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Abstract. The theory of aperiodic order expanded and developed signif-
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full range of problems from number theory to operator theory.
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Introduction by the Organizers

In the last 10 years, the theory of aperiodic order has seen a rapid development,
and expanded significantly, both in depth and breadth. Simultaneously, the field
has continued to attract mathematicians from various directions, and to provide
a stimulating environment for cross-discipline cooperations.

Nowadays, a rather central role is taken by dynamical systems theory, which
features in tiling theory, spectral theory of Schrödinger operators, group actions
on Cantor spaces, harmonic analysis, and number theory – to mention some of the
key topics of our meeting.

The workshop was organised within the standard scheduling preferences of the
MFO. Monday saw a collection of introductory and survey talks on the main
research topics. This helped to get the discussions and collaborations going, which
all the participants longed for and enjoyed after several years without enough
personal contacts. We kept the mix of themes also on the other days to support
our perspective and the strong unifying potential of the field, as we now summarise.
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Boris Solomyak discussed substitution tilings, and provided a sufficient condi-
tion for the spectrum of a primitive substitution to be purely singular via the
spectral cocycle. Together with the parallel development for singular continuous
diffraction measures by other groups, this gives a promising entry point for a future
classification of this important measure class.

Jake Fillman gave an introduction to the general theory of ergodic Schrödinger
operators, with a special emphasis on how models that are relevant in the study
of aperiodic order arise in this framework. He then surveyed many of the known
results and discussed some of the central open problems in this area. It is note-
worthy that the gap between physical expectations and mathematical results is
slowly narrowing, but is still substantial for dimensions two and higher.

There was an introductory talk by Christoph Richard on the Fourier analysis
of translation-bounded measures via the theory of mild distribution. This is an
alternative approach to diffraction theory, which simplifies the Fourier-analytic
aspects of the theory considerably. In particular, it has many aspects that are
similar to the theory of tempered distributions, but has the significant advantage
of working in the general framework of locally compact Abelian groups.

Neil Mañibo introduced the audience to substitutions on compact alphabets. He
showed that, under mild assumptions, many properties of finite alphabet substitu-
tions (such as minimality, unique ergodicity, natural tile length) can be extended
to this general setting. He showed constructively that every λ ą 2 is the inflation
multiplier of some substitution on a compact alphabet. In particular, there exist
substitution tilings over compact alphabets with transcendental inflation factor,
which is impossible for finite alphabets.

A general talk by Michael Coons covered scaling properties of the diffraction
measure around the origin for some models such as period doubling, Rudin–Shapiro
and Thue–Morse. The notion of a spectral measure (as in the Thue–Morse case)
has an analogue for the Stern sequence, and was later generalised to regular se-
quences, opening a road to a spectral classification that complements existing
approaches.

Philipp Gohlke discussed in detail the scaling properties of the Thue–Morse
measure and the odd behaviour of its decay at certain locations. The key to the
progress emerges from an extension of g-measures with a bounded potential to
potentials with a singularity, and a careful analysis of the consequences.

The connection to number theory, which already appeared in Michael Coons’
talk, featured predominantly in the talks by Sebastián Donoso, Alan Haynes and
Olga Lukina. Donoso discussed ergodic averages for multiplicative actions, in par-
ticular for the multiplicative action of Zris, with applications to number theory.
Alan Haynes discussed the accumulation points of normalised integer translates of
rotations in Euclidean space, and their odd behaviour for some particular choices
of the fixed point x P Rd. Lukina showed particular properties of groups of auto-
morphisms of trees that appear as the arboreal representations of polynomials.
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Johannes Kellendonk delved into the relationship between the non-tameness
property of a dynamical system and the complexity of its Ellis semigroup, iden-
tifying a characteristic dichotomy that is practically approachable. Later, Reem
Yassawi showed a connection between some algebraic properties of the Ellis semi-
group of constant-length substitutions and their Toeplitz-like factors. Here, Yas-
sawi exploited the structure of the semigroup generated by the columns and known
factorisations using collaring.

Motivated by the work of Furstenberg, Bryna Kra introduced the notion of
chaotic almost minimal systems (CAM). A dynamical system pX,Gq given by a
continuous action of G on the compact metric space X is CAM if it is transi-
tive, faithful, X has a dense set of G-periodic points, and every proper closed
G-invariant subset of X is invariant. Mixing Z-subshifts of finite type are exam-
ples of CAM systems. Kra has shown that there are restrictions on phase spaces
and groups which admit a CAM system. For example, if X is locally connected,
X does not support expansive CAM Z-systems. On the other side, if G admits
a CAM action, G is residually finite, and it is still an open question whether any
residually finite group admits actions of this type.

Samuel Petite precisely described the self-isomorphisms of Zn-odometers and
some substitution Zn-subshifts. Formulated in terms of centralisers and normalis-
ers of the group action within the homeomorphism group of the space, the discovery
of new cases with large normaliser showed that this recently observed phenomenon
deserves further study.

Felipe Garćıa-Ramos explained that it is impossible to decide, with countably
many arguments, whether two minimal Cantor systems are conjugate. For that, he
studied the notion of Borel reduction for equivalence relations of homeomorphisms
on the Cantor sets. Using these tools, Garćıa-Ramos has shown that the conjugacy
equivalence classes of minimal homeomorphism on the Cantor set are not Borel,
which can be interpreted in terms of decidability.

Tobias Jäger discussed some characterisations of tame systems, showing that
tame minimal group actions, which are almost 1-1 extensions of their maximal
equicontinuous factors, are necessarily regular systems. His approach is construc-
tive, and relies on linking irregularity to the existence of an independence pair.

Felix Pogorzelski exhibited examples of linearly repetitive Delone sets on the
Heisenberg group. He also showed that such (coloured) Delone sets provide suit-
able models for Schrödinger potentials on the Heisenberg group, whose spectra
can be studied using periodic approximants.

Paulina Cecchi-Bernales discussed the realisation of simplices of invariant mea-
sures for minimal subshifts given by the actions of general amenable groups that
are not necessarily residually finite. Cecchi-Bernales also showed an analogous
result for Toeplitz subshifts with actions of residually finite groups that are not
necessarily amenable.

When studying Schrödinger operators with aperiodically ordered potentials,
one is interested in the structure of the spectrum and the type of the spectral



2110 Oberwolfach Report 37/2023

measures. A good amount of information is available in one space dimension, but
some important and interesting questions still remain open.

One of them was recently solved in work presented by Siegfried Beckus, joint
with Ram Band and Raphael Loewy, on the gap structure of the spectra of Stur-
mian Hamiltonians. Extending work of Laurent Raymond, who had proved that
all gaps allowed by the gap labelling theorem are open whenever the coupling
constant obeys λ ą 4, they showed that this result holds on the full range λ ą 0.

Quantum graphs based on Sturmian sequences were discussed in Ram Band’s
lecture. As one can employ trace map methods, originally developed for discrete
Schrödinger operators in ℓ2pZq, in this context as well, they provide examples of
quantum graphs for which quite a detailed spectral analysis is possible and whose
properties are novel phenomena in the quantum graph setting.

Anton Gorodetski discussed the following natural question: how do the spectral
properties of a Schrödinger operator with aperiodically ordered potential change
when a (small) random perturbation is added? The general expectation is that the
randomness should dominate any deterministic background, and as consequences,
the spectral gaps should no longer be dense and the spectral measures should now
be pure point (with exponentially decaying eigenfunctions). Such results have
indeed been established recently under suitable assumptions; the first statement is
due to Avila–Damanik–Gorodetski and the second is due to Gorodetski–Kleptsyn.

Since the proposal was submitted, various new developments took place that
we did not anticipate. Among them was the mathematically rigorous analysis
of (localised) eigenfunctions in aperiodic Schrödinger operators on Penrose and
Ammann–Beenker tilings, and the discovery of new families of aperiodic monotiles
for the Euclidean plane. Each of these two topics was covered by an informal
evening session, with several shorter contributions and ample time for discussions.

The evening session on Tuesday featured contributions by May Mei, Mark Em-
bree, and Jan Mazáč. These presentations discussed the presence of finitely sup-
ported eigenfunctions of the Laplacian on Penrose and Ammann–Beenker tilings.
Due to the linear repetitivity of these tilings, such finitely supported eigenfunc-
tions will cause discontinuities of the integrated density of states, occurring at the
eigenvalues corresponding to these eigenfunctions. In order to understand the sizes
of these jumps, one needs to understand the frequencies of the patches that sup-
port the eigenfunctions. Mei and Embree explained the computational methods
that allowed for an identification of finitely supported eigenfunctions with rather
large supports, while Mazáč explained how the frequencies of their supports can
be determined effectively and precisely.

The monotile session on Thursday evening began with a summary of the prob-
lem up to the present state of the art, by Jamie Walton, followed by an in-depth
analysis of the Hat and the Spectre tilings (Franz Gähler), which also proved that
these tilings have pure point spectrum and can be obtained by the projection
method. The new feature is the quasiperiodicity of the Hat and the Spectre, in
contrast to the limit-periodicity of previous examples such as the Taylor–Socolar
monotile. An interpretation via translation surfaces (by Pierre Arnoux) and an



Aspects of Aperiodic Order 2111

independent aperiodicity proof (by Shigeki Akiyama) concluded the presentations,
which were followed by a lively discussion.

The enthusiastic closing lecture on Friday afternoon, by Tobias Hartnick, devel-
oped a robust framework for models of aperiodic order, inspired by insight from
point process theory. It showed both the potential and the maturity of the field,
and gave all participants a wonderful perspective to consider on their way home.

In summary, all participants enjoyed the inspiring in-person atmosphere of the
workshop. Those who returned from previous visits underlined the importance
and irreplaceability of such meetings in the perfect working environment of the
MFO, while the newcomers, of which there were many, were immediately hooked
by the place and its special flair. All agreed that the MFO might have been copied
many times, but it retains its role as one of the best places for an interactive
research workshop – a point of view all organisers thankfully adopt as well.

Acknowledgement: The MFO and the workshop organisers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Which substitutions have pure singular spectrum?

Boris Solomyak

(joint work with Alexander Bufetov)

The talk is based on [5], with some additions from the work by Yaari [7], which
was a part of his Master’s Thesis at the Bar-Ilan University. The emphasis is on
substitutions of non-constant length, since the constant length case, although still
mysterious, is somewhat better understood from the spectral viewpoint. Our main
tool is the spectral cocycle, introduced in [4].

Given a primitive aperiodic substitution ζ on the alphabet A “ t1, . . . , du, let
ζpbq “ u

pbq
1 . . . u

pbq
kb

, with b P A. The Fourier matrix function Mζ : Rd Ñ MdpCq
(the space of complex dˆdmatrices), is defined by the formula, for x “ px1 . . . , xdq:

rMζpxqspb,cq :“
´ ÿ

jďk
b
, u

pbq
j

“c

exp
`
´2πi

j´1ÿ

k“1

x
u

pbq
k

˘¯
pb,cqPA2

, x P Rd.

Since Mζ is Zd-periodic, we obtain a continuous matrix function on the torus Td.

Note that Mζp0q “ STζ , where Sζ is the substitution matrix. The entries of the

matrix Mζpxq are trigonometric polynomials with coefficients 0 and 1, and they
are less than or equal to the corresponding entries of STζ in absolute value for every

x P Td. Crucially, the following cocycle condition holds: for any substitutions ζ1, ζ2
on A,

Mζ
1

˝ζ
2

pxq “ Mζ2
pSTζ1xqMζ1

pxq,
which is verified by a direct computation. Suppose that detpSζq ‰ 0 and consider

the endomorphism of the torus Td defined by

(1) x ÞÑ S
T

ζ x pmod Zdq,
which preserves the Haar measure md. Then,

Mζpx, nq :“ Mζ

`
pSTζ qn´1

x
˘

¨ ¨ ¨ Mζpxq,
is a complex matrix cocycle over the endomorphism (1), which we call the spectral
cocycle, associated to ζ. Assuming that this endomorphism is ergodic, which is
equivalent to Sζ having no eigenvalues that are roots of unity, the following limit
exists and is constant md-a.e. by the Furstenberg–Kesten theorem:

χζ “ lim
nÑ8

1

n
log }Mζpx, nq}.

It is called the top Lyapunov exponent of the spectral cocycle and denoted by
χζ . On the other hand, for any point x P Td, there exists the local upper Lya-

punov exponent χ`
ζ,x, defined in the same way, just with lim sup. Let θ be the

Perron–Frobenius eigenvalue of Sζ . Then χ
`
ζ,xp0q “ log θ, by the definition and the

Perron–Frobenius theorem. Interestingly, one always has χζ ď 1
2
log θ. There is a
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more direct formula for the Lyapunov exponent χζ , which follows from Kingman’s
theorem and makes it possible to obtain rigorous numerical estimates,

χζ “ inf
k

1

k

ż

Td

log }Mζkpxq} dmdpξq.

Now consider the tiling R-action, associated with ζ, determined by a positive
vector of tile lengths ~s P Rd. We showed in [4] that if χ`

ζ,ω~s ă 1
2
log θ for Lebesgue-

a.e. ω P R, the tiling flow has pure singular spectrum. However, this condition is
not easy to check for specific systems. The following was proved in [5]:

Theorem 1. Let ζ be a primitive aperiodic substitution on A “ t0, . . . , d´1u,
with d ě 2, such that the substitution matrix Sζ has a characteristic polynomial
that is irreducible over Q. Let θ be the Perron–Frobenius eigenvalue of Sζ . If

(2) χζ ă 1
2
log θ,

the substitution Z-action has pure singular spectrum.

The idea is to apply a theorem of Host [6], which implies that under our con-
ditions, for Lebesgue-a.e. ω, the orbit of the point on the diagonal of the torus
ω~1 under the endomorphism ξ ÞÑ S

T

ζ ξ (mod Zd) equidistributes, and then one can

show that (2) implies χ`
ζ,ω~1

ă 1
2
log θ for a.e. ω. It is well known that the suspen-

sion flow over a Z-action, with a constant height 1 (this corresponds to ~s “ ~1), has
the same spectral properties as the Z-action.

Earlier, Baake and collaborators [1–3] obtained somewhat similar results for the
(closely related) diffraction spectrum of the self-similar tiling flow, which one gets
by taking ~s “ e1, the PF eigenvalue of the matrix STζ . Then,

(3) Mζpωe1, nq :“ Mζ

`
θn´1ωe1

˘
¨ . . . ¨ Mζpθ ωe1q ¨ Mζpωe1q

is a cocycle on R over the infinite-measure preserving action ω ÞÑ θω. In particular,
Baake, Gähler, and Mañibo [3, Thm. 3.28] proved that if the upper Lyapunov
exponent satisfies the condition χ`

ζ,ωe1
ă 1

2
log θ´ ǫ, for some ǫ ą 0, for Lebesgue-

a.e. ω P R, then the absolutely continuous component of the diffraction measure
must be trivial, hence it is purely singular. (Their method is different, although
there are some common features with our approach.) This allowed the authors
of [1–3] to prove singularity of the spectrum for many examples of non-Pisot self-
similar tiling flows. Now, we obtain singularity of the corresponding Z-actions as
well.

Yaari [7] found an alternative proof of Theorem 1 and extended it to the case
of reducible and singular matrices, with appropriate modifications, using uniform
distribution theory. This allowed him to simultaneously obtain results on singu-
larity of substitution Z-actions and R-actions for any ~s under the assumptions of
Theorem 1.



Aspects of Aperiodic Order 2117

References

[1] M. Baake, N. P. Frank, U. Grimm, E. A. Robinson Jr, Geometric properties of a binary non-
Pisot inflation and absence of absolutely continuous diffraction, Studia Math. 247 (2019),
109–154.
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Aspects of of Schrödinger operators whose potentials exhibit
aperiodic order

Jake Fillman

The spectral theory of Schrödinger operators with ergodic dynamically defined po-
tentials is a vast subject with connections to many fields of mathematics, including
group theory, topology, harmonic analysis, fractal geometry, and others. The talk
surveys some important background information and results for these operators
in order to facilitate discussions among the workshop participants. The content of
the talk is based on the recent book [2]; see also the books [1, 3].

The basic setup is given by the following data: given an ergodic topological
dynamical system pΩ, T, µq and a bounded Borel measurable function v : Ω Ñ R,
one defines the ergodic family tHωuωPΩ by Hω “ ∆ ` Vω, where

(4) Vωpnq “ vpT nωq.
More precisely, for each point ω P Ω, one obtains a corresponding linear operator
Hω : ℓ2pZq Ñ ℓ2pZq via

(5) rHωψspnq “ ψpn´ 1q ` Vωpnqψpnq ` ψpn ` 1q.
Since v was assumed to be bounded and real-valued, each Hω is a bounded self-
adjoint operator on the Hilbert space ℓ2pZq. Studying the operators tHωuωPΩ
as a family allows one to leverage ideas and techniques from ergodic theory and
dynamical systems. For instance, there is a fixed compact set Σ Ă R with the
property that

(6) specpHωq “ Σ, µ-a.e. ω P Ω.

This talk surveys some important special cases of the framework above that pro-
duce potentials exhibiting aperiodic order. Significant examples include random
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sequences, Sturmian sequences, irrational circle rotations, and subshifts generated
by primitive aperiodic substitutions.
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On non-tame Ellis semigroups

Johannes Kellendonk

We are interested in dynamical systems which are close to equicontinuous but
whose Ellis semigroup has a cardinality which is bigger than that of the continuum
(it is not tame). By close to equicontinuous we mean that the factor map onto
the maximal equicontinuous factor has at least one finite fibre. We investigate
the question which algebraic component of the Ellis semigroup has such a big
cardinality. Indeed, like any semigroup, EpX,T q has an ideal structure and can be
decomposed into the equivalence classes of Green’s relations and so it is interesting
to know which of these parts are especially big.

Let pX, dq be a compact metric space with an action of a group T by homeomor-
phisms. Let F pXq be the set of functions fromX toX , equipped with the topology
of point-wise convergence. Then, F pXq is a compact right-topological semigroup.
The Ellis (or enveloping) semigroup EpX,T q of pX,T q is the closure in F pXq of the
group of homeomorphisms tαt : t P T u coming from the action α of T . The Ellis
semigroup has rich algebraic and topological properties, and these can be used to
characterise the dynamical system. Its elements capture the notion of proximality.
Indeed, two points x, y P X are called proximal if inftPT dpαtpxq, αtpyqq “ 0 and
this is the case if and only if fpxq “ fpyq for some f P EpX,T q.

One property which has recently attracted a lot of attention is tameness. The
semigroup EpX,T q (and pX,T q) is called tame if all its elements are Baire class 1
functions, that is, can be obtained as a limit of a sequence of continuous functions.
An equivalent characterisation is that EpX,T q is tame if its cardinality is at most
c, that of the reals. A third characterisation is that EpX,T q is not tame if X
contains an independence sequence. A good review on enveloping semigroups and
tameness is [1].

Recall that pX,T q is equicontinuous if the family of homeomorphisms coming
from the action of T is equicontinuous. If T is abelian, this implies that X carries
a group structure such that the action of T on it is given by left multiplication
with elements of a subgroup of it. If pX,T q is also minimal, it carries a unique T -
invariant probability measure, namely the Haar measure. Coming back to general
dynamical systems pX,T q, they have always a maximal equicontinuous factor π :
pX,T q Ñ pXmax, T q. A point z P Xmax is called singular if the fibre π´1pzq
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contains two proximal points. Otherwise, it is called regular. A system is called
almost automorphic if it is minimal and there is z P Xmax such that π´1pzq
contains a single point. This implies that the regular points are exactly the points
which have a unique pre-image under π.

A recent result in [2] states that if a minimal system with abelian T is tame
then it is almost automorphic and the set of regular points has full Haar measure
in Xmax. The converse need not be true. Toeplitz shifts are almost automorphic
but not always tame, although their set of regular points has full measure [3]. For
instance, of the shift dynamical systems associated to the two substitutions

a ÞÑ aabaa

b ÞÑ abbaa

a ÞÑ aabaa

b ÞÑ ababa

the first is tame, whereas the second is not tame. Note that the substitutions differ
only in the order of two letters, in particular their associated dynamical systems
are strong orbit equivalent.

In the light of the question which parts of the Ellis semigroup of non-tame sys-
tem are especially big, we investigate here when the so-called Ellis group eEpX,T qe
has cardinality 2c, that of the power set of the continuum. Here, e is a minimal
idempotent of EpX,T q and eEpX,T qe “ tefe : f P EpX,T qu, the Ellis group
depending on e only up to isomorphism. This group is actually isomorphic to
the Rees structure group of the kernel of EpX,T q. Below, we denote the group
structure on Xmax additively and the set of singular points of Xmax by Xsing

max .

Theorem 1. Let pX,T q be a minimal dynamical system with abelian group T .
Suppose that there exists a regular point z P XmaxzXsing

max with finite fibre π´1pzq
and an uncountable set A Ă Xmax such that, for all a ‰ b P A, we have that
Xsing
max ` aXXsing

max ` b “ H.

(1) If pX,T q is almost automorphic, the Ellis group is isomorphic to Xmax.

(2) If pX,T q is not almost automorphic, the Ellis group has cardinality 2c.

Note that the second condition of the theorem is always satisfied if there are only
finitely many orbits of singular points in Xmax while Xmax is uncountable. If there
is only one singular orbit, more can be said about eEpX,T qe; see [4]. For instance,
if pXθ,Zq is the shift dynamical system associated to a bijective substitution θ of
length ℓ with trivial generalised height, then the maximal equicontinuous factor is
the ℓ-adic odometer Zℓ, and eEpXθ,Zqe is algebraically isomorphic to a semi-direct
product of its fibre preserving part

tf P eEpXθ,Zqe : fpπ´1pzqq Ă π´1pzq, z P Zℓu

with Zℓ. Furthermore, the fibre preserving part is topologically and algebraically
isomorphic to the group of all functions g : Zℓ{Z Ñ Gθ from the space of orbits to
the group Gθ generated by the column maps of the substitution. Here, the group
multiplication on the group of functions is point-wise and the topology is that of
point-wise convergence. This tells us that, for any function g : Zℓ{Z Ñ Gθ, there
is an element in the Ellis group which preserves the fibres of π and acts on π´1pzq
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by the permutation of the letters given by gpzmodZq. The fact that any function
is allowed leads to the large cardinality.
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Ergodic averages of multiplicative actions and their applications

Sebastián Donoso

(joint work with A.N. Le, J. Moreira, W. Sun)

The study of multiplicative functions plays a central role in number theory. A
function f : N Ñ C is completely multiplicative if fpmnq “ fpmqfpnq for all m,n P
N. It is multiplicative if the previous relation holds for all m,n P N that are
coprime. One of the reasons why multiplicative functions have been widely studied
is that their statistics have deep connections with properties of the prime numbers.
For instance, the prime number theorem can be restated as

(7) lim
NÑ8

1

N

Nÿ

n“1

λpnq “ 0 ,

where λ : N Ñ t´1, 1u is the Liouville function. It is defined as λpnq “ p´1qΩpnq,
where Ωpnq is the number of prime factors of n (with multiplicity). So, (7) states
that the prime number theorem is equivalent to the Liouville function having zero
mean.

A dynamical approach. Recall that a topological dynamical system (TDS) is a
tuple pX,T q, where X is a compact metric space and T : X Ñ X is a homeomor-
phism. The TDS pX,T q is uniquely ergodic if it has only one invariant measure.

Theorem 1 (Bergelson–Richter [1]). If pX,T q is a uniquely ergodic topological
dynamical system, with unique invariant measure µ, then, for any x P X and any
continuous function f : X Ñ C,

lim
NÑ8

1

N

Nÿ

n“1

fpTΩpnqxq “
ż

X

fdµ .

Remark 2. The condition of unique ergodicity of pX,T q and continuity of f are
essential for this result to hold; compare [6].
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Theorem 1 is simple to state and has deep consequences. For instance, if pX,T q
is a (cyclic) rotation on 2 points, Theorem 1 allows us to recover (7), that is,
the prime number theorem. One could consider more complicated uniquely er-
godic systems and obtain other number-theoretic results. For instance, for a finite
(cyclic) group rotation, Theorem 1 allows us to recover a theorem by Pillai and
Selberg, which states that Ωpnq is equally distributed over all residue classes mod
q for all q P N. If we consider a system pT, T q, where T pxq “ x`α for an irrational
α (that is, an irrational rotation on the circle), by taking x “ 0 and fpxq “ e2πikx,
for k P Zzt0u, Theorem 1 allows one to deduce that

1

N

Nÿ

n“1

e2πikΩpnqα Ñ 0

This recovers a theorem by Erdős and Delange, which establishes that the sequence
pΩpnqαqnPN is uniformly distributed mod 1.

In our work [3], we are mainly interested in the multi-parameter case of The-
orem 1. That is, what can we say if we replace Ωpnq by ΩpP pn,mqq for some
polynomial P in two variables? It is worth highlighting that averages like

(8)
1

N

Nÿ

n“1

λpP pnqq

are very hard to deal with. For instance, it is still open (this is a conjecture
by Chowla) whether for a polynomial P P Zrxs such that P ‰ cQ2, for every
c P Z, Q P Zrxs, the average (8) converge to 0 as N goes to infinity (note that
the condition on P is to discard obvious cases). However, if one is allowed to
introduce more variables, the corresponding averages seem to be more tractable.
For instance, the corresponding multi-parameter version of (8),

(9)
1

N2

Nÿ

m,n“1

λpP pm,nqq

is known to have a zero limit for various P (see [3] and references therein). In [3],
we obtain the following variant of Theorem 1.

Theorem 3. Let pX,T q be a uniquely ergodic system with the unique invariant
measure µ. Then, for any x P X and any f P CpXq,

lim
NÑ8

E
1ďm,nďN

fpTΩpm2`n2qxq “
ż

X

f dµ.

Of course, from Theorem 3, one can derive various natural conclusions. The
following one is an example.

Theorem 4. The multi-parameter sequence Ωpm2 ` n2qn,m is equally distributed
over all residue classes mod q for all q. Moreover, if Q P Rrxs has at least one
irrational coefficient, then Q

`
Ωpm2 ` n2q

˘
n,m

is uniformly distributed mod 1.
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Main ideas. Theorem 3 follows from a more general theorem, and uses the idea
of multiplicative actions of Gaussian integers (such actions have been studied in
the past in, for instance, [2, 4, 7]). Recall that G :“ tm ` in : m,n P Nu and
G˚ “ Gzt0u. Denote by P the set of primes in G.

Theorem 5. Let X be a compact metric space and T be an action of pG˚, ¨q, where
¨ denotes complex multiplication. Assume that tTp : p P Pu is finite and that there
is a unique invariant measure µ that is invariant under all these transformations.
Then, for any continuous function f and x P X,

1

N2

Nÿ

n,m“1

fpTpm,nqxq Ñ
ż
fdµ .

Going back to the average (7), one could ask what happens for multiplicative
functions other than Liouville. For real-valued multiplicative functions, a cele-

brated theorem of Wirsing in the 1960s established that limNÑ8
1
N

řN
n“1 fpnq

exists, answering a long-standing conjecture by Erdős and Wintner.
As corollaries in number theory, Theorem 5 allows us to obtain the following

versions of Wirsing’s theorem.

Corollary 6. Let f : N Ñ R be a bounded multiplicative function.

Then, limNÑ8
1
N2

řN
n,m“1 fpm2 ` n2q exists.

Corollary 7. Let f : G˚ Ñ R be a bounded multiplicative function.

Then, limNÑ8
1
N2

řN
n,m“1 fpm` inq exists.

We remark that, in Theorem 5, we can replace the average over r1, N s2 by
an average over a dilated Følner sequence. This concept includes squares and
disks and many others (see [3] for details). Of course, all our corollaries can be
strengthened by allowing averages to be taken along dilated Følner sequences. The
following question by Frantzikinakis and Host that is still out of reach.

Question 8 ([5, p. 91]). Let f : N Ñ R be a real-valued and bounded, completely
multiplicative function, and let P P Zrx, ys be a homogeneous polynomial with val-

ues on the positive integers. Does the limit limNÑ8
1
N2

řN
m,n“1 fpP pm,nqq exist?

We believe that some new ideas will be needed for this problem.
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A complete characterisation of length-ℓ substitution shifts with an
almost automorphic factor

Reem Yassawi

(joint work with Álvaro Bustos-Gajardo, Johannes Kellendonk)

Recall that a minimal topological dynamical system pX,T q is almost automorphic
over pY, Sq if there exists a factor map π : pX,T q Ñ pY, Sq such that π´1pyq is a
singleton for some y P Y. Based on work in [1], we give a complete answer to the
question of when a minimal length-ℓ substitution shift pXθ, σq factors onto a shift
which is an almost automorphic extension of the maximal equicontinuous factor
of pXθ, σq.

A length-ℓ substitution is a map θ : A Ñ Aℓ, where A is a finite alphabet.
By concatenation, we extend θ to act on words on A. In this way, we define
a language Lθ :“ tw P A` : w is a subword of θnpaq for some n P N and a P Au.
This language is left- and right-extendable, and closed under taking subwords. It
thus defines a shift space Xθ :“ tx P AZ : xm . . . xn P Lθ for each m,n P Zu, and
the resulting shift pXθ, σq is called a length-ℓ substitution shift.

By looking at θ as an ordered collection of maps, i.e., writing

θpaq “ θ0paqθ1paq, . . . θℓ´1paq,
we have that θi P AA for each i, and with the operation of function composition
we define Sθ, the semigroup associated to θ, as

Sθ :“ xθ0, θ1, . . . , θℓ´1y .
Note that Sθ “ Gθ is a group if and only if each θ is a bijection.

Martin [5] partly characterised the existence of an almost automorphic factor
in certain cases when the substitution θ is bijective. He was a student of Veech
[6], who gave a structure theorem for shifts with a residual set of distal points,
characterising them as having an almost automorphic extension which is an inverse
limit of alternating almost automorphic and isometric extensions of a one-point
system. Substitution shifts are a natural class of systems to which one can apply
Veech’s structure theorem, and this was the rationale for Martin’s work. Later,
Herning [3] characterised the existence of an almost automorphic factor in certain
cases when the substitution θ is bijective and of prime length.

By a result in [4], any shift factor of pXθ, σq is topologically conjugate to another
length-ℓ shift pXη, σq. It is also known that any almost automorphic extension of an
odometer is a shift. Thus, as pXθ, σq has an odometer as a maximal equicontinuous
factor, we deduce that we need only characterise when an almost automorphic
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pXη, σq exists as a factor of pXθ, σq. Now, using known results, we can limit the
radius of the factor map, to having left- and right-radius at most one. In other
words, we can limit our study to radius zero factor maps of collarings θp´l,rq of θ,
with 0 ď l, r ď 1.

At this point, we can check the existence, or not, of η by brute force calculation,
but here we give an elegant construction which links the existence of η to Green’s
R-relation. The rest of the proof is entirely algebraic.

The kernel kerSθ of Sθ consists of elements of Sθ of minimal rank; it is a two-
sided ideal. Two elements f, g P kerSθ are R-related if they generate the same
right ideal, i.e., if f kerSθ “ g kerSθ. As kerSθ is completely simple, it follows
that f, g P kerSθ are R-related if and only if they have the same image. We can
define the substitution ηθ defined by R and θ. Namely, for the substitutions we
consider, the images of elements in kerSθ form a cover Uθ of A. We take the
partition Pθ defined to be the transitive closure of Uθ. On this partition, we can
define ηθ in a natural way. Namely, if π : A Ñ Pθ is the projection map assigning
to a P A the partition element in Pθ to which it belongs, it can be verified that
ηθ :“ πθπ´1 is well defined as a substitution on Pθ. We can assume that θ has
trivial height, as from there, in our work, we can easily extend the following to
substitutions of nontrivial height.

We show thatXηθ
must be almost automorphic over pZℓ,`1q, which is known [2]

to be the maximal equicontinuous factor of pXθ, σq. Furthermore, we show that
any other almost automorphic factor of Xθ with a zero-radius factor map must
factor through Xηθ

.
Note that Xη

θ
may be finite. One concludes that Xθ has an almost automorphic

factor if and only if one of η
θp´l,rq is aperiodic, for some l, r with 0 ď l, r ď 1.
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A problem at the interface of number theory and aperiodic order

Michael Coons

Sequences arising from binary constant-length substitutions are important in many
areas, most notably for the current audience are the interest in aperiodic order and
number theory. In what follows, we will consider certain asymptotic behaviours
of two objects associated to such a sequence, the diffraction measure (aperiodic
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order) and the generating power series (number theory). Further, we assume that
the underlying alphabet is balanced—the sequence takes the values 1 and ´1.

On the aperiodic order side, given a sequence f arising from a constant-length
substitution, one can form the diffraction measure by means of the following
Wiener diagram

ω :“
ÿ

nPZ
fpnq δn γ :“ ω f rω “

ÿ

mPZ
ηpmq δm

pω pγ “ {ω f rω

f

F F

| ¨ |2

where ω is the (weighted) Dirac comb with weights w, f represents Eberlein
convolution, F is Fourier transformation, and the values

ηpmq :“ lim
NÑ8

1

2N ` 1

Nÿ

i“´N
fpiqfpi`mq

are the autocorrelation coefficients. Note that the lower route in the diagram needs
some careful justification that we supress here. Here, we will be interested in the
scaling of the diffraction measure near the origin, that is, with the asymptotics of

Zpxq :“ pγ
`
p0, xs

˘

as x Ñ 0`. In particular, we note two examples, the binary Rudin–Shapiro
sequence and the Thue–Morse sequence. For details concerning these examples,
see Baake and Grimm [2].

The binary Rudin–Shapiro sequence RS is the fixed point of the substitution

̺RS : a ÞÑ ab, b ÞÑ ad, c ÞÑ cd, d ÞÑ cb,

where we use the values a “ c “ 1 and b “ d “ ´1. The associated diffraction
measure pγRS is purely absolutely continuous and is equal to Lebesgue measure, so
that

(10) ZRSpxq “ x1 ,

where the exponent 1 has been emphasised for later use. For a more interesting
example, we turn to the Thue–Morse sequence TM, which is the fixed point of the
substitution

̺TM : a ÞÑ ab, b ÞÑ ba,

where we use the values a “ 1 and b “ ´1. The associated diffraction measure
pγTM is purely singular continuous and the exact behaviour of ZTMpxq near the
origin is not known. Our current best understanding is that there are positive
constants c1 and c2, such that, as x Ñ 0`,

(11) c1 x
2`α 2´ log2

2
pxq ď ZTMpxq ď c2 x

α 2´ log2
2

pxq ,

where α “ ´ log2pπ2{2q and log2p¨q denotes the binary logarithm.
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As someone coming into aperiodic order from the number theory community—
specifically from the community interested in automatic sequences and their gen-
erating power series—the asymptotics in (10) and (11) give a sense of déjà vu,
which I will elaborate in what follows.

The discussions in number theory for sequences arising from constant-length
substitutions, which therein are called automatic sequences, often consider tran-
scendence and algebraic independence properties of special values of their gen-
erating power series. This turns out to be approachable, since these generating
power series are Mahler functions. In particular, if f is an automatic sequence and
F pzq :“ ř

ně0 fpnqzn P Zrrzss, then there is a positive integer d and polynomials
p0pzq, p1pzq, . . . , pdpzq P Zrzs such that

p0pzqF pzq ` p1pzqF pzkq ` ¨ ¨ ¨ ` pdpzqF pzkdq “ 0 ,

where the positive integer k is the constant length of the underlying substitution.
A functional equation of this form allows one to understand the radial asymptotics
of Mahler functions (functions that satisfy a Mahler functional equation as above).
In joint work with Jason Bell [3], we showed that, under certain conditions, there
is a real number λF ą 0 such that

F pzq — 1

p1 ´ zqlogkpλF q , as z Ñ 1´,

where logkp¨q denotes the base-k logarithm. This relationship can be combined
with the Mahler functional equation to describe the radial asymptotics towards all
roots of unity of order kj for all j. But any set of roots of unity is only countable.
We have yet to understand the almost everywhere radial asymptotics of Mahler
functions. As a toy example, one can consider a Mahler function where d “ 1,
which is an infinite product. To this end, let β be a generic complex number with

|β | “ 1. We can compare the partial products of F pzq “
ś
jě0 ppzkj q, say the

first N factors, with the number of factors. In this case, using both Birkhoff’s
ergodic theorem and Jensen’s formula, we have

lim
NÑ8

logk
ź

jďN

ˇ̌
ˇp
´
e2πiβk

j
¯ˇ̌
ˇ
1{N

“ lim
NÑ8

1

N

ÿ

jďN
logk

ˇ̌
ˇp
´
e2πiβk

j
¯ˇ̌
ˇ “ logkMppq,

where for Mppq is the Mahler measure of the polynomial ppzq. Thus, for almost
all β on the unit circle, as z radially approaches β, we expect, for any ε ą 0,

|F pzq| ă 1

p1 ´ |z|qlogk
Mppq´ε .

Can such a suggested asymptotic be realised? One should compare our work [1]
with Baake and Mañibo, where given a primitive, binary constant-length substitu-
tion, we showed that the maximal Lyapunov exponent is equal to the logarithmic
Mahler measure of an associated (Peter) Borwein polynomial. But I digress.

We return to our two examples, the Rudin–Shapiro and Thue–Morse sequences.
To understand the asymptotics of the generating power series of the Rudin–Shapiro
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sequence, we note that the partial sums satisfy
nÿ

k“0

RSpnq —
?
n,

which implies that
ˇ̌
ˇ̌
ˇ
ÿ

ně0

RSpnqzn
ˇ̌
ˇ̌
ˇ

2

— 1

p1 ´ zq1 , as z Ñ 1´ ,

where the squaring impulse was provided directly from the bottom of the Wiener
diagram. This exponent (1 as highlighted in the denominator on the right-hand
side) is precisely the power of the scaling of ZRSpxq “ x1 as x Ñ 0`. While it is
nice that 1 “ 1, the Thue–Morse example is much more interesting. Note that the
generating function of TM is given by

ÿ

ně0

TMpnqzn “
ź

jě0

`
1 ´ z2

j˘
.

Unfortunately, the asymptotics for this function cannot be provided by my above-
mentioned result with Bell. But fortunately, a result of de Bruijn [4] implies that

ˇ̌
ˇ̌
ˇ
ÿ

ně0

TMpnqzn
ˇ̌
ˇ̌
ˇ

2

— p1 ´ zq ¨ 2´ log2

2
p1´zq, as z Ñ 1´ .

This behaviour is certainly reflective of that of ZTMpxq as x Ñ 0`. The big
question is whether one really can relate the order of the scaling of the diffraction
measure near zero with the radial asymptotics of the associated Mahler function.
Are these coincidences coincidental? Or, is something deeper going on?
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Almost chaotic systems

Bryna Kra

(joint work with Van Cyr and Scott Schmieding)

In his seminal paper on disjointness, Furstenberg [3] derives a Diophantine corol-
lary showing that, if p, q ě 2 are multiplicatively independent integers and α P R

is irrational, then

tpnqmα mod p : n,m ě 1u
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is dense in the circle T “ R{Z. This result has been generalised in numerous
directions, studying other sequences for which the same result holds, studying
measurable analogues, and studying generalisations in other groups.

We study the question of what abstract properties lead to such a rigidity result.
Namely, Furstenberg’s theorem says that orbits under the semigroup of transfor-
mations ˆp,ˆq for multiplicatively independent p, q ě 2 on the circle have one of
two behaviours: they are either finite (for rational points) or dense (for irrational
points). To make the appropriate definition precise, we introduce some notation.

Let X be a compact metric space and assume that a group G acts on X by
homeomorphisms,

G Ñ HomeopXq
(we can also consider a semigroup G). Given g P G, write Tg : X Ñ X for the
action of left multiplication by g on X , and we call the pair pX,Gq a system.

The system pX,Gq is transitive if for all nonempty open sets U, V Ă X , there
exists g P G such that TgU X V ‰ H and the action of G on X is faithful if for
every non-identity element g P G, there exists x P X such that gx ‰ x. Define the
system pX,Gq to be chaotic almost minimal if it satisfies the following properties:

(1) The system pX,Gq is transitive.

(2) The action of G on X is faithful.

(3) The space X contains a dense set of G-periodic points.

(4) Every proper, closed G-invariant subset of X is finite.

If there exists a system pX,Gq that is chaotic almost minimal, we refer to the
group G as being chaotic almost minimal. The motivation for the terminology is
that such systems are chaotic in the sense of Devaney [2] and are almost minimal
in the sense defined by Schmidt [4] for a Zd-action by automorphisms on a compact
group.

In joint work with Cyr and Schmieding, we have studied the properties of chaotic
almost minimal systems. Examples include:

‚ The N2-system used by Furstenberg in his disjointness paper.
‚ The Z2-system that is an invertible model for this system in the full shift
on six symbols.

‚ If pX, σq is a mixing shift of finite type and AutpX, σq denotes its auto-
morphism group, then the action of AutpX, σq on X (this follows from
results in [1]).

There are many other systems scattered throughout the literature that are chaotic
almost minimal.

Some of the results we have proved include:

‚ If pX,Gq is an infinite chaotic almost minimal system, then X is perfect
(and so uncountable).

‚ Any chaotic almost minimal system admits a Borel probability invariant
measure with full support.

‚ If X is a locally connected compact metric space, then X does not support
an expansive Z-chaotic almost minimal action.
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‚ If α : X Ñ X is an automorphism of a compact group X , then pX,αq is
not a chaotic almost minimal system.

‚ if pX,Gq is a chaotic almost minimal system, then G is residually finite.

In novel constructions, we have given an example of a Z-action such that pX,T q
is a chaotic almost minimal system that supports multiple nonatomic ergodic
invariant measures.
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The Dry Ten Martini problem for Sturmian dynamical systems

Siegfried Beckus

(joint work with Ram Band, Raphael Loewy)

Are all possible spectral gaps, predicted by the gap labeling theorem, there? This
is the so called Dry Ten Martini problem (Dry TMP) motivated by the Ten Martini
Problem (TMP). The names were coined by Simon [9] after Kac offered in 1981
ten Martinis to anyone who solves it. Originally, the almost Mathieu operator
(AMO) was considered, whereas we treat Sturmian Hamiltonians.

The potential of Sturmian Hamiltonians reflects the aperiodicity coming from
a solid and not from a magnetic field like for the AMO. Specifically, we study the
one-dimensional Schrödinger operator Hα,V P L

`
ℓ2pZq

˘
,

pHα,V ψqpnq :“ ψpn ´ 1q ` ψpn` 1q ` V χr1´α,1qptnαuqψpnq, ψ P ℓ2pZq, n P Z,

where tnαu :“ nα´tnαu is the fractional part of nα. We note that the potential is
characterised in terms of two parameters: the frequency α P r0, 1s and the potential
strength, also known as the coupling constant V P R. The family of Schrödinger
operators Hα,V for α P r0, 1szQ and V ‰ 0 is called Sturmian Hamiltonians. The
Kohmoto butterfly is the corresponding plot of the spectra of Hα,V as it varies

with α, see Figure 1 (a).
The integrated density of states (IDS) Nα,V : R Ñ r0, 1s is defined by

Nα,V pEq :“ lim
nÑ8

#
 
λ P σ

`
Hα,V |r1,ns

˘ ˇ̌
λ ď E

(

n
, E P R,

where Hα,V |r1,ns is the nˆ n matrix obtained by restricting Hα,V to ℓ2p1, . . . , nq.
We call g :“ pa, bq a spectral gap if a, b P σpHα,V q and pa, bq X σpHα,V q “ H.
A spectral gap is characterised by the plateaus of the IDS. The corresponding
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value Nα,V pEq for some (any) E P g is called the gap label of g. The gap labeling

theorem [4] prescribes all the possible labels that the spectral gaps may have:

tNα,V pEq |E P RzσpHα,V qu Ď
 

tnαu |n P Z
(

Y t1u.
One asks if this inclusion is an equality – this is the Sturmian Dry TMP. A complete
solution of this problem appears in [2] (see also [6] for first announcement).

Theorem 1 (Sturmian Dry TMP). For all α P r0, 1szQ and all V ‰ 0, all spectral
gaps of Hα,V are open, i.e.,

tNα,V pEq |E P RzσpHα,V qu “
 

tnαu |n P Z
(

Y t1u.

(a) (b)

σ (H α,V )

[0, 1, 2, 4] A A A A B A A A B A A A B

[0, 1, 2] B A A

[0, 1] B

[0] A γ ∈ ∂T

EV(γ)

root

Figure 1. (a) Kohmoto butterfly [3] for V “ 2: The vertical axis
represents the frequency values α. For each α, the spectrum of Hα,V is
plotted horizontally. (b) An example of the tree T for α “ r0, 1, 2, 4, . . .s
is sketched. A specific infinite path starting at the root and approaching
EV pγq in the spectrum is indicated in brown, see Theorem 4 (a).

For V ą 4, the previous statement was proved in [8] (see also [3] for a re-

view). For the Fibonacci Hamiltonian (α equals to the golden mean ϕ :“
?
5´1
2

),
a complete solution (i.e., for all V ‰ 0) has been provided in [5]. If α P r0, 1szQ
has eventually periodic continued fraction expansion, then all gaps are open for
sufficiently small values of V , see [7].

Let us shortly outline the strategy of the general proof, where we refer the
reader to the extended version of this MFO report [1] for more details.

Each α P r0, 1szQ is uniquely determined by its continued fraction expansion

α “ c0 ` 1

c1 ` 1
c
2

`...
“: rc0, c1, c2, . . .s, ck P N, k ě 0.

For k P N, αk :“ r0, c1, . . . , cks P Q defines the periodic operator Hαk,V
and

σpHαk,V
q is a finite union of intervals – so-called spectral bands.
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Theorem 2. Each spectral band IpV q in σpHα
k
,V q is either

‚ of type A, i.e., IpV q is strictly contained in a spectral band of σpHα
k´1

,V q, or
‚ of type B, i.e., IpV q is not of type A and it is strictly contained in a spectral
band of σpHα

k´2
,V q.

Remark 3. For V ą 4, Theorem 2 was proved in [8], while the general case
V ‰ 0 is treated in [2]. The extra difficulty for small couplings V ‰ 0 comes
from possible overlaps of spectral bands. This issue is resolved in [2] by combining
trace maps together with a new viewpoint – applying an interlacing theorem to
matrix eigenvalues of the periodic approximations. Another crucial ingredient is
changing the perspective to consider the whole space of all finite continued fraction
expansions using a two-level induction instead of a single approximation pαkqkPN.

The type of IpV q and ck`1 uniquely determine how many spectral bands of type
A it contains from σpHα

k`1
,V q and of type B it contains from σpHα

k`2
,V q, as well

as how these spectral bands interlace. The details are sketched in Figure 2 (b).

(a) (b)

α 1 B

α 0 A

-2 2

root
ℝ

α k+2 B

K 1

B

K 2

B

K 3

B

K p

B

K p+1

α k+1 A J1 A J2 A Jp

α k
A / B I (V)

Figure 2. (a) The root of the tree T and two adjacent vertices are
plotted. (b) The spectral band IpV q and the spectral bands of type A
and B it contains in the subsequent levels where p “ ck`1 ´ 1 if IpV q
is of type A and p “ ck`1 if IpV q is of type B.

This defines a V -independent tree graph T (see e.g. Figure 1 (b)) with the basic
rules sketched in Figure 2, where each level k represents all the spectral bands of
σpHα

k
,V q. It encodes the local relations and order of these spectral bands. Then,

the boundary of the tree BT is the set of all infinite paths starting at the root.
This leads to the following connection of BT with σpHα,V q and a V -independent

representation of the IDS, which is proven in [8] for V ą 4 and in [2] for all V ‰ 0.

Theorem 4. Let V ą 0 and α P r0, 1szQ.

(a) There exists a bijective map

EV : BT Ñ σpHα,V q, γ ÞÑ EV pγq.
(b) For γ P BT and k ě ´1, there exists πkpγq P t0, . . . , ck`1u such that

Nα,V
`
EV pγq

˘
“ ´α`

8ÿ

k“´1

p´1qkπkpγqpqkα ´ pkq,
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We highlight that a major difficulty lies in proving the injectivity of the map
EV for small coupling constants V . This injectivity is the crucial ingredient to
prove the complete solution to the Sturmian Dry TMP stated in Theorem 1.
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Mild distributions in diffraction theory

Christoph Richard

(joint work with Hans G. Feichtinger, Christoph Schumacher, Nicolae Strungaru)

We consider locally compact abelian (LCA) groups G together with their dual

groups pG, and fix Haar measures on G and pG such that Plancherel’s formula holds.
Take any non-constant g P L1pGqXC0pGq and define S0pGq “ tf P L1pGqXC0pGq :
}f}S0

ă 8u, where }f}S0
“

ş
pG }pχfq ˚ g}1dχ. Here, ˚ denotes convolution, and

pχfqpxq “ χpxqfpxq for χ P pG and f P L1pGq. Then pS0pGq, } ¨ }S0
q is a Banach

algebra with respect to both pointwise multiplication and convolution, and differ-
ent choices of g lead to equivalent norms. The space S0pGq has been introduced
by Feichtinger [5]; see [7] for a recent review. The Bruhat–Schwartz functions on
G are contained in S0pGq as a dense subspace, and the Fourier transform provides

a bijection between S0pGq and S0p pGq. This makes distribution theory based on
Feichtinger’s algebra a powerful tool for harmonic analysis on general LCA groups.
Elements of the dual space S1

0pGq of bounded linear functionals on S0pGq are called
mild distributions.

Diffraction analysis on LCA groups [9, 14] uses Fourier analysis of translation
bounded Radon measures, as developed by Argabright and Gil de Lamadrid [1,6].
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Recall that a Radon measure µ on G is translation-bounded if

supt|µ|px `Kq : x P Gu ă 8 ,

for all compact K Ď G, where |µ| denotes the total variation measure of µ. As
any such measure can be identified with a mild distribution [4, Thm. B1], their
Fourier theory is subsumed by that of mild distributions. Somewhat surprisingly,
this connection has not systematically been used so far.

As an initial step, we re-analyse model set diffraction [2, Sec. 7.2]. Since model
sets are projections of certain lattice subsets, one might expect that the Poisson
summation formula of the underlying lattice determines their diffraction. This
point of view has been put forward by Lagarias [8, Thm. 2.9], and summation
formulae have been given for Euclidean space [2, Lem. 9.3] and for general LCA
groups [13]. Observing that the Poisson summation formula continues to hold for
test functions from S0, see e.g. [7, Ex. 5.12], it is straightforward to obtain a sum-
mation formula for weighted model sets with weight functions from Feichtinger’s
algebra. This subsumes the results mentioned above and extends a recent result
by Matusiak [10, Thm. 4.2] from Euclidean space to the general setting.

Fix LCA groups G,H and a lattice L Ď G ˆ H , i.e., a discrete co-compact
subgroup of G ˆ H . Using the notation of [13], we consider for h P S0pHq the
weighted Dirac comb ωh “ ř

px,yqPL hpyqδx on G, which is a translation-bounded

measure on G. There is a corresponding weighted Dirac comb on pG constructed

from the lattice L˝ Ď pG ˆ pH dual to L, i.e., from the annihilator of L in pG ˆ pH.

We write ωψ “
ř

pχ,ηqPL˝ ψpηqδχ for ψ P S0p pHq. The autocorrelation measure

γω
h
of ωh is a translation-bounded measure on G defined by a certain averaging

procedure. Take any van Hove net pAιqιPI in G, for example Aι “ U ` Fι with
U any compact zero neighbourhood and with pFιqιPI any Følner net in G; see [12,
Prop. 5.10]. In Euclidean space, the sequence of centred closed balls of radius
n P N constitutes a van Hove net. Consider the so-called Eberlein convolution

γω
h

“ ωh f Ăωh “ lim
ιPI

ωh|Aι
˚ Čωh|Aι

mGpAιq
.

Here, mG denotes the Haar measure, |A denotes restriction to A and, for a Radon

measure ω, its reflected version rω is defined by rωpfq “ ωp rfq where rfpxq “ fp´xq.
We assume that L projects densely intoH . Then, the above limit indeed exists and
is independent of the chosen van Hove net. In fact, γω

h
“ denspLq ¨ ω

h˚rh, where

denspLq is the density of the lattice L, which equals the reciprocal Haar measure
of a fundamental domain of L in G ˆ H . The summation formula can now be
cast in terms of the following commutative Wiener diagram, which resembles the



2134 Oberwolfach Report 37/2023

physicist’s recipe for computing diffraction intensities of a finite sample from ωh.

ωh
fÝÝÝÝÑ denspLq ¨ ω

h˚rh

p
§§đ

§§đp

denspLq ¨ ωqh
|¨|2ÝÝÝÝÑ denspLq2 ¨ ω|qh|2

Here, all objects are discrete translation-bounded measures, whose sums on any
function from S0 are absolutely convergent. The measure Fourier transform is
denoted by p, and | ¨ |2 means squaring the weights of the weighted Dirac comb.
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On the lack of equidistribution on fat Cantor sets

Gabriel Fuhrmann

Given an irrational rotation number ω P RzQ, a set W Ď T1p“ R{Zq and a point
x P T1, we define

SnW pxq “ 1{n ¨
n´1ÿ

ℓ“0

1W px` ℓωq pn P Nq,

where 1W denotes the characteristic function of W .
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It is well known and straightforward to see that, if W is a Cantor set, there
is a dense (in fact, residual) set of x P T1 with limnÑ8 SnW pxq “ 0. This is a
consequence of Baire’s category theorem. On the other hand, if W is a fat Cantor
set (that is, Leb

T1pW q ą 0), we have limnÑ8 SnW pxq “ Leb
T1pW q ą 0 for Leb

T1 -
a.e. x. This is a consequence of Birkhoff’s ergodic theorem.

But what other frequencies of visits to W may occur? In the words of a recent
MathOverflow post [1], what is the set

SW “
ď

xPT1

č

NPN
tSnW pxq : n ě Nu?

Due to the above dichotomybetween the topological and the measure-theoretical
perspective, purely topological tools are just as useless in answering this ques-
tion as purely measure-theoretical ones. Instead, we utilise almost automorphic
symbolic extensions and their representation via ordered Bratteli diagrams to
show that every irrational rotation admits certain fat Cantor sets C (which, in-
terestingly, include those constructed in [2]) such that SC is maximal, that is,
SC “ r0,Leb

T1pCqs. This observation is, in fact, a corollary of a more general
theorem about at most 2-to-1 almost 1-to-1 factor maps between minimal home-
omorphisms on the Cantor set.

The overall strategy of the proof of this theorem is to reduce the computation
of the asymptotic frequencies (where n Ñ 8) to finite-time frequencies in an
associated extended Bratteli diagram—a notion introduced in [4] for Toeplitz shifts.
The corollary is then obtained by applying the theorem to 2-to-1 extensions of
Sturmian shifts.

We also show—by an explicit construction—that every irrational rotation ad-
mits for certain fat Cantor sets C such that SC is not maximal. Again, this
observation is a corollary of a more general theorem—this time about at most 3-
to-1 almost 1-to-1 factor maps between minimal homeomorphisms on the Cantor
set.
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Counting patches and discontinuities of Penrose integrated densities
of states

May Mei

(joint work with David Damanik, Mark Embree, Jake Fillman)

In [2], the authors show that, if pΩ, T q is a Delone dynamical system of finite
type, then there exists a Delone dynamical system of finite type pΩb, T q and a
random operator of finite range pAbωq on pΩb, T q such that pΩ, T q and pΩb, T q
are mutually locally derivable and pAbωq has locally supported eigenfunctions with
the same eigenvalues for every ω P Ωb. Moreover, pAbωq can be chosen to be
the nearest neighbour Laplacian of a suitable graph. Further, if pΩ, T q is strictly
ergodic and A is a self-adjoint random operator of finite range, then E is a point
of discontinuity of the spectral measure ρA if and only if there exists a locally
supported eigenfunction of Aω corresponding to E for some ω P Ω.

In [1], we compute lower bounds for the heights of jumps in the integrated den-
sity of states for the nearest neighbour Laplacian on graphs associated to members
of the MLD class of Penrose tilings. We consider the dual graph of a tiling, namely
vertices are associated to tiles and two vertices are adjacent via an edge just in
case two tiles are adjacent in the tiling. Consider the Robinson triangle tiling. We

show that the proportion of eigenvalues E “ 2 is bounded below by 65´29
?
5

20
. The

proportion of eigenvalues E “ 4 is given by the same number. This is obtained
through a combinatorial argument and recursion based on the proportion of acute
and obtuse triangles. Now consider the Penrose pentagon boat star tiling and the
associated substitution. The support of an eigenfunction for E “ 4 appears after
the two-fold application of the substitution to a pentagon. Thus, an explicit cal-
culation of the number of pentagon tiles yields a lower bound for the proportion
of eigenvalues.
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Spectral computations for aperiodic models

Mark Embree

(joint work with David Damanik, Jake Fillman, May Mei)

With a finite section of the Penrose tiling we can associate a graph, identifying tiles
as nodes and placing edges between tiles that share a common boundary segment.
We study spectral properties of the graph Laplacian, the matrix constructed by
subtracting the graph’s adjacency matrix from its (diagonal) degree matrix.
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For four different Penrose constructions (Robinson triangles; kites and darts;
rhombuses; boats and stars), one can construct eigenvectors of the graph Laplacian
that are supported on finitely many tiles away from the boundary, as illustrated
in [1]. The existence of such finitely-supported modes (identified in the physics
literature in the 1980s, see, e.g., [2], and for the vertex-based variant of the Penrose
Laplacian [3]) implies that the integrated density of states associated with the
infinite tiling will exhibit a jump at the corresponding energy.

This talk describes some computational tools we use to investigate these locally
supported modes, and the numerical results they produce. Some questions (such
as computation of the integrated density of states) require computation of the
entire spectrum; others require more local information about the spectrum and
thus permit calculations with much larger matrices.

To count the multiplicity of a specific energy E, we utilise a technique called
spectrum slicing [4]. This technique works on the following premise: The symmet-
ric matrix A can be factored as the product A “ LDLT , where L is an invertible
lower-triangular matrix, and the D is block diagonal, having 1-by-1 or 2-by-2 di-
agonal blocks. Since A is a congruence transformation of D, Sylvester’s law of
inertia ensures that A and D have the same inertia (number of positive, zero, and
negative eigenvalues); the structure of D makes this inertia easy to compute. By
comparing the inertia of A´ pE`εqI and A´ pE´εqI for, say, ε “ 10´10, one can
estimate the multiplicity of E as an eigenvalue of A. This knowledge can support
the search for novel finitely supported mode shapes on large sections of the tiling.

We utilise the same technique to investigate the existence of gaps in the spec-
trum for the Robinson triangle construction. If the inertia of A´ αI and A ´ βI

agree, we have no eigenvalues in the interval rα, βs. We produce numerical evi-
dence for the existence of gaps that persist on larger and larger sections of the
Robinson triangle tiling.
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How to compute exact patch frequencies in certain projection tilings

Jan Mazáč

The exact computation of frequencies of large patches of various tilings is a tricky
task. We present an efficient algorithm for obtaining them for tilings that can
be described via the dualisation method. This method, due to Kramer and
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Schlottmann [4], directly applies to the rhombic Penrose tiling [2] or the Ammann–
Beenker tiling [1]. It provides a one-to-one correspondence between a tile and a
dual tile, which is a convex polytope in the internal space. Due to equidistribution
results, its area is proportional to the frequency of the given object.

In the case of rhombic Penrose tilings, a dual triangle is assigned to each rhom-
bus. One can list all possible tiles and their relative positions with respect to some
chosen origin. By applying the duality, one gets a list of triangles in internal space.
The vertex coordinates are elements of Qp

?
5q, and the intersection of all trian-

gles can be exactly computed using a clipping algorithm. The resulting convex
polygon still has its coordinates within the same number field. The area of such a
polygon can be calculated via the shoelace formula, and, again, the result remains
in Qp

?
5q. After dividing by the total area of the window for the vertex points,

this yields the exact relative patch frequency.
In [5], we present the frequencies of large (possibly disconnected) patches of

the Penrose rhombic tiling and the Ammann–Beenker tiling, which appear when
studying Schrödinger operators on graph structures arising from those tilings [3].
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Large normalizer of odometers and automatic Zd-sequences

Samuel Petite

(joint work with Christopher Cabezas)

For a Zd topological dynamical system pZ, T,Zdq, an isomorphism is a self-homeo-
morphism φ : X Ñ X such that, for some matrix M P GLpd,Zq and any n P
Zd, φ ˝ Tn “ TMn ˝ φ, where Tn denotes the self-homeomorphism of X given
by the action of n. The collection of all such isomorphisms is a group that is
the normalizer of the set of transformations Tn. In the one-dimensional case,
isomorphisms corresponds to the notion of flip conjugacy of dynamical systems
and by this fact are also called reversing symmetries (see [1, 3]).

These isomorphisms are not well understood even for classical systems. In [2],
we present a description of them for odometers and, more precisely, for Z2-constant
base odometers, which, surprisingly, is not simple. This is a classification where we
give computable arithmetical conditions to determine the elements of the group.
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We deduce a complete description of the isomorphisms of some Zd, d ą 1,
minimal substitution subshifts. We give the first example known of a minimal
zero-entropy subshift with the largest possible normalizer group. In particular,
we show that any matrix M P GLpd,Zq occurs as a matrix associated to an
isomorphism of the half-hex tiling system.

Surprisingly, even if our examples have the smallest complexity among aperi-
odic subshifts, their normalizers are not amenable. This is in contrast with what
happens in dimension d “ 1, where the group of isomorphisms (which is a finite
extension of the automorphism group) is known to be amenable for a large class
of zero-entropy subshifts.
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Scaling properties of Thue–Morse measure

Philipp Gohlke

(joint work with Michael Baake, Marc Kesseböhmer, Georgios Lamprinakis,
Tanja Schindler, Jörg Schmeling)

The Thue–Morse measure µ is a paradigmatic example of a singular continuous
measure on the torus T “ R{Z, initially studied by Mahler [6]. It arises as a
diffraction measure of the Thue–Morse substitution ̺ : a ÞÑ ab, b ÞÑ ba with bal-
anced weights and can be represented as the Riesz product

µ “
8ź

n“0

`
1 ´ cosp2π2nxq

˘
,

to be understood as a weak limit of probability densities. We are interested in the
local scaling properties of the measure µ, that is, we ask: How does the measure
µpBrpxqq of the ball Brpxq “ ty P T : |x ´ y| ă ru decay as r Ñ 0? Since the
answer to this question depends heavily on the point x, we in fact aim to quantify
the Hausdorff dimension dimH of all points x with a given local scaling behaviour.

As a first step, we quantify this question in terms of the local dimension of µ
at x, given by

dµpxq :“ lim
rÓ0

logµpBrpxqq
log r

,

provided that the limit exists. To gain sufficient control over the local decay
behaviour, it is useful to note that µ falls into the class of g-measures (studied by
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Keane [4]) over the doubling map pT, T q, with T : x ÞÑ 2x mod 1. More precisely,
µ is invariant under the dual of the transfer operator ϕg : CpTq Ñ CpTq, with

pϕgfqpxq “
ÿ

yPT´1x

gpyqfpyq, g : y ÞÑ 1

2

`
1 ´ cosp2πyq

˘
.

The relation
ş
ϕgf dµ “

ş
f dµ can be used to estimate the measure on dyadic

intervals of the form I “ rk2´n, pk ` 1q2´ns, with 0 ď k ă 2n, by sampling the
potential function ψ “ logpgq along the doubling map. More precisely,

µpIq “
ż

T

exp
`
Snψp2´npk ` xqq

˘
dµpxq, Snψpxq “

n´1ÿ

k“0

ψpT kxq.

Hence, the value of µ on small intervals is intimately connected to appropriately
defined Birkhoff sums. The description of ψ as a potential function goes back to
the observation of Ledrappier [5] that µ is an equilibrium measure for ψ, that is,
it achieves the maximum in

Ppψq “ sup
νPMT

hν `
ż
ψ dµ,

where MT is the set of T -invariant probability measures on T, hνpT q denotes the
entropy of ν, and Ppψq is called the pressure of ψ. Introducing a real parameter t
leads to the pressure function

p : R Ñ R, t ÞÑ Pptψq.
For Hölder-continuous potential functions, there is a well-understood relation be-
tween the Legendre transform of the pressure function and the local dimensions
of the corresponding equilibrium measure [7]. This relation extends to the case at
hand, despite the technical obstacle that ψ has a singularity at the origin.

Theorem 1 ([1]). The dimension spectrum

fpαq “ dimHtx P T : dµpxq “ αu
is related to p˚pαq “ inftPRpαt ´ pptqq via

fpαq “ max

"´p˚p´α log 2q
log 2

, 0

*
,

for all α P R.

For an illustration of the dimension spectrum, we refer the reader to [1]. In
contrast to equilibrium measures that are related to Hölder-continuous potential
functions, the function f is strictly positive on a half-line; in fact, fpαq “ 1 for
all α ě 2. That is, points with arbitrarily large local dimension occur with full
Hausdorff dimension. The fastest decay of µ occurs precisely at dyadic points y,
where it satisfies

lim
rÓ0

log2 µpBrpyqq
´plog2 rq2

“ 1,
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compare [2] for a more refined estimate at y “ 0. The dyadic points form a
(countable) set of vanishing Hausdorff dimension, but demanding a slightly slower
decay already produces sets of full Hausdorff dimension.

Theorem 2 ([3]). For all γ P p1, 2q and c ě 0, we have

dimH

"
x P T : lim

rÓ0

log2 µpBrpxqq
´plog2 rqγ

“ c

*
“ 1.

In this sense, γ “ 2 is the critical exponent. However, except at dyadic points,
the family phrpxqqrą0 with

hrpxq “ log2 µpBrpyqq
´plog2 rq2

does not possess a limit as r Ó 0. In the following result, we quantify the spreading
of accumulation points explicitly.

Theorem 3 ([3]). Let hpxq “ lim infrÓ0 hrpxq and hpxq “ lim suprÓ0 hrpxq for all
x P T. Then, for all non-dyadic x P T, we have hpxq ď 1{2 and

hpxq ě hpxq
1 ´ hpxq .

The bound provided by this theorem is sharp in the sense that, for all β P r0, 1{2s
and α ě β{p1 ´ βq, there is a point x P T with hpxq “ α and hpxq “ β. In [3], we
give an explicit analytic expression for the joint dimension spectrum

F pα, βq “ dimHtx P T : hpxq “ α, hpxq “ βu,

for all possible values α, β P R.

References
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On spectrum of aperiodic Schrödinger operators with random noise

Anton Gorodetski

(joint work with A. Avila, D. Damanik, V. Kleptsyn)

The spectrum of a discrete Schrödinger operator with a periodic potential is known
to be a finite union of intervals. The same is true for Anderson’s model, i.e., for a
Schrödinger operator where the potential is defined to be a sequence of i.i.d. ran-
dom variables. The “intermediate” case of deterministic aperiodic potentials, or
“one dimensional quasicrystals” (Fibonacci Hamiltonian, Sturmian, Almost Math-
ieu, limit periodic, substitution potentials, thus etc.), tends to present a Cantor
set as its spectrum, even if it is not easy to prove this in many cases.

What happens if one adds some random noise on top of an aperiodic potential,
or, more generally, a given ergodic potential? It turns out that, in many cases,
“randomness” wins, both in terms of spectral type, and in terms of topological
structure of the spectrum. More specifically, one can prove Anderson localization
for such models, i.e., to show that the spectrum must be pure point almost surely.
And, under the additional assumption that the phase space of the dynamical
system that defines the background potential is connected, one can show that the
almost-sure spectrum must be a finite union of intervals, exactly as in Anderson’s
model.

Let us now provide a formal setting and statements of some of these results.
Given a compact metric space X , a homeomorphism T : X Ñ X , an ergodic Borel
probability measure µ with full topological support, suppµ “ X , and a sampling
function f P CpX,Rq, we generate potentials

Vxpnq “ fpT nxq, x P X, n P Z

and Schrödinger operators

rHxψspnq “ ψpn` 1q ` ψpn´ 1q ` Vxpnqψpnq
on ℓ2pZq. By the general theory of ergodic Schrödinger operators on ℓ2pZq, the
spectrum of Hx, denoted by σpHxq, is almost surely independent of x. That is,
there is a compact set Σ0 such that

Σ0 “ σpHxq for µ-almost every x P X.
The specific cases one might want to consider here are periodic potentials (in

this setting, X is a finite set, and T is a cyclic permutation), the almost Mathieu
potential (X is the circle, T is an irrational rotation, and f : S1 Ñ R is given
by fpxq “ 2λ cosp2πxq), the Fibonacci substitution sequence, Sturmian potentials
(X is a Cantor set), etc. Any one-dimensional aperiodic structure can be modeled
by an ergodic potential by considering the hull of a sequence, and hence can be
included into this setting.

The random perturbation is given by

Wωpnq “ ωn, ω P Ω, n P Z,

where Ω “ psupp νqZ and ν is a compactly-supported probability measure on
R with topological support S :“ supp ν satisfying #S ě 2. It turns out that
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Anderson localisation can be proved for the operatorHx`Wω in this case. Namely,
in our work with V. Kleptsyn [3] based on previously obtained non-stationary
version of Furstenberg theorem on random matrix products [2], we show that the
following holds.

Theorem 1. Almost surely (with respect to νZ), the spectrum of the Schrödinger
operator Hx`Wω is pure point, with exponentially decreasing eigenfunctions. Also,
dynamical localisation holds almost surely for the operator Hx `Wω.

Let us now address the question about the topological structure of the spectrum
of Hx ` Wω. Since the product of µ and µ̃ :“ νZ is ergodic with respect to the
product of T and the left shift, there is, again by the general theory of ergodic
Schrödinger operators in ℓ2pZq, a compact set Σ1 such that

Σ1 “ σpHx `Wωq for µˆ µ̃-almost every px, ωq P X ˆ Ω.

Since supppµ ˆ µ̃q “ X ˆ SZ, we also have

Σ1 “
ď

px,ωqPXˆSZ

σpHx `Wωq,

that is, the spectra corresponding to exceptional points can only be smaller than
the almost sure spectrum. In particular,

σpHx `Wωq Ď Σ1 for every px, ωq P X ˆ SZ.

Before stating the result, we introduce the following operation on pairs of com-
pact subsets of R. Suppose A and B are compact subsets of R. We define the
compact set A ‹ B as follows. If diampAq ě diampBq, then A ‹ B “ A ` chpBq,
and if diampAq ă diampBq, then A ‹B “ chpAq ` B. Here, diampSq denotes the
diameter, chpSq denotes the convex hull of a compact S Ă R, and S1 `S2 denotes
the Minkowski sum ts1 ` s2 : s1 P S1, s2 P S2u.

In [1], jointly with A. Avila and D. Damanik, we prove the following.

Theorem 2. Consider the setting described above and assume that X is connected.
Then, we have Σ1 “ Σ0 ‹ S.

This theorem provides an affirmative answer to a question by Bellissard.

Corollary 3. If X is connected, the almost sure spectrum Σ1 is given by a finite
union of non-degenerate compact intervals.

Notice that the condition that X is connected cannot be removed, and, while it
holds in many important cases (e.g., almost Mathieu potential as background), it
also excludes many interesting models. We will formulate a specific open question.

Question 4. Let H be the Fibonacci Hamiltonian (the discrete Schrödinger opera-
tor with the potential given by the Fibonacci substitution sequence). What can one
say about topological structure of the spectrum of its random perturbation H`Wω?
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Transversal Hölder regularity in tiling spaces and applications

Rodrigo Treviño

Let Ω be the tiling space of a primitive substitution tiling of finite local complexity.
Anderson and Putnam [1] showed us how this is homeomorphic to the inverse limit

(12) Ω – lim
Ð

pΓ, γq :“ tpx0, x1, . . . q P Γ8 : xi “ γpxi`1qu

where Γ is a compact flat branched manifold of dimension d ě 1 and γ : Γ Ñ Γ is
a locally expanding affine surjective map, which I will assume here to be uniformly
expanding and has derivativeDγ “ λ¨Id outside the branches of Γ, for some λ ą 1.
For each k, there is a projection map πk : Ω Ñ Γ to the kth coordinate. The space
Ω is a compact metric space and has the local product structure of a Euclidean
ball of dimension d and a Cantor set. More precisely, the local kth transversal
around a point x P Ω is the set CK

k pxq :“ ty P Ω : yi “ xi for all 0 ď i ď ku, which
is a Cantor set. The tiling space Ω is foliated by orbits of a minimal Rd action
which can be described in the coordinates (12)

(13) ϕtpxq “
`
x0 ´ t, x1 ´ pDγq´1t, x2 ´ pDγq´2t, . . .

˘
,

for x “ px0, x1, x2, . . . q P Ω and t P Rd. Let µ be the unique Rd-invariant proba-
bility measure, with local product structure µ “ Leb ˆ ν.

My talk focuses on trying to understand spaces of functions of varying regularity.
The lowest amount of regularity one can ask for is continuity, and the algebra CpΩq
of continuous functions is well known. At the highest extreme of regularity are
the C8 transversally locally constant (tlc) functions defined as

C8
tlcpΩq “

ď

kě0

π˚
kC

8pΓq

where C8pΓq is the space of C8-smooth functions on Γ. This set captures the
maximum regularity in both directions when seen locally: C8 in the Euclidean
direction and locally constant in the Cantor direction.

Are there good spaces of functions of intermediate regularity? It is easy to
imagine the space Crtlc of functions which are Cr in the Euclidean direction and
locally constant in the Cantor direction, but is there a way to relax the regularity
in the Cantor direction?

One of the motivations comes from cohomology. Recall that the leafwise or
tangential de Rham cohomology of a tiling space H˚

tlcpΩ;Rq is the cohomology
of the complex of forms with coefficients in C8

tlc (this is also known as the strong

pattern-equivariant cohomology). By [2], H˚
tlcpΩ;Rq is isomorphic to the real Čech
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cohomology Ȟ˚pΩ;Rq. Here, every function f P C8
tlc has a cohomology class

rf s P Hd
tlcpΩ;Rq, and every class in the finite dimensional vector space Hd

tlcpΩ;Rq
is represented by a function in C8

tlc. Pick a norm } ¨ } on Hd
tlcpΩ;Rq and, for each

k, a function fk P π˚
kC

8pΓq Ă C8
tlc such that fk ‰ γ˚fk´1. Now consider the

sequence of functions

(14) Fk “
kÿ

i“0

εifi,

where εi “ 2´i}rfis}´1. Then, Fk P C8
tlc for all k ě 0 and so rFks P Hd

tlcpΩ;Rq for
all k ě 0. Moreover, by construction, rFks converges in Hd

tlcpΩ;Rq but F8 R C8
tlc

so F8 cannot be assigned a cohomology class even though it is really natural to
assign it the limit of rFks. How can this conundrum be resolved? The reason rFks
converges has to do with the fast decay with k and so it would be nice to see that
this is related to the regularity of F8 in the (transverse) Cantor direction.

In order to do this, consider the σ sub-algebra Ak of the Borel σ-algebra A of

Ω which is generated by sets of the form π´1
k pAq, where A Ă Γ is an open set, and

denote by Ep¨|Akq : L1pA, µq Ñ L1pAk, µq the conditional expectation, which has
the explicit form

Epf |Akqpxq “ νpCK
k pxqq´1

ż

CK
k

pxq
fpzq dνpzq.

Denote Πkf :“ Epf |Akq and let me make two remarks. First, Πkf is a transver-
sally locally constant function. Second, by the increasing martingale theorem,
Πkf Ñ f in L1. Thus we can approximate arbitrary measurable functions by
functions which are transversally locally constant. One way to think about Πkf
is the amount of f one has access to if one only knows the coordinates x0, . . . , xk
of a point in Ω.

We can now rewrite Πkf . Let Π´1f “ 0 and, for k ě 0, let δk :“ Πkf ´Πk´1f .

Then, Πkf “
řk
i“0 δkf with δkf “ π˚

k gk, for some measurable function gk on Γ
and δkf ‰ γ˚δk´1f . Thus, we see how any f P L1 can be expressed as the sum of
functions which are pullbacks of functions on Γ: f “ ř

kě0 δkf . Given the way one
can think about Πkf , one way to think about δkf “ Πkf ´ Πk´1f is the amount

of information we have about fpxq if we only know the kth coordinate xk.
Now that we know how to consider functions both as infinite sums and as limits

of transversally locally constant functions, we can talk about the decay rates. For
r, α ě 0, let

S
r
αpΩq :“

#
f “

ÿ

kě0

fk :
fk “ π˚

k pf pkqq for some f pkq P CrpΓq and there

exists a Cf such that }f pkq}CrpΓq ď Cfλ
´kα

+
.

Two comments are in order about these spaces of functions. First, denoting by Crα
the space of functions on Ω whose first r derivatives are continuous and transver-
sally α-Hölder, we have the inclusion Srα Ă Crα. Note that any notion of Hölder
continuity has an implicit choice of metric, and so there is an implicit choice in the
containment Srα Ă Crα. Secondly, if f P Srα, then Bvf P S

r´1
α`1 for any v P Rd, where
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Bv denotes the leafwise directional derivative. This last property follows from the
definition of Srα and (13) by direct computation.

These spaces of functions separately capture regularity in the leaf direction
as well as regularity in the transverse (Cantor) direction through the param-
eters r P N, α P p0,8s. The main reported result is the following de Rham
regularization-like result.

Theorem 1. Let H˚
r,αpΩ;Rq be the leafwise cohomology with coefficients in Srα. If

r P N and α ą 1, then H˚
r,αpΩ;Rq is isomorphic to H˚

tlcpΩ;Rq.
This solves the conundrum of giving F8 in (14) a cohomology class. But it

does more: the spaces Srα can be completed to define so-called anisotropic Banach
spaces which are crucial in understanding the rates of mixing of the hyperbolic
map Φ : Ω Ñ Ω given by γpxq “ pγpx0q, x0, x1, . . . q through its induced action
on cohomology. In addition, they help understand solutions to the cohomological
equation f “ u ˝φ´u for functions f in the Hölder class whenever φ is a minimal
substitution subshift. More details and proofs of all of the mentioned results are
found in the preprint [3].
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Substitutions on compact alphabets

Neil Mañibo

(joint work with Dirk Frettlöh, Alexey Garber, Dan Rust, Jamie Walton)

Let A be a compact Hausdorff topological space. A substitution ̺ on A is a
continuous map from A to the set A` of (non-empty) finite words over A. From

̺, one can build a subshift X̺ Ă AZ using the language L̺ “ tv P A` : v Ÿ ̺npaqu,
where Ÿ denotes the subword relation and where the closure is taken with respect
to the topology of A`. As in the finite alphabet case, one is interested in the
properties of the topological dynamical system pX̺, σq; see [5] for details and [1,2]
for related works.

In this setting, one calls ̺ primitive if, for every non-empty open set U Ă A,
there exists an n :“ npUq such that ̺npaq contains a letter in U , for all a P A.
This implies the minimality of pX̺, σq. A weaker notion is that of irreducibility,
which means that ̺ cannot be restricted to a proper subalphabet of A.

Requiring that ̺ is continuous has immediate consequences. In particular, this
implies that ̺ must be of constant length if A is connected. Moreover, one obtains
a canonical space to work with, which is the space E “ CpAq of real-valued
continuous functions on A. This is a Banach lattice, whose positive cone K is the
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set of functions with fpaq ě 0 for all a. One can define the substitution operator
M :“ M̺ : E Ñ E via

pMfqpaq “
ÿ

bŸ ̺paq
fpbq,

where ̺paq is seen as a multiset. This generalises the (transpose of the) substitution
matrix for substitutions on finite alphabets. If ̺ is primitive, one has the bounds
minaPA |̺npaq| ď rpMqn ď maxaPA |̺npaq| involving the spectral radius rpMq.
Since MK Ă K, M is a positive operator.

We call 0 ‰ ℓ P K a natural length function if Mℓ “ λℓ, for some ℓ ą 0. Two
questions one can ask regarding substitutions on compact alphabets are

(Q1) When does ̺ admit a strictly positive natural length function with λ ą 1?

(Q2) When is pX̺, σq uniquely ergodic?

A positive answer to Q1 allows one to realise ̺ as a geometric inflation rule that
generates tilings of R (which are typically of infinite local complexity). Here, λ is
called the inflation factor.

To answer these questions, one needs a suitable version of Perron–Frobenius
theory for positive operators on Banach lattices (particularly AM -spaces). The
classical Krěın–Rutman theorem cannot be applied here since the operator M is
never compact whenever ̺ is primitive; see [5].

An operatorM : E Ñ E is called quasi-compact if there exists a compact opera-
tor C and a power n such that }Mn´C} ă rpMqn. Equivalently, resspMq ă rpMq,
where resspMq is the essential spectral radius of M . We briefly remark that if A is
finite, M is trivially quasi-compact since it is of finite range (and hence compact).
The next result shows that this property leads to affirmative answers to the two
questions above.

Theorem 1 ([5]). Let ̺ be a substitution on a compact Hausdorff alphabet A.
Suppose ̺ is primitive and M is quasi-compact. Then

(1) ̺ admits a strictly positive natural length function with λ “ rpMq.
(2) pX̺, σq is uniquely ergodic. �

To get (1), it suffices to satisfy the weaker assumption that ̺ is irreducible and
M is mean ergodic. On the other hand, (2) is guaranteed if ̺ is irreducible and M
is strongly power convergent ; see [5] and references therein. When ̺ is irreducible,
one has the following hierarchy of convergence properties

M quasi-compact ùñ M strongly power convergent ùñ M mean ergodic.

In this talk, we chose to focus on the stronger assumptions of Theorem 1 as they
are easier to check for examples. In particular, we have the following combinatorial
condition which implies the quasi-compactness of M .

Theorem 2 ([5]). Let ̺ be a substitution on a compact Hausdorff alphabet A. Let
F Ă A be finite. For k P N, consider CkpF q :“ maxaPA #

 
b Ÿ ̺kpaq, b R F

(
. If,

for some k P N,
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(i) CkpF q ă rpMqk and F consists only of isolated points, or

(ii) 2CkpF q ă rpMqk,
then M is quasi-compact. �

The proof uses the finite set F to construct the compact operator C in the defini-
tion of quasi-compactess. The lower bound for rpMqk involving |̺npaq| mentioned
above turns this into a checkable condition.

A family of examples parametrised by a sequence m “ pmiqiě0 of non-negative
integers was discussed during the talk. For n P N0, one builds the rule

̺
m
:

$
’’’’&
’’’’%

0 ÞÑ 0m0 1

1 ÞÑ 0m1 0 1
...

...

n ÞÑ 0mn pn´1q pn`1q,
where 0m refers to the concatenation of m copies of 0. This is the generalisation
of the example with the constant sequence m “ p1qiě0 in [6].

This rule is then extended to a suitable compactification of the set N0, that is,

A “ ιpN0q, where ιpN0q is an appropriate embedding of N0 in some full shift Y .
Both the ambient full shift Y and the embedding ι depend on m. The closure is
taken with respect to the topology on Y . Depending on m, the set AzιpN0q of
accumulation points can be finite, countably infinite, or uncountable; see [4] for a
detailed account.

When m “ p1qiě0, the alphabet is A “ N0 Y t8u, ̺m is primitive, and M

is quasi-compact. The inflation factor is λ “ 5{2, which is impossible to achieve
with a substitution on a finite alphabet (where λ is always an algebraic integer).
Moreover, the length function is given by ℓpnq “ 2 ´ 1

2n
for n P N0 and ℓp8q “ 2.

It turns out that this generalisation allows one to realise an even larger class of
possible inflation factors; see [4].

Theorem 3 ([4]). Let λ ą 2. Then, there exists a sequence m “ pmiqiě0 of
non-negative integers (satisfying some mild assumptions) such that

(1) ̺
m

is primitive and M is quasi-compact and

(2) ̺m has inflation factor λ. �

Closed forms for λ and ℓpnq (for n P N0) are available and are given by

λ “ µ ` 1

µ
and ℓpnq “ µn `

nÿ

j“1

8ÿ

i“j
miµ

i`n`1´2j ,

where µ is the unique solution in p0, 1q of the equation 1
µ

“ ř8
i“0miµ

i; see [3, 4].

An explicit example where λ is transcendental is also given in [4]. This is the
case when m “ p2, 1, 1, 2, 1, 2, 2, 1, . . .q is the Thue–Morse sequence on t1, 2u. This
provides the first example of a substitution tiling with transcendental inflation
factor. Primitivity and quasi-compactness also lead to the existence of a spectral
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gap, which is useful in discrepancy estimates; see [3] for Catalan-like behaviour
manifested by elements of this infinite family of substitutions.

Other interesting examples include the following respective generalisations of
Thue–Morse and Rudin–Shapiro substitutions,

̺TM,α : θ ÞÑ pθq pθ`αq and ̺RS,α

#
pθ, 0q ÞÑ pθ, 0q pθ`π, 1q
pθ, 1q ÞÑ pθ`α, 0q pθ`α, 1q

,

where α P T » R{Z is irrational. The corresponding alphabets are A “ T for
̺TM,α and A “ Tˆ t0, 1u for ̺RS,α; see [6]. Both substitutions are primitive. The
substitution operators are not quasi-compact, but are strongly power convergent.
It was shown in [6] that ̺TM,α has a purely singular dynamical spectrum, while
̺RS,α has countably infinite Lebesgue spectrum, countably infinite singular con-
tinuous spectrum, and a pure point component coming from the dyadic odometer.
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Galois groups and Cantor dynamics

Olga Lukina

(joint work with Maŕıa Isabel Cortez)

This is a brief summary of results on the properties of arboreal representations
of absolute Galois groups of number fields in the joint work with Cortez [2]. The
dynamical system we discuss is an action of a profinite group on the boundary of
a rooted tree T , constructed as follows.

Let fpxq be a polynomial of degree d ě 2 over K, where K is a finite field
extension of Q. Fix α P K and, for n ě 1 and fn “ f ˝ fn´1, consider the
equation fnpxq “ α. We assume that the polynomial fnpxq ´α is irreducible over
K for all n ě 1, hence the equation has dn distinct solutions. We define V0 “ tαu
and Vn “ f´npαq, with n ě 1, to be the vertex level sets of the tree T . We join
two vertices v P Vn`1 and w P Vn by an edge if and only if fpvq “ w.

Since the polynomial fnpxq ´ α is irreducible for all n ě 1, the finite field ex-
tensions Krf´npαqs{K are Galois, and the Galois group Hn is finite and permutes
the roots in Vn transitively. The action of Hn`1 on Vn`1 is compatible with the
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action of Hn, in the sense that it preserves the relation of connectedness by an
edge on vertices. Thus, this construction defines a homomorphism

ρf,α : GalpK{Kq Ñ Galf,α Ă AutpT q ,(15)

called the arboreal representation of fpxq over K, where AutpT q is the group of
automorphisms of T , and

Galf,α “ lim
ÐÝ

tHn Ñ Hn´1 | n ě 1u Ă AutpT q .

The study of arboreal representations goes back to Odoni [7], who used the
dynamics of arboreal representations to obtain an estimate on the density of prime
divisors in the set tfnpαq | n ě 1u, for polynomials over Q. The study of arboreal
representations is an active research area in arithmetic dynamics. Since the image
of an arboreal representation is a group acting on the boundary of a rooted tree,
it is natural to use topological dynamics and geometric group theory to study its
properties.

In [5], I showed how to study the action of the profinite group Galf,α on the
boundary of the tree T , using the methods developed for actions of countable
groups on Cantor sets. In [5], I also gave the first examples of computations of
algebraic invariants for the actions of arboreal representations, based on invariants
developed for actions of countable groups on Cantor sets in [3, 4]. More examples
were computed in [6].

One of the open questions about arboreal representations of Galois groups is
the properties of the images of Frobenius elements in GalpK{Kq under such rep-
resentations. A conjecture by Boston and Jones [1] states that the images of
Frobenius elements in AutpT q are settled, which means that they have a specific
cycle structure. By the Chebotarev density theorem, Frobenius elements are dense
in the absolute Galois group of Q, which motivates the following conjecture, due
to Boston and Jones [1].

Conjecture 1. Let fpxq be a polynomial of degree d ě 2 over a number field K,
let α P K, and let Galf,α Ă AutpTdq be the image of the corresponding arboreal
representation. Then, the images of Frobenius elements in AutpT q are settled,
and so the set of settled elements is dense in Galf,α.

To define the notion of a settled element, note that each g P AutpT q induces a
permutation πg,n of Vn, n ě 1. Each cycle τ of πg,n`1 projects onto a cycle τ 1 of
πg,n. Such a projection restricted to τ is an m-to-1 map, for an integer 1 ď m ď d.

Definition 2. A vertex vn P Vn is in a stable cycle τg,n if, for any m ě n and
any cycle τg,m in πg,m which projects onto τg,n, the projection τg,m Ñ τg,n is a

dm´n-to-1 map. We say that g P AutpT q is settled if

lim
nÑ8

|tv P Vn | v is in a stable cycleu|
|Vn| “ 1 .

Conjecture 1 holds for arboreal representations whose image has finite index in
AutpT q [1], for post-critically finite quadratic polynomials over Q, for which the
orbit of the critical point is strictly periodic of length 1, or pre-periodic of length
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2 [1], and for certain infinite wreath products of finite groups [2]. Further results
were obtained in [2].

Definition 3. A quadratic polynomial fpxq is post-critically finite, or PCF, if
the orbit

Pc “ tfpcq, f2pcq, . . .u
of its critical point c under forward iterations of f is finite.

The orbit Pc of c is pre-periodic if there exists k ě 1, and mc ą 1 such that,
for all s ě 1 and all m ě mc, we have fm`skpcq “ fmpxq.

Let K be a finite extension of Q. We consider the generic case which is handled
as follows. Let t be a transcendental element. Adjoining to Kptq the roots of the
equation fnpxq “ t, we obtain a Galois extension of K, for n ě 1. Implementing
the construction similar to the one used to define (15), we obtain a profinite group
Galarithpfq, called the profinite arithmetic iterated monodromy group. The profi-
nite group Galarithpfq contains a closed subgroup Galgeompfq, called the profinite
geometric iterated monodromy group. Pink observed that Galgeompfq is isomor-
phic to the closure of the discrete iterated monodromy group studied in geometric
group theory, and so the methods of the latter can be used to study the properties
of this group. One can specialize t to α, thus obtaining the group Galf,α which is
not larger, and in most cases equal to Galarithpfq.

Let r “ |Pc|, the length of the orbit of c. In [2], we obtained the following
results.

Theorem 4. Let fpxq be a quadratic PCF polynomial over a number field K with
pre-periodic post-critical orbit of length r “ 2. Then, Galgeompfq is not densely
settled, and Galarithpfq is densely settled.

Thus, Conjecture 1 holds for arboreal representations associated to quadratic
polynomials over number fields with pre-periodic post-critical orbit of length 2.
For r ě 3, the situation is as follows.

Theorem 5. Let fpxq be a quadratic PCF polynomial over a number field K with
pre-periodic post-critical orbit of length r ě 3. Then we have:

(1) Substantial evidence that Galgeompfq is densely settled;

(2) Substantial to good (depending on K) evidence that Galarithpfq is densely
settled.

The proof uses the analysis of the Weyl groups of maximal tori. Weyl groups
and maximal tori for actions of profinite groups were introduced in [2], where also
the notions of good and substantial evidence for the conjecture are made precise.
We refer to [2] for details.
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The conjugacy relation of Cantor minimal systems

Felipe Garćıa-Ramos

(joint work with Konrad Deka, Kosma Kasprzak, Philipp Kunde,
Dominik Kwietniak)

The existence of an isomorphism between two objects within a certain context tells
us that these objects cannot be distinguished from the point of view of that theory.
The objective of the classification problem is to have a method to determine all
possible (non-isomorphic) objects of the theory. The best scenario is a classification
result, which identifies all possible classes of isomorphic objects and a concrete
technique to determine the isomorphism class of each object. For example, a result
of Halmos and von Neumann states that every minimal equicontinuous dynamical
system is conjugated to a rotation on a compact abelian group, and two of such
systems are conjugated if and only if the set of eigenvalues coincide. On the other
hand an anti-classification result tells us when a classification result of a certain
type is not possible [2]. The first step towards anti-classification requires fixing a
representation for our problem by providing an appropriate model (or universal
space). Here, by a model we understand a topological space such that every
isomorphism class corresponds to at least one point in the space. Furthermore,
we obtain an equivalence relation on the model space by identifying points that
represent the same isomorphism class within our model space.

Here, we are interested in explaining an anti-classification result for Cantor
minimal dynamical systems that rules out characterisations based on countable
arguments.

We say pX,T q is a topological dynamical system (TDS) if X is a compact metris-
able space and T : X Ñ X is a homeomorphism. Let K be a Cantor space. A
TDS pK,T q is called a Cantor system.

The space of dynamical systems on a given set (our model) will be denoted
by HomeopXq “ tT : pX,T q is a TDSu. We equip HomeopXq with the following
metric

dspT1, T2q “ suptdpT ℓ1x, T ℓ2xq : x P X, ℓ P t´1, 1uu.
This makes HomeopXq a Polish space.

Two TDS pX1, T1q and pX2, T2q are conjugated if there exists a homeomorphism
f : X1 Ñ X2 such that f ˝ T1 “ T2 ˝ f . In this case, we write pX1, T1q « pX2, T2q.
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The equivalence relation generated by conjugacy is denoted by

R«pXq “ tpT1, T2q : pX,T1q « pX,T2qu Ă HomeopXq ˆ HomeopXq.
The following result indicates that R«pKq is a complicated set. Informally, it

means that Cantor systems cannot be classified using inherently countable tech-
niques.

Theorem 1 (Camerlo and Gao [1]). R«pKq is not a Borel subset of the product
HomeopKq ˆ HomeopKq.

A TDS is minimal if for every closed subset A Ă X such that T pAq Ă A we
have that A “ H or A “ X . We define

R
min
« pKq “ tpT1, T2q P R«pKq : pX,T1q is minimalu.

The following question was studied for pointed Cantor minimal systems.

Question 2 (Gao). Is Rmin
« pKq a Borel subset?

The triplet pX,T, xq is a pointed TDS if pX,T q is a TDS and x P X . We
say pX1, T1, x1q and pX2, T2, x2q are conjugated if there exists a homeomorphism
f : X1 Ñ X2 such that f ˝ T1 “ T2 ˝ f and fpx1q “ x2.

Theorem 3 (Kaya [3]). The equivalence relation generated by conjugacy of pointed
Cantor minimal systems is a Borel subset.

We prove that the situation for classical Cantor minimal systems is different.

Theorem 4. Rmin
« pKq is not a Borel subset.

Similar to the work of Foreman, Rudolph and Weiss [2], we will use ill-founded
trees to obtain our result.

A tree over an at most countable alphabet B is a prefix-closed collection of
words over B, that is T Ă BăN is a tree if for each w P T every prefix of w also
belongs to T , see [4, Ch. 2]. One can endow the set of all trees Tr over B with
the topology given by the metric D obtained in the following way: first enumerate
all words in the countable set BăN to form a sequence w0, w1, . . .. Then, for trees
S, T P Tr, set

DpS, T q “
#
0, if S “ T,

2´ mintjě0:wjPS˜Tu, if S ‰ T.

We say that a sequence ω P BN is an infinite branch of the tree T if, for every
n P N, the word ω1 . . . ωn is in T . We say that a tree with at least one infinite
branch is ill-founded.

We denote the set of rooted trees (every word starts with the same letter) with
arbitrarily long branches on N with Tr and the subset of ill-founded trees with IF.
The space Tr can be viewed as a Polish space using the Hausdorff metric on subsets
of BăN. The set IF is complete analytic [4, Thm. 26.1] and hence it is not a Borel
subset.

We define

HomeominpKq “ tT P HomeopKq : pK,T q is minimalu.



2154 Oberwolfach Report 37/2023

The following proposition is the main step to prove Theorem 4, and it is proved
using extensions of odometers.

Proposition 5. There exists a Borel function

f : Tr Ñ HomeominpKq
such that t P IF if and only if pK, fptqq is conjugated to pK, pfptqq´1q.
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Tame implies regular

Tobias Jäger

(joint work with Gabriel Fuhrmann, Eli Glasner, Christian Oertel)

We call pX,Gq a topological dynamical system (TDS) if X is a compact metric
space and G is a topological group acting on X by homeomorphisms ϕg : X Ñ X .
When G is non-discrete, we assume in addition that the joint action pg, xq ÞÑ ϕgpxq
is continuous. We say pX,Gq is minimal if there exists no non-empty G-invariant
compact proper subset of X . An independence pair for pX,Gq is a pair of closed
and disjoint subsets U0, U1 Ď X such that there exists an infinite set S Ď G such
that

(16) for all a P t0, 1uS there exists x P X with ϕgpxq P Uag .

If G is amenable and S has positive asymptotic density in G, we call pU0, U1q
a positive density independence pair.

A TDS is called tame if the cardinality of its Ellis semigroup is of cardinality
at most 2ℵ. The following result of Kerr and Li allows to define tameness via
independence pairs, and thus in a more tangible way from a dynamical systems
perspective.

Theorem 1 ([1]). A TDS pX,Gq is tame if and only if it has no independence
pair.

In order to put this characterisation of tameness into perspective, it is insightful
to compare it to the following equivalent characterisation of of positive entropy
systems.

Theorem 2 ([1]). A Z-action pX,Zq has positive topological entropy if and only
if it has a positive entropy independence pair.
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Hence, one may view non-tameness of a dynamical system as a weakening of
positive entropy, and therefore as a mild form of chaoticity.

Our aim is to obtain a better understanding of the structural implications of
tameness. To this end, recall that any TDS pX,Gq has a maximal equicontinuous
factor (MEF), which we denote by pY,G, πq, where pY,Gq is an equicontinuous
TDS and π : X Ñ Y is the factor map. ‘Maximal’ here refers to the fact that any
other equicontinous factor pỸ , G, π̃q can be obtained as a subfactor of pY,G, πq,
that is, there exists a factor map h : Y Ñ Ỹ such that π̃ “ h ˝ π.

When pX,Gq is minimal, then pY,Gq is minimal and hence (as an equicontinuous
system) uniquely ergodic. If pX,Gq and pY,Gq are uniquely ergodic, we denote by
µ and ν the respective unique invariant measures. We say that

‚ pX,Gq is an isomorphic extension (of its MEF) if it is uniquely ergodic
and π is a measure-theoretic isomorphism between pX,G, µq and pY,G, νq;

‚ pX,Gq is an almost one-to-one extension if #π´1pyq “ 1 for some y P Y ;
‚ pX,Gq is a regular extension if #π´1pyq “ 1 holds for ν-almost every
y P Y .

In [2], Glasner established a comprehensive structure theory for minimal tame
group actions. One important result is the following.

Theorem 3 ([2]). Suppose pX,Gq is a minimal and tame TDS which has an
invariant probability measure. Then, pX,Gq is an almost one-to-one extension of
its maximal equicontinuous factor.

It was left open in [2], however, whether tame systems are actually regular
extensions. Our main result is an affirmative answer to this question.

Theorem 4 ([3]). Suppose that pX,Gq is a minimal TDS that is an almost one-
to-one extension of its MEF. If pX,Gq is tame, it is a regular extension of its
MEF.

Remark 5. We note that previously Garćıa-Ramos established regularity of Z-
action pX,Zq that are null (have zero topological sequence entropy) [4]. As nullness
can be characterised in terms of independence pairs with arbitrarily large finite (but
not necessarily infinite) index sets S, it is a natural strengthening of tameness.

In the proof of Theorem 4, a crucial step is to reduce the problem for the original
system pX,Gq to one in the MEF pY,Gq. Key to this is an application of Lusin’s
theorem to the set-valued mapping Y Ñ KpXq, y ÞÑ π´1pyq, where KpXq denotes
the space of compact subsets of X (equipped with the Hausdorff metric). This
allows to construct a pair of closed sets V0, V1 Ď Y , obtained as projections of
disjoint closed sets U0, U1 Ď X , such that property (16) for V0, V1, with ϕ replaced
by ψ, implies property (16) also for U0, U1. Instead of being disjoint like U0, U1,
however, the common boundary BV0XBV1 has positive measure, while the interiors
are still disjoint. These particular properties of the sets V0, V1, together with the
group structure of Y , eventually allow to define an infinite S for which (16) is
satisfied, in a careful inductive construction.
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Symbolic substitutions in the Heisenberg group and spectral
approximation

Felix Pogorzelski

(joint work with Ram Band, Siegfried Beckus, Tobias Hartnick, Lior Tenenbaum)

Prelude. We consider the discrete Heisenberg group Γ “ H3p2Zq over the even
integers with group multiplication

px, y, zqpa, b, cq “
`
x` a, y ` b, z ` c´ 1{2pxb´ yaq

˘
.

Most of the presented assertions can be extended to a large class of lattices in ra-
tionally homogeneous Lie groups with rational spectrum, cf. [2], but for the sake of
a simple exposition, we stick to the Heisenberg group. The restriction to even inte-
gers is a technicality that has some illustrative advantages, but one could consider
H3pZq as well. Apparently, Γ is generated by the set S “ t˘p2, 0, 0q,˘p0, 2, 0qu.
The (left) Cayley graph with respect to pΓ, Sq consists of Γ as the vertex set, and
x, y P Γ are connected by an edge if and only if x´1y P S. We write dS for the un-
derlying path metric, and denote by BSRpxq the closed ball of radius R ą 0 around
x P Γ with respect to dS . Throughout the talk, we fix a finite set A. Then, each
ω P AΓ can be interpreted as a colouring of Γ with the finitely many colours in A.
Note further that Γ acts on AΓ by translations as γ.ωpxq “ ωpγ´1xq for γ, x P Γ.

For each colouring ω, we will be concerned with the linear Schrödinger-type
operators Hω : ℓ2pΓq Ñ ℓ2pΓq acting as

Hωupxq “
ÿ

yPΓ
bωpx, yq

`
upxq ´ upyq

˘
` cωpxqupxq, u P ℓ2pΓq.

Here, we call such an operator nice if the following properties are satisfied:

‚ bωpx, yq ě 0 and cωpxq ě 0 (non-negativity);
‚ bωpx, yq “ bωpy, xq (symmetry);
‚ bγ.ωpγx, γyq “ bωpx, yq and cγ.ωpγxq “ cωpxq (translation equivariance);
‚ There exists P ą 0 such that ω|BS

P
pxqYBS

P
pyq “ ω1

|BS
P

pxqYBS
P

pyq implies

bωpx, yq “ bω1 px, yq and cωpxq “ cω1 pxq (pattern equivariance);
‚ There exists R ą 0 such that dSpx, yq ą R implies bωpx, yq “ 0 (finite
hopping range).
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Suppose now that ω P AΓ is non-periodic, so stabΓpωq “ 0. Can one say
something about the spectrum σpHωq of Hω, or its spectral distribution function?
Of course, this is a very general question, and no straight-forward answers can
be expected. However, one might attempt to approximate spectral quantities by
finite volume of periodic analogues. We present two results in this direction.

Symbolic substitution systems. We must first determine the class of non-
periodic ω that we would like to consider. One rich source of examples is given
by symbolic substitution systems developed recently in [2]. We also refer to the
Oberwolfach report [4]. Note that Γ is a lattice, i.e., a discrete co-compact sub-
group of the continuous Heisenberg group G “ H3pRq. A relatively compact
left-fundamental domain is given by V “ r´1, 1q3. For λ0 P N with λ0 ě 3, we
define the group automorphism D “ Dλ

0

: G Ñ G, Dpx, y, zq “ pλ0x, λ0y, λ20zq.
Any map S0 : A Ñ ADpV qXΓ is called a substitution rule. As was demonstrated

in [2], any such map has a canonical extension rS to all coloured patterns of Γ
in such a way that the substitution map can be replicated by application to all
letters in a pattern. In particular, one obtains a canonical continuous substitu-
tion map S : AΓ Ñ AΓ, cf. [2, Prop. 2.7]. For ω P AΓ, we define its hull as

Ωω :“ tγ.ω : γ P Γu, where the closure is taken in the product topology. For the
definition of primitivity and non-periodicity for substitution rules, we refer to [2,4].

Theorem 1 (Beckus–Hartnick–P.). Suppose that S0 is a primitive and non-periodic
substitution rule. Then, there is ω0 P AΓ such that Skpω0q “ ω0 for some k P N,
ω0 is linearly repetitive with respect to the homogeneous metric inherited from G,
and the action Γ ñ Ωω

0

is minimal, uniquely ergodic and free.

The theorem has various interesting consequences, such as the existence of
(explicitly constructable) strongly aperiodic, linearly repetitive Delone sets in the
Heisenberg groupH3pRq. In particular, obtaining a free action from a non-periodic
ω0 is much harder than in the abelian setting, where it is an immediate consequence
of minimality. For a systematic study of linear repetitivity for non-abelian groups
and a proof of unique ergodicity in this context, we refer to [1]. In the following,
we call ω0 constructed by the above theorem good.

Spectral approximation. We return to the question on the spectra of Schrö-
dinger-type operators as above, and suppose that ω0 is good (in particular being
a k-fixed point of a suitable substitution map S : AΓ Ñ AΓ), and Hω

0

is nice.

Integrated density of states. For n P N, we define the set Fn :“
`
r´n, ns2 ˆ

r´n2, n2s
˘

X Γ, as well as the (matrix) operators Hn
ω0

“ pnHω0
in, where in :

ℓ2pFnq Ñ ℓ2pΓq and pn : ℓ2pΓq Ñ ℓ2pFnq are the canonical inclusion, respectively
projection. Each Hn

ω0
is a self-adjoint matrix with a finite sequence pEiq of real

eigenvalues that can be ordered increasingly. Applying results of Lenz, Schwarzen-
berger and Veselić [5], we obtain a uniform approximation result for the spectral
distribution function per unit volume, called the integrated density of states, via
the empirical eigenvalue distributions.
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Theorem 2. Suppose ω0 is good and Hω0
is nice. Then,

lim
nÑ8

supti ď #Fn : Ei ď Eu
#Fn

“
ż

Ωω0

xδ0, 1p´8,EspHωqδ0y dµpωq

holds uniformly in E P R.

The proof of uniform convergence follows from a Banach space-valued ergodic
theorem, cf. [5, Thm. 4.5], which is applicable due to unique ergodicity of Γ ñ Ωω0

.
The limit is called the Pastur–Shubin trace formula. Here, 1p´8Es is the spectral

projector up to energy level E, and µ is the unique Γ-invariant probability measure
on the hull.

Spectrum as a set. We fix one colour a0 P A, and set ω1 ” a0 as the constant
configuration, i.e., ω1pxq “ a0 for every x P Γ. Defining ωn,` :“ Snpω1q for n P N

we obtain periodic configurations that are invariant under the group Γn :“ DnpΓq.
Hence, the hull Ωn of ωn,` is finite. The following is from work in progress.

Theorem 3 (Band–Beckus–P.–Tenenbaum). Suppose that λ0 ě 4. Then, there is
T Ď DpV q X Γ such that, if the patch ω1|T occurs in ω0, there is C ą 0 such that

dHausdorff

`
Ωn,Ωω

0

˘
ď C

λn0
for all n P N .

Applying a result from Beckus and Takase [3, Thm. 1.1 (c)] we obtain

Corollary 4. Suppose ω0 is good and Hω0
is nice. In the situation of the previous

theorem, there is rC ą 0 such that

dHausdorff

`
σpHω

n,`
q, σpHω

0

q
˘

ď
rC
λn0

for all n P N.

This shows that, as a set, the spectrum of the aperiodic operator Hω0
can

be approximated (exponentially fast) by the spectra of periodic operators. In
particular, we have convergence for the corresponding bottoms of spectra. Via
a study of positive harmonic functions, Richter [6] obtains certain formulae for
the bottom of the spectrum of Schrödinger-type operators on graphs admitting a
co-finite action by a nilpotent group. In particular, these results apply to Hωn,`

,
and thus might open up a way to extract more explicit spectral information.
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The road to a geometric aperiodic monotile

Jamie Walton

The first aperiodic tile set was discovered by Berger in 1966, in his resolution
of Wang’s domino problem. I will survey the history of discoveries of aperiodic
sets of few tiles following this. In the 1970s, Penrose discovered his remarkable
aperiodic set of just two tiles [3], naturally leading to the monotile problem(s) of
finding a single aperiodic tile. There are, in fact, many possible variants one may
ask: should the tile be ‘perfect’ in the sense of local isomorphism, do we allow
non-geometric matching rules, which isometries of the tile are allowed? etc. With
examples such as the Schmitt–Conway–Danzer tile — a convex polyhedron in 3-
space that tiles without translation symmetries but allows screw symmetries — one
even has to be careful in what is meant by ‘aperiodic’. I will explain the subtleties
involved here. The first answer to one variant came in the early 2010s, with the
(LI-perfect) Taylor–Socolar monotile [6], represented either as a simple hexagon
but with next-nearest neighbour matching rules, or purely geometrically as a tile
that is not a topological ball. The hexagonal grid and, in particular, the arrowed
half-hex tiling, has been used several times as the scaffolding for interesting small
aperiodic tile sets [1, 7], such as the Penrose 1 ` ǫ` ǫ2 tilings. This year, the Hat
monotile was discovered [4], receiving an unprecedented and welcome amount of
public attention. Although it is in some sense commensurate with the hexagonal
lattice, its global structure is completely different from the previous hexagonal
examples. The Hat settles the monotile problem for a purely geometric tile that
is a topological ball and only tiles nonperiodically (but is not translationally LI-
perfect), and shortly after the Spectre [5], which settles the same problem but
without requiring reflections of the tile. Within just a few months of discovery,
lots is already known about the global dynamical and topological properties of
these tilings [2], uncovered by an already advanced toolkit developed within the
field of aperiodic order.
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The Hat tiling is topologically conjugate to a model set

Franz Gähler

(joint work with Michael Baake, Lorenzo Sadun)

In a recent preprint [1], it was shown that a certain non-convex polygon (the Hat),
along with its mirror image, can tile the Euclidean plane, but only non-periodically.
This tile was therefore called an aperiodic monotile. In any Hat tiling, all tiles have
coordinates on a triangular lattice. Hats can be combined to certain clusters, called
meta-tiles, and there is a combinatorial inflation symmetry present in these meta-
tile tilings, leading to a hierarchical structure and aperiodicity. Moreover, it was
shown that the meta-tiles can be deformed in such a way that the combinatorial
inflation becomes a true geometric inflation, with a scaling factor φ2, where φ is
the golden mean.

In this talk, we show that this shape change of the meta-tiles, and other shape
changes of the Hat tiles, are asymptotically negligible in the sense of [2], meaning
that they do not mess up the long-range aperiodic order of the system. Hence,
the original meta-tile tiling and the deformed one with true φ2 inflation form
topologically conjugate dynamical systems under the translation action. The same
actually holds for all deformed Hat tilings, up to overall scale and orientation. As
a result, their dynamical and diffraction spectra all coincide. Moreover, by the
overlap algorithm [3, 4], we can show that these spectra are all pure point.

Inflation systems with pure-point spectra are expected to be cut-and-project
sets, also known as model sets. This is the case also for the self-similar meta-tile
tiling, for which we construct a cut-and-project scheme based on a 4d lattice with
hexagonal symmetry and φ2 inflation invariance. With a proper choice of control
points of the meta-tiles, the set of control points can be described as a model set
with fairly simple window. Its outer shape is a regular hexagon with a partly
fractal subdivision for the different tile types. Other deformed Hat tilings are
obtained from the same cut-and-project scheme and window, but with different
projection direction. More details are given in [5].

Completely analogous results can also be obtained for a cousin of the Hat tiling,
the Spectre tiling [6].
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Aperiodicity of Turtle

Shigeki Akiyama

(joint work with Yoshiaki Araki)

An aperiodic monotile is a tile which tiles a plane but only in a non-periodic way.
We give a short self-contained alternative proof of this fact for a variant of Smith’s
Hat, called the Turtle.

Figure 1. Turtle with one set of Ammann bars

The proof depends on interesting 1-dimensional stuructures (Sturmian edge and
Ammann bar) which appear in the tilings by turtles.
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Invariant measures of Toeplitz subshifts on non-amenable groups

Paulina Cecchi-Bernales

(joint work with Maŕıa Isabel Cortez, Jaime Gómez)

Let G be a countable discrete group, let X be a compact metric space and let
T : G ˆ X Ñ X be a continuous action of G on X . The associated topological
dynamical system is denoted pX,T,Gq. The action of an element g P G on X

is denoted by T g. A classical problem in topological dynamics is the description
of the set MpX,T,Gq of all invariant measures of pX,T,Gq, i.e., the set of Borel
probability measures µ on X such that µpT gpAqq “ µpAq for all g P G and all
Borel subset A Ď X . In particular, we are interested in the interplay between the
properties of MpX,T,Gq and certain group-theoretic properties of G.
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It is well known [1] that a countable group G is amenable if and only if every
continuous action of G on a compact metric space admits an invariant measure.
Recall that a countable group is amenable if it admits a Følner sequence, which

is a sequence pFnqnPN of finite subsets of G satisfying limnÑ8
|Fn△Fng|

|Fn| “ 0 for

all g P G. This characterisation of amenability was strenghtened by Giordano
and de la Harpe, who proved that a countable group G is amenable if and only
if any continuous action of G on a Cantor space admits an invariant measure [8].
Furthermore, it is known that the family of subshifts, i.e., the symbolic continuous
actions on the Cantor set, is a test family for amenability. More precisely, for
every countable non-amenable group G, there exists a positive integer n and a
subshift X Ď t0, 1, . . . , n ´ 1uG such that MpX, σ,Gq “ H, where σ denotes the
shift action of G on t0, 1, . . . , n ´ 1uG, given by σgppxhqhPGq “ px

g´1h
qhPG for all

g P G. This is a direct consequence of [10, Thm. 1.2]. More recently, the following
general characterisation of amenability has appeared.

Theorem 1 ([7, Thm. 3.7.1]). A countable group G is amenable if and only if,
for any subshift X Ď t0, 1uG, one has MpX,T,Gq ‰ H.

All previous results are dynamical characterisations of amenability.
Considered as a subspace of the dual C‹pX,Rq with the weak‹ topology, the

set MpX,T,Gq is a Choquet simplex, i.e., a convex compact metrizable subset K
of a locally convex real vector space such that, for all v P K, there exists a unique
measure mv supported on the extreme points of K such that

ş
xdmv “ v. The set

of extreme points of MpX,T,Gq corresponds to the ergodic invariant measures of
pX,T,Gq, i.e., the invariant measures µ such that µpAq P t0, 1u whenever T gpAq “
A for all g P G. Conversely, for any Choquet simplex K there exists a Toeplitz
subshift X Ď t0, 1uZ such that MpX, σ,Zq is affine homeomorphic to K; see [6].
For a given finite alphabet Σ, a Toeplitz subshift is a subshift X Ď ΣZ obtained
as the shift orbit closure of a Toeplitz sequence: a sequence x P ΣZ such that, for
all k P Z, there exists p P N with xk`pℓ “ xk for all ℓ P N. This extends to any

group as follows: an element x P ΣG is a Toeplitz configuration if for all g P G

there exists a finite index subgroup Γ ď G such that xγg “ xg for all γ P Γ. A

subshift X Ď ΣG is a Toeplitz subshift if it is the shift orbit closure of a Toeplitz
configuration. The realisation of Choquet simplices in [6] was extended in [5],
where the authors prove the following.

Theorem 2 ([5, Theorem A]). For every Choquet simplex K and every residu-
ally finite amenable group G, there exists a Toeplitz subshift X Ď ΣG such that
MpX, σ,Gq is affine homeomorphic to K.

Recall that a group G is residually finite if the intersection of all its finite index
subgroups is trivial. Toeplitz subshifts are always minimal (see for instance [4,9]).
On the other hand, if a Toeplitz subshift X Ď ΣG is aperiodic, i.e., if every point
in X has trivial stabilizer under the shift action of G, then G must be residually
finite. Indeed, a countable group G is residually finite if and only if there exists
an aperiodic Toeplitz subshift X Ď t0, 1uG; see [4, 9].
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There are at least two possible ways to generalise the realisation result of Cho-
quet simplices proved in [5]. One of them is to consider groups which are amenable
but not necessarily residually finite (e.g., Q or any amenable divisible group).
The second one is to consider residually finite groups which are not necessar-
ily amenable (e.g., free groups). For the first type of generalisation, we introduce
in [2] the notion of congruent monotileable amenable group. A countable amenable
group G is congruent monotileable if it admits a Følner sequence pFnqnPN such that
each Fn is a monotile of G and each Fn is a disjoint union of translated copies of
Fn´1 (see [2] for precise definitions). Residually finite amenable groups are con-
gruent monotileable, as well as any virtually nilpotent countable group [2]. We
have the following realisation result for congruent monotileable amenable groups.

Theorem 3 ([2, Theorem 1]). For any Choquet simplex K and any congruent
monotileable amenable group G, there exists a minimal subshift X Ď ΣG, which is
aperiodic in a full measure set, such that MpX, σ,Gq is affine homeomorphic to
K.

Regarding the second type of generalisation, let G be a countable residually
finite group. Then, there exists a nested sequence pΓnqnPN of finite index normal

subgroups of G with trivial intersection. Define the G-odometer
ÐÝ
G associated to

pΓnqnPN as follows,

ÐÝ
G :“ limÐÝ

n

pG{Γn, τnq “
!

pxnqnPN P
ź

nPN
G{Γn | τnpxn`1q “ xn for all n P N

)
,

where τn : G{Γn`1 Ñ G{Γn is the canonical projection. Since the Γn’s are fi-

nite index normal subgroups,
ÐÝ
G is a compact topological group with the induced

topology from
ś
nPNG{Γn. Let ϕ denote the action of G on

ÐÝ
G by coordinate-wise

product. The topological dynamical system pÐÝ
G,ϕ,Gq is uniquely ergodic, the

unique ϕ-invariant measure being the Haar measure on
ÐÝ
G . We have the following

realisation results for residually finite groups which are not necessarily amenable.

Theorem 4 ([3, Theorem 1.2]). Let G be a countable residually finite group and

let
ÐÝ
G be a G-odometer. Then, there exists a uniquely ergodic Toeplitz G-subshift

pX, σ,Gq and an almost 1-1 factor map π : X Ñ ÐÝ
G , such that, if ν is the unique

probability measure of pX, σ,Gq, then π is a measure conjugacy between pX, σ,G, νq
and pÐÝ

G,ϕ,Gq endowed with the Haar measure.

Theorem 5 ([3, Theorem 1.3]). Let G be a countable residually finite group and

let
ÐÝ
G be a G-odometer. For every integer r ą 1, there exists a Toeplitz G-subshift

X Ď t1, . . . , ruG with at least r ergodic probability measures ν1, . . . , νr, and whose

maximal equicontinuous factor is
ÐÝ
G . Furthermore, for every 1 ď i ď r, the

following holds,

(1) pX, σ,G, νiq is measure conjugate to pÐÝ
G,ϕ,Gq endowed with the Haar mea-

sure,

(2) νi
`
tx P X : xp1Gq “ iu

˘
ě µ

`
tx P X : xp1Gq “ iu

˘
for every invariant

probability measure µ.



2164 Oberwolfach Report 37/2023

References

[1] N. Bogolyubov, On some ergodic properties of continuous transformation groups, Physics-
Mathematics Zbirnyk 4 (1939), no. 5.

[2] P. Cecchi-Bernales and M. I. Cortez, Invariant measures for actions of congruent mono-
tileable amenable groups, Groups Geom. Dyn. 13 (2019), 821–839.
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espaces de Cantor, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), 1255–1258.
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Accumulation points of normalized integer translates of rotations in
Euclidean space

Alan Haynes

(joint work with Kavita Dhanda)

Suppose that d P N and that α P Rd. A large portion of classical Diophantine
approximation is concerned with understanding small values of the quantities

qα´ p P Rd,

where q P Z and p P Zd. A first version of this problem, which is sufficient for
many applications, is to accurately determine, for η P R, the ‘sizes’ of the sets
Wpηq of η-well approximable points, and their complements Wpηqc. For η P R,
Wpηq is defined to be the collection of α P Rd for which 0 is an accumulation point
of the set

NAηpαq “ t|q|η pqα ´ pq : q P Zzt0u, p P Zdu.
We will call the elements of NAηpαq the η-normalized approximations to α.

For each η, the set Wpηq satisfies a zero-full law, so that λpWpηqq “ 0 or
λpWpηqcq “ 0, where λ denotes Lebesgue measure on Rd. In cases where the
Lebesgue measure is zero, we seek finer information about Hausdorff dimensions
of the corresponding sets. This is all well understood, primarily due to founda-
tional work of Khintchine, Groshev, Jarńık, Besicovitch, and Cassels, which is
summarized in Table 1.

In line with the classical theory described above, it is natural and desirable to
understand the collection of all accumulation points Aηpαq of NA, both for generic
choices of α and for specific choices with particular arithmetical properties. For
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Table 1. Summary of results about Wpηq and Wpηqc, for η P R

and d P N.

η ă 0 Wpηq “ Rd Wpηqc “ H

0 ď η ă 1{d Wpηq “ RdzQd
(Dirichlet)

Wpηqc “ Qd

η “ 1{d
λpWpηqq “ 8, λpWpηqcq “ 0

(Khintchine, Groshev)

dimHpWpηqcq “ d

(Jarńık, Schmidt)

η ą 1{d dimHpWpηqq “ d` 1

1 ` η

(Jarńık, Besicovitch)

λpWpηqcq “ 8, λpWpηqq “ 0

(Borel–Cantelli)

example, the density of Qd in Rd guarantees that A´1pαq “ Rd, for all α P Rd.
On the other hand, Kronecker’s theorem, a much less trivial result, tells us that
A0pαq “ Rd if and only if the numbers 1, α1, . . . , αd are Q-linearly independent.
However, perhaps surprisingly, apart from these two fundamental examples, there
do not appear to be any non-trivial cases of η (i.e., with η ą 0) for which this
problem is well understood.

In this talk, we explained new results about the sets Aηpαq, derived from two
main points of view. From our first point of view, for η P R, we presented measure-
theoretic and Hausdorff dimension results about the sets Dpηq consisting of all
α P Rd for which Aηpαq “ Rd, as well as results about the complementary sets
Dpηqc. These results are summarized in Table 2 (new results are labeled as Theo-
rems 1-3). In analogy with the classical case, for η ď 1, the property Aηpαq “ Rd

is satisfied for Lebesgue almost every α P Rd. However, for d ě 2 and 0 ă η ď 1,
the sets Dpηqc are related to what are called sets of singular points in Diophantine
approximation, and are much more mysterious and interesting than the corre-
sponding sets Wpηqc from the classical case.

From our second point of view, we gave examples of particular choices of d, η,
and α for which the sets Aηpαq exhibit well ordered geometric structure. We
focused primarily on the case when d “ 2, η “ 1{2, and the coordinates of α
together with 1 form a Q-basis for an algebraic number field. Using tools from
algebraic number theory, we are able to show that, in this case, A

1{2pαq is a

union of countably many dilations (determined by norms of elements in an order
in the corresponding cubic field) of either a single ellipse or a pair of hyperbolas,
depending on whether or not the corresponding cubic field has a nontrivial complex
embedding. Plots of some normalized approximations in this algebraic setting are
displayed in Figure 1.

The results which we presented build on previous results due to many authors.
A summary of key references is provided below.



2166 Oberwolfach Report 37/2023

Table 2. Summary of results about Dpηq and Dpηqc, for η P R

and d P N.

η ă 0 Dpηq “ Rd Dpηqc “ H

η “ 0
Dpηq “ Kd

(Kronecker)
Dpηqc “ Kc

d

0 ă η ă 1{d
λpDpηqq “ 8
(Theorem 1)

0 ă dimHpDpηqczKc
dq ă d

(d ě 2, Theorem 2)

η “ 1{d
λpDpηqq “ 8, λpDpηqcq “ 0

(Theorem 1)

dimHpDpηqcq “ d

pWpηqc Ď Dpηqcq

η ą 1{d dimHpDpηqq “ d` 1

1 ` η

(Theorem 3)

λpDpηqcq “ 8, λpDpηqq “ 0

pDpηq Ď Wpηqq

Figure 1. p1{2q-normalized approximations to p21{3, 22{3q (left)
and to pβ, β2q, where β is the positive root of x3 ` x2 ´ 2x ´ 1
(right).
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[8] V. Jarńık, Diophantische Approximationen und Hausdorffsches Mass, Mat. Sb. 36 (1929),
371–382.
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Spectral properties of Sturmian metric tree graphs

Ram Band

(joint work with Gilad Sofer)

We study metric graph Laplacians defined on aperiodic tree graphs. The graph
geometries are based on Sturmian sequences,

@n P Z, sαpnq “ χr1´α,1qptnαuq,

where α P r0, 1szQ.
We consider two families of tree graphs:

(1) Infinite comb-like graphs. Specifically, consider the infinite line and two
compact graphs which we denote by A and B. Decorate the real line graph
by placing either the graph A or the graph B at the integer points, Z. At
each point, n P Z, the value of the Sturmian sequence sαpnq determines
whether to place graph A or B (see upper part of Figure 1). A particular
simplification of this model is obtained when graph A is just the interval
and graph B is the empty graph. This simplification yields the infinite
comb graph, such that whether or not a tooth appears or not is determined
by the Sturmian sequence (see lower part of Figure 1)

(2) Infinite radially symmetric tree graphs. Fix a sequence pbnq8
n“1 of branch-

ing numbers (bn P N) and a sequence of edge lengths plnq8
n“1, such that

ln P R and ln ą 0. Construct a radially symmetric tree graph, such that at
level n all the branching numbers are bn (so that the corresponding vertex
degrees are bn ` 1) and all edge lengths are ln. Either of the sequences
pbnq8

n“1, plnq8
n“1, (or both) may be determined by a Sturmian sequence.
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Figure 1. An example of an infinite comb-like graph generated by
two particular compact decoration graphs A and B (upper part). The
Sturmian sequence which determines the decoration locations is taken

with the golden ratio, α “
?

5´1

2
(lower part). The simplified graph,

where A is taken to be the single interval and B is taken to be the

empty graph.

Specifically, for the branching numbers fix two values bA, bB P N and set

bn “
#
bA, sαpnq “ 0,

bB, sαpnq “ 1,

and similarly for the edge lengths.

In each of these models, we take all vertex conditions to be of Neumann–
Kirchhoff type. We study the spectral properties of these models, and their ap-
proximating periodic operators. Of specific interest are the following questions.

‚ What are the possible spectral types (and in particular whether eigenvalues
exist)?

‚ Is the spectrum a (generalised) Cantor set?

‚ What is the Lebesgue measure of the spectrum?

‚ What is the Hausdorff dimension of the spectrum?

‚ Which values does the integrated density of states attain at the gaps?

In the spectral analysis for the graph families of the first type, we employ a
classification of the spectral bands into types as in [1–3]. A few relevant and
inspiring previous works on aperiodic metric graphs are [4–8].
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Transverse point processes – a robust framework for aperiodic order

Tobias Hartnick

(joint work with Michael Björklund and Yakov Karasik)

Over the last decade, there has been a push to extend the theory of aperiodic order
to include aperiodic subsets of non-abelian locally compact second countable (lcsc)
groups and their homogeneous spaces (see e.g. [1]). In this wider setting, many
classical tools such as van Hove sequences, ergodic theorems or distributions are
not always available. This motivated us to systematically search the literature
for formulations of basic concepts in aperiodic order (such as autocorrelation or
diffraction) which do not require these tools and resulted in the theory of transverse
point process [2, 3].

One key idea of our approach is to replace ergodic limits by more robust prob-
abilistic concepts. To illustrate, the Hof diffraction of a uniquely ergodic FLC set
in Rd coincides with the Bartlett spectrum of the point process defined by the
invariant measure on the hull, hence we may think of the Bartlett spectrum as
a probabilistic substitute for Hof diffraction. This substitute is more robust in
the sense that is does not require van Hove sequences and hence can be applied
in non-amenable situations. In the presence of a suitable ergodic theorem (e.g.
in semisimple groups), the probabilistic definition can often be recast in analytic
terms as a limit in the spirit of Hof; the geometry of the group then automatically
determines the correct replacement of van Hove sequences. We emphasise that
the additional robustness of the point process approach is beneficial even in the
abelian case as it allows one to deal with very general classes of point sets.

We now formulate our general framework. Throughout this report, let G be a
unimodular lcsc group with Haar measure mG. Then, G admits a right-invariant
proper metric d, and we fix such a metric once and for all. Given r ą 0 we
denote by UDrpGq the space of r-uniformly discrete subsets of G, equipped with
the Chabauty–Fell topology. This is a compact metrisable G-space under the
action given by g.P :“ Pg´1. If G ñ pΩ,A,Pq is an ergodic p.m.p. action on
some auxiliary probability space, then we refer to a G-equivariant measurable
map Λ : Ω Ñ UD2rpGq, ω ÞÑ Λω as a hard-core point process of radius r with
distribution µΛ :“ Λ˚P realised on pΩ,A,Pq. Such processes can be seen as random
packings of G by spheres of radius r, hence the name. We consider two processes
as equivalent if they have the same distribution.
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Up to equivalence, all hard-core point processes arise from a single dynamical
construction: For this, let G ñ pΩ,Aq be an arbitrary Borel action on an arbitrary
standard Borel space. By a theorem of Conley, there then exists a separated
transversal T Ă Ω, i.e. a Borel subset intersecting every orbit whose return time
set RT :“ tg P G | g.T X T “ Hu intersects some identity neighbourhood in G

only in the identity.

Proposition 1 (cf. [2]). If T Ă Ω is a separated transversal and P is a G-invariant
probability measure on Ω, then Λω :“ tg P G | g.ω P T u defines a hard-core process
on pΩ,A,Pq. Conversely, every hard-core process is equivalent to such a process.

We refer to Λ as in the proposition as the transverse process associated with the
transverse triple pΩ,P, T q. If Λ is an arbitrary hard-core process with distribution
µ, then it is equivalent to the transverse process of the canonical triple

pΩcan :“ supppµq, Pcan :“ µ, T can :“ tQ P Ωcan | e P Quq.
It is often more convenient to work with non-canonical realisations, though:

Example 2 (Cut-and-project process, cf. [3]). Let H be an auxiliary lcsc group,
Γ ă G ˆ H be a lattice and Ω “ ΓzpG ˆ Hq with unique invariant probability
measure P. If W Ă H is a relatively compact identity neighbourhood, then TW :“
tΓpe, hq | h P W u is a separated transversal in Ω and the instances of the associated
transverse process are the cut-and-project sets

ΛΓpg,hq “ projGpΓpg, hq X pG ˆW qq.

If Λ is a hard-core point process, then every Borel set B Ă G defines an integer
valued random variable |Λ X B| : ω ÞÑ |Λω X B|. There then exists a constant
iΛ ą 0 (the intensity) and a Radon measure ηΛ on G such that

E r|Λ XB|s “ iΛ ¨ mGpBq and Var r|Λ XB|s “
ż

G

1B ˚ 1B´1 dηΛ ´ i2Λ ¨mGpBq2.

If G “ Rn, then ηΛ is the Hof autocorrelation of a generic instance of Λ, and hence
we refer to ηΛ as the autocorrelation of Λ; it is our robust replacement for the Hof
autocorrelation.

Both the intensity and the autocorrelation can be computed using transverse
measure theory. Recall that if pΩ,P, T q is a transverse triple, then in local flow
box coordinates the measure P is of the form mG b ν for some transverse measure

ν “ GRes
Ω
T P on T (cf. [2]). The total mass νpT q is finite and given by the intensity

of the associated transverse process Λ. Moreover, the autocorrelation of Λ satisfies

(17) ηΛpBq “
ż

T

|Λω XB| dνpωq.

If one works with the canonical model, then the transverse measure is determined
by its values on cylinder sets, since the Borel structure on T can is generated by
these sets. If G “ Rn, then up to a factor of iΛ these values turn out to be the
patch frequencies of generic instances of Λ, and hence one should think of ν as a
robust version of the collection of patch frequencies.
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Example 3 (Patch frequencies of model sets). In the situation of Example 2,

the pair pTW , νq can be identified (up to null sets) with
´
W,

mH |W
covolpΓq

¯
, and under

this identification cylinder sets correspond to the acceptance domains (up to null
sets). This gives a robust proof of the fact that (up to normalisation) the patch
frequencies of model sets are given by Haar volumes of acceptance domains and
allows one to compute e.g., patch frequencies of model sets in hyperbolic space.

Definition 4. The transverse groupoid of a transverse triple pΩ,P, T q is the étale
groupoid G with Gp0q “ T , Gp1q “ tpQ2, g, Q1q P T ˆ G ˆ T | Q2 “ g.Q1u with
partial composition pQ3, h,Q2q ˚ pQ2, g, Q1q “ pQ3, hg,Q1q.

Transverse groupoids (and their cohomology) play a prominent role in the topol-
ogy of tiling spaces; their relevance for us comes from the fact that transverse
measures are invariant under transverse groupoids. A partial converse to this
observation is given in [2]:

Proposition 5 (Transverse measure induction). If a finite measure ν on T is
invariant under the transverse groupoid, then it is the transverse measure of a
σ-finite (but in general not finite) measure µ “ GInd

Ω
T ν on Ω.

One of the main applications of Proposition 5 concerns the construction of
intersection measures. For this, let pΩj , µj, Tjq be transverse triples with transverse

measures νj . We then define the intersection space1

Ω1 _ Ω2 :“ tpg.Q1, g.Q2q | g P G,Qj P Tju Ă Ω1 ˆ Ω2.

Then, T1 ˆ T2 is a separated transversal for the G-action on Ω1 _ Ω2, and ν1 b
ν2 is invariant under the transverse groupoid, hence induces a σ-finite measure
µ1 _ µ2 on Ω1 _ Ω2. We say that the two systems are commensurable if this
measure is finite; this is the case for instance if Ω1 and Ω2 are hulls of syndetic
subsets of a strong uniform approximate lattice in the sense of [1]. If the systems
are commensurable, then µ1 _ µ2 can be normalised to a probability measure P

which then defines a non-trivial joining of pΩ1, µ1q and pΩ2, µ2q; here is a sample
application from [2]:

Theorem 6. For all i.i.d. random Meyer sets Λ1,Λ2 Ă G,

P r denspΛ1 X Λ2q ą 0 | Λ1 X Λ2 ‰ H s “ 1.

A very different class of intersection spaces arises by pairing aperiodic point
processes in G with σ-finite invariant measures on homogeneous G-spaces. This
leads to a notion of Radon transform for aperiodic point processes and allows one
to define aperiodic versions of the Zak transform from time frequency analysis as
well as the theta transform from the theory of automorphic forms. The former can
be used to study the Schrödinger part of the spherical diffraction of Meyer sets
in the Heisenberg group, whereas the latter can be used to study the continuous
part of the spherical diffraction of non-uniform strong approximate lattices in
hyperbolic spaces.

1If the transverse triples are canonical, then Ω
1

_Ω
2
consists of those pairs in Ω

1
ˆΩ

2
which

intersect non-trivially, hence the name.
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Université d’Aix-Marseille
Campus de Luminy
163 Avenue de Luminy
P.O. Box 907
13288 Marseille Cedex 9
FRANCE

Prof. Dr. Michael Baake

Fakultät für Mathematik
Universität Bielefeld
Postfach 100131
33501 Bielefeld
GERMANY

Prof. Dr. Ram Band

Department of Mathematics
Technion – Israel Institute of Technology
629 Amado Building
Haifa 3200003
ISRAEL

Dr. Siegfried Beckus

Campus Golm, Haus 9
Institut für Mathematik
Universität Potsdam
Karl-Liebknecht-Straße 24-25
14415 Potsdam
GERMANY

Prof. Dr. Valérie Berthé
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Avenida Vicuña Mackenna 4860
8940000 Macul, Santiago
CHILE

Prof. Dr. Paulina Cecchi-Bernales

Department of Mathematics
Faculty of Sciences
University of Chile
Las Palmeras 3425, Office 100
7750000 Ñuñoa, Santiago
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Pontificia Universidad Católica de Chile
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Université Claude Bernard Lyon 1
21, Ave. Claude Bernard
69622 Villeurbanne Cedex
FRANCE

Prof. Dr. Gerhard Keller

Department Mathematik
FAU Erlangen-Nürnberg
Cauerstraße 11
91058 Erlangen
GERMANY

Anna Klick

Department of Mathematics and
Statistics
MacEwan University
10700-104 Ave.
Edmonton T5J 4S2
CANADA

Emily Rose Korfanty

Department of Mathematical Sciences
University of Alberta
Edmonton T6G 2G1
CANADA

Prof. Dr. Bryna Kra

Department of Mathematics
Lunt Hall
Northwestern University
2033 Sheridan Road
Evanston, IL 60208-2730
UNITED STATES

Prof. Dr. Jeffrey C. Lagarias

Department of Mathematics
University of Michigan
530 Church Street
Ann Arbor, MI 48109-1043
UNITED STATES

Prof. Dr. Jeong-Yup Lee

Department of Mathematics Education
Catholic Kwandong University
24, 579 Beon-gil, Beomil-ro, Gangneung
Gangwon-do 210-701
KOREA, REPUBLIC OF

Prof. Dr. Daniel Lenz

Institut für Mathematik
Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2
07743 Jena
GERMANY



2176 Oberwolfach Report 37/2023

Dr. Olga Lukina

Rijksuniversiteit te Leiden
Mathematisch Instituut
Niels Bohrweg 1
5238 CA Leiden
NETHERLANDS

Prof. Dr. Alejandro Maass

Faculty of Mathematical and Physical
Sciences
University of Chile
North Building, 7th floor
Beauchef 851
Región Metropolitana de Santiago
7910000
CHILE

Dr. Neil Mañibo
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