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Introduction by the Organizers

The workshop Homotopy Theory was organised by Jesper Grodal (Copenhagen),
Michael Hill (Los Angeles), and Birgit Richter (Hamburg) and it was well attended
with 48 in-person participants and 4 online participants representing a number
of countries around Europe and the world. Participants from all career stages
attended, ranging from advanced graduate students to senior faculty, and the
workshop also represented almost all research areas in homotopy theory. The
workshop consisted of 24 talks and two gong shows. The talks ranged in length
from 30 minutes to an hour. At the evening gong-shows the atmosphere was
very lively. In these short 10-minute talks 17 participants presented their research
and open problems. All of the talks described cutting-edge research in homotopy
theory and were the starting point for many discussions.

This summer saw a surge in in-person conferences and many participants had a
busy conference schedule. Still, as usual, the excellent atmosphere at Oberwolfach
lead to many discussions during coffee breaks, meals, evenings and during hikes.
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A focus was the recent announcement in Oxford in June of the disproof of
the telescope conjecture which has a huge impact on our view of the structure of
chromatic homotopy theory. We had a lecture series on that topic by Robert Burk-
lund, Jeremy Hahn, Ishan Levy and Tomer Schlank. Other featured topics were
chromatic homotopy theory, algebraic K-theory, derived algebra and equivariant
homotopy theory.
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Abstracts

K-theory and the telescope conjecture

Ishan Levy

(joint work with Robert Burklund, Jeremy Hahn, Tomer Schlank)

In this talk, I sketch the simplest case of our recent disproof of Ravenel’s telescope
conjecture which is stated below:

Conjecture 1 (Ravenel, 1977). The inclusion SpK(n) ⊂ SpT (n) is an equality.

The telescope conjecture was the last remaining open conjecture of a series
of influential conjectures of Ravenel [1] describing the chromatic picture of the
category of spectra. The rest of the conjectures were resolved shortly after the
nilpotence theorem of Devinatz–Hopkins–Smith [2].

For n = 1, the telescope conjecture was proven by Mahowald [3] for p = 2
using bo-resolutions, and by Miller [4] for p > 2 using the localized Adams spectral
sequence.

We use algebraic K-theory to show that the telescope conjecture is false for
n ≥ 2. In the case n = 2, the result is as follows:

Theorem 1. LT (2)K(LK(1)S) is not K(2)-local, and hence a counterexample to
the height 2 telescope conjecture.

A consequence of the above result, which is additionally joint with Shachar
Carmeli and Lior Yanovski, is the following, which is the best known lower bound
on the asymptotic growth rate of the mod p stable stems:

Theorem 2. Let f(n) be the average rank from i = 1 to n of πi(S)/p. Then
f(n) → ∞ as n→ ∞.

The goal of this talk is to explain the main ideas in the simplest version of our
disproof, so we assume n = 2, p ≥ 7 from now on. The condition p ≥ 7 guarantees
that the Smith–Toda complex V (2) = S/(p, v1, v2) = ((S/p)/v1)/v2 exists and is
a homotopy commutative and associative ring spectrum.

TheK(1)-local sphere is the homotopy fixed points of the Adams summand L of
p-complete complex K-theory by the Z-action coming from the Adams operation
Ψ1+p. A major input in our proof is the following result, which is a consequence
of cyclotomic redshift, the subject of Shachar’s talk:

Theorem 3 (Ben-Moshe–Carmeli–Schlank–Yanovski). There is an equivalence

LK(2)K(LhZ) ∼= LK(2)K(L)hZ

To prove Theorem 1, we show that the map

LT (2)K(LhZ) → LT (2)K(LhZ)

is not an equivalence.
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We first explain how the K-theory of L can be understood. Let ℓ denote the
connective cover of L. Then there is a localization sequence of categories

Mod(ℓ)ω,v1−nil → Mod(ℓ)ω → Mod(L)ω

that induces a cofibre sequence of K-theory spectra. The category on the left has
a bounded t-structure, so applying Barwick’s theorem of the heart [5] (which is a
form of devissage) we obtain a cofibre sequence, due to Blumberg–Mandell [6]:

K(Zp) → K(ℓ) → K(L)

According to a theorem of Mitchell [7], K(Zp)-vanishes T (2)-locally, so we get to
replace L with ℓ. The advantage of ℓ over L is that its K-theory can be understood
via trace methods. Namely, the Dundas–Goodwillie–McCarthy (DGM) theorem
[8] gives a pullback square of commutative ring spectra

K(ℓ) TC(ℓ)

K(π0ℓ) TC(π0ℓ)

Using Mitchell’s theorem again, we learn that the bottom two terms vanish
T (2)-locally. Overall, we obtain an equivalence

LT (2)K(L) ∼= LT (2)TC(ℓ)

In my paper on the K-theory of the K(1)-local sphere [9], I worked out how to
make an analog of all of the above work with L replaced by LhZ = LK(1)S. One

difference is that the map Mod(ℓhZ)ω → Mod(LhZ)ω, though still a localization
map, has kernel the subcategory of modules that are both p and v1-nilpotent.
Constructing the bounded t-structure is a bit more subtle, and can be done using
[10].

The other key difference is that ℓhZ is not a connective ring, but is only −1-
connective, and so the DGM theorem doesn’t apply. It is observed in [9] that the
DGM actually extends to certain maps of −1-connective rings including the map
ℓhZ → (π0ℓ)

hZ. In this case that result can be proven using [11].
Summarizing, we are now reduced to proving that the map

LT (2)TC(ℓ
hZ) → LT (2)TC(ℓ)

hZ

is not an equivalence.
Since the telescope T (2) can be chosen to be S/(p, v1)[v

±1
2 ], we only need to

understand everything modulo p and v1.
The first step in understanding TC/(p, v1) is to understand THH/(p, v1). This

was first worked out by McClure–Staffeldt [12] for ℓ, but we present a different
proof.

The Adams filtration on ℓ has associated graded the polynomial algebra Fp[v0,v1].
THH satisfies base change with respect to symmetric monoidal functors, so we
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learn that there is a filtration on THH(ℓ)whose associated graded is THH(Fp[v0,v1]).
This filtration in particular gives rise to a spectral sequence

E1 = π∗THH(Fp[v0, v1])/(v0, v1) =⇒ π∗THH(ℓ)/(p, v1)

Symmetric monoidality and base change properties of THH give equivalences

THH(Fp[v0, v1] ∼= THH(Fp)⊗Fp HH(Fp[v0, v1]/Fp)

At the level of homotopy rings, the first term in the tensor product is Fp[σ
2p]

with |σ2p| = 2 by Bökstedt’s theorem, and the latter term is Fp[v0, v1]〈dv0, dv1〉
by the HKR theorem. Running the spectral sequence mod (v0, v1), there are two
differentials d1σ

2p = dv0, dp(σ
2p)p = dv1 which are propogated via the Leibniz

rule, and the resulting answer is that

π∗THH(ℓ)/(p, v1) ∼= Fp[µ]〈λ1, λ2〉
with |µ| = 2p2, |λi| = 2pi − 1.
David Lee and I worked out in [13] how to compute THH(ℓhZ)/(p, v1), i.e add Z-

fixed points to the above computation. By taking the Z-fixed points of the Adams
filtration on ℓ, we get a filtration on ℓhZ whose associated graded is Fp[v0, v1]⊗Fp

FhZ
p . This is because at the level of the associated graded of the Adams filtration,

the Adams operation Ψ1+p acts trivially. Thus we get THH(Fp[v0, v1]⊗Fp F
hZ
p ) ∼=

THH(Fp[v0, v1])⊗Fp HH(F
hZ
p /Fp)

Let us discuss the second tensor factor. We can view FhZ
p as the ring C∗(BZp;Fp)

of continuous cochains on BZp with values in Fp. Since Hochschild homology takes
cochain algebras on a p-profinite space X to the cochain algebra on the free loop
space LX , we learn that HH(FhZ

p /Fp) ∼= C∗(LBZp;Fp). The free loop space of

BZp is BZp×Zp, so we obtain HH(FhZ
p /Fp) ∼= FhZ

p ⊗C0(Zp;Fp), where C
0(Zp;Fp)

is the ring of continuous functions from Zp to Fp, which we from now on shorten
to C0(Zp).

Furthermore, the map HH(FhZ
p /Fp) → HH(Fp/Fp)

hZ at the level of π∗ is the

map C0(Zp)〈ζ〉 → Fp〈ζ〉, where |ζ| = 1, which sends ζ to itself and a continuous
function f to its value at 0. Our ultimate goal is to see that TC doesn’t commute
with Z-fixed points, and this is the place where that phenomenon originates.

David and I showed that this HH(FhZ
p /Fp)-tensor fact doesn’t interact much

with the rest of the spectral sequence, so that one learns that

π∗THH(ℓ
hZ)/(p, v1) ∼= π∗THH(ℓ)/(p, v1)⊗HH∗(F

hZ
p /Fp)

In other words, at the level of the homotopy ring, THH(ℓhZ)/(p, v1) behaves as if
the Z-action on ℓ were trivial.

A key point in our disproof of the telescope conjecture is to find a sense in
which the phenomenon of behaving like a trivial Z-action persists to the level of
the T (2)-local TC.

The first observation is the following:

Observation 1. All proofs so far go through if we replace the group Z that acts
with the subgroup pkZ for any k ≥ 0.
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The next observation is the key to gaining control over the TC:

Observation 2. For any finite computation towards TC(ℓhp
kZ), the answer is

formally determined by the one for ℓ if we make k ≫ 0.

Let us now elaborate on the latter observation. The algebras that appear in

the spectral sequences as we vary k are HH(FhpkZ
p /Fp), and at the level of π∗, the

natural maps between these are of the form

π∗HH(F
hpk

Z
p ) π∗HH(F

hpk+1
Z

p ) · · · π∗HH(Fp/Fp)

C0(pkZp)〈ζ〉 C0(pk+1Zp)〈ζ〉 · · · Fp

The lower horizontal maps send ζ to 0, and restrict continuous functions.
Then the following lemma is the key to making Observation 2 precise:

Lemma 1. Let f : A→ B be a map of finite rank free C0(Zp)-modules. Then for
k ≫ 0, there is an isomorphism f ⊗C0(Zp) C

0(pkZp) ∼= f ⊗C0(Zp) Fp ⊗Fp C
0(pkZp),

where the map C0(Zp) → Fp is evaluation at 0.

If we think of f as a continuous family of maps of Fp-vector spaces parameterized
by Zp, the conclusion of the above lemma can be written as f |pkZp

∼= f |0⊗C0(pkZp)
for k ≫ 0. The proof of the lemma is very easy: one reduces to the case where A =
B = C0(Zp), at which point f is a continuous function Zp → Fp. By continuity,
it must by constant in some neighborhood pkZp of 0, giving the conclusion.

By applying the above lemma to maps on π∗ and differentials in spectral se-

quences that appear in computations towards TC(ℓhp
k
Z)/(p, v1), we learn that as

long as there are finitely many needed pieces of information in our computation,
we can make k large enough, and the answer will behave as if the action were a
trivial action, i.e it will be formally determined by analogous computation for ℓ.

The original method of computation of π∗TC(ℓ)/(p, v1) due to Ausoni–Rognes
[14] is not a finite computation, but recent work of Hahn–Raksit–Wilson [15] shows
that there is a way to do it making it into a finite computation. The key differ-
ence between what they do and what Ausoni–Rognes do is that they first compute
TC(ℓ)/(p, v1, v2), and then show that the v2-Bockstein spectral sequence degener-
ates.

Nikolaus–Scholze [16] describe TC as fitting into an equalizer diagram

TC → THHhS1

⇒ THHtS1

where the two maps are the canonical and frobenius maps. Thus to understand
TC(ℓ)/(p, v1, v2), it suffices to understand the homotopy fixed point spectral se-

quence computing THHhS1

(ℓ)/(p, v1, v2) (which then determines the Tate spectral
sequence), and the frobenius map.

Up to grading conventions, the homotopy fixed point spectral sequence can
be found in [15, Corollary 6.5.2]: it has E2-page π∗THH(ℓ)/(p, v1)[t]〈σv2〉 with
|σv2| = 2p2 − 1 and |t| = −2. Up to propogation via the Leibniz rule, there are
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finitely many differentials: d2(σv2) = tµ, d2pt = tp+1λ1, d2p2tp = tp
2+pλ2. The

spectral sequence moreover degenerates at a finite page for degree reasons. The
important point is that there are only finitely many pieces of information about
finitely many classes that determine the spectral sequence. The frobenius map is

determined by the fact that φ(λi) = λi, φ(µ) = t−p2

and the frobenius of any class
with a t in its name is 0.

The above paragraph contains all the facts needed to compute TC(ℓ)/(p, v1, v2),
and a motivic associated graded version and chart at the prime 2 can be found
in [15, Theorem 6.0.2]. In particular, its homotopy groups are finite dimensional
and live in a bounded range of degrees. This means that the v2-Bockstein spectral
sequence, which degenerates, is also a finite amount of information. In particular
we learn that π∗TC(ℓ)/(p, v1)[v

±1
2 ] is finite dimensional over Fp[v

±1
2 ]. This also

implies that π∗TC(ℓ)
hpkZ/(p, v1)[v

±1
2 ] is also a finite dimensional Fp[v

±1
2 ]-vector

space for each k. In fact for k ≫ 0 we have an isomorphism π∗TC(ℓ)
hpkZ/(p, v1) ∼=

π∗TC(ℓ)/(p, v1)〈ζ〉.
The above discussion along with Observation 2 suggest that computing the

homotopy groups of TC(ℓhp
kZ)/(p, v1) is a formal consequence of that of ℓ for

k ≫ 0. Indeed, there is a class ∂ ∈ TC(ℓhp
kZ) such that π∗TC(ℓ)/(p, v1, v2) as a

module over Fp〈∂〉 determines π∗TC(ℓ
hpkZ)/(p, v1) for k ≫ 0 as follows:

• Each summand of Fp〈∂〉 appearing in π∗TC(ℓ)/(p, v1, v2) contributes a

copy of Fp[v2]⊕ ∂ζ ⊗ C0(pk+1Z×
p )[v2] to π∗TC(ℓ

hpkZ)/(p, v1).
• Each summand of Fp appearing in π∗TC(ℓ)/(p, v1, v2) contributes a copy

of Fp〈ζ〉 ⊗ C0(pk+1Zp)[v2] to π∗TC(ℓ
hpkZ)/(p, v1).

The contributions described above are all infinite dimensional Fp[v
±
2 ]-vector

spaces after inverting v2.
We have in other words completely understood at the level of homotopy groups

for k ≫ 0 the map

π∗TC(ℓ
hpkZ)/(p, v1)[v

±1
2 ] → π∗TC(ℓ)

hpkZ/(p, v1)[v
±1
2 ]

The failure of the telescope conjecture in this case is then the fact that this isn’t
an isomorphism. In fact it is quite far from an isomorphism: the source is infinite
dimensional over Fp[v

±1
2 ] and the target is not!
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Cyclotomic Redshift

Shachar Carmeli

(joint work with Shay Ben-Moshe, Tomer Schlank, Lior Yanovski)

Algebraic K-theory interacts deeply and subtly with the chromatic filtration. The
redshift philosophy of Ausoni and Rognes suggests that it should increase the
chromatic height precisely by one. An incarnation of this phenomenon has been
established recently in the works of Clausen-Mathew-Naumann-Noel and Land-
Mathew-Meier-Tamme, showing that the T (n + 1)-localization of K(R) only de-
pends on the T (n + 1) ⊕ T (n) localization of R, and of Burklund-Schlank-Yuan,
showing that LT (n+1)K(R) is non-zero when R is commutative and has a non zero
T (n)-localization. These results spotlight the T (n+1)-localization of the K-theory
of T (n)-local ring spectra, which lies at the border of the chromatic support of the
K-theory of such ring spectra.

Besides their contribution to redshift, Clausen-Mathew-Naumann-Noel also es-
tablish a descent result for this localized K-theory, LT (n+1)K, as a functor of

Lf
n-local ∞-categories (i.e., those with Lf

n-local mapping spectra). Namely, they
show that this functor preserves homotopy fixed points for finite p-group actions.
In my talk, I described work in preparation, joint with Ben-Moshe, Schlank, and
Yanovski, generalizing the descent result above from finite p-group actions to ac-
tions of π-finite p-groups, i.e., truncated groups in spaces whose homotopy groups
are finite p-groups. One of the main applications of this “higher descent” is the
compatibility of T (n+ 1)-local K-theory with the formation of T (n)-local higher
cyclotomic extensions. These are certain finite Galois extensions of the T (n)-local
sphere previously constructed in a joint work with Schlank and Yanovski. These
extensions provided an explicit telescopic lift of some well-known Galois extensions
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of the K(n)-local sphere, previously studied by Westerland. One of our main re-
sults is that T (n + 1)-local K-theory carries T (n)-local cyclotomic extensions to
T (n+1)-local cyclotomic extensions. This phenomenon, which we call “cyclotomic
redshift”, gives an example of a Galois descent for T (n+ 1)-local K-theory along
a Galois extension of order prime to p (namely the p-th cyclotomic extension).
This case is not covered by the results of Clausen-Mathew-Naumann-Noel, which
only deal with p-group actions. Even for p-group actions, cyclotomic redshift is
an example of “explicit Galois descent”: not only that T (n + 1)-local K-theory
carries a Galois extension to a Galois extension, we know which one we get.

After K(n + 1)-localization, the cyclotomic extensions assemble to a hyper-
complete Z×

p -extension of the K(n + 1)-local sphere, and hence by base change,
of every K(n + 1)-local commutative ring spectrum. Consequently, our result
shows that K(n+ 1)-local K-theory satisfies hyperdescent along the entire profi-
nite Z×

p -extension assembled from the finite cyclotomic extensions. The analogous
hyperdescent result for T (n+1)-local K-theory is shown by Burklund-Hahn-Levi-
Schlank not to hold. This shows that the T (n + 1)-local and K(n + 1)-local
K-theories of T (n)-local ring spectra are generally not the same, thus disproving
Ravenel’s telescope conjecture.

Moduli spaces of equivariant h-cobordisms

Mona Merling

(joint work with Tom Gooodwillie, Kiyoshi Igusa, and Cary Malkiewich)

Classical parametrized stable h-cobordism theorem. Given a homotopy
equivalence between smooth manifoldsM ≃ N , the strategy to determine whether
M and N are diffeomorphic is to try to construct an h-cobordism between them.
By the classical h-cobordism (or s-cobordism) theorem, the obstructions to the
h-cobordism being trivial, which would imply that M ∼= N , are classified in terms
of their Whitehead torsion τ ∈ Wh(π1M). The Whitehead group by definition is
the quotient of K1(π1M) by ±g ∈ π1M .

Theorem 1 ([2, 9, 17] ). Suppose M is a manifold with dim(M) ≥ 5. There is
an isomorphism

{iso classes of h-cobordisms on M} ∼=Wh(π1M).

In order to study the space of all diffeomorphisms of M , it is necessary to
topologize these obstructions [18, 12]. The Whitehead group Wh(π1M) is the π0
of the h-cobordism space H(M), whose k-simplices are h-cobordism bundles over
∆k. The aforementioned theorem says that π0H(M) can be computed in terms
of K-theory. We can ask the same question about the higher homotopy groups of
this moduli space:

Can we compute πiH(M) in terms of algebraic K-theory?
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The answer is yes, but only in a stable range, namely in the range where H(M)
is equivalent to the stable version H∞(M) obtained by multiplying M by copies
of I to increase its dimension [8]. This is the content of the celebrated “stable
parametrized h-cobordism theorem.”

Theorem 2 ([11]). There is a decomposition

(1) A(X) ≃ Σ∞X+ ×Wh(X),

whereWh(X) is a spectrum with the property that for a smooth compact manifold
M , the underlying infinite loop space of ΩWh(M) is equivalent to the stable h-
cobordism space H∞(M).

Weiss and Williams show that H∞(M) provides the information that accesses
the diffeomorphism group of M in a stable range [12].

Equivariant h-cobordism spaces. Now suppose G is a finite group acting on a
smooth manifold M with corners so that it has “trivial action on corners,” namely
M is a G-manifold modeled locally by G ×H V × [0,∞)k, for varying H ≤ G
and H-representations V . Our goal is to understand the stable moduli space of
equivariant h-cobordisms H∞

G (M) we constructed in [1] and show that it can be
computed, at least in a range, by equivariant algebraic K-theory. Equivariant A-
theory of a G-space AG(X) was constructed in [14] using the machinery of spectral
Mackey functors [6, 7, 10, 5, 4].1 The main question/conjecture is the following.

Question 1. For a compact smooth G-manifold M , is there a splitting

(2) AG(M) ≃ Σ∞
GM ×WhG(M)

analogous to the nonequivariant one from equation (1), where Ω∞+1WhG(M)G ≃
H∞

G (M)?

An equivariant h-cobordism (W ;M,N) between compactGmanifoldsM andN
is an h-cobordism W where the inclusions M →֒W and N →֒ W are G-homotopy
equivalences. For an equivariant parametrized stable h-cobordism theorem, we
need to stabilize h-cobordisms with respect to representation disks. This is already
apparent in the equivariant case on π0: the equivariant Whitehead torsion of
an equivariant h-cobordism M →֒ W is the trivial element of the equivariant
Whitehead group WhG(M) if and only if there exists a G-representation V such
that the equivariant h-cobordism (W × D(V );M × D(V ), N × D(V )) is trivial,
where D(V ) is the unit disk in the representation V [13].

What underlies this result is the phenomenon that often equivariant results in
manifold topology do not generalize unless there is a difference in the dimensions
between fixed points ... An equivariant map is isovariant if if preserves stabilizers,
or fixed point strata. An equivariant h-cobordism is isovariant if the inclusion
maps of the boundaries are isovariant homotopy equivalences. If a G-manifold

1We note that AG(X) is not the “K-theory of group actions for the G-action on the category
of retractive spaces over X. That construction yields a G-spectrum that we call Acoarse

G (X) and

study further in [15].
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satisfies the so-called “weak gap hypotheses” where the difference between dimen-
sions of different fixed points is at least 3, then an equivariant h-cobordism on
M is an isovariant h-cobordism [3]. The idea is that stabilizing with respect to
representation disks increases the gaps between dimensions of fixed points.

For a compact smooth G-manifold M , denote by M[H] be compactification of
the subspace of points with isotropy H , by removing tubular neighborhoods of
smaller fixed-point submanifolds. Note that these will be manifolds with corners.
Furthermore, denote by WH the Weyl group of H with respect to G. In work in
progress, we prove the following unstable splitting result for isovariant h-cobordism
spaces, which on π0 recovers a result of Browder-Quinn and Rothenberg.

Theorem 3 (Goodwillie-Igusa-Malkiewich-M.). Let M be a compact smooth G-
manifold. If dimM[H]/WH ≥ 5, then the space of isovariant h-cobordisms satisfies
a splitting

Hiso
G (M) ≃

∏

(H)≤G

H(M[H]/WH).

When we stabilize, the spaces of isovariant and equivariant h-cobordisms agree,
and we obtain the following stable result about equivariant h-cobordism spaces.

Theorem 4 (Goodwillie-Igusa-Malkiewich-M.). Let M be a compact smooth G-
manifold. Then the stable space of equivariant h-cobordisms (stabilized with re-
spect to representation disks) satisfies a splitting

H∞
G (M) ≃

∏

(H)≤G

H∞(MH
hWH).

We can now ask the analogous question as before about this moduli space of
equivariant h-cobordisms:

Can we describe H∞
G (M) in terms of equivariant algebraic K-theory?

Combined with the results of [16], we obtain a sequence in G-spectra

AG(M) → Σ∞
GM → WhG(M)

where Ω∞+1WhG(M)G ≃ H∞
G (M), a significant step toward Question 1.
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Invariant prime ideals in the equivariant Lazard ring

Lennart Meier

(joint work with Markus Hausmann)

Chromatic homotopy theory is based on the paradigm that the structure of the
stable homotopy category is predicted by the moduli stack of formal groups MFG.
This correspondence is mediated by complex cobordism MU , whose coefficients
π∗MU carry the universal formal group law. More precisely, every spectrum X
defines a graded quasi-coherent sheaf FX

∗ on MFG, corresponding to the graded
(π∗MU,MU∗MU)-comodule MU∗(X), and the properties of FX

∗ reflect those of
X .

We may look, for example, at the support suppFX
∗ of FX

∗ in the space |MFG|
of points ofMFG. The points of MFG correspond to formal groups over fields and
are thus classified by the residue characteristic and the height. By definition of the

Balmer spectrum Spc(Spfin), the support theory suppF (−)
∗ defines a continuous

map |MFG| → Spc(Spfin). By the Hopkins–Smith thick subcategory theorem, this
is a homeomorphism.

We claim that analogous statements are true for every compact abelian Lie
group G, which we will fix throughout.
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Tenet. Mediated by equivariant complex cobordism MUG, the moduli stack of
G-equivariant formal groups predicts the structure of the G-equivariant genuine
stable homotopy category.

1. The moduli stack of G-equivariant formal groups

We warn that G-equivariant formal groups are not the same as formal groups with
a G-action. The latter are relevant for theories like KR or MUR, while the former
are relevant for G-equivariantly complex oriented theories like KUG or MUG (the
universal example). We believe that the notion of equivariant formal groups is not
as widely known as it should, and therefore we give both motivation and definition
of this notion. The motivation we give is topological, but the notion should also
be interesting from the purely algebro-geometric point of view.

If E is a non-equivariant complex-oriented ring spectrum, then we have an

isomorphism E2∗(CP∞) ∼= E∗JxK and hence Spf E2∗(CP∞) ∼= Â1
E2∗ . If EG is a

G-equivariant complex-oriented ring spectrum, we need to replace CP
∞ by CP

∞
G ,

the G-space of complex lines in the complex complete universe U =
⊕

V ∈G∗ V∞;
here G∗ = Hom(G,U(1)) is the set of irreducible complex representations of G.
The complex orientation is a class y ∈ E2

G(CP
∞
G ). The group G∗ acts by tensoring

on U and hence on Spf E2∗
G (CP∞

G ), and the map CP
∞ → CP

∞
G defines a map

Â1
E2∗

G
→ Spf E2∗

G (CP∞
G ). This motivates the notion of a G-equivariant formal

group, defined in different language by Cole–Greenlees–Kriz [CGK00].

Definition 1. A G-equivariant formal group over a commutative ring k consists
of

• a group object X in formal schemes over k,
• a G∗-action on the underlying formal scheme over k,

• a map Â1
k

ϕ−→ X ,

such that

• the G∗-translates of ϕ cover X ,

• the coordinate of Â1
k extends to a non-zero divisor y on X .

Â1
k

Â1
k

Figure 1. A schematic depiction of a C2-equivariant formal group

Requiring y as part of the data, gives the notion of a G-equivariant formal group
law. Every G-equivariant complex oriented theory defines such a group law in the
manner sketched above. To obtain a notion of G-equivariant formal group that
satisfies descent and hence defines a moduli stack MG

FG, we should weaken the

definition above to asking for the existence of y (and the coordinate on Â1
k) only

Zariski-locally on k.
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In the monograph [Str11], Strickland investigated many aspects of equivariant
formal groups and showed in particular:

Theorem 1 (Strickland). The points of MG
FG are classified by the residue char-

acteristic p, the height n and the “subgroup of definition” H ⊆ G.

The importance of the notion of equivariant formal groups to topology was
cemented when, extending earlier work of Greenlees and of Hanke–Wiemeler (for
G = C2), Hausmann showed in seminal work an analogue of Quillen’s theorem:

Theorem 2 (Hausmann, [Hau22]). The coefficients πG
∗ MU carry the universal

group law, and the Hopf algebroid (πG
∗ MU,MUG

∗ MU) stackifies to MG
FG.

2. The equivariant thick subcategory theorem

Relying on Hausmann’s theorem, we can associate to everyG-spectrumX a graded
quasi-coherent sheaf FX

∗ on MG
FG, corresponding to the (πG

∗ MU,MUG
∗ MU)-

comodule MUG
∗ X .

Theorem 3 ([HM23]). The map

finite G-spectra → {closed subsets of |MG
FG|}

X 7→ support of FX
∗

is the universal support theory on finite G-spectra. This induces a homeomorphism
|MG

FG| → Spc(SpfinG ) to the Balmer spectrum of finite G-spectra.

This theorem has a curious history, as the topological side, namely the Balmer
spectrum Spc(SpfinG ), was calculated first, in work of Strickland, Balmer–Sanders,
Barthel–Hausmann–Naumann–Noel–Nikolaus–Stapleton and Barthel–Greenlees–
Hausmann [BS17], [BHNNNS19], [BGH20]. In our work, we calculate the algebraic
side, namely the topology on |MG

FG|, and establish that the map above is a support

theory; this induces the required map |MG
FG| → Spc(SpfinG ). Establishing this

support theory is harder than in the non-equivariant case: π∗MU is known to be
coherent, but the analogous result is not known for πG

∗ MU . We conjecture:

Conjecture 1. The stacks MG
FG are coherent in the sense that coherent sheaves

on them (corresponding to comodules whose underlying module is finitely pre-
sented) form an abelian category.

3. Further results and the road ahead

The points in MFG corresponds to the invariant prime ideals Ip,n ⊆ π∗MU . These
are generated by the elements p = v0, v1, . . . , vn−1, where each vk is canonically
defined modulo Ip,k. We show that the vn naturally refine to elements vn in

π
Cn

p ×U(1)
∗ MU , canonically defined modulo a certain invariant prime ideal. These

allow us to write down generators for many of the invariant prime ideals of πG
∗ MU ;

these do not form regular sequences in general, however.
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The vn are crucial in determining the topology on |MFG| and form, in some
sense, the algebraic replacements of the partition complexes used for the determi-
nation of the topology on Spc(Spfin

G ).
We expect that the vn will play a fundamental role in the chromatic picture for

G-spectra, especially for equivariant analogues of the periodicity theorem.
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Quillen stratification in equivariant homotopy theory

Natàlia Castellana Vila

(joint work with Tobias Barthel, Drew Heard, Niko Naumann, Luca Pol)

In the 1970’s Quillen [8] published a celebrated theorem known as strong Quillen
stratification theorem. The strong stratification theorem provides a decomposition
of the Zariski spectrum of the cohomology of any finite group G with coefficients
in a field k

SpecH•(G, k) =
⊔

(E)⊆G

V+
G,E.

in terms of locally closed subsets indexed on the conjugacy classes of elementary
abelian subgroups and the strata V+

G,E are orbits of the Weyl group action on

an open subset of the Zariski spectrum SpecH•(E, k) of the cohomology of E,
which is well-known. The weak version describes the spectrum as a colimit of
SpecH•(E, k) on the orbit category on elementary abelian subgroups.

Previous generalizations of Quillen’s weak result had been obtained. On the
one hand, Mathew–Naumann–Noel [7] produce a generalization for coefficients in
an arbitrary commutative equivariant ring spectrum; on the other hand, the weak
statement has found a tt-geometric incarnation for the spectrum of Db(FpG) in
Balmer’s [1].

In this project (see [5]) we prove a generalization of this result in the context
of equivariant homotopy theory formulated in the language of tensor-triangular
geometry. So it conceptualizes these results in a uniform point of view getting
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together equivariant tensor-triangular geometry, Quillen’s stratification of group
cohomology, and stratifications in modular representation theory. In particular,
we establish a Quillen-type decomposition of the Balmer spectrum of equivariant
tensor-triangulated category and study the extent to which it is reflected in a
stratification of the category defined over it.

Let K be an essentially small tt-category. Balmer [2] constructed a topological
space Spc(K), called the spectrum of K whose points are the prime ⊗-ideals of
K, and the topology of Spc(K) is the one having {supp(a)}a∈K as a basis of
closed subsets, where supp(a) = {P ∈ Spc(K)|a 6∈ P}. Balmer shows that there is
an order-preserving bijection between radical thick ⊗-ideals of K and Thomason
subsets of Spc(K).

More generally one would like to understand when the Balmer spectrum of
compact objects also parameterizes the localizing ⊗-ideals. Suppose that T is a
rigidly-compactly generated tt-category whose Balmer spectrum of compact ob-
jects is Noetherian. Then, Balmer–Favi [4] and Stevenson [9] have extended the
notion of Balmer support from compact objects,T c, to all of T .

(1) {Localizing ⊗-ideals of T } Supp−→ {Subsets of Spc(T c)}
If the map Supp from (1) is a bijection, then we say that T is stratified. So,

the first question is when this happens. Techniques to approach this question are
developed in [6].

Another question then is to identify Spc(T c) as a set or as a topological space.
If R is the graded endomorphism ring of the unit, Balmer [3] defines a natu-

ral continuous comparison map ρ : Spc(K) → Spech(R) which combined with

Spech(R) → Spec(R0) (that sends a homogeneous prime ideal p to p ∩ R0), gives
rise to an ungraded comparison map

ρ0 : Spc(K) → Spec(R0).

We specialize to the following context. Let G be a finite group. We let SpG
denote the stable ∞-category of G-spectra. Given a commutative equivariant ring
spectrum R, let ModG(R) denote the ∞-category of R-modules internal to SpG,
and write PerfG(R) for its full subcategory of compact (or perfect) modules. Given
a subgroup H ⊆ G, the geometric fixed point functor is denoted by ΦH .

In the following main result we establish an analogue of Quillen stratification
for an arbitrary commutative equivariant ring spectrum R and we show that the
category is stratified in terms of geometric fixed points.

Theorem 1. Let R be a commutative equivariant ring spectrum and write
ModG(R) for the category of G-equivariant modules over R. Then:

(1) The spectrum of perfect R-modules admits a locally-closed decomposition

Spc(PerfG(R)) ≃
⊔

(H)⊆G

Spc(Perf(ΦHR))/WG(H),

with the set-theoretic disjoint union being indexed on conjugacy classes of
subgroups of G;
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(2) ModG(R) is stratified if the categories Mod(ΦHR) are stratified with Noe-
therian spectrum for all subgroups H in G.

In both (a) and (b) it suffices to index on a family F of subgroups H ⊆ G such
that R is F -nilpotent.

Specializing to the Borel-equivariant theory for HFp, the Eilenberg-MacLane
spectrum for Fp, one recovers a version of Quillen’s theorem. We apply our meth-
ods to the case of the Borel-equivariant Lubin-Tate E-theory.

Theorem 2. Let E = En be a G-Borel-equivariant Lubin–Tate E-theory of height
n and at the prime p. The category ModG(E) is cohomologically stratified, and
there is a decomposition into locally-closed subsets.

Spc(PerfG(E)) ∼= Spec(E0(BG)) ≃
⊔

A

Spec(π0Φ
AE)/WQ

G (A),

where the disjoint union is indexed on abelian p-subgroups A of G generated by
at most n elements. In particular, the generalized telescope conjecture holds for
ModG(E) and there are explicit bijections

{
Thick ⊗-ideals of

PerfG(E)

} {
Specialization closed

subsets of Spec(E0(BG))

}
∼

and {
Localizing ⊗-ideals of

ModG(E)

} {
Subsets of

Spec(E0(BG))

}
.∼

A key input for the proof of the previous theorem is the following statement.

Theorem 3. The commutative ring π0Φ
AE is regular Noetherian for any finite

abelian p-group A.

Finally, the techniques developed in the general context can be applied to the
following examples obtaining stratification theorems in each case:

(1) The integral constant Green functor R = HZ for any cyclic p-group G.
(2) Equivariant K-theory R = KUG for any finite group G. In this case,

Spc(PerfG(KUG)) ∼= Spec(π0KUG), where π0KUG
∼= R(G) is the complex

representation ring of G.

•F3•F5•F7 · · · •F2 •F3•F5•F7 · · ·

•Q •Q

Figure 1. Here Spc(PerfC2
(KUC2

)) ∼= Spec(R(C2)). The closure goes upwards,
and the primes are labeled by their residue fields.

(3) Atiyah’s K-theory with reality R = KR for G = C2. In this case,
Spc(PerfC2

(KR)) ∼= Spec(Z).
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N∞ operads, transfer systems, and the combinatorics of bi-incomplete

Tambara functors

Kyle Ormsby

(joint work with Linus Bao, Christy Hazel, Tia Karkos, Alice Kessler,
Austin Nicolas, Jeremie Park, Cait Schleff, Scotty Tilton)

Let G be a finite group. The theory of N∞ operads was created by Blumberg–
Hill [4] to parametrize homotopy coherent normed multiplicative structures on G-
equivariant ring spectra. The homotopy category of G-N∞ operads is equivalent
to the lattice TrG of G-transfer systems. The combinatorial nature of TrG makes
it amenable to study by elementary means. In this talk, I report on work by the
2023 Electronic Computational Homotopy Theory REU to determine the structure
of TrG when G = Cp × Cp is an elementary Abelian p-group of rank two. This
leads to an application in equivariant algebra: a quick derivation of the number of
compatible pairs of transfer systems underlying bi-incomplete Tambara functors
on Cp × Cp.

Eschewing the standard homotopical conceit of writing Σn, let Sn denote the
symmetric group on n letters.

Definition 1. A G-N∞ operad O is an operad in G-spaces such that (1) O(0) is G-
contractible, (2) the action of Sn = e×Sn on O(n) is free, (3) for all Γ ≤ G×Sn,
O(n)Γ is either contractible or empty, and (4) FO := {Γ ≤ G×Sn | O(n)Γ ≃ ∗}
is a G×Sn-family1 containing all subgroups of the form H × e.

1A collection of subgroups forms a family when it is closed under conjugation and taking
subgroups.
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Let H ≤ G and let T be a finite H-set. Let Γ(T ) denote the graph of a
permutation representation H → S|T | of T . We say that O admits T -norms when

O(n)Γ(T ) ≃ ∗.
Note that when an O-algebra X admits H/K-norms, we get a “wrong way”

map

XK → XH .

These are what practicitioners typically think of as norms (or transfers in an
additive setting).

We write N∞-OpG for the category of G-N∞ operads and G-equivariant maps
of G-operads. A weak equivalence of G-N∞ operads is map ϕ : O1 → O2 such
that the induced map O1(n)

Γ → O2(n)
Γ is a weak equivalence for all n ≥ 0 and

Γ ≤ G×Sn. We write Ho(N∞-OpG) for the associated homotopy category. Since
we wish to classify N∞ operads up to homotopy, it is desirable to have a tractable
model for Ho(N∞-OpG), and this is provided by transfer systems.

Definition 2. Let (P,≤) be a partially ordered set (poset). A transfer system R
on P is a partial order on the set P refining ≤ (so x R y =⇒ x ≤ y) such that

(1) x R y, z ≤ y, and w maximal among w′ ≤ x =⇒ w R z.

If (SubG,≤) denotes the subgroup lattice of a finite group G ordered by inclusion,
then a G-transfer system is a transfer system R on SubG that is further closed
under conjugation: K R H =⇒ gK R gH where gH := gHg−1.

Note that when P is a lattice (like SubG), condition (1) reduces to

(2) x R y and z ≤ y =⇒ x ∧ z R z,

which we refer to as the restriction condition. Categorically speaking, a transfer
system on a lattice P is a wide subcategory of P closed under pullbacks.

Let TrP denote the collection of transfer systems on P , and let TrG denote
the set of G-transfer systems. There is a canonical refinement partial order ≤ on
TrP given by

R ≤ R′ ⇐⇒ (x R y =⇒ x R′ y),

and when P is a finite lattice, TrP is a finite lattice; the same is true of TrG.
Work of many authors [4, 8, 6, 9, 10, 1] establishes that TrG models the ho-

motopy category of G-N∞ operads. Given an N∞ operad O, write RO ∈ TrG for
the transfer system given by

K RO H ⇐⇒ O admits H/K norms.

Theorem 1. The assignmentR 7→ RO is a functorN∞-OpG → TrG and descends
to an equivalence of categories

Ho(N∞-OpG) ≃ TrG.

Transfer systems are elementary but subtle, and enumerations of TrG have only
slowly appeared. Prior to our work, the only infinite family of transfer system
lattices completely understood was for G = Cpn , the cyclic group of order pn, p
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prime.2 Indeed, Balchin–Barnes–Roitzheim [1] prove that TrCpn is isomorphic to
the Tamari lattice An+1 of planar binary rooted trees with n+ 2 leaves partially
ordered by tree rotation. It follows that

|TrCpn | = Catn+1 =
1

2n+ 3

(
2n+ 3

n+ 1

)
,

the (n+ 1)-th Catalan number.
In our work [3], we completely determine and enumerate the lattice of transfer

systems for Cp × Cp, p prime. In order to state the theorem, set [n] := {0 < 1 <
· · · < n} and note that [1]k is isomorphic to the lattice of subsets of a k-element
set partially ordered by inclusion.

Theorem 2 (Bao, Hazel, Karkos, Kessler, Nicolas, O., Park, Schleff, Tilton [3,
Theorem 5.4]). For p prime there are exactly

2p+2 + p+ 1

transfer systems on Cp × Cp, and the lattice of transfer systems consists of three
disjoint induced subposets: B, T ∼= [1]p+1 and M consisting of p+1 incomparable
points. The only covering relations in Tr(Cp × Cp) not internal to B or T are of
the following forms:

(i) each element of B covered by maxB is also covered by exactly one element
of M ,

(ii) each element of T covering minT also covers exactly one element of M ,
(iii) min T covers maxB.

Proof idea. The subgroup lattice of Cp×Cp consists of the trivial subgroup e, p+1
rank 1 subgroups (isomorphic to Cp), and the full group. As such, Sub(Cp×Cp) ∼=
[2]∗(p+1), the (p + 1)-fold fusion of [2] with itself. Here the fusion of two lattices
is their disjoint union with minimal elements identified and maximal elements
identified. We provide a general recursion for |Tr(P ∗ Q)| in [3, Theorem 4.11],
and leverage this to enumerate Tr(Cp × Cp) ∼= Tr([2]∗(p+1)).

With the enumeration in hand, it is easy to construct all transfer systems and
check the covering relations between them. The subposet B consists of transfer
systems that only have non-identity relations between e and some subset of rank
1 subgroups. The subposet T consists of transfer systems that have all relations
from e to other subgroups and some subset of relations between rank 1 subgroups
and Cp × Cp. The transfer systems in M have all but one of the relations from e
to rank 1 subgroups, along with one relation from the excluded rank 1 subgroup
to Cp × Cp. �

Such an explicit enumeration of transfer systems allows us to study other struc-
tures related to transfer systems on Cp × Cp. By work of Chan [7], we know that

2Balchin–MacBrough–Ormsby [2] have also determined an elaborate set of interleaving recur-
sions which determine the cardinalities of TrDpn and TrCqpn
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special pairs of transfer systems enumerate compatible choices of transfers and
norms for bi-incomplete Tambara functors in the sense of Blumberg–Hill [5].3

Definition 3. Let G be a finite group. A pair (
a

99K,
m−→) of G-transfer systems is

called compatible when
m−→ ≤ a

99K and the following condition holds:

(3) K,L ≤ H ≤ G, K
m−→ H, and K ∩ L a

99K K =⇒ L
a

99K H.

We write CompG for the collection of compatible pairs of G-transfer systems.

We may encode (3) diagramatically as

H

L K

K ∩ L

m

am

a

where the double arrow indicates logical implication. Note that K ∩ L m−→ L is
already guaranteed by (2).

Based on Theorem 2, we may enumerate the compatible pairs of transfer systems
for Cp × Cp with relatively little pain.

Theorem 3 (O.). For p prime, there are exactly

2p(2p+2 + p+ 3) + 3p+1 + 2p+ 2

compatible pairs of (Cp × Cp)-transfer systems.

To give the reader a sense for these numbers, we record the first few values:

p 2 3 5 7 11 13
|Comp(Cp × Cp)| 117 393 5 093 73 393 17 337 353 273 349 525

Proof sketch. Set n = p + 1. For each
m−→ ∈ Tr(Cp × Cp) we determine which

a
99K≥ m−→ satisfy (3). First focus on the 2n transfer systems in B. Since no
relations in these transfer systems are restrictions of other relations, no conditions

are imposed by (3) and we only need to count the size of the up-set of each
m−→

in B. If
m−→ has rank k, then there are 2n−k elements of B at least as large as

it, along with n− k elements of M and all 2n elements of T . Since there are
(
n
k

)

elements of B of rank k, we find that there are exactly
n∑

k=0

(
n

k

)
(2n−k + n− k + 2n)

3Bi-incomplete Tambara functors arise in the context of equivariant ring spectra R defined
over G-universes that might not be complete. In this scenario, π

∗
R is a bi-incomplete Tambara

functor with additive transfers encoded by the G-universe and multiplicative norms encoded by
an N∞ operad over which R is an algebra.
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compatible pairs (
a

99K,
m−→) with

m−→ in B. Standard combinatorial identities reduce
this expression to

3n + 2n−1 · n+ 22n.

Now let
m−→ be one of the n transfer systems in M . While there are 1 + 2n−1

transfer systems at least as large as
m−→, only

m−→ and the complete transfer system

≤ pair with
m−→ to satisfy (3). Thus there are 2n compatible pairs (

a
99K,

m−→) with
m−→ in M .
Finally, if

m−→ is in T , then it can only pair with the complete transfer system

to satisfy (3), so there are 2n compatible pairs (
a

99K,
m−→) with

m−→ in T . Adding
things up, we see that there are exactly

3n + 2n−1 · n+ 22n + 2n+ 2n = 2n−1(2n+1 + n+ 2) + 3n + 2n

compatible pairs for Cp × Cp. Substituting n = p + 1 gives the expression from
the theorem statement. �
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Equivariant orientations of bundles over disconnected G-spaces

Foling Zou

(joint work with Prasit Bhattacharya)

Classically, orientations of vector bundles can be described via several equivalent
ways, among which the existence of a Thom isomorphism. Equivariantly, different
approaches of orientations bifurcate when the base space of the bundle is not G-
connected. The issue is that fibers over different components could be different
representations. With Prasit Bhattacharya, we develop a two-stage obstruction
theory that is computable, and used it to prove the existence of Thom classes and
Thom isomorphisms of some Thom space that appears in equivariant cohomology
operations.

Transchromatic phenomena in the equivariant slice spectral sequence

XiaoLin Danny Shi

(joint work with Lennart Meier, Mingcong Zeng)

In this talk, we will construct a stratification for the equivariant slice spectral
sequence. This stratification is achieved through the localized slice spectral se-
quences, which compute the geometric fixed points equipped with residual quotient
group actions. As an application, we will utilize this stratification to investigate
norms of Real bordism theories and their quotients. These quotients hold signifi-
cant importance in Hill-Hopkins-Ravenel’s resolution of the Kervaire invariant one
problem, as well as in the study of fixed points of Lubin-Tate theories by finite
subgroups of the Morava stabilizer group. For these theories, the stratification
exhibits a transchromatic phenomenon: the slice spectral sequence of a higher
height theory is stratified into distinct regions, each isomorphic to the slice spec-
tral sequences of the lower height theories. This provides an inductive approach
and various structural insights when computing the fixed points of Lubin-Tate
theories.

The telescope conjecture

Robert Burklund

(joint work with Jeremy Hahn, Ishan Levy, Tomer Schlank)

In this talk I elaborated on joint work with J. Hahn, I. Levy and T. Schlank
discussed in previous talks this week. The first part of the talk focused on cal-
culating π∗THH(SBZ). Using this I explained a heuristic for understanding why
the map TC(SBZ) → TC(S)BZ is unlikely to be an equivalence. Following this I
began discussing why the Adams operations on ℓ are sufficiently close to trivial
for TC(−)⊗ V (2) to be calculable by reduction to the case of a trivial action.
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Separability in homotopical algebra

Maxime Ramzi

In classical algebra, separable algebras are a generalization of both étale algebras in
the commutative setting, and Azumaya algebras in the noncommutative setting.
Introduced by Auslander and Goldman in [1], they have been re-introduced in
homotopical algebra by Balmer in [2], where he studies separable algebras in the
context of tensor-triangulated categories. Their definition can be given in any
symmetric monoidal (∞-)category:

Definition 1. Let C be a symmetric monoidal ∞-category, and A an algebra
in C. It is said to be separable if its multiplication map A ⊗ A → A admits a
bimodule section.

One of the key features of separable algebras in the context of tensor-triangulated
categories is that they have a good module theory, without having to remember
higher homotopical structure; and furthermore this module theory agrees with the
homotopically coherent version. For example, we have:

Theorem 1 ([2, Corollary 6.6]). Let R be a commutative ring and S a commuta-
tiveétale R-algebra. The category of S-modules in the derived (1-)category of R,
D(R), is equivalent to the derived (1-)category of S, D(S).

In this talk, I reported on my paper [3] where I explain this phenomenon from
the perspective of symmetric monoidal stable ∞-categories. The goal of the talk
was to state and explain the following pair of theorems:

Theorem 2. Let C be a stably symmetric monoidal ∞-category, and A a homo-
topy algebra in C, i.e. an algebra in ho(C), and assume A is separable in ho(C).
In this case, we have:

(1) The moduli space of lifts of A to an algebra in C,ME1

A := Alg(C)×Alg(ho(C))

{A} is simply-connected, and in particular non-empty;

(2) Given any lift Ã ∈ ME1

A , Ã is itself separable (rather than only separable
in ho(C));

(3) Given any lift Ã as above, the canonical functor ho(LModÃ(C))
→ LModA(ho(C)) is an equivalence.

Further, given a lift Ã as above, and given any algebra R in C, the canonical map
π0MapAlg(C)(Ã, R) → homAlg(ho(C))(A,R) is an isomorphism.

Warning 1. For a general A, the moduli space ME1

A is not contractible.

Similarly, for a general A and R, the mapping space MapAlg(C)(Ã, R) is not
discrete.

In a sense, this theorem explains the results of [2], and explains that most of the
results proved about separable algebras in tensor-triangulated categories extend
readily to their coherent analogue in stably symmetric monoidal ∞-categories.
There are still some subtleties related to Warning 1, and the following theorem
shows that they disappear in the commutative case:



Homotopy Theory 1919

Theorem 3. Let C be a stably symmetric monoidal ∞-category, and A a homo-
topy algebra in C, i.e. an algebra in ho(C), and assume A is separable in ho(C).
Assume further that A is homotopy commutative, i.e. A is a commutative algeba
in ho(C). In this case, we have:

(1) For any d ≥ 1 (including d = 1 and d = ∞), the moduli space of lifts of A

to an Ed-algebra in C, MEd

A := AlgEd
(C) ×Alg(ho(C)) {A} is contractible;

(2) The 1-category LModA(ho(C)) acquires a canonical tensor product for
which the equivalence from Theorem 2(3) is an equivalence.

Further, given any d ≥ 1 , any lift Ã of A to an Ed-algebra and any homotopy
commutative Ed-algeba R in C1, the mapping space MapAlgEd

(C)(Ã, R) is discrete

and equivalent to homAlg(ho(C))(A,R).

A corollary of the study of the commutative case is the fact that, unlike gen-
eral separable algebras, the category of commutative separable algebras satisfies
a strong form of descent, namely the functor that assigns to C its category of
commutative separable algebras preserves limits.

We conclude with a few words about proofs: a key point in these theorems is
that except for one statement, they are entirely elementary. In particular, we only
use obstruction theory to “get off the ground”, namely to go from an algebra up
to homotopy to a coherent algebra. In other words, all the results except for the
fact that ME1

A is non-empty (with the notation from Theorem 2) can be proved
with no obstruction theory. The obstruction theory that we do use to get this
non-emptiness is a version of Goerss–Hopkins obstruction theory, as developed by
Pstragowski–VanKoughnett [4].
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Separable commutative algebras and Galois theory in stable

homotopy theories

Niko Naumann

(joint work with Luca Pol)

We report on results of the joint paper available at arxiv.org/abs/2305.01259.
We relate two different proposals to extend the étale topology into homotopy

theory, namely via the notion of finite cover introduced by Mathew and via the
notion of separable commutative algebra introduced by Balmer. We show that

1For d ≥ 2, the homotopy commutative condition is vacuous, but it is important for d = 1.
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finite covers are precisely those separable commutative algebras with underlying
dualizable module, which have a locally constant and finite degree function. We
then use Galois theory to classify separable commutative algebras in numerous
categories of interest. Examples include the category of modules over an E∞-ring
R which is either connective or even periodic with π0(R) regular Noetherian, the
stable module category of a finite group of p-rank one and the derived category of
a qcqs scheme.

Scissors congruence K-theory and traces

Anna Marie Bohmann

(joint work with Teena Gerhardt, Cary Malkiewich, Mona Merling,
Inna Zakharevich)

The scissors congruence problem asks the following question: given two polytopes
P and Q, when is it possible to cut one up using finitely many straight cuts and
reassemble the pieces to get the other? It is immediately apparent that a necessary
condition is that P and Q have the same volume. When we consider polygons—
i.e., polytopes in two-dimensional Euclidean space—this necessary condition is also
sufficient. That is, any two polygons in the plane with the same area are “scissors
congruent.”

The more general question dates back to Hilbert’s Third Problem, which asked
if volume was correspondingly the only scissors congruence invariant for polytopes
in Euclidean 3-space E3. This question was quickly answered in the negative by
Dehn [2], who built a second scissors congruence invariant of three-dimensional
polytopes and showed it took different values on tetrahedra and cubes of the
same volumes. In the 1960s, Sydler [4] showed that, together, volume and the
Dehn invariant form a complete scissors congruence invariant for polytopes in E3;
the same is true for Euclidean 4-space, but finding complete scissors congruence
invariants remains an open question in dimensions 5 and higher.

Nowadays, the usual approach to scissors congruence is to algebraicize the ques-
tion by building scissors congruence groups. For a nice geometry X , such as Eu-
clidean, hyperbolic or spherical geometry of some fixed dimension, and a subgroup
of G of the isometry group of X , we form the scissors congruence group P (X,G).
This is the free abelian group on polytopes in X modulo the relations

• P +Q = P ∐Q
• gP = P for g ∈ G.

By construction, polytopes are identified in P (X,G) if they are scissors congruent
with “moves” from G allowed. Typical choices of G are things like the subgroup
of all translations or the subgroup of orientation-preserving isometries. When G is
the trivial group, this simply measures whether two polytopes can be cut up into
the same pieces with no moving allowed at all.

We can think of P (X,G) as an example of a “group complete, break stuff up,
and impose relations” construction, and from such a perspective, it’s no surprise
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that it arises from algebraicK-theory. Making good on this promise does require a
new approach to K-theory, however. In [6], Zakharevich builds a spectrum K(PX

G )
with π0(K(PX

G )) = P (X,G) as an example of her construction of K-theory of an
assembler. This allows us to consider not only the scissors congruence groups
P (X,G), but also the “higher scissors congruence groups” defined as πn(K(PX

G ))
for n > 0. These groups encode scissors congruence automorphisms, for example.

In [1], we generalize the notion of K-theory of an assembler to K-theory of a
structure we call a “category with covering families.” The motivating example
PX
G comes from polytopes in a geometry X , with “covering families” given by

cutting polytopes up and applying moves from G < Isom(X). We show that the
K-theory here agrees with Zakharevich’s scissors congruence K-theory, so that the
notational collision is harmless. Another key example comes from an abelian group
A where “covering families” encode addition in A. The K-theory in this example
recovers the Eilenberg–MacLane spectrum HA. A “measure” on polytopes, valued
in A, assigns each polytope an element of A in way that induces a functor between
the corresponding categories with covering families, and thus a map of K-theory
spectra. An essential example is volume, which is a measure valued in R. The
fact that assigning a polytope to its volume induces a functor of categories with
covering families boils down to the observation that cutting polytopes into pieces
preserves the total volume.

These ideas allow us to construct trace maps from (higher) scissors congruence
groups to group homology as follows. We first make an important identification.

Theorem 1 (BGMMZ). For any group of isometries G, the scissors congruence
K-theoryK(PX

G ) is actually the homotopy orbit spectrumK(PX
1 )hG of the scissors

congruence K-theory with trivial isometry group.

This result is closely related to Thomason’s work on commuting homotopy colimits
with algebraic K-theory [5].

We next see that a G-equivariant measure on polytopes, now valued in a Z[G]-
module A, induces a map of K-theory spectra

K(PX
1 ) → HA.

By passing to homotopy orbits for the G-action on both sides and using the pre-
vious theorem, we obtain a trace map.

Theorem 2 (BGMMZ). If A is a Z[G]-module and µ : P (X, 1) → A is a Z[G]-
module map, there is a trace map

K(PX
G ) → HAhG

which on homotopy groups produces maps

tr : πn(K(PX
G )) → Hn(G;A)

Note that the right-hand side is the homology of G as a discrete group.
These trace maps are surprisingly computable. In [1], we give several accessible

examples and Malkiewich uses them in [3] to identify scissors congruenceK-theory
in terms of Tits buildings. In this talk, we elaborate on the framework for these
trace maps and some of these computable examples.
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Integral endotrivial modules

Achim Krause

(joint work with Jesper Grodal)

For a ring k and finite group G, the stable module category is defined as

stmod(k[G]) := Fun(BG,D(k)ω)/〈k[G]〉,
i.e. the Verdier quotient of the full subcategory of D(k[G]) consisting of all com-
plexes perfect over k by the thick subcategory generated by the free module k[G].
Trading cells, one sees that the homotopy category of stmod(k[G]) admits an ele-
mentary description with

• Objects given by k[G]-modules M which are finitely generated projective
as k-modules, and

• Morphisms between objects represented by such modules M and N given
by ordinary k[G]-module morphisms M → N , modulo those which factor
through projective k[G]-modules.

In fact, mapping spectra in stmod(k[G]) are described by mapstmod(k[G])(M,N) =

Homk(M,N)tG, the Tate construction.
The k-linear tensor product induces a symmetric-monoidal structure on

stmod(k[G]), and every object is dualizable, with duals computed as k-linear dual
on representatives as above. An object M is invertible if and only if it is inverse
to its dual, i.e. if the map k → M ⊗M∨ ∼= Endk(M) is an equivalence. This
happens if and only if its cokernel is projective, i.e. if Endk(M) ∼= k ⊕ P for P a
projective k[G]-module. Such M are called endotrivial modules.

Example 1. The shift k[1] always provides an invertible object of stmod(k[G])
(which can be represented also by the cokernel of k → k[G]). If G = Cn, k[1]

⊗2 ≃
k, since Tate cohomology of Cn is 2-periodic. In general, k[1] has infinite order,
since Tate cohomology is typically not periodic (for example for G = Cp ×Cp and
p not invertible in k).

With coefficients k a field of characteristic p, the Picard group Pic(stmod(k[G]))
has been well-studied in the literature (for a more precise discussion, see the intro-
duction of [2]). In this talk, we ask: What about integer coefficients? These are
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best understood in two steps, passing from finite field coefficients to Zp-coefficients,
and then from Zp-coefficients for all p to Z-coefficients.

Lemma 1 (“Alperin lifting”). For OK the ring of integers in a p-adic number field,
with maximal ideal m and residue field k = OK/m, we have an exact sequence

0 → Hom(G, (1 +m)×) → Pic(stmod(OK [G])) → Pic(stmod(k[G])) → 0

Proof. The surjectivity of the right-hand map is due to Alperin [1]. For determin-
ing the kernel, we assume that M is a OK [G]-module which is finitely generated
projective over OK which is P ⊕ k after base-change to k, with P a projective

k[G]-module. We may lift P to a projective OK [G]-module P̃ , and the inclusion

map to a map P̃ → M . The cokernel is OK , with some G-action which reduces to
1 modulo m, hence is determined by a homomorphism G→ (1 +m)×. �

In particular, we have Pic(stmod(Zp[G])) ∼= Pic(stmod(Fp[G])) for odd p, and
an exact sequence

0 → Hom(G, {±1}) → Pic(stmod(Z2[G])) → Pic(stmod(F2[G])) → 0,

so the Zp-coefficients version is quite close to the Fp-coefficients version. For Z-
coefficients, something more interesting happens. Motivated by fracture squares
for ordinary modules, one might expect that the Z-coefficient case is determined
by Zp, Qp and Q-coefficients. Since stmod(k[G]) ≃ 0 if |G| is invertible in k, Qp

and Q do not contribute and one might hope that the canonical map

stmod(Z[G]) →
∏

p||G|

stmod(Zp[G])

is an equivalence. It is in fact fully faithful, but it is not essentially surjec-
tive: Already for G = C6, the element given by Z2 ∈ stmod(Z2[C6]) and 0 ∈
stmod(Z3[C6]) is not in the image, as explained below. The problem lies in the
fact that stmod(Z[G]) is not idempotent complete.

Lemma 2 ([4, Prop. 5.2]). The functor

stmod(Z[G]) →
∏

p||G|

stmod(Zp[G])

exhibits the target as idempotent completion of the source.

Proof. We have π0 endstmod(Z[G])(Z) = Z/|G|, and so every object X is a retract
of X/|G|. Since torsion complexes split canonically into their p-completions, this
shows that the functor is fully faithful, and that every object in the target is a
retract of an object in the essential image. It remains to check that the target
is idempotent complete. Given some object of stmod(Zp[G]) with an idempotent,
we may represent it by a Zp[G]-module M which is finitely generated free over
Zp, and some endomorphism ε :M →M . This is not necessarily idempotent, but
all powers εn represent the same idempotent in stmod(Zp[G]). By compactness,
some subsequence of the εn converges to a true idempotent ε̃, whose image splits
the original idempotent in stmod(Zp[G]). �
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In particular, fully faithfulness shows that the canonical map

Pic(stmod(Z[G])) →
∏

p||G|

Pic(stmod(Zp[G]))

is injective. What remains is the question of how to characterize its image.

Remark 1. By an observation of Thomason [5, Theorem 2.1], to see whether
an object of the idempotent completion lies in the image of the original category,
it suffices to check that its K0-class does. In our case, the relevant localisation
sequence reads

K0(Fun(BG,D(Z)ω)) → K0(stmod(Z[G])) → K−1(Z[G]) → 0,

so the relevant obstruction lies in K−1(Z[G]). In particular, the subsequent discus-
sion can be interpreted as an explicit character-theoretic description ofK−1(Z[G]).
This can be seen as a more explicit version of the description given in [6].

Lemma 3. An object X ∈ stmod(Zp[G]) has a well-defined partial character

χX(g) : Singp(G) → Qp,

where Singp(G) is the subset of elements of G of order divisible by p.

Proof. For any Zp[G]-module M , we may consider Qp ⊗Zp M as Qp-linear G-
representation, which has a character χM : G → Qp. We may extend this
to Fun(BG,D(Zp)

ω) by alternating sums. For a projective Zp[G]-module P ,
χP : G → Qp vanishes on elements of order divisible by p (see e.g. [3, Theo-
rem 36]), so the restriction of χM to Singp(G) remains well-defined after passing
to stmod(Zp[G]). �

Theorem 1. An element (Xp) ∈ ∏
p||G| stmod(Zp[G]) lies in the image of

stmod(Z[G]) if and only if the following conditions are satisfied:

(1) Each of the partial characters χXp : Singp(G) → Qp takes values in Q.
(2) For each pair of primes, χXp and χXℓ

agree on Singp(G) ∩ Singℓ(G).
(3) The resulting map

⋃
p χXp : G \ {e} → Q is the restriction of a character

of a (virtual) rational representation of G.

This provides a very computable criterion to determine the image. For example,
in the aforementioned case G = C6, the partial character of the trivial represen-
tation Z2 is constant 1 on Sing2(G), the partial character of 0 is constant 0 on
Sing3(G), and so condition 2 is violated since Sing2(C6) ∩ Sing3(C6) 6= ∅. On the
other hand, if G = Σ3, there are no elements of composite order, and one checks
that all three conditions are trivially satisfied, so

stmod(Z[Σ3]) ≃ stmod(Z2[Σ3])× stmod(Z3[Σ3]).

Remark 2. A more general version of Theorem 1 exists, where Z is replaced by an
arbitrary localisation of a number ring, and the Zp by the completions at all finite
places. Conditions 1,2,3 are replaced by their obvious analogues, paying careful
attention to the fact that condition 2 for two prime ideals p, p′ dividing the same
integral prime p is not vacuous!
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For invertible objects, the situation simplifies, since the partial characters are
then required to take values in {±1}. On Singp(G) for an odd prime p, one can
even see that the partial characters are constant +1 or −1, which leads to clean
descriptions of Pic(stmod(Z[G])) for odd |G|. For p = 2, more complicated partial
characters can occur, and we are currently investigating uniform descriptions of
Pic(stmod(Z[G])) for even |G|.
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Classifying modules of equivariant Eilenberg–MacLane spectra

Clover May

(joint work with Jacob Grevastad)

Classically, any module over the Eilenberg–MacLane spectrum HFp splits as a
wedge of suspensions of HFp itself. Equivariantly, the module theory of G-
equivariant Eilenberg–MacLane spectra is much more complicated. For the group
G = Cp and the constant Mackey functor Fp, there are infinitely many indecom-
posable HFp-modules. Previous work joint with Dugger and Hazel classified all
indecomposable HF2-modules for the group G = C2. The isomorphism classes of
indecomposables fit into just three families. By contrast, we show for G = Cp with
p an odd prime, the classification of indecomposable HFp-modules is wild. That
is, any complete description would necessarily include a simultaneous classification
of indecomposable modules for every finite-dimensional Fp-algebra. This is joint
work in progress with Grevstad.

This talk began with recalling a theorem of Hopkins and Smith about graded
fields and spectra. A graded field is a graded ring in which every nonzero homo-
geneous element is a unit.

Theorem 1 (Hopkins–Smith 1998 [3]). If R is a ring spectrum with π∗(R) a
graded field, then every X ∈ R–Mod splits as a wedge of suspensions of R. That
is

X ≃
∨

i∈I

ΣniR.

As a first example we have the Eilenberg–MacLane spectrum HFp. Another
example is a spectrum that has played a central role at this workshop, and the
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one Hopkins and Smith were concerned with, Morava K-theory K(n) at a prime
p. Recall π∗(K(n)) ∼= Fp[v

±1
n ], where |vn| = 2(pn − 1).

For the group G = C2, there is a genuine equivariant C2-spectrum HF2 that
represents RO(C2)-graded cohomology with an analogue of F2-coefficients. This is
an equivariant cohomology theory graded on representations. Previous work joint
with Dugger and Hazel classified compact HF2-modules.

Theorem 2 (Dugger–Hazel–M. 2023 [2]). If Z is a compact HF2-module then Z
splits as a wedge of RO(G)-suspensions of

HF2, (Sn
a )+ ∧HF2, and cof (τm) ,

where n ≥ 0 and m ≥ 1.

For the moment, let us focus not on these particular objects, but emphasize that
there are three families of (isomorphism classes of) indecomposable HF2-modules
Observe that the RO(C2)-graded homotopy π∗,∗HF2 = M2 is not a graded field.
It is a non-Noetherian ring with two cones of infinitely-many elements. One cone
is polynomial in elements ρ and τ , and the other has an element θ that is infinitely
divisible by ρ and τ . (This is the same τ that appears in the decomposition
theorem, and one could rename (Sn

a )+ ∧HF2 as cof(ρn+1)). In fact, this ring M2

has a complicated module theory, so it is no surprise we need more indecomposables
beyond HF2. On the other hand, HF2-modules look a bit like finitely-generated
modules over a PID, even though M2 is not a graded PID. That is, there are
infinitely-many indecomposables, but they fit into families that are easy enough
to describe.

Our proof of the decomposition of HF2-modules used a result by Schwede and
Shipley to translate the problem to the algebra of Mackey functors.

Theorem 3 (Schwede–Shipley 2003 [4]). There is a Quillen equivalence

HF2−Mod ≃ Ch(F2).

In [2], we classified perfect complexes of F2-modules up to isomorphism via a
change of basis algorithm. Then we translated the result to HF2-modules.

Perhaps I ought to mention, we saw M2 = π∗,∗HF2 was not a graded field,
but there are graded fields in the equivariant context. For example, still taking
G = C2, we can consider HFp where p is an odd prime. Now π∗,∗HFp is a graded
field, so indeed any X ∈ HFp–Mod splits as a wedge of RO(G)-suspensions of
HFp as we would expect.

Let us shift to the group G = Cp for p an odd prime and consider HFp. There
are many indecomposables one can find. The first example of course isHFp. There
is also a free Cp action on any odd-dimensional sphere, and there are indecompos-

ables of the form
(
S2n+1
free

)
+
∧HFp. There is another Cp-space I call the eggbeater

and an indecomposable EB ∧ HFp, etc. I have tried and failed several times to
prove a complete classification. It turns out to be impossible.

Theorem 4 (Grevstad–M. in progress). For G = Cp the classification of compact
HFp-modules is wild.
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Morally, this means it is impossible to classify all indecomposables. A bit more
precisely, this means any such classification would include every finite-dimensional
indecomposable module of every finite-dimensional Fp-algebra. For example, it is
well known that Fp[Cp × Cp] is wild unless p = 2. See for example [1].

Definition 1. We say a k-algebra R has wild representation type if there is
a functor k〈a, b〉–Mod → R–Mod that reflects isomorphisms and preserves inde-
composables.

The conditions here tell us every isomorphism class of indecomposable in the
module category for the free k-algebra on two generators k〈a, b〉 contributes to
an isomorphism class of indecomposable in R–Mod. Furthermore, this implies
R–Mod contains every finite-dimensional indecomposable module of every finite-
dimensional k-algebra by the following result.

Proposition 1. Let S be a finite-dimensional k-algebra with generators and re-
lations with S ∼= k〈x1, x2, . . . , xn〉/ ∼. There is a functor S–Mod → k〈a, b〉–Mod
that reflects isomorphisms and preserves indecomposables.

We prove that Fp is representation finite, so has finitely-many isomorphism
classes of indecomposables, but derived wild, meaning Dperf(Fp) is wild. The
proof uses quiver representations. Analogously to Theorem 3, Schwede–Shipley
showed Ho(HFp–Mod)ω ≃ Dperf(Fp), from which we conclude our main result,
Theorem 4.
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Chern classes in equivariant bordism

Stefan Schwede

This talk was a report on my paper arxiv:2303.12366 with the same title. Com-
plex cobordism MU is arguably the most important cohomology theory in alge-
braic topology. It represents the bordism theory of stably almost complex man-
ifolds, and it is the universal complex oriented cohomology theory; via Quillen’s
celebrated theorem [7], MU is the entry gate for the theory of formal group laws
into stable homotopy theory, and thus the cornerstone of chromatic stable homo-
topy theory.
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Tom Dieck’s homotopical equivariant bordism MUG [10], defined with the help
of equivariant Thom spaces, strives to be the legitimate equivariant refinement of
complex cobordism, for compact Lie groups G. The theory MUG is the universal
equivariantly complex oriented theory; and for abelian compact Lie groups, the
coefficient ring MU∗

G carries the universal G-equivariant formal group law [5].
Homotopical equivariant bordism receives a homomorphism from the geometrically
defined equivariant bordism theory; due to the lack of equivariant transversality,
this homomorphism is not an isomorphism for non-trivial groups. In general, the
equivariant bordism ringMU∗

G is still largely mysterious; we elucidate its structure
for unitary groups, and for products of unitary groups.

Chern classes are important characteristic classes for complex vector bundles
that were originally introduced in singular cohomology. Conner and Floyd [3,
Corollary 8.3] constructed Chern classes for complex vector bundles in complex

cobordism; in the universal cases, these yield classes ck ∈ MU2k(BU(m)) that
are nowadays referred to as Conner-Floyd-Chern classes. Conner and Floyd’s
construction works in much the same way for any complex oriented cohomology
theory; in singular cohomology, it reduces to the classical Chern classes.

We define Chern classes in U(m)-equivariant homotopical bordism that map to
the Conner-Floyd-Chern classes under tom Dieck’s bundling homomorphism [10,
Proposition 1.2]. Since MU comes with the structure of a global ring spectrum, it
supports graded-commutative multiplications on MU∗

G, as well as external multi-
plication pairings

× : MUk
G ×MUl

K → MUk+l
G×K

for all pairs of compact Lie groups G and K. We write

ek ∈ MU2k
U(k)

for the Euler class of the tautological representation of the unitary group U(k)

on Ck, and tr
U(m)
U(k,m−k) : MU∗

U(k,m−k) → MU∗
U(m) for the transfer from the block

subgroup U(k,m− k) to U(m).
For 0 ≤ k ≤ m, the k-th Chern class in homotopical equivariant bordism is

c
(m)
k = tr

U(m)
U(k,m−k)(ek × 1m−k) ∈ MU2k

U(m) ,

where 1m−k ∈ MU0
U(m−k) is the multiplicative unit.

For example, the class c
(m)
0 = 1m is the multiplicative unit, and c

(m)
m = em is

the Euler class of the tautological U(m)-representation. The familiar structural
properties of the Conner-Floyd-Chern classes already hold for the Chern classes
in U(m)-equivariant MU-theory:

(i) For all 0 ≤ k ≤ m = i+ j, the relation

res
U(m)
U(i,j)(c

(m)
k ) =

∑

d=0,...,k

c
(i)
d × c

(j)
k−d

holds in the group MU2k
U(i,j).
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(ii) The relation

res
U(m)
U(m−1)(c

(m)
k ) =

{
c
(m−1)
k for 0 ≤ k ≤ m− 1, and

0 for k = m

holds in the group MU2k
U(m−1).

(iii) Let Tm denote the diagonal maximal torus of U(m). Then the restriction
homomorphism

res
U(m)
Tm : MU2k

U(m) → MU2k
Tm

takes the class c
(m)
k to the k-th elementary symmetric polynomial in the

classes p∗1(e1), . . . , p
∗
m(e1), where pi : T

m → T = U(1) is the projection to
the i-th factor.

(iv) The bundling homomorphism

MU∗
U(m) → MU∗(BU(m))

takes c
(m)
k to the k-th Conner-Floyd-Chern class.

Since the Chern classes are defined as transfers, the main ingredient in proving

part (i) above is to work out the double coset formula for res
U(m)
U(i,j) ◦ tr

U(m)
U(k,m−k).

Despite many formal similarities, there are crucial qualitative differences com-
pared to Chern classes in complex oriented cohomology theories: our Chern classes
are not characterized by their restriction to the maximal torus – in contrast to the
non-equivariant situation for complex oriented cohomology theories. Indeed, there
is no ‘splitting principle’ in homotopical equivariant bordism, as the restriction ho-
momorphism

res
U(m)
Tm : MU∗

U(m) → MU∗
Tm

to the maximal torus Tm is not injective for m ≥ 2. For example, the class

1− tr
U(m)
N (1) ∈ MU0

U(m)

is nonzero and in the kernel of restriction from U(m) to Tm, where N = NU(m)T
m

is the maximal torus normalizer. Moreover,

c
(2)
1 · (1− tr

U(2)
N (1)) = 0 ,

so the Chern class c
(2)
1 is a zero-divisor in the ring MU∗

U(2), also in stark contrast
to Chern classes in complex oriented cohomology theories.

The Chern classes feature in new structure results about the equivariant bor-
dism rings MU∗

U(m) for unitary groups. To put this into context, we recall
that in the special case when G is an abelian compact Lie group, the graded
ring MU∗

G is concentrated in even degrees and free as a module over the non-
equivariant cobordism ring MU∗ [2, Theorem 5.3], and the bundling homomor-
phism MU∗

G → MU∗(BG) is completion at the augmentation ideal of MU∗
G [1,

Theorem 1.1]. For non-abelian compact Lie groups G, however, the equivariant
bordism rings MU∗

G are still largely mysterious.

Theorem. Let m ≥ 1 be a natural number.
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(i) The sequence of Chern classes c
(m)
m , c

(m)
m−1, . . . , c

(m)
1 is a regular sequence

that generates the augmentation ideal of MU∗
U(m).

(ii) The completion of MU∗
U(m) at the augmentation ideal is a graded MU∗-

power series algebra in the above Chern classes.
(iii) The bundling homomorphism MU∗

U(m) → MU∗(BU(m)) extends to an
isomorphism

(MU∗
U(m))

∧
I → MU∗(BU(m))

from the completion at the augmentation ideal.

The proof of the theorem makes crucial use of the splitting theorem for global
functors established in [9]. Therefore, it is highly relevant that the theories MUG

for varying compact Lie groups G assemble into a global stable homotopy type,
see [8, Example 6.1.53].

Greenlees and May [4, Corollary 1.6] construct a local homology spectral se-
quence

Ep,q
2 = HI

−p,−p(MU∗
G) =⇒ MUp+q(BG) .

The regularity of the Chern classes implies that for U(m) the Ep,q
2 -term vanishes

for all p 6= 0, and the spectral sequence degenerates into the previous isomorphism

E0,∗
2

∼= (MU∗
U(m))

∧
I

∼= MU∗(BU(m)) .

We also use the Chern classes to reformulate the MUG-completion theorem
of Greenlees-May [4] and La Vecchia [6], for any compact Lie group G. The
new insight is that the ideal generated by the Chern classes of any faithful G-
representation is ‘sufficiently large’ in the sense of [4, Definition 2.4].
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Hecke operators on topological modular forms

Jack Morgan Davies

Let us write TMF for the cohomology theory of topological modular forms, origi-
nally constructed by Goerss–Hopkins–Miller. Similar to how topologicalK-theory
enjoys connections to operator algebras, physics, commutative algebra, and alge-
braic geometry, TMF also has connections to other areas of mathematics. These
include geometry and physics through the sigma orientation MString → TMF,
and number theory through the comparison map of rings π∗TMF → MF∗/2 into
the ring of meromorphic modular forms ; much of this background is described in
the book [4].

In [3], we construct stable Hecke operators on TMF, so morphisms of spectra
Tn : TMF[ 1n ] → TMF[ 1n ], and show that the comparison map above commutes
with these operations and n-times the classical Hecke operators on MF∗. The
construction of these operators, as well as Adams operations ψk and Atkin–Lehner
involutions w, and the proofs of there various properties and relations, are all a
consequence of the following theorem. Let us write Isog for the category whose
objects are those in the small étale site of the moduli stack of elliptic curves, and
whose morphisms are given by morphisms of stacks and isogenies of elliptic curves
of invertible degree.

Theorem 1 ([3, Th.A]). There is a functor Otop : Isogop → CAlg into the ∞-
category of E∞-rings, whose restriction to the small étale site of the moduli stack
of elliptic curves agrees with the sheaf Otop

GHM used originally to construct TMF.
There is also a further extension of Otop to a category of spans.

This theorem allows us to define the above mentioned operations and also to
prove various relations between them. For example, one can show that Hecke op-
erators and Adams operations commute with one another and that the homotopies
witnessing this commutativity are coherent up to all higher homotopies.

There are some curious consequences of these operations. For example, armed
with the knowledge of some of the homotopy groups of TMF and their relation to
the homotopy groups of S, one obtains some simple number-theoretic congruences.
Applying Tn to the element β3 ∈ π30TMF(3) ≃ Z/3Z, which lies in the image of
the unit map S → TMF, we obtain the formula

Tn(β
3) = β3Tn(1) = σ(n)β3, σ(n) =

∑

d|n

d.

Here we choose n to not be divisible by 3, which is necessary to define the stable
Hecke operators above; more on this point shortly. Similarly, using the expression
of β3 = α[α∆] from the descent spectral sequence for TMF, we see that

Tn(β
3) = Tn(α[α∆]) = α[nαTcl

n (∆)] = nτ(n)β3

where Tcl
n is the classical Hecke operator on modular forms and τ(n) is the Ra-

manujan τ-function. These two calculations yield the congruence σ(n) ≡3 nτ(n)
for all n not divisible by 3.
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This small calculation recovers simple number-theoretic relations from purely topo-
logical sources, and the stream of information also flows in the opposite direction.
Suppose there were an endomorphism T3 on TMF, without inverting 3, that
agreed with the classical Hecke operators through the comparison map. Then af-
ter localising at 3, the previous computation would go through without a hitch
and we would obtain 3τ(3) ≡3 σ(3) = 4. The left-hand side vanishes modulo 3 and
the right-hand side clearly does not. Hence a contradiction is reached. It is worth
noting that τ(3) also vanishes modulo 3. This shows the necessity of inverting n
in our construction of the nth Hecke operator on TMF, at least for n = 3.

The constructions of the operations mentioned above, the relations between them,
the consequential congruences between Hecke eigenvalues on modular forms, and
nonexistence statements for ψp and Tp at the prime p are all generalised and
thoroughly explored in [3].

Let us add two more points, which we discussed both before, during, and after the
presentation of this topic at Oberwolfach.

Firstly, there is a variant of TMF, denoted as Tmf and hereby called projective
(or proper or dualisable) topological modular forms, such that its connective cover
tmf gives a good model for holomorphic modular forms. All of the operations
discussed above can be lifted to Tmf and hence also tmf; see [2] for a lift of ψk

and upcoming work of the author for a lift of the Hecke operators. Unfortunately,
the current constructions using Goerss–Hopkins obstruction theory do not produce
a “compactified” version of the main theorem above. We ask: can the theorem
above can be extended to moduli stack of generalised elliptic curves? Is there an
approach to Tmf similar to Lurie’s approach to TMF in [5]?

Secondly, just as the definition of TMF is as the limit of Otop
GHM, one might ask

the question: what is the limit of Otop over Isog? Notice that this limit has a
copy of Z in π0 as it factors S → TMF, so no integers are inverted. Moreover,
by projecting this diagram onto various subdiagrams, one notices that this limit
also maps to all of Behrens’ Q(N) spectra [1], so it in particular detects all of
the divided α and β families (at least for primes greater than 3). The sections of
Otop are all TMF-local, so this limit recieves a map from the TMF-local sphere
STMF. Is this map a good approximation of the TMF-local sphere? Can this limit
diagram produce integral (or near integral) resolutions of the TMF-local sphere?
We will come back to these questions another day.
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Postnikov Towers of Logarithmic Ring Spectra

Tommy Lundemo

Logarithmic geometry [7] is a variant of algebraic geometry in which the notions of
étaleness and smoothness are less rigid than usual. For example, tamely ramified
extensions of (complete) discrete valuation rings (in mixed characteristic with
perfect residue fields) participate in log étale morphisms, despite not being étale.

When advertised to homotopy theorists, log structures are often described as
“intermediate localizations.” By definition, a (pre-)log ring (R,P, β) consists of
a commutative ring R, a commutative monoid P , and a map β : P → (R, ·) of
commutative monoids. If R is a discrete valuation ring, a choice of uniformizer
πR gives rise to a log structure 〈πR〉 → (R, ·) on R, simply by including the mul-
tiplicative monoid 〈πR〉 := {π0

R, π
1
R, . . . } in R. We think of the log ring (R, 〈πR〉)

as an intermediate localization in-between R and the fraction field F := R[1/πR].

Logarithmic THH. The perspective of log structures as “intermediate localiza-
tions” is reinforced by THH-cofiber sequences constructed by Rognes–Sagave–
Schlichtkrull [13]. For example, dévissage implies that there is a fiber sequence

K(Fp) → K(Z) → K(Z[1/p])

in algebraic K-theory. This does not work for THH: One cannot identify the fiber
of THH(Z) → THH(Z[1/p]) with THH(Fp). The introduction of [4] highlights this
point very eloquently.

One can associate to any log ring (R,P ) a commutative R-algebra in spectra
THH(R,P ) [12, Definition 8.11]. It is shown in [13, Theorem 5.5, Example 5.7]
that this construction participates in a cofiber sequence

THH(R) → THH(R, 〈x〉) → THH(R/x)[1]

for any non-zero divisor x in R. The available constructions of the cofiber sequence
are not an instance of dévissage but rather come to life by a direct analysis of
the map THH(R) → THH(R, 〈x〉). In particular, the construction of the cofiber
sequences makes no reference to Morita-invariance type properties of logarithmic
THH (at the time of writing, no such property is known to the author).

Consequently, the relationship between logarithmic THH and algebraic K-
theory is not at all clear. Nonetheless, the more flexible notion of étaleness in
log geometry is useful in this context. For example, there is a base-change formula

A⊗R THH(R)
≃−→ THH(A)

https://www.math.ias.edu/~lurie/
https://www.math.ias.edu/~lurie/
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for étale morphisms of commutative rings R → A (by e.g. [11, Theorem 1.3]).
Many examples of log étale morphisms (R,P ) → (A,M) give rise to a base-change
formula

A⊗R THH(R,P )
≃−→ THH(A,M)

by (the proof of) [8, Theorem 1.11]; this covers the example of tamely ramified
extensions of discrete valuation rings. The analogous property for log ring spectra
has proven useful for both THH and K-theory computations, as we explain below.

Logarithmic ring spectra. Rognes [12] initiated the study of log structures in
the context of structured ring spectra. The role of commutative rings is now played
by E∞-rings, while that of the monoid is often played by the “QS0-graded E∞-
spaces” (or commutative J -space monoids) of Sagave–Schlichtkrull [16]. These
categories participate in an adjunction which we will denote by

SJ [−] : E∞-Spaces/QS0 ⇆ CAlg(Sp): ΩJ (−),

and a (pre-)log ring spectrum (R,P, β) is thus an E∞-ring R, a QS0-graded E∞-
space P , and a map β : P → ΩJ (P ). There are important variations of this
definition: Replacing QS0 by BO× Z plays a role in Sagave–Schlichtkrull’s [17].

In the present setup, well-behaved log structures (R, 〈x〉) arise from homotopy
classes x ∈ πd(R) that are “strict” in a certain sense: We refer to [15, Construction
4.2] for the concrete construction. Examples include connective covers of periodic
ring spectra with log structures generated by their periodicity classes; e.g. the
connective Adams summand (ℓp, 〈v1〉), connective complex K-theory (ku, 〈u〉),
and connective real K-theory (ko, 〈β〉).

To a log ring spectrum (R,P ), Rognes [12, Definition 8.11] and Rognes–Sagave–
Schlichtkrull [13, Definition 4.6] associate a commutative R-algebra in spectra
THH(R,P ). In the examples (R, 〈x〉) of interest, this construction participates in
cofiber sequences

THH(R) → THH(R, 〈x〉) → THH(R//x)[1]

by [13, Theorem 1.1]. While ℓp//v1 ≃ Zp and ku//u ≃ Z, we have ko//β ≃ τ≤7ko,
which highlights the lack of reliance on dévissage in the construction of the cofiber
sequences in logarithmic THH. Related to this point are the cofiber sequences

THH(BP〈n〉) → THH(BP〈n〉, 〈vn〉) → THH(BP〈n− 1〉)[1]

obtained from a corresponding sequence for MUP ([17, Example 8.6]) by using the
MU[x]-algebra stuctures on BP〈n〉 of Hahn–Wilson [6], as sketched in e.g. [5, Re-
mark 9.8]. Results of Barwick–Lawson [2] and Antieau–Barthel–Gepner [1] suggest
that this is an apparent mismatch with the corresponding sequences in algebraic
K-theory, which adds to the difficulty of giving K-theoretic interpretations of the
cofiber sequences in logarithmic THH.
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Logarithmic deformation theory. To any map of log ring spectra one can
associate a log cotangent complex L(A,M)/(R,P ) [12, 15, 8]. Analogously to the
situation for ordinary THH (cf. the argument of [11]), its vanishing implies base-
change

A⊗R THH(R,P )
≃−→ THH(A,M)

in logarithmic THH in the connective case [8, Theorem 1.7]. By [15, Theorem
1.6], the log cotangent complex associated to the inclusion of the Adams summand
vanishes, and so we obtain that

kup ⊗ℓp THH(ℓp, 〈v1〉)
≃−→ THH(kup, 〈u〉);

this is also the content of [14, Theorem 1.5]. This is computationally useful in
conjunction with the cofiber sequences in logarithmic THH: In [14], this is used to
recover Ausoni’s computation of V (1)∗THH(kup), while Bayındır [3] has used these
methods to recover Ausoni’s computation of T (2)∗K(kup) in terms of T (2)∗K(ℓp).

The presence of a cotangent complex and the more flexible notion of étaleness in
log geometry naturally begs the question of an obstruction theory with vanishing
obstruction groups for log étale extensions. As a first step, we would like to
understand the logarithmic analog of the tower of square-zero extensions

· · · → τ≤2(R) → τ≤1(R) → τ≤0(R) ≃ π0(R)

for a connective ring spectrum R, and how to set up an inductive lifting procedure
starting from a formally étale map out of its bottom-most stage.

One should first understand the analog of square-zero extensions for log ring
spectra. At this point, there is some tension between

(1) the natural guess from a log geometric perspective, where a square-zero

extension (R̃, P̃ ) → (R,P ) is one of underlying commutative rings that is

strict ; for the purposes of this exposition, one may read this as P̃ ≃ P .1

(2) the natural guess from the perspective of derived/higher algebra, where

one would ask that a square-zero extension (R̃, P̃ ) → (R,P ) is pulled back
from a “log derivation” (d, d♭) : (R,P ) → (R ⊕ J [1], P ⊕ J [1]); these are
corepresented by the log cotangent complex.

Theorem. These two notions of log square-zero extensions agree.

That (2) implies (1) appears in [9, Chapter 4], while the converse is currently
being written up. For a log ring spectrum (R,P ), this gives rise to an essentially
unique tower

· · · → (τ≤2(R), P ) → (τ≤1(R), P ) → (π0(R), P )

of log square-zero extensions compatible with the Postinkov tower. This is quite
natural from a log geometric perspective: For instance, the “residue field” asso-
ciated to the log ring (A, 〈πA〉) for a discrete valuation ring A is (A/πA, 〈πA〉),

1Making this precise would require making the distinction and passage between pre-log and
log ring spectra explicit. The definition appears in e.g. [12, Definition 7.25].
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where all positive powers of πA map to zero. This is the standard log point, of
which we consider the log ring spectrum (π0(R), P ) to be an analog.

For example, if (R,P ) = (ℓp, 〈v1〉), let us write 〈 p−1
√
v1〉 for the object called E

in [15, Proof of Prop 4.15]. Then (Zp, 〈v1〉) → (Zp ⊗SJ [〈v1〉] S
J [〈 p−1

√
v1〉], 〈 p−1

√
v1〉)

is formally log étale, and the underlying ring spectrum of the target is equivalent to
Zp ⊗ℓp kup. Formally log étale maps lift uniquely along log square-zero extensions
[9, Theorem 4.1.0.3]. We are currently pursuing more structured statements relat-
ing the categories formally log étale of (R,P )- and (π0(R), P )-algebras. For this,
we extend Lurie’s cotangent complex formalism [10, Section 7.3] to the context
of log geometry: The expected identification of the fibers of the resulting replete
tangent bundle T rep

Log is available in [9, Proposition 5.1.0.1].
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The even filtration and prismatic cohomology

Piotr Pstragowski

The even filtration, first introduced by Hahn-Raksit-Wilson, associates to a com-
mutative algebra in spectra R a canonical filtration which informally measures the
failure of π∗(R) to be even. Applied to ring spectra of arithmetic interest, this
recovers a variety of important filtrations, such as the Adams-Novikov filtration
of the sphere or the various motivic filtrations on THH of rings and its variants.
More generally, applying the even filtration to variants of THH of reasonably nice
commutative ring spectra allows one to define prismatic and syntomic cohomology
in this more general case.

In this talk, I describe a variant of the even filtration which is naturally de-
fined on E1-ring spectra and their modules, eschewing the commutativity condi-
tion. This variant is induced by Postnikov towers on sheaves of spectra on the
∞-category Perfev(R) of perfect even modules; that is, those which can be built
using extensions and retracts from Σ2nR. I will describe how the resulting even
filtration agrees in good cases with the Hahn-Raksit-Wilson filtration but, unlike
the latter, can also be effectively computed through resolutions of modules, which
is an essentially linear process. I will describe how this implies that the resulting
even cohomology groups have excellent formal properties, especially in the con-
nective case, having a strict vanishing line and being explicitly calculable in low
degrees.

Time permitting, I will describe joint work in progress with Raksit on applying
this filtration to the construction of prismatic cohomology of E2-rings.

Telescopes under the stars

Jeremy Hahn

(joint work with Robert Burklund, Ishan Levy, Tomer Schlank)

This talk concludes a series in which Burklund, Levy, and Schlank previously
spoke. The main focus is the diagram

T (2)∗TC(ℓ
hpkZ) T (2)∗TC(ℓ)

hpkZ

T (2)∗

(
LK(2)TC(ℓ

hpkZ)
)

T (2)∗

(
LK(2)TC(ℓ)

hpkZ
)
.

6≃

6≃ ≃

≃

Here, ℓ is the connective Adams summand at a fixed prime p > 5. The re-
striction on the prime guarantees the existence of homotopy commutative and
associative ring spectra V (0) = S/p, V (1) = S/(p, v1), and V (2) = S/(p, v1, v2).
We let T (2) denote v−1

2 V (1). The action of Z on ℓ is by an Adams operation ψm,
where m is a topological generator of 1 + pZp ⊂ Z×

p . The integer k ≥ 0 we think
of as a parameter to be tuned, and mostly we will be interested in what happens
when k ≫ 0.
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That the bottom horizontal map is an equivalence is forthcoming work of Ben
Moshe–Carmeli–Schlank–Yanovski, on cyclotomic redshift. That the right vertical
map is an equivalence is joint work with Raksit and Wilson [3]. That the upper
horizontal map is not an equivalence is forthcoming joint work with Burklund,
Levy, and Schlank, and is the main result of the talk. It follows that the left
vertical map is not an equivalence.

To prove the non-equivalence, we first observe that T (2)∗TC(ℓ)
hpkZ is a finite-

dimensional Fp[v
±
2 ]-vector space, by calculations of Ausoni–Rognes [1]. We explain

here why, at least for k ≫ 0, T (2)∗TC(ℓ
hpk

Z) is an infinite-dimensional Fp[v
±
2 ]-

vector space. The key point is the following:

Theorem 1 (Burklund–H–Levy–Schlank). For all sufficiently large k ≫ 0, there
is an equivalence of cyclotomic spectra

V (2)⊗ THH(ℓp
kZ) ∼= V (2)⊗ THH(ℓBZ).

Here, ℓBZ refers to the fixed points of ℓ under a trivial Z-action. To give some

intuition for the result, consider the simpler claim that V (1)⊗ ℓhp
kZ is equivalent

as a spectrum to V (1) ⊗ ℓBZ. Indeed, V (1) ⊗ ℓ ≃ Fp, and there are not many

possible different Z actions on Fp. It is similarly the case that V (1)⊗THH(ℓp
kZ) ≃

V (1) ⊗ THH(ℓBZ) as spectra, when k ≫ 0, but one must mod out by v2 before
obtaining an equivalence of cyclotomic spectra. In the remainder of the talk, we
discuss the simpler claim that

V (2)∗TC(ℓ
hpkZ) ∼= V (2)∗TC(ℓ

BZ),

which will be enough to disprove the telescope conjecture.
The starting point is joint work of Lee and Levy [2], which computes

V (2)∗THH(ℓ
hpkZ) ∼= V (2)∗THH(ℓ

BZ) ∼= C0(Zp)⊗Fp Fp[µ]⊗Fp Λ(λ1, λ2, ǫ, ζ),

where C0(Zp) is the ring of locally constant, Fp-valued functions on Zp. There is

then a homotopy fixed point spectral sequence for V (2)∗TC
−(ℓhp

kZ), which begins
with

C0(Zp)⊗Fp Fp[µ, t]⊗Fp Λ(λ1, λ2, ǫ, ζ).

The sequence of S1-equivariant maps

V (2)⊗ THH(SBZ) → V (2)⊗ THH(ℓhp
kZ) → V (2)⊗ THH(ℓ)hp

kZ

gives rise to maps of S1-homotopy fixed point spectral sequences, the final of which
may be deduced from the seminal work of Ausoni–Rognes [1]. From this, one can
deduce differentials

d2(ζ) = ft,

where f : Zp → Fp is a non-zero function supported on Z×
p ,

d2(ǫ) = µt,

d2p(t) = λ1t
p+1, and

d2p2(tp) = λ2t
p2+p.
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For k ≫ 0 one proves that there are no non-zero differentials other than those
implied by the above and multiplicative structure. The idea here is that, if any
other differential did occur, one could increase k until it does not. Any fixed dif-
ferential can be ruled out by such methods, and after accounting for multiplicative
structure there are only finitely many differentials to rule out in the entire spectral
sequence.

Remark 1. In contrast to the S1-homotopy fixed point spectral sequence comput-

ing V (2)∗TC
−(ℓhp

kZ), the S1-homotopy fixed point spectral sequence computing

V (1)∗TC
−(ℓhp

kZ) has infinitely many potential differentials, and so cannot be con-
trolled by setting k ≫ 0.

From the S1-homotopy fixed point spectral sequence for V (2)∗TC
−(ℓhp

kZ), one

formally inverts t to deduce the S1-Tate spectral sequence for V (2)∗TP(ℓ
hpk

Z).
The map (

S1 − hfp sseq
)
→ t−1

(
S1 − hfp sseq

)

converges to the map

can : V (2)∗TC
−(ℓhp

kZ) → V (2)∗TP(ℓ
hpkZ).

One can similarly compute the map

ϕ : V (2)∗TC
−(ℓhp

kZ) → V (2)∗TP(ℓ
hpkZ)

by studying the map of spectral sequences
(
S1 − hfp sseq

)
→ µ−1

(
S1 − hfp sseq

)
,

though there is a non-trivial isomorphism

t−1V (2)∗TC
−(ℓhp

kZ) ∼= µ−1V (2)∗TC
−(ℓhp

kZ)

to work out. This isomorphism is fairly straightforwardly determined using the
sequence of cyclotomic spectra

V (2)⊗ THH(SBZ) → V (2)⊗ THH(ℓhp
kZ) → V (2)⊗ THH(ℓ)hp

kZ.

The upshot of all of this is that V (2)∗TC(ℓ
hpkZ) is an infinite-dimensional

graded Fp-vector space concentrated in a finite range of degrees. For degree rea-
sons it then follows, using a v2-Bockstein spectral sequence, that the Fp[v2]-module

V (1)∗TC(ℓ
hpkZ) contains an infinitely generated free Fp[v2]-module as a summand.

Thus, for k ≫ 0, T (2)∗TC(ℓ
hpkZ) is an infinite-dimensional Fp[v

±
2 ]-vector space.
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Strict units of commutative ring spectra

Allen Yuan

(joint work with Shachar Carmeli, Thomas Nikolaus)

1. Introduction

A canonical and important source of commutative ring spectra is the spherical
group ring construction

S[−] : CMon(Spaces) → CAlg(Sp).

For example, one can use this functor to build S-analogues of important classical
objects:

(1) S[t] := S[N], representing A1.
(2) S[t±1] := S[Z], representing Gm.
(3) S[Cp], representing µp.

However, it is generally difficult to compute maps between such objects. For
instance, the space HomCAlg(S[t], S[t]) is yet unknown. Nevertheless, in the case
of group rings for finitely generated discrete abelian groups, we have the following
result.

Theorem 1 (Carmeli–Nikolaus–Y.). The functor

S[−] : Abfg → CAlg(Sp)

is fully faithful.

In other words, for A,B ∈ Abfg, the mapping space HomCAlg(S[A], S[B]) is
discrete and naturally equivalent to the set of abelian group maps from A to B.
In particular, taking A = Z, we have Gm(S[B]) := HomCAlg(S[t

±1], S[B]) ≃ B. In
fact, we will focus on this case moving forward, as it is the core content of the
theorem.

Remark 1. The commutative ring spectrum S[t] is not free. If S{t} = S[
∐
BΣn]

denotes the free commutative algebra on a single generator, the natural map
S{t} → S[t] sending t 7→ t is given by collapsing each of the BΣn to a point.
This can be thought of as giving t the structure of a strict element. Analogous
remarks apply to S[t±1], and so we refer to Gm(−) as the space of strict units.

2. Past work

The strict units Gm(−) are an important and basic invariant of a commutative ring
spectrum R, and have been studied extensively [4, 5, 7, 3]. One of the reasons is
that these units behave more algebraically, allowing for the following well-behaved
constructions given a strict unit α ∈ π0(R):

• R/(α− 1) := R⊗S[t±1] S, with the right map given by applying group ring
to Z → ∗. As a module, this is simply the cofiber of α− 1.

• R[ n
√
α] := R⊗S[t±1] S[t

±1/n], which is a rank n free module over R.
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Nevertheless, there have not been many full computations of strict units. We
sample two of the cases in which the answer is known:

Theorem 2 (Hopkins–Lurie [2]). Let k = k be an algebraically closed field of
characteristic p > 0, and let En = En(k) denote the Lubin–Tate theory of height
n > 0. Then we have an isomorphism

Gm(En) = k× ×K(Zp, n+ 1).

This theorem was also proved by Rezk at height 2.

Theorem 3 (Carmeli [3]). We have Gm(S) = {1}.
In fact, our theorem builds on this result of Carmeli (this is the case A = Z and

B = ∗, in the previous notation).

3. Flat commutative ring spectra and δp-rings

Theorem 1 asserts a rigidity property of spherical group rings. It turns out that
this rigidity is already visible in the power operation structure of these group rings,
which we now discuss.

Recollection 1. Let R ∈ CAlg(Sp). Then there is a natural ring map R → RtCp ,
known as the Tate-valued Frobenius, due to Nikolaus–Scholze [6].

Construction 1. Suppose R ∈ CAlg(Sp) has underlying spectrum isomorphic to
the p-completion of a free S-module. Then the Segal conjecture (for Cp, due to Lin
and Gunawardena) yields an isomorphism RtCp ≃ R. Via this identification, the
Tate-valued Frobenius can be regarded as a self-map ϕ : R → R. One can check
that ϕ induces a lift of Frobenius on π0, and equips π0(R) with the structure of a
δp-ring.

It follows that maps between spherical group algebras must induce δp-ring maps
at the level of π0. It is not difficult to see that ϕ : S[t±1]∧p → S[t±1]∧p sends

t 7→ tp, so we deduce that any strict unit f(t) ∈ π0(S[t
±1]∧p ) ≃ Z[t±1]∧p must

satisfy f(tp) = f(t)p. It is easy to check that this forces f(t) to be a monomial.
This discussion suggests that maps between spherical group algebras are better

approximated by δp-ring maps at the level of π0, rather than just ordinary ring
maps. In fact, we have the following p-complete version of our main theorem:

Theorem 4 (Carmeli–Nikolaus–Y.). Let A,B ∈ Abfg. Then π0 induces a natural
isomorphism

HomCAlg(S[A]
∧
p , S[B]∧p ) ≃ HomRingδp

(Z[A]∧p ,Z[B]∧p ).

4. Outline of methods

One interesting feature of our proof is that it makes extensive use of chromatic
techniques, despite the statement not being chromatic. To explain one of the main
ingredients, we contemplate the case of computing Gm(S[B]∧p ) in the case that B
is a finite abelian p-group.
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Even over Z, it is not immediately obvious whether an element γ ∈ Zp[B] will
be invertible. One way to check this is to consider the embedding

Zp[B] →֒ C[B].

By the representation theory of finite groups, this latter ring splits as CB∗

, where
B∗ denotes the group of characters of B. Here, it is easier to check that γ is a
unit, as one just has to see γ is non-zero component-wise.

It turns out that there is an analogous trick that one can do upon restriction
to a single chromatic height, using the “chromatic Fourier transform”:

Theorem 5 (Barthel–Carmeli–Schlank–Yanovski [1]). Let M be a p-finite spec-
trum and En as before. Then there is a natural equivalence in CAlgEn

(SpK(n))

En[Ω
∞M ] ≃ E

Ω∞ΣnIQp /ZpM
n .

In particular, letting M = B, we find that En[B] ≃ E
K(B∗,n)
n . Thus, instead

of splitting as a B∗-indexed product, the group ring over En is a constant limit
diagram indexed by K(B∗, n). Since Gm(−) is corepresentable, this allows us to
get a handle on Gm(En[B]), from which we can understand Gm(R[B]) for any R ∈
CAlg(SpK(n)). The remainder of the proof (in the special case at hand) proceeds
by assembling these statements across heights and using chromatic convergence to
access Sp.
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Periodic unstable homotopy theory and Hopf algebras

Gijs Heuts

(joint work with S. Barkan, L. Brantner, J. Hahn, Y. Shi, A. Yuan)

There are at least two ways to interpret the phrase ‘monochromatic unstable ho-
motopy theory’, namely:

(1) The localization of the ∞-category of pointed spaces at the maps inducing
isomorphisms on vn-periodic homotopy groups. Let us denote the resulting
∞-category by Svn .
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(2) The localization of the ∞-category of (pointed) spaces at the maps in-
ducing isomorphism in T (n)-homology, with T (n) the mapping telescope
of a vn self-map of a finite type n spectrum. Let us denote the resulting
∞-category by LT (n)S.

The first goal of this talk was to discuss the relation between (1) and (2), i.e.
between periodic homotopy and homology groups.

In the stable setting, localizing at vn-periodic homotopy equivalences and T (n)-
homology equivalences is the same thing. Also, for n = 0, the two localizations
described above agree (at least for simply-connected spaces) by Serre class theory:
a map of simply-connected spaces is a rational homotopy equivalence if and only if
it is a rational homology equivalence. However, for n > 0 the localizations Svn and
LT (n)S behave very differently. The following are some examples of phenomena
that occur:

(1) A vn-periodic equivalence need not be a T (n)-homology isomorphism.
(1a) Any truncated spaceX (i.e., πkX = 0 for k ≫ 0) has vanishing vn-periodic

homotopy groups. However, T (n)∗X need not be trivial. For example,
T (n)∗K(Fp, k) is nontrivial for k ≤ n by the results of Ravenel–Wilson.

(1b) Fix a finite type n space Vn and write PVn for the nullification functor
with respect to its suspension, i.e., left Bousfield localization with respect
to the map Vn → ∗. Then any space of the form Y = PVnX has vanish-
ing vn-periodic homotopy groups, but generally nontrivial T (n)-homology.
Indeed, a result of Bousfield says that a K(n)-equivalence of spaces is a
K(i)-equivalence for 1 ≤ i ≤ n. Hence if Y has vanishing T (n)-homology,
it has vanishing K(n − 1)-homology. But K(n − 1)∗Y = K(n − 1)∗X ,
which clearly need not be trivial.

(2) A T (n)-homology isomorphism need not be a vn-periodic equivalence. For
example, Langsetmo–Stanley construct ‘perturbations of the Adams map’
that are still T (1)-homology isomorphisms but not v1-periodic equiva-
lences.

The examples above should make clear that the relation between homotopy and
homology equivalences is subtle in the periodic world. However, things improve
if we consider maps f : X → Y that induce T (n)-homology isomorphisms on loop
spaces. In fact, we find the following:

Theorem 1 (Barkan, H, Shi). Let f : X → Y be a map of pointed connected
spaces whose homotopy groups are p∞-torsion in dimensions 2 and above. Then
the following conditions are equivalent:

(1) The map Ωf is a T (i)-isomorphism for 1 ≤ i ≤ n.
(2) The truncated map τ≤n+1f is an equivalence and f is a vi-periodic equiv-

alence for each 1 ≤ i ≤ n.

Remark 1. If Bousfield’s result about K(n)-equivalences mentioned above has an
analog for T (n)-equivalences, then one may replace condition (1) with the following
apparently weaker one:

(1’) The map Ωf is a T (n)-isomorphism.
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Provided this holds, the theorem above shows that T (n)-isomorphisms in the un-
stable case are really more of a transchromatic notion than one that is ‘concen-
trated at height n’.

The second goal of this talk was to discuss ongoing joint work with Brant-
ner, Hahn, and Yuan on describing an ‘algebraic model’ for the homotopy theory
obtained from pointed spaces by inverting the maps f for which Ωf is a T (n)-
equivalence. Let us denote it by LΩ

T (n)S∗. We begin by observing that the con-

struction of this localization guarantees the existence of the following functor:

LT (n)Σ
∞
+ : LΩ

T (n)S∗ → Hopf(SpT (n)).

Here Hopf(SpT (n)) denotes the ∞-category of T (n)-local spectral Hopf algebras,

which is defined to be the ∞-category of group objects in cocommutative T (n)-
local coalgebra spectra. It turns out that the structure of the ∞-category LΩ

T (n)S∗

is reflected rather well by the structure theory of such T (n)-local Hopf algebras.
For now let me comment on one aspect of this, namely the ‘primitively generated’
Hopf algebras, which are closely related to vn-periodic spaces. There wasn’t much
time left in the talk to spend on ‘grouplike’ Hopf algebras, which are related to
truncated spaces. These results will be discussed elsewhere.

The vn-periodic part.
The ∞-category Svn is known to be equivalent to that of T (n)-local spectral Lie

algebras and bears a relation to Hopf(SpT (n)) that is reminiscent of the work of

Milnor–Moore in the classical case (over Q). To be precise, there is a commutative
square

Svn LΩ
T (n)S∗

Lie(SpT (n)) Hopf(SpT (n))

≃

U

in which U is the universal enveloping algebra functor. We conjecture the following
parallel of the Milnor–Moore theorem in this setting:

Conjecture A. The functor U is fully faithful.
We can offer the following:

Theorem 2 (Brantner, Hahn, H, Yuan). Conjecture A holds on the full subcat-
egory of abelian T (n)-local spectral Lie algebras (or, equivalently, infinite loop
spaces in Svn).

Corollary 1. The functor

SpT (n) → CHopf(SpT (n)) : V 7→ LT (n)Sym(V )

is a fully faithful left adjoint, where CHopf(SpT (n)) denotes the ∞-category of

bicommutative T (n)-local spectral Hopf algebras.

Conjecture A would imply that primitively generated T (n)-local spectral Hopf
algebras provide an alternative algebraic model for vn-periodic spaces. What is
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more interesting is the following: given a space X , can its vn-periodic homotopy
type be extracted from the Hopf algebra LT (n)Σ

∞
+X? We expect the following:

Conjecture B. The following square commutes up to natural isomorphism:

Svn LΩ
T (n)S∗

Lie(SpT (n)) Hopf(SpT (n)).

≃

prim

Here the top horizontal arrow is localization at vn-periodic equivalences, the bot-
tom horizontal arrow takes primitives of a Hopf algebra.

Again we have the following special case:

Theorem 3 (Brantner, Hahn, H, Yuan). Conjecture B holds on the full subcat-
egory of LΩ

T (n)S∗ on infinite loop spaces.

More concretely, for a spectrum V the primitives of the spectral Hopf algebra
LT (n)Σ

∞
+ Ω∞V are precisely LT (n)V .

General inputs for the S•-construction

Julie Bergner

The notion of a 2-Segal space, developed by Dyckerhoff and Kapranov [3], is a
generalization of a Segal space; while a Segal space encodes the structure of an
up-to-homotopy topological category, a 2-Segal space encodes a weaker structure
in which composition need not be defined or unique, but is associative. More
specifically, a 2-Segal space is a simplicial spaceX : ∆op → SSets for which certain
maps

Xn → X2 ×X1
· · · ×X1

X2︸ ︷︷ ︸
n−1

are weak equivalences of simplicial spaces. Here, n ≥ 3, and the maps are de-
termined by the triangulations of cyclically-labeled (n+ 1)-gons by their vertices.
In particular, for each n ≥ 3 there are multiple Segal maps (indexed by the n-th
Catalan number) that need to be weak equivalences, in contrast to the case of
Segal spaces, for which there is one map

Xn → X1 ×X0
· · · ×X0

X1︸ ︷︷ ︸
n

that needs to be a weak equivalence for each n ≥ 2.
The same structure was developed under the name of decomposition space by

Gálvez-Carrillo, Kock and Tonks [4]. Although the two approaches differ in de-
scription and motivation, for both a key example is the output of Waldhausen’s
S•-construction when applied to an exact category. In collaboration with Osorno,
Ozornova, Rovelli, and Scheimbauer, we prove that every 2-Segal space can be ob-
tained as S• of a a suitable generalization of an exact category, called an augmented
stable double Segal space [1], [2]. Such input is characterized by objects, vertical
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morphisms, horizontal morphisms, and squares behave sufficiently like pullback
and pushout squares.

A natural question is what happens for Waldhausen categories, where one has
cofibrations (horizontal morphisms) and suitable pushouts, but lacks another dis-
tinguished vertical class of morphisms and pullback data. My student Tanner
Carawan has shown that the output of a category with cofibrations under the S•-
construction has the structure of what one could call a left 2-Segal space, where
for each n ≥ 3 a single map of of the above kind is a weak equivalence, namely, the
map corresponding to the triangulation given by taking diagonals out of the vertex
labeled by 0. For a category with fibrations, one could dually obtain a notion of
right 2-Segal space.

Although in this situation we are only guaranteed the structure of a left (or
right) 2-Segal space, Carawan shows that in fact many common examples of Wald-
hausen categories, such as Waldhausen’s categoryRf of retractive spaces, actually
do produce (fully) 2-Segal spaces. Such examples carry sufficient additional struc-
ture so that they can be regarded as augmented stable double Segal spaces. Indeed,
so far the only known examples of left 2-Segal spaces that are not 2-Segal spaces
are rather artificially constructed.
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