and T et
p,QJ is

an extension of a combinatorial part T cb
p,QJ ≃ Gal(J∞/J)⊗ZQp ≃ πtop

1 (GX)⊗ZQp,

on which GK acts trivially, by T et
p,QBs, on which 1 is not an eigenvalue of Frobenius

by Weil’s conjectures. Therefore VX ≃ (T et
p,QJ)

GK
∼→ T cb

p,QJ is of dimension the

loop number hX of the dual graph GX (i.e the minimal number of edge on GX

one needs to erase to get a tree).
If X ′ is a combinatorial finite étale cover, corresponding to a topological cover

of X , then

gX′ − 1 = (gX − 1) deg(X ′/X) and hX′ − 1 = (hX − 1) deg(X ′/X)

and the preimages of x in X ′ are also rational points. In particular, if hX ≥ 2, then
dimQp

VX′ asymptotically grows like gX′ when deg(X ′/X) goes to infinity, so that
the inequality dimQp

VX′ ≤ C[K : Qp] log(gX′) must be false when deg(X ′/X)
is big enough, and therefore, using Lemma 1, the curve X satisfies resolution of
non-singularities.
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1.5.2. General case. One reduces to the previous computation for ordinary abelian
varieties by using the following result of Tamagawa, based on previous results of
Raynaud [Ray82, Thm 4.3.1], that ensures the existence of finite étale covers with
ordinary new part:

Theorem 3. [Tam97, Lem 1.9] Let S be a proper smooth curve over Fp of genus
gS ≥ 2. Let l 6= p be a prime number. Then for m big enough, there exists an
étale Z/lmZ-cover S2 → S such that Coker(JS1 → JS2) is ordinary, with S1 the

intermediate cover S2
l→ S1

lm−1

→ S.

Up to replacing X by a finite étale cover, and K by a finite extension, one
can assume that X has a split stable model X, that hX ≥ 2 and that all the
irreducible components of the special fiber Xs of X are of genus greater than 1.
One then applies Theorem 3 to the irreducible components of the smooth locus
of the special fiber Xs of the stable model X of X , glue them (compatibly with
the Z/lmZ-actions) together into étale covers of Xs, that extends to covers of X.
One obtains on the generic fiber an étale Z/lmZ-cover Z → X , that factors into
a Z/lm−1Z-cover Y → X and a Z/lZ-cover Z → Y such that the good reduction
partB of A = Coker(JY → JZ) is ordinary (i.e. A∞ is an extension of the ordinary
abelian variety B by a split torus).

The proof is then similar to the ordinary case where JX is now replaced by A.
The composite

VA := HomGK
(T cnn

p A,Qp(1))→ VY = Hom(T cnn
p JZ ,Qp(1))

is injective so that dimQp
VZ ≥ dimQp

VA = hZ−hY . Up to replacing K by a finite
extension one can assume that the preimages of x in Z are still rational points.

Let Y ′ be a combinatorial finite étale cover of Y , let Z ′ = Z ×Y Y ′ and A′ =
Coker(JY ′ → JZ′). Then dimQp

VZ′ ≥ hZ′ − hY ′ = deg(Y ′/Y )(hZ − hY ) and
gZ′ = deg(Y/Y ′)gZ , so that the inequality dimQp

VZ′ ≤ C[K : Qp] log(gZ′) must
be false when deg(Y ′/Y ) is big enough, and therefore X , using Lemma 1, satisfies
resolution of non singularities.
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Past and Present of Probabilistic Galois Theory:
A Comprehensive Overview

Lior Bary-Soroker

The goal of the talk was to introduce the recent developments in probabilistic
Galois theory. There are several approaches to probabilistic Galois theory, and in
this talk we focused on the Galois group of random polynomials whose coefficients
are independent random variables. In this setting, the most classical model is the
so-called large box model (LBM) in which the degree of the polynomial is fixed
and the coefficients are uniform on an interval whose length grows to infinity.
Here it is known from about a century that the Galois group is the full symmetric
group, and the main question is what is the next most probable group (this is
the content of the so-called ”van der Waerden conjecture”). Along the years there
were abundance of results bounding the probability that the group is not the
full symmetric group, and in a very recent groundbreaking result by Bhargava, he
showed that this probability has the same order of magnitude as of the Galois group
being the stabilizer of a point. In particular, he proved that the most probable
group after the full symmetric group is either the alternating group of the stabilizer
of a point. In the talk, we also presented lower bounds of the probability of the
group being the alternating group that is much bigger than the naive heuristic,
by using linear symmetries (e.g. is the degree is divisible by 4 and the polynomial
plus its derivative is a square, then the discriminant is a square).

The other model that we discussed is the restricted coefficients model. In a
general, but not the most general, form we choose the coefficients by a fixed distri-
bution. For example, we choose uniformly −1, 0, 1 – the Littlewood polynomials
or −1, 1 – the Radamacher polynomials) and we let the degree go to infinity. In
this model, we know much less than in the LBM. For example, the content of
the Odlyzko-Poonen conjecture is that the probability for the polynomial f to be
irreducible goes to one (conditioned on f(0) 6= 0). Breuillard and Varju proved
that the general Riemann hypothesis implies the Odlyzko-Poonen conjecture. The
state-of-the-art unconditional result is due to the speaker, Koukoulopoulos and
Kozma, who proved that for each non-degenerate distribution there exists a con-
stant θ > 0 such that the limit inferior of the probability to be irreducible is at
least θ. The constant is explicit, and if the distribution is uniform on an interval
of length at least 35, θ = 1. We discussed the connection to the arithmetic of
random polynomials over finite fields and the connections to analytic number the-
ory. We also mentioned briefly what happens if one goes from finite fields to the
p-adics, and the conjecture of Bhargava-Cremona-Fisher-Gajovic which deals with
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uniform random polynomials, and some of the results including Shmueli’s results
for non-uniform polynomials.

Locally conjugate Galois sections

Wojciech Porowski

Let X be a smooth geometrically connected curve over a number field K, write
GK = Gal(K/K) for the absolute Galois group of K and consider the étale ho-
motopy exact sequence

(1) 1→ ∆X → ΠX → GK → 1,

where ΠX and ∆X are the étale fundamental groups of X and XK , respectively.

The question of Grothendieck’s section conjecture – “when does a section of Se-
quence (1) come from a K-rational point of X?” – is the object of multiple studies,
see [Sti12] for a comprehensive discussion and [Ho14] for a study of the birational
case. We report on an approach regarding the local-global properties of sections
of the homotopy sequence obtained by the author in [Po23].

1. A local-global principle for anabelian sections

We will be interested in conjugacy classes of sections of Sequence (1). Write V (K)
for the set of nonarchimedean valuations of K and for every v ∈ V (K) write
Gv ⊂ GK for a decomposition group associated to v.

Let s and t denote two sections of Sequence (1):

(1) For v ∈ V (K) we say that s and t are conjugate at v if restrictions of s
and t to Gv are conjugate.

(2) For a nonempty subset Ω ⊂ V (K) we say that s and t are conjugate on Ω
if they are conjugate at every v ∈ Ω.

One may wonder whether two sections that are conjugate on a ’large’ set of
valuations are necessarily globally conjugate. This question served as the original
motivation for the present work and we can provide an answer in the following
form.

Theorem 1. Suppose that Ω is of density one. Then, any two sections of the
étale homotopy sequence (1) that are conjugate on Ω are conjugate.

In other words, Theorem 1 gives a local-global principle for conjugacy classes
of sections. It is an interesting problem whether one can relax the assumption
on the density of Ω and require only that Ω has positive density. The section
conjecture, which predicts that every section of Sequence (1) is either cuspidal or
comes from a K-rational point of X , would imply that the answer to this stronger
question is positive. Unfortunately, the methods we use to prove Theorem 1 are
not strong enough to apply here; the problem is that in the proof we need to have
the flexibility to pass to finite field extensions where we may lose control of the
density of Ω.



2470 Oberwolfach Report 42/2023

In fact, Theorem 1 will be proved as a corollary of a more general property of the
étale homotopy sequence (1), so-called finite covering property which we introduce
in the next section.

2. The finite covering property

Slightly more generally, we can consider the same problem as above for any short
exact sequence of profinite groups

(2) 1→ ∆→ Π→ GK → 1.

Let s, t1, . . . tn be sections of Sequence (2) for some n ≥ 1 and let Ω be a nonempty
subset of V (K). We say that sections ti cover section s on Ω if for every v ∈ Ω there
exists 1 ≤ i ≤ n such that s and ti are conjugate at v. We say that Sequence (2)
has finite covering property if (a) for every Ω ⊂ V (K) of density one and (b) for
every n ≥ 1 the following condition is satisfied:

whenever s, t1, . . . , tn are sections of sequence (2) such that sec-
tions ti cover section s on Ω then there exists 1 ≤ i ≤ n such that
s and ti are conjugate.

With these definitions, we can state our main result.

Theorem 2. The étale homotopy exact sequence (1) has finite covering property.

As we have mentioned, Theorem 1 follows directly from Theorem 2 by taking
n = 1 in the definition of the finite covering property.

The first step in establishing Theorem 2 goes through establishing its abelian
version. The abelian version of finite covering property is given as follows. Let M
be a topological GK-module. For v ∈ V (K), write locv for the restriction map

H1(GK ,M)→ H1(Gv,M).

Let c, c1 . . . , cn be cohomology classes in H1(GK ,M) for some n ≥ 1 and let
Ω ⊂ V (K) be a nonempty subset of valuations. We say that classes ci cover class
c on Ω if for every v ∈ Ω there exists 1 ≤ i ≤ n such that locv(c) = locv(ci).
We say that a GK-module M has finite covering property if for every Ω ⊂ V (K)
of density one and for every n ≥ 1 the following condition is satisfied: whenever
c, c1, . . . , cn are cohomology classes in H1(GK ,M) such that classes ci cover c on
Ω then there exists 1 ≤ i ≤ n such that c = ci. We prove the following abelianized
version of Theorem 2.

Theorem 3. Write ∆ab
X for the (topological) abelianization of the geometric fun-

damental group of X. Then, GK -module ∆ab
X has finite covering property.

The proof of Theorem 3 follows the strategy used by Stoll in Section 3 of [Sto07],
with minor modifications. Comparing with our situation, the difference is that in
[Sto07] only Tate modules of abelian varieties are considered whereas when X is
affine and of positive genus we have a short exact sequence

1→ Ẑ(1)⊕r → ∆ab
X → T (A)→ 1,
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where r ≥ 1 and T (A) is the Tate module of an abelian variety A over K (at
least after restricting to an open subgroup of GK). The main input to prove
Theorem 3 are two theorems of Serre (see [Se86], Thm. 1 and Thm. 2) which
say, roughly speaking, that the image of the Galois action in Aut(T (A)) contains
a ’large’ subgroup of homotheties.

3. From abelian to étale

In this section we sketch how to extend our result from the abelian case to the
case of the étale homotopy sequence (1). It is at this point that the additional
flexibility in the definition of the finite covering property becomes crucial for the
argument.

Write ∆sol
X for the maximal pro-solvable quotient of ∆X and Π

(sol)
X for the

quotient of ΠX which makes the following sequence exact

(3) 1→ ∆sol
X → Π

(sol)
X → GK → 1.

For technical reasons, it is convenient to prove first the following intermediate
theorem.

Theorem 4. The pro-solvable homotopy exact sequence (3) has finite covering
property.

Let us indicate a general strategy of proving Theorems 4 and 2. For a section
s of Sequence (2) we say that an open subgroup U ⊂ Π is a neighbourhood of s if
s(GK) ⊂ U . If t is another section of sequence (2) then to prove that s and t are
conjugate it is enough to show that for every neighbourhood U of s there exists
a section t′ which is conjugate to t and t′(GK) ⊂ U . Hence we need to analyse
the ’splitting’ of the conjugacy class of section t in open subgroups of Π, which
replaces conjugacy class of t by finitely many conjugacy classes of ’quasi-sections’
t1, . . . , tn. This is the main reason why the more general situation considered in
Theorem 2 is necessary even if one is only interested in proving Theorem 1.

With this approach, Theorem 4 is deduced from appropriate m-step solvable
versions for all m ≥ 1 which are proved inductively on m; the case m = 1 is
Theorem 3.

Finally, one deduces Theorem 2 by applying Theorem 4 to all neighbourhoods
of section s and using the already mentioned strategy of splitting conjugacy classes
of sections in open subgroups of ΠX .

We remark that the two essential properties of curve X and its corresponding étale
homotopy sequence (1) that we use in this work are:

(1) the finite covering property of the abelianized geometric fundamental group
∆ab

X , i.e., validity of Theorem 3,
(2) triviality of centralizers of sections of Sequence (1).

Note that these two properties should be true for every finite étale cover of X . To
the author’s knowledge, the only known nontrivial examples of varieties satisfy-
ing these requirements are hyperbolic curves and semi-abelian varieties. It is an
interesting problem to find other nontrivial examples of such varieties.
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On functional equations of ℓ-adic Galois polylogarithms

Densuke Shiraishi

(joint work with Hiroaki Nakamura)

The ℓ-adic Galois polylogarithm Liℓk(z) was introduced by Z. Wojtkowiak [Woj04]-
[Woj05b] as the ℓ-adic étale analog of the complex polylogarithm for any prime
number ℓ. In this talk, based on [NS] and [Shi23b], we discussed Landen’s and
Spence-Kummer’s functional equations of the ℓ-adic Galois trilogarithm Liℓ3(z).

1. ℓ-adic Galois polylogarithms

Let K be a subfield of C with its algebraic closure K. Let GK be the absolute
Galois group of K. Take a K-rational base point z of P1\{0, 1,∞}. We regard

each topological path γ ∈ πtop
1

(
P1(C)\{0, 1,∞};−→01, z

)
form

−→
01 to z as a pro-ℓ

etale path γ ∈ πℓ-ét
1

(
P1
K
\{0, 1,∞};−→01, z

)
via the comparison map. For σ ∈ GK

and γ ∈ πtop
1

(
P1(C)\{0, 1,∞};−→01, z

)
, the ℓ-adic Galois polylogarithm Liℓk(z; γ, σ)

is defined as the signed coefficient of ek−1
0 e1-term in the ℓ-adic Galois associator

fz,γσ (e0, e1) ∈ Qℓ〈〈e0, e1〉〉,

i.e. the image of the pro-ℓ étale loop fz,γσ = γ · σ(γ)−1 ∈ πℓ-ét
1

(
P1
K
\{0, 1,∞},−→01

)

under an ℓ-adic Magnus embedding πℓ-ét
1

(
P1
K
\{0, 1,∞},−→01

)
→֒ Qℓ〈〈e0, e1〉〉. We

understand the symbol Liℓk(z) to be a map

Liℓk(z) : π
top
1

(
P1(C)\{0, 1,∞};−→01, z

)
×GK → Qℓ, (γ, σ) 7→ Liℓk(z; γ, σ).

In particular, the ℓ-adic Galois zeta value (or called the ℓ-adic Soulé element)

ζℓ
k(σ) is defined by its special value at

−→
10 with the straight path from

−→
01 to

−→
10.

Remark 1. The typical functional equations of the ℓ-adic Galois dilogarithm Liℓ2(z)
were studied by Nakamura-Wojtkowiak [NW12, Section 6. Examples].



Arithmetic Homotopy and Galois Theory 2473

Remark 2. The complex KZ associator Gz,γ
0 (e0, e1) ∈ C〈〈e0, e1〉〉 is defined as a

fundamental solution of the KZ equation characterized by a certain asymptotic
behavior around the puncture 0. The ℓ-adic associator fz,γσ (e0, e1) ∈ Qℓ〈〈e0, e1〉〉
is the ℓ-adic Galois analog of Gz,γ

0 (e0, e1). As is well known, G
z,γ
0 (e0, e1) is a gen-

erating function for iterated integrals over γ including the complex polylogarithm

Lik(z) : π
top
1

(
P1(C)\{0, 1,∞};−→01, z

)
→ C, γ 7→ Lik(z; γ).

The coefficient of e0-term in Gz,γ
0 (e0, e1) is the complex logarithm log(z) along γ.

The ℓ-adic Galois analog of log(z) is the Kummer 1-cocycle

ρz,γ : GK → Zℓ

defined by σ(z1/ℓ
k

) = z1/ℓ
k · ζρz,γ(σ) mod ℓk

ℓk
for the roots {z1/ℓk}k∈N along γ.

2. Main results

First, we discuss the ℓ-adic Landen equation. For a standard tangential base point

∗ of P1(C)\{0, 1,∞}, we shall write δ∗ ∈ πtop
1

(
P1(C)\{0, 1,∞};−→01, ∗

)
for the topo-

logical path through the upper half-plane. Given aK-rational (possibly, tangential

base) point z of P1(C)\{0, 1,∞} and a path γ ∈ πtop
1

(
P1(C)\{0, 1,∞};−→01, z

)
, de-

fine the paths γ′, γ′′ with respect to γ by

γ′ := δ−→
10
· φ−→

10
(γ) ∈ πtop

1

(
P1(C)\{0, 1,∞};−→01, 1− z

)
,

γ′′ := δ−→
0∞
· φ−→

0∞
(γ) ∈ πtop

1

(
P1(C)\{0, 1,∞};−→01, z

z − 1

)
,

where φ−→
10
, φ−→

0∞
∈ Aut

(
P1(C)\{0, 1,∞}

)
are given by φ−→

10
(t) = 1−t, φ−→

0∞
(t) = t

t−1 .

Then we get algebraic relations (chain rules) among ℓ-adic Galois associators:

fz,γσ (e0, e1) = f1−z,γ′

σ (e1, e0) · f
−→
10,δ−→

10
σ (e0, e1),

f
z

z−1 ,γ
′′

σ (e0, e1) = fz,γσ (e0, e∞) · f
−→
0∞,δ−→

0∞
σ (e0, e1),

where e∞ is the Baker-Campbell-Hausdorff sum log (exp(−e1) · exp(−e0)).
By comparing the coefficients on both sides of these algebraic relations, we obtain
the following functional equation.

Theorem 1 (The ℓ-adic Landen equation, [NS]). For σ ∈ GK , we have

Liℓ3(z; γ, σ) + Liℓ3(1 − z, γ′, σ) + Liℓ3

(
z

z − 1
; γ′′, σ

)

= ζ
ℓ
3(σ)− ζ

ℓ
2(σ)ρ1−z,γ′(σ) +

1

2
ρz,γ(σ)ρ1−z,γ′(σ)

2 − 1

6
ρ1−z,γ′(σ)

3

− 1

2
Liℓ2(z; γ, σ)−

1

12
ρ1−z,γ′(σ) − 1

4
ρ1−z,γ′(σ)2.
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Remark 3. Using the former chain rule above, Nakamura derived Oi-Ueno’s func-
tional equation of ℓ-adic Galois multiple polylogarithms in [NS]. After [NS] was
worked out, the author obtained a generalization of this ℓ-adic Oi-Ueno equation
to higher multi-indices in [Shi23a].

We next discuss the ℓ-adic Spence-Kummer equation. The underlying geometry
of this equation is the complement to the non-Fano arrangement

Vnon-Fano := Spec

(
K

[
s1, s2,

1

s1s2(1− s1)(1 − s2)(s1 − s2)(1 − s1s2)

])
,

together with nine morphisms {fi}i=1,...,9 from Vnon-Fano to P1\{0, 1,∞} defined
as follows:

f1(s1, s2) :=
s1(1− s2)

2

s2(1− s1)2
, f2(s1, s2) := s1s2, f3(s1, s2) :=

s1
s2

,

f4(s1, s2) :=
s1(1− s2)

s2(1− s1)
, f5(s1, s2) :=

s1(1− s2)

s1 − 1
, f6(s1, s2) :=

1− s2
1− s1

,

f7(s1, s2) :=
1− s2

s2(s1 − 1)
, f8(s1, s2) := s1, f9(s1, s2) := s2.

Remark that the name of the “non-Fano” arrangement s1s2(1 − s1)(1 − s2)(s1 −
s2)(1 − s1s2) comes from the celebrated notion of the non-Fano matroid.

Fig 1. Key diagram

VB3

M0,5

Vnon-Fano,

finite

Galois

open

immersion

sub-quotient

taking

π1 (VB3)

π1 (M0,5)

π1 (Vnon-Fano)

We use the K-rational tangential base point

~v : Spec
(
K((t))

)
→ Vnon-Fano

over the K(t)-rational point (t2, t). In Table 1, we identify fi (~v) with standard
tangential base points of P1\{0, 1,∞} under the Galois equivalence ≈. Given a

K-rational point (x, y) ∈ Vnon-Fano(K) and a path γ0 ∈ πtop
1 (V an

non-Fano;~v, (x, y)),
define the path family {γi}i=1,...,9 with respect to γ0 by

γi := δi · fan
i (γ0) ∈ πtop

1

(
P1(C)\{0, 1,∞};−→01, fan

i (x, y)
)

where δi ∈ πtop
1

(
P1(C)\{0, 1,∞};−→01, fan

i (~v)
)
are as in Table 1.

Then we get chain rules among ℓ-adic Galois associators:

f
fi(x,y),γi
σ (e0, e1) =

(
δi · fi

(
f(x,y),γ0
σ

)
· δ−1

i

)
· ffi(~v),δiσ (e0, e1).
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Tab 1. Fano to projective line: morphisms, tangential base points, and
paths

i fi(x, y) fi (~v) δi ∈ πtop
1

(
P1(C)\{0, 1,∞};−→01, fan

i (~v)
)

1 x(1−y)2

y(1−x)2
−→
01 ≈ f1 (~v) δ1 := 1 (= trivial path)

2 xy
−→
01 ≈ f2 (~v) δ2 := 1

3 x
y

−→
01 = f3 (~v) δ3 := 1

4 x(1−y)
y(1−x)

−→
01 ≈ f4 (~v) δ4 := 1

5 x(1−y)
x−1

−→
0∞ ≈ f5 (~v) δ5 := δ−→

0∞

6 1−y
1−x

−→
10 ≈ f6 (~v) δ6 := δ−→

10

7 1−y
y(x−1)

−→∞0 ≈ f7 (~v) δ7 := δ−→
∞0

8 x
−→
01 ≈ f8 (~v) δ8 := 1

9 y
−→
01 = f9 (~v) δ9 := 1

To compute the ℓ-adic Galois associator f
(x,y),γ0
σ ∈ πℓ-ét

1 (Vnon-Fano, ~v), we also
consider a diagram (Figure 1) of three geometric objects: the affine variety Vnon-Fano,
the moduli space M0,5, and the complement to the Coxeter B3-arrangement

VB3 := Spec

(
K

[
s1, s2,

1

s1s2(1− s21)(1 − s22)(s1 − s2)(1 − s1s2)

])
.

Analyzing the above chain rules together with the computational method for-
mulated by Nakamura-Wojtkowiak [NW12, Proposition 5.11], we obtain the func-
tional equation of Theorem 2 below.

Theorem 2 (The ℓ-adic Spence-Kummer equation, [Shi23b]). For any σ ∈ GK ,
the following holds:

Liℓ3

(
x(1 − y)2

y(1− x)2
; γ1, σ

)
+ Liℓ3 (xy; γ2, σ) + Liℓ3

(
x

y
; γ3, σ

)

− 2Liℓ3

(
x(1− y)

y(1− x)
; γ4, σ

)
− 2Liℓ3

(
x(1 − y)

x− 1
; γ5, σ

)
− 2Liℓ3

(
1− y

1− x
; γ6, σ

)

− 2Liℓ3

(
1− y

y(x− 1)
; γ7, σ

)
− 2Liℓ3 (x; γ8, σ)− 2Liℓ3 (y; γ9, σ) + 2ζℓ

3(σ)

= −ρy,γ9(σ)
2ρ 1−y

1−x
,γ6

(σ) + 2ζℓ
2(σ)ρy,γ9(σ) +

1

3
ρy,γ9(σ)

3 − Liℓ2

(
x(1− y)

x− 1
; γ5, σ

)

− Liℓ2

(
1− y

y(x− 1)
; γ7, σ

)
+

1

2
ρ 1−xy

1−x
,γ′

5
(σ)− 1

3
ρy,γ9(σ).
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Remark 4. By interpreting the proof of the above ℓ-adic functional equations af-
ter replacing ℓ-adic Galois associators with complex KZ associators, we obtain an
algebraic proof of the complex Landen’s and Spence-Kummer’s functional equa-
tions.
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Quasi-supersingular finite flat commutative group schemes and the
Coleman conjecture on torsion points on curves

Naotake Takao

The Coleman conjecture [Col87], roughly speaking, asserts that the residue fields
of torsion points on a curve with good reduction over an absolutely unramified
complete discrete valuation field of mixed characteristics are unramified and, as
an application, gives another proof of the Manin-Mumford conjecture (Raynaud’s
theorem [Ray83]) on the finiteness of torsion points on curves. Coleman proved the
conjecture in the case that the residue characteristic is larger than twice the genus
of the curve, or that the Jacobian has ordinary or superspecial (automatically
good) reduction [Col87]. Tamagawa and Hoshi investigated the (generalized) con-
jecture under the situation where the curve may have stable reduction. Tamagawa
achieved affirmative results in the case that the Jacobian has ordinary semistable
reduction [Tam01], and Hoshi solved the (generalized) conjecture affirmatively in
the case that the Jacobian has superspecial (good) reduction [Hos22].

In this report, we discuss possible strategies to solve the (generalized) conjecture
in the case that the Jacobian has supersingular (good) reduction.

Let p be a prime greater than three and k a perfect field of characteristic p. Write
W for the ring of Witt vectors with coefficients in k and K for the field of fractions
of W . Let K be an algebraic closure of K and write IK for the inertia subgroup
of the absolute Galois group of K determined by K. Let X be a proper smooth

https://arxiv.org/abs/2307.09403
https://arxiv.org/abs/2307.09414
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geometrically connected curve over K of genus g greater than one and write J
for its Jacobian variety. Given x0 ∈ X(K), we have the Albanese embedding
ιx0 : X →֒ J, x 7→ [x− x0]. Write J(K)tors for the torsion subgroup of J(K) and
Xtors for ιx0(X)(K) ∩ J(K)tors.

1. Quasi-supersingular finite flat commutative group schemes

Motivated by Hoshi’s solution of the (generalized) Coleman conjecture in the case
that J has superspecial (good) reduction (cf. [Hos22], Theorem E), we consider
the following problem:

Problem 1. Is the action of IK on Xtors trivial if J has supersingular (good)
reduction over K?

We try to approach this problem in the same way as Hoshi’s strategy in the
proof of [Hos22], Theorem E. We refer to this strategy as the [Hos22]-strategy,
tentatively in this report. To explain the strategy, we prepare a few terminologies.
Let n be a non-negative integer and G a p-torsion finite flat commutative group
scheme over W of rank p2n. Write G for the special fiber of G.
Definition 1.

(1) Let E be an elliptic curve over W . We shall say that E is supersingular if
the special fiber of E is a supersingular elliptic curve over k.

(2) We shall say that G (respectively, G) is superspecial if the following con-
dition is satisfied: there exist supersingular elliptic curves Ei/W (respec-
tively, Ei/k) (0 < i ≤ n) such that

G ≃ ⊕0<i≤nEi[p] (respectively, G ≃ ⊕0<i≤nEi[p]).

Here, for a commutative group scheme A/T and a positive integer m,
we write A[m] for the kernel of mA : A → A, where mA stands for the
multiplication by m.

(3) We shall say that G (respectively, G) is quasi-supersingular if the follow-
ing condition is satisfied: there exist a sequence of p-torsion finite flat
commutative group schemes over W (respectively, k)

G = Gn ⊃ Gn−1 ⊃ · · · ⊃ G1 ⊃ G0 = 0

(respectively, G = Gn ⊃ Gn−1 ⊃ · · · ⊃ G1 ⊃ G0 = 0)

and supersingular elliptic curves Ei/W (respectively, Ei/k) (0 < i ≤ n)
such that

Gi/Gi−1 ≃ Ei[p] (respectively, Gi/Gi−1 ≃ Ei[p]) (0 < i ≤ n).

For a quasi-supersingular G (respectively, G), we shall call a sequence as
above a qss sequence of G (respectively, G).

(4) When the dimensions of the simple factors of the semisimplification of the
action of IK on the group of K-rational points of the generic fiber GK of
G are n1 ≥ n2 ≥ · · · , we shall refer to [n1, n2, . . .] as the Raynaud type of
GK .
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The outline of the proof of [Hos22], Theorem E is as follows: First, Hoshi reduces
the proof to examining p-torsion points by the following remarkable theorem:

Theorem 1 ([Hos17], Theorem B). If J has good reduction over K, IK acts on
pXtors trivially.

Second, he studies the action of IK on J [p](K) by Raynaud’s classification
[Ray74], and proves that IK acts on Xtors trivially when the Raynaud type of J [p]
is [2, 2, . . .]. Finally, he proves that the Raynaud type of J [p] is [2, 2, . . .] if J has
superspecial reduction over K by proving the following theorem:

Theorem 2 ([Hos21], Theorem 4.10 (i)). The following are equivalent:

(1) G is superspecial. (2) G is superspecial.

To approach Problem 1 by the [Hos22]-strategy, it is enough to prove the su-
persingular version of Theorem 2. However, we get the following result:

Proposition 1. Suppose that n ≥ 2 and k is algebraically closed. Consider the
following conditions:

(1) G is quasi-supersingular. (2) G is quasi-supersingular.

Then (1) implies (2), but (2) does not imply (1) in general.

The proof of Proposition 1 is based on the theory of finite Honda systems (cf.
[FL82] §9.4, [Hos21] Remark 3.5.1), which gives a classification of liftings of finite
flat commutative group schemes over k. By using this theory, together with the
following lemma, we obtain a necessary condition for a qss sequence of a certain
type of (quasi-supersingular) p-torsion finite flat commutative group scheme over
k to lift to one over W :

Lemma 1. Suppose that k is algebraically closed. Let H be a quasi-supersingular
p-torsion finite flat commutative group scheme over k of rank p2n and (Hi)i=0,...,n a
qss sequence of H. Write (M,F, V ) and (Mi, Fi, Vi) (0 ≤ i ≤ n) for the Dieudonné
modules of H and H/Hn−i, respectively. Then they form a sequence of Dieudonné
modules M = Mn ⊃ Mn−1 ⊃ · · · ⊃ M1 ⊃ M0 = 0, and there exists a basis
ei, fi (0 < i ≤ n) of M (as a k-linear space) which satisfies the following conditions

• Mi/Mi−1 is generated by ei +Mi−1, fi +Mi−1 in M/Mi−1

• F (fi) = 0
• F (ei) ≡ fi mod 〈{ej; 0 < j < i}〉
• V (ei) ≡ fi mod 〈{fj; 0 < j < i}〉

for each 0 < i ≤ n. Here, 〈S〉 denotes the k-linear subspace generated by S, for a
subset S ⊂M .

Proposition 1 and its proof suggest that, for “most” X (whose Jacobian has
supersingular reduction), the [Hos22]-strategy would not work as it is.
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2. Other strategies

In this section, we shall discuss possible new ideas to overcome the obstacle raised
by Proposition 1 and to solve Problem 1.

2.1. Self-duality of J [p]. Although J has a natural principal polarization, this
fact is not reflected in Proposition 1. It would therefore be natural to examine
whether conditions (1) and (2) in Proposition 1 are equivalent under the extra
assumption that G and G are self-dual. However, we get the following result by
calculations based on Lemma 1:

Proposition 2. Suppose that n ≤ 2. If G is quasi-supersingular, then G and G
are automatically self-dual.

This proposition, together with Proposition 1, implies that the [Hos22]-strategy
would not work for Problem 1 when g = 2 even if self-duality is taken into account.
We wonder whether the assertion of Proposition 2 is true for n ≥ 3. (If it is true,
we have to say that the [Hos22]-strategy would not work even if self-duality is
taken into account.)

2.2. The Raynaud type of J [p]. The Coleman conjecture is a conjecture on
the action IK on Xtors. Thus, it is closely related to the Galois representation for
the generic fiber of the Jacobian of a given curve. Hence, (taking Theorem 1 into
consideration,) it is also natural to approach Problem 1 by Raynaud’s description
of the Galois representation associated with the generic fiber of a p-torsion finite
flat commutative group scheme.

In view of the Raynaud type of J [p], Tamagawa’s research [Tam01] is in the
case that the type is [1, 1, . . .] and Hoshi’s research [Hos22] is in the case that the
type is [2, 2, . . .]. When g = 2, all the possible Raynaud types are

[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1].

Because J is principally polarized, J [p] is self-dual and the case that the Raynaud
type is [3, 1] does not appear. Because J has supersingular reduction, the p-rank
of the special fiber of (the Néron model of) J is 0 and the case that the Raynaud
type is [2, 1, 1] or [1, 1, 1, 1] does not appear. The case that the Raynaud type is
[2, 2] has already been settled by Hoshi. Thus, what remains is the case that the
Raynaud type is [4]. We obtain the following result by proving that the image of
the action of IK on J [p](K) contains F×

p using Raynaud’s classification [Ray74]
and self-duality of J [p]:

Theorem 3. Suppose that g = 2. Then the answer to Problem 1 is affirmative.

We wonder whether the answer to Problem 1 is affirmative in the case that
g ≥ 3 and the type is [2g].
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Algebraic Dependence and Milnor K-theory

Adam Topaz

1. Introduction

Let F be a field. The Milnor K-theory of F is an object defined in term of both
the multiplicative and additive structure of F ,

KM
∗ (F ) :=

T∗(F
×)

〈x⊗ y | x+ y = 1〉 ,

where T∗ denotes the Tensor algebra of the Z-module F×. This object is a graded-
commutative ring satisfying KM

1 (F ) = F×. Thus, the multiplicative structure of
F is (trivially) determined by its Milnor K-theory. The question of whether or
not one can also recover the additive structure is a whole different matter, and
turns out to be quite an interesting question. This issue was studied in the past
by Bogomolov-Tschinkel [BS08] and, more recently, by Cadoret-Pirutka [CP21]
who show that the answer is positive for higher-dimensional function fields over
algebraically closed fields or over finite fields.

The main result I discussed in this report, which can be found in [Top23, Main
Thorem], gives a positive answer in many more situations. This is its statement:

Theorem 1. Let F be any field whose prime subfield is k0, and assume that F |k0
has transcendence degree ≥ 5. Let F i denote the perfect closure of F . Then the
isomorphism type of F i is determined by the graded Q-algebra KM

∗ (F )⊗Q.

The main feature that sets this theorem apart from previous results in this
area is in the minimal assumptions on the field F . While both Bogomolov-
Tschinkel [BS08] and Cadoret-Pirutka [CP21] essentially work with higher-dimen-
sional function fields, the result above works even for (sufficiently large) alge-
braically closed fields.
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As usual in anabelian geometry, the process which reconstructs the field from
its Milnor K-theory in the proof of this theorem is actually functorial in a suitable
sense. However, as soon as F is multiplicatively divisible, the quotient F×/torsion
becomes a vector space over Q, and thus multiplication by nonzero rationals in
degree 1 give rise to indeterminacy in such a functorial statement. In order to
control for such indeterminacy, one is essentially forced to tensor KM

∗ (F ) with Q in
order to obtain the uniform statement above. Once this happens, it’s impossible
to distinguish between F and F i as the map F → F i induces an isomorphism
on rationalized Milnor K-theory. Because of this, the fact that one can only
reconstruct F i as opposed to F is rather expected.

Having said that, I expect that the assumption on the transcendence degree of
F can be reduced quite significantly, as formulated in the following conjecture.

Conjecture 1. Suppose that F is any field of Kronecker dimension ≥ 2. Then
the isomorphism type of F i is determined by the graded Q-algebra KM

∗ (F )⊗Q.

2. The fundamental theorem of projective geometry, applied to
function fields

Before I go into the strategy of the proof of the main theorem, let me roughly go
over the arguments of Bogomolov-Tschinkel [BS08] and Cadoret-Pirutka [CP21],
in the case of function fields over algebraically closed fields. In this context, one
works with a function field K over a base-field k = k̄, potentially satisfying some
additional assumptions. The first step in these proofs is to use the information
encoded in KM

∗ (K) to obtain the binary relation on elements of K given by alge-
braic dependence over k. To accomplish this, one can use the relationship between
Milnor K-theory and ℓ-adic Galois cohomology of K, which remains sufficiently
nontrivial in this context.

At this point, the context is generalized. Namely, we work with a function field
K|k where k is perfect, and attempt to recover K from K×/k× as a multiplica-
tive group endowed with the algebraic dependence relation described above. This
is indeed possible in this level of generality, as shown in the work of Cadoret-
Pirutka [CP21, Theorem 4]. Among the final key steps is the use of the fun-
damental theorem of projective geometry, applied to K×/k× considered as the
projectivization of K as a vector space over k. This recovers the field structure on
k and the k-module structure of K, while the compatibility with the multiplicative
structure of K×/k× ensures that the field structure on K is recovered as well.

The proof of Theorem 1 follows the same overall approach, with a few key dif-
ferences. Namely, just as in the strategy above, one first recovers information
about algebraic dependence from Milnor K-theory. In our context, since we are
working over very general fields whose cohomological dimension may even be 0,
we can’t use techniques similar to the approaches above. Nevertheless, one is in-
deed able to reconstruct all information about algebraic dependence in K over its
prime subfield, starting with the (rationalized) Milnor K-theory ring of K (under
mild assumptions on the transcendence degree). One then concludes by apply-
ing a remarkable theorem due to Evans-Hrushovski [EH91, EH95], extended by
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Gismatullin [Gis08], which shows that, again under suitable assumptions on the
transcendence degree, this is sufficient to determine the field in question up-to
purely inseparable extensions. This result of Evan-Hrushovski and Gismatullin
could very well be considered as a (much more difficult) cousin of the fundamental
theorem of projective geometry.

3. On algebraic dependence

To conclude this report, I’ll give some details from the proof showing that algebraic
dependence can be recovered form Milnor K-theory. To fix notation, let’s take an
arbitrary extension of fields K|k with k relatively algebraically closed in K, and
consider the following variant of Milnor K-theory:

K∗(K|k) :=
KM

∗ (K)⊗Q
〈k×〉 .

Here 〈k×〉 refers to the ideal generated by the image of k× in degree 1.
Suppose that v is a K-valuation with unit group Uv, value group Γv = K×/Uv,

and consider the canonical map

∧∗(Q ⊗ Γv)→
K∗(K|k)
〈Uv〉

induced by the obvious isomorphism in degree 1.

Lemma 1. The map ∧∗(Q⊗ Γv)→ K∗(K|k)/〈Uv〉 described above is an isomor-
phism.

Proof. This is a straightforward consequence of the ultrametric inequality. �

From this it is not too hard to obtain the following:

Lemma 2. Suppose that f1, . . . , fn ∈ K× are algebraically independent over k.
Then {f1, . . . , fn} ∈ Kn(K|k) is nontrivial.

Here the symbol {f1, . . . , fn} refers to the product of the images of fi in
K∗(K|k), with the usual notation borrowed from Milnor K-theory.

Proof. One can find a discrete rank n k-valuation on k(f1, . . . , fn) where the images
of f1, . . . , fn form a basis for its value group. Extend this to a valuation v of K.
The image of {f1, . . . , fn} in K∗(K|k)/〈Uv〉 is nontrivial by the Lemma 1, and this
shows that {f1, . . . , fn} must be nonzero in K∗(K|k). �

This at least tells us that some information about algebraic dependence can
be recovered from K∗(K|k). Next, one detects valuations of K using K∗(K|k),
by applying techniques similar to previously developed local results in birational
anabelian geometry. One then uses the data obtained by detecting said valuations
in order to upgrade the partial information about algebraic dependence discussed
above, in order to recover all possible information about algebraic dependence in
K|k. The precise recipes are quite involved, so I won’t expand beyond this vague
description; the interested reader may refer to [Top23, §3-§4].
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Finally, note that in the above we worked with K∗(K|k), and indeed one obtains
a relative anabelian result showing that Ki|ki is determined by this object when
K|k has transcendence degree ≥ 5, see [Top23, §5]. To obtain an absolute result as
explained in Theorem 1, a bit of additional work is required to recover the kernel
of the canonical map

Q⊗KM
∗ (K)→ K∗(K|k),

where k is the relative algebraic closure of the prime subfield of K, using only the
graded Q-algebra Q⊗KM

∗ (K); see [Top23, §5] for more details. This then reduces
the absolute case to the relative case, which was already resolved.
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