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Effective interface conditions for a porous medium type
problem

Giorgia Ciavolella, Noemi David, and Alexandre Poulain

Abstract. Motivated by biological applications on tumour invasion through thin membranes, we
study a porous medium type equation where the density of the cell population evolves under Darcy’s
law, assuming continuity of both the density and flux velocity on the thin membrane which separates
two domains. The drastically different scales and mobility rates between the membrane and the
adjacent tissues lead to consider the limit as the thickness of the membrane approaches zero. We
are interested in recovering the effective interface problem and the transmission conditions on the
limiting zero-thickness surface, formally derived by Chaplain et al. (2019), which are compatible
with nonlinear generalized Kedem—Katchalsky ones. Our analysis relies on a priori estimates and
compactness arguments as well as on the construction of a suitable extension operator, which allows
us to deal with the degeneracy of the mobility rate in the membrane, as its thickness tends to zero.

1. Introduction

We consider a model of cell movement through a membrane where the population density
u = u(t, x) is driven by porous medium dynamics. We assume the domain to be an open
and bounded set 2 C R3. This domain €2 is divided into three open subdomains, 2; . for
i =1,2,3, where ¢ > 0 is the thickness of the intermediate membrane, €25 ,, see Figure 1.
In the three domains, the cells are moving with different constant mobilities, u; ., for
i = 1,2, 3, and they are allowed to cross the adjacent boundaries of these domains which
are I'1 » o (between €27, and Q2 ) and I'; 3 . (between 2, . and €23 ). Then, we write
Q= Ql,e U 92,5‘ @) 93,8, with FI,Z,E = 891,8 N 892,8, and F2’3,8 = 892,8 N 893,5. The
system reads as

Oruie—Wi eV - (Ui eV pie) =ui G(pie) in(0,T)xQie 1=1,23,

Wi Ui sV Pig Mgt = Wit1,6Uit1,s Y Pit,s * i1 on (0, T)xT iy e,i=1,2, (L.1)
Uje=Uitle on (0, T)xTyiq1e,i=1,2,

u; =0 on (0, T)x0%2.
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We denote by p; . the density-dependent pressure, which is given by the following power
law
Pie = ug’,g, with y > 1.

In this paper, we are interested in studying the convergence of system (1.1) as & — 0.
When the thickness of the thin layer decreases to zero, the membrane collapses to a lim-
iting interface, Fl 3, which separates two domains denoted by Q, and 3, see Figure 1.
Then, the domain turns out to be 2 = Ql U F1 3 U S23 We derive in a rigorous way the
effective problem (1.2), and in particular, the transmission conditions on the limit density,
i, across the effective interface. Assuming that the mobility coefficients satisfy p; . > 0
fori = 1,3 and

lim py = fi1 € (0,+00), lim Bae _ 1,3 € (0,400), lim puse = i3 € (0,4+00),
g—>0 e—>0 & g—>0

we prove that, in a weak sense, solutions of Problem (1.1) converge to solutions of the
following system

3sti; — iV - (@ V pi) = 11;G(pr) in(0,7)xQ;,  i=13,
1 3[M] = i Vpy -y 3 = jisiisVps-iy 3 on(0,7) x I'y 3, (1.2)
u=2~0 on (0,7) x 082,

where IT satisfies IT'(#) = up’(u), namely

M(u) := ERANNELY
y+1

We use the symbol [[(-)] to denote the jump across the interface r 1,3,1.e.,

[1] :=

@ *h); -

77+l
V+1 V+1(u -

where the subscript indicates that (:) is evaluated as the limit to a point of the interface
coming from the subdomain €21, 23, respectively.

1 N
L A\
1 - \
1,2 - T nl3 -
Qe Q3¢ > Q2 Q1 | — ¢ Q3
g g s,
\‘ 'l
A4
- — L

Figure 1. We represent here the bounded cylindrical domain €2 of length L. On the left, we can
see the subdomains €2; o with related outward normals. The membrane Q3 . of thickness ¢ > 0
is delimited by I'; j 11, = {x3 = £&/2} N Q which are symmetric with respect to the effective
interface, f’l ,3 = {x3 = 0} N Q. On the right, we represent the limit domain as ¢ — 0. The effective
interface, f1,3, separates the two limit domains, 51, Q 3.
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Motivations and previous works. Nowadays, a huge literature can be found on the math-
ematical modeling of tumour growth, see, for instance, [28, 31, 33, 37], on a domain
Q C R4 (with d = 2, 3 for in vitro experiments, d = 3 for in vivo tumours). Study-
ing tumour’s evolution, a crucial and challenging scenario is represented by cancer cells
invasion through thin membranes. In particular, one of the most difficult barriers for the
cells to cross is the basement membrane. This kind of membrane separates the epithelial
tissue from the connective one (mainly consisting in extracellular matrix, ECM), provid-
ing a barrier that isolates malignant cells from the surrounding environment. At the early
stage, cancer cells proliferate locally in the epithelial tissue originating a carcinoma in
situ. Unfortunately, cancer cells could mutate and acquire the ability to migrate by pro-
ducing matrix metalloproteinases (MMPs), specific enzymes which degrade the basement
membrane, allowing cancer cells to penetrate into it, invading the adjacent tissue. A spe-
cific study can be done on the relation between MMP and their inhibitors as in Bresch
et al. [36]. Instead, we are interested in modeling cancer transition from in situ stage to
the invasive phase. This transition is described both by system (1.1) and (1.2). In fact,
for both of them, the left domain can be interpreted as the domain in which the primary
tumour lives, whereas the one on the right is the connective tissue. Between them, the
basal membrane is penetrated by cancer cells either with a mobility coefficient (in the
case of a nonzero thickness membrane) or with particular membrane conditions, in the
case of a zero-thickness interface.

Since in biological systems the membrane is often much smaller than the size of the
other components, it is then convenient and reasonable to approximate the membrane
as a zero-thickness one, as done in [11, 16], differently from [36]. In particular, it is
possible to mathematically describe cancer invasion through a zero thickness interface
considering a limiting problem defined on two domains. The system is then closed by
transmission conditions on the effective interface which generalise the classical Kedem—
Katchalsky conditions. The latter were first formulated in [21] and are used to describe
different diffusive phenomena, such as, for instance, the transport of molecules through
the cell/nucleus membrane [10, 13,39], solutes absorption processes through the arterial
wall [35], the transfer of chemicals through thin biological membranes [9], or the trans-
fer of ions through the interface between two different materials [2]. In our description,
the transmission conditions define continuity of cells density flux through the effective
interface 1:1,3 and their proportionality to the jump of a term linked to cells pressure. The
coefficient of proportionality is related to the permeability of the effective interface with
respect to a specific population.

For these reasons, studying the convergence as the thickness of the membrane tends to
zero represents a relevant and interesting problem both from a biological and mathematical
point of view. In the literature, this limit has been studied in different fields of applic-
ations other than tumour invasion, such as, for instance, thermal, electric or magnetic
conductivity, [25,38], or transport of drugs and ions through a heterogeneous layer, [30].
Physical, cellular and ecological applications characterised the bulk-surface model and the
dynamical boundary value problem, derived in [26] in the context of boundary adsorption-
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desorption of diffusive substances between a bulk (body) and a surface. Another class of
limiting systems is offered by [24], in the case in which the diffusion in the thin membrane
is not as small as its thickness. Again, this has a very large application field, from thermal
barrier coatings (TBCs) for turbine engine blades to the spreading of animal species, from
commercial pathways accelerating epidemics to cell membrane.

As it is now well-established, see, for instance, [8], living tissues behave like com-
pressible fluids. Therefore, in the last decades, mathematical models have been more and
more focusing on the fluid mechanical aspects of tissue and tumour development, see, for
instance, [3,7,8, 11, 18,31]. Tissue cells move through a porous embedding, such as the
extracellular matrix (ECM). This nonlinear and degenerate diffusion process is well cap-
tured by filtration-type equations like the following, rather than the classical heat equation,

diu+V-(uv) = F(u), fort>0, x e Q. (1.3)

Here, F(u) represents a generic density-dependent reaction term and the model is closed
with the velocity field equation
vi=—uVp, (1.4)

and a density-dependent law of state for the pressure p := f(u). The function u =
u(t, x) > 0 represents the cell mobility coefficient and the velocity field equation cor-
responds to the Darcy law of fluid mechanics. This relation between the velocity of the
cells and the pressure gradient reflects the tendency of the cells to move away from regions
of high compression.

Our model is based on the one by Chaplain et al. [11], where the authors form-
ally recover the effective interface problem, analogous to system (1.2), as the limit of a
transmission problem, (or thin layer problem) cf. system (1.1), when the thickness of the
membrane converges to zero. They also validate through simulations the numerical equi-
valence between the two models. When shrinking the membrane €25 , to an infinitesimal
region, f1,3, (i.e., when passing to the limit ¢ — 0, where ¢ is proportional to the thickness
of the membrane), it is important to guarantee that the effect of the thin membrane on cell
invasion remains preserved. To this end, it is essential to make the following assumption
on the mobility coefficient in the subdomain 2, ¢,

e—0 2 e—>0 _
Hae —>0 such that Hae — fl1,3.

This condition implies that, when shrinking the pores of the membrane, the local permeab-
ility of the layer decreases to zero proportionally with respect to the local shrinkage. The
function i3 represents the effective permeability coefficient of the limiting interface I 3
i.e., the permeability of the zero-thickness membrane. We refer the reader to [11, Remark
2.4] for the derivation of the analogous assumption in the case of a fluid flowing through
a porous medium. In [11], the authors derive the effective transmission conditions on the
limiting interface, f‘l,3, which relates the jump of the quantity IT := IT(u), defined by
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IT'(#) = uf’(u) and the normal flux across the interface, namely
firs[0] = Al V f (i) - fty3 = 4 V(L) - ity 3, fori =1,3 onTp3.!

These conditions turns out to be the well-known Kedem—Katchalsky interface conditions
when f(u) := In(u), for which [1(u) = u + C, C € R, i.e., the linear diffusion case.

In this paper, we provide a rigorous proof to the derivation of these limiting transmis-
sion conditions, for a particular choice of the pressure law. To the best of our knowledge,
this question has not been addressed before in the literature for a nonlinear and degenerate
model such as system (1.1). Although our system falls into the class of models formulated
by Chaplain et al., we consider a less general case, making some choices on the quantities
of interest. First of all, for the sake of simplicity, we assume the mobility coefficients w; ¢
to be positive constants, hence they do not depend on time and space as in [11]. We take a
reaction term of the form u G(p), where G is a pressure-penalized growth rate. Moreover,
we take a power-law as pressure law of state, i.e., p = u?, with y > 1. Hence, our model
turns out to be in fact a porous medium type model, since equations (1.3, 1.4) read as
follows

du — ylAu”H:uG(p), fort >0, x € Q.

y +
The nonlinearity and the degeneracy of the porous medium equation (PME) bring several
additional difficulties to its analysis compared to its linear and non-degenerate counterpart.
In particular, the main challenge is represented by the emergence of a free boundary, which
separates the region where u > 0 from the region of vacuum. On this interface the equation
degenerates, affecting the control and the regularity of the main quantities. For example,
it is well-known that the density can develop jumps singularities, therefore preventing any
control of the gradient in L2, opposite to the case of linear diffusion. On the other hand,
using the fundamental change of variables of the PME, p = u?, and studying the equation
on the pressure rather than the equation on the density, turns out to be very useful when
searching for better regularity of the gradient. Nevertheless, since the pressure presents
“corners” at the free boundary, it is not possible to bound its laplacian in L? (uniformly
on the entire domain).

For these reasons, we could not straightforwardly apply some of the methods previ-
ously used in the literature in the case of linear diffusion. For instance, the result in [5]
is based on proving H2-a priori bounds, which do not hold in our case. The authors con-
sider elliptic equations in a domain divided into three subdomains, each one contained
into the interior of the other. The coefficients of the second-order terms are assumed to be
piecewise continuous with jumps along the interior interfaces. Then, the authors study the
limit as the thickness of the interior reinforcement tends to zero. In [38], Sanchez-Palencia
studies the same problem in the particular case of a lens-shaped region, /., which shrinks
to a smooth surface in the limit, facing also the parabolic case. The approach is based on

!This equation is reported in [11, Proposition 3.1], where we adapted the notation to that of our paper.
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H '-a priori estimates, namely the Z2-boundedness of the gradient of the unknown. Con-
sidering the variational formulation of the problem, the author is able to pass to the limit
upon applying an extension operator. In fact, if the mobility coefficient in /. converges
to zero proportionally with respect to &, it is only possible to establish uniform bounds
outside /.. The extension operator allows to “truncate” the solution and then “extend” it
into I, reflecting its profile from outside. Therefore, making use of the uniform control
outside of the e-thickness layer, the author is able to pass to the limit in the variational
formulation. Let us also mention that, in the literature, one can find different methods
and strategies for reaction-diffusion problems with a thin layer. For instance, in [29] the
notion of two-scale convergence for thin domains is introduced which allows the rigorous
derivation of lower dimensional models. Some other papers have deepened the case of
heterogeneous membrane. We cite [30], where the authors develop a multiscale method
which combines classical compactness results based on a priori estimates and weak-strong
two-scale convergence results in order to be able to pass to the limit in a thin heterogen-
eous membrane. In [14], a transmission problem involving nonlinear diffusion in the thin
layer is treated, and an effective model was derived. Finally, in [15], the accuracy of the
effective approximations for processes through thin layers is studied by proving estimates
for the difference between the original and the effective quantities.

The passage at the limit allows to infer the existence of weak solutions for the effective
Problem (1.2), thanks to the existence result for the e-problem provided in Appendix A.
In the case of linear diffusion, the existence of global weak solutions for the effective
problem with the Kedem—Katchalsky conditions is provided by [12]. In particular, the
authors prove it under weaker hypothesis such as L! initial data and reaction terms with
sub-quadratic growth in an L!-setting.

QOutline of the paper. The paper is organised as follows. In Section 2, we introduce the
assumptions and notations, including the definition of weak solution of the original prob-
lem, system (1.1). In Section 3, a priori estimates that will be useful to pass to the limit
are proven.

Section 4 is devoted to prove the convergence of Problem (1.1), following the method
introduced in [38] for the (non-degenerate) elliptic and parabolic cases. The argument
relies on recovering the L2-boundedness (uniform with respect to &) of the velocity field,
in our case, the pressure gradient. As one may expect, since the permeability of the mem-
brane, (s ¢, tends to zero proportionally with respect to ¢, it is only possible to establish
a uniform bound outside 2, .. For this reason, following [38], we introduce an extension
operator (Subsection 4.1) and apply it to the pressure in order to extend the H !-uniform
bounds in the whole space €2 \ 1:1,3, hence proving compactness results. We remark that
the main difference between the strategy in [38] and our adaptation, is given by the fact
that due to the nonlinearity of the equation, we have to infer strong compactness of the
pressure (and consequently of the density) in order to pass to the limit in the variational
formulation. For this reason, we also need the L!-boundedness of the time derivative,
hence obtaining compactness with a standard Sobolev’s embedding argument. Moreover,
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since solutions to the limit Problem (1.2) will present discontinuities at the effective inter-
face, we need to build proper test functions which belong to H!(Q \ 17‘1,3) that are zero
on 0€2 and are discontinuous across 1:1’3 (Subsection 4.2).

Finally, using the compactness obtained thanks to the extension operator, we are able
to prove the convergence of solutions to Problem (1.1) to couples (i, p) which satisfy
Problem (1.2) in a weak sense, therefore inferring the existence of solutions of the effective
problem, as stated in the following theorem.

Theorem 1.1 (Convergence to the effective problem). Solutions of Problem (1.1) con-
verge weakly to solutions (i, p) of Problem (1.2) in the following weak form

T T T
—/ /ﬁa,w+ﬂ1/ /;ftVﬁ-Vw—i—/:u/ /;ftVﬁ-Vw
0o JQ 0 JQ 0 JQs

T T
s [ Mo —wnmo) = [ [ a6@w+ [ i,
0 JI'3 0 JQ Q
(1.5)

Sfor all test functions w(t, x) with a proper regularity (defined in Theorem 4.3) and
w(T, x) = 0 a.e. in Q. We used the notation

. 14 ~y+1 14 oyl

] := VY o — — @Y o

[[ H Y + 1 (u )I,)C3—()+ y + 1 (u )|X3—0

and (*)|x;=0- = T1() as well as (*)|x,=o+ = T3(), with 71, T3 the trace operators defined

in Section 2.

Section 5 concludes the paper and provides some research perspectives.

2. Assumptions and notations

Here, we detail the problem setting and assumptions. For the sake of simplicity, we con-
sider as domain 2 C R? a cylinder with axis x3, see Figure 1. Let us notice that it is
possible to take a more general domain Q defining a proper diffeomorfism F': Q — Q.
Therefore, the results of this work extend to more general domains as long as the existence
of the map F can be proved (this implies that €2 is a connected open subset of R¢ and has
a smooth boundary). Therefore, we assume that the domain €2 has a C !-piecewise bound-
ary. We also want to emphasize the fact that our proofs hold in a 2D domain considering
three rectangular subdomains. We introduce

Ule in Ql,a" Pl in Ql’g,
Ug i= 3 U, in Qaog, De = P2,e inQo,
Uz in Q3g, D3 N Q235

We define the interfaces between the domains Q; ; and Q2,4 , fori = 1,2, as

Fiit1,e = 06 N0 41,6
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We denote with n; ;1 the outward normal to I'; ; 1, with respect to Q; ,, fori =1, 2.
Let us notice that n; j 11 = —n;41,;.
We define two trace operators

|

Therefore, for any z € WkP(Q \ fl, 3), we have the following decomposition

Z1 in Ql,
z =

SWkP(Q)) — LP(3Q),

- - forl < p<+4o0, k=>1.
cWkP(Q3) — LP(023)

S

Z3 in 523.
Obviously, we have that z,, € wksp (Qa) (e = 1, 3). Thus, we denote

2,5, = TaZ € L?(3Qq), a =13,

92,

and the following continuity property holds [4]
”%Z”LP(BQQ) = C”Z”Wk,p(ﬁay a=1,3

We assume W52(Q \ f‘m) is endowed with the norm

k
Iz lwer@fy = 120Lo@ s + 22 1072l 0@ F, o)
j=1

We make the following assumptions on the initial data: there exists a positive constant
PH, such that
0<p<pu, 0<ul<pll’ = uy, (A-datal)
Al )" *!) € L' (Qie), fori =1,2,3. (A-data2)
Moreover, we assume that there exists a function iy € Lﬂr(Q) (.e., fip € LY (Q) and
nonnegative) such that

||ug — ftollLl(Q) —> 0, ase—0. (A-data3)
The growth rate G(-) satisfies
G(0) =Gy >0, G'()<0, G(pg)=0. (A-G)

The value ppg, called homeostatic pressure, represents the lowest level of pressure that
prevents cell multiplication due to contact-inhibition.
We assume that the mobility coefficients satisfy p; o > 0 fori = 1,3 and

limpre = fig >0, lim =22 = f13>0, limpse=fs>0. (2.1
g—>0 e—>0 ¢ g—>0
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Notations. For all 7 > 0, we denote Q7 := (0, T) x Q2. We use the abbreviated form
Ug 1= Ug(t) := u(t, x). From now on, we use C to indicate a generic positive constant
independent of ¢ that may change from line to line. Moreover, we denote

sign, (w) = Lyy>oy, sign_ (w) = —Lyy<oy,

and
sign(w) = sign, (w) + sign_ (w).

We also define the positive and negative part of w as follows

w forw > 0, —w forw <0,
(w)4 1=

and (w)-:=
0 forw <0, 0 for w > 0.

We denote |w| := (w)+ + (w)-—.
Now, let us write the variational formulation of Problem (1.1).

Definition 2.1 (Definition of weak solutions). Given ¢ > 0, a weak solution to Prob-
lem (1.1) is given by ug, p, € L*®(0, T; L>(R2)) such that V p, € L?(Q27) and

T 3 T
_/ [ ueatw + Z/Li,&:/ / ui,evpi,e : VW
0o Jo = o Jei,

=/()T/Qu86(p8)w+f9u21/f(0,x),

for all test functions ¥ € H'(0, T; H} (2)) such that ¥(7, x) = 0 a.e. in Q.

(2.2)

3. A priori estimates

We show that the main quantities satisfy some uniform a priori estimates which will later
allow us to prove strong compactness and pass to the limit.

Lemma 3.1 (A priori estimates). Given the assumptions in Section 2, let (ug, pe) be a
solution of Problem (1.1). There exists a positive constant C independent of € such that
i O0<u;=<ugand0 =< p, < pH,
() 19ruello,r;er @) < Cs 10 pellLoo,r;rr @)y < C,
(i) [IVpelle2o,1:22@\02.0)) < C-

Remark 3.2. We remark that statement (i) implies that for all p € [1, co], we have

luellLo,r:Lr@) < C,  lpellLe,r;Lr @) < C.

Remark 3.3. The following proof can be made rigorous by performing a parabolic reg-
ularization of the problem, namely by adding §Au; ., for § > 0, to the left-hand side of
the equation and in the flux continuity conditions. In fact, the following estimates can be
obtained uniformly both in ¢ and 8.



G. Ciavolella, N. David, and A. Poulain 170

Proof. Let us recall the equation satisfied by u, on €2; ¢, namely
0rje — MieV - (ui,evuza) = U ¢ G(Pie)- 3.1

(i) The L°°-bounds of the density and the pressure are a straight-forward consequence
of the comparison principle applied to equation (3.1), which can be rewritten as

14 +1
OeUie — mﬂi,sAuze = Ui sG(pi)- (3.2

Indeed, summing up equations (3.2) fori = 1,2, 3, we obtain

3
Z 81”1 e T Z Mi, EAM{:I = Zui,eG(pi,a)-

i=1 i=1

Then, we also have

Za (ug —uie) = Z,utsA(uy-H y+1)

3
+ Z(uﬂ — ;)G (pie) —um Y G(pie).

i=1 i=1
Let us recall Kato’s inequality, (see [6,20]), i.e.,
A(u)- > sign_(u)Au.
If we multiply by sign_(ug — u; ), thanks to Kato’s inequality, we infer that
Z 0y (U —uie)- < Z[—ul AR =l TY -+ i) -G (pie)
i=1

—ugG(pi,e)sign_(upg —ui,s)]

< Z[—y " 1Mz EA(ul“rl y+1) + (ug —ui)-G(pi 8)} 3.3)
i=1

where we have used the assumption (A-G). We integrate over the domain €2. Thanks to
the boundary conditions in system (1.1), i.e., the density and flux continuity across the
interfaces, and the homogeneous Dirichlet conditions on 02, we gain

5, s i

_y / AR o MR T A P

i=1 ”+1£
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2

— y+1

= E [/ WiV - niipa
im1 LY Tiir1,eN{un <uiel

y+1
—/ Mit+1,e VUL, ‘”i,i+1i|
Tiit1,eN{up<uitie}

2

y+1 y+1
/ [Nivui,g - //Li+1,£vui+1,g] ‘Rt
im1 Y Tiit1,eN{un <uig}

=0.
Hence, from equation (3.3), we find
PR 3
- Z/ (g —uie)- < Gy Z/ (UH — Uig)-.
dti=1 Qm i=1 Qm

Finally, Gronwall’s lemma and hypothesis (A-datal) on ug . imply

3 3
> / (g —uje)- < MY / (up —uf,)- =0.
i=1"Se i=1"Se

We then conclude the boundedness of u; o by ugy for all i = 1,2, 3. From the relation
pe = ul, we conclude the boundedness of p;.
By arguing in an analogous way, replacing ug by 0 and multiplying by sign (#; ),

we obtain
3 3
G 0
3 /Q (i) < 13 /Q W) =0,

i=1 i=1
namely, u, > 0, and consequently, p, > 0.
(i) We derive equation (3.2) with respect to time to obtain

¢ (ruie) = Wi eVA(Piedittie) + 91ui e G(Pie) + Ui e G (pie) s pie.
Upon multiplying by sign(d;u; ) and using Kato’s inequality, we have
8t(|atui,8|) = /’Li,syA(pi,£|atui,s|) + |8tui,8|G(pi,£) + ui,eG/(pi,s)latpi,slv

. . —1 .
since u; , and p; . are both nonnegative and 9; p; o = yull.lg 0;u; .. We integrate over ; .,
and we sum over i = 1,2, 3, namely

3 3
d
=53 [Q Bousel <7 i / A(pieldei o) +Gar [ Bouiel, (A
i=17%%e

i=1 Qi Qe

S

where we use that G’ < 0.
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Now we show that the term § vanishes. Integration by parts yields

2
g = ZL /’Li,sv(pi,s|atui’s|) RURES

i=1 i,i+1,e

2

+ E / Wi+1,eV(Pit1,el0ititrel) - mivri-
— Jr
i=1

ii+l,e

172

For the sake of simplicity, we introduce the notation n := n; ;1. Let us recall that, by

definition, n; +1; = —n. We have

2
F=2 [ Ve = pi Vi albainD) o
i=17T

ii+1,e

2
= Z/ 10:ui el i, eV Pise - 1 — |0:Uig1,6|it1,6V Ditr,e - 1
i=1 Fi,i+1,s

&1

2
+ Z/ RiePieV]0Uiegl B — [it1,6Pit1,eV]0tUix1,6] 1.
F.

i=1 i,i+1,e

&2

Let us recall the membrane conditions of Problem (1.1), namely

MieUieVPie N = [it1,eUi+1,eV Pit+1,e " M,

Uje = Uit+1,e
on (0,T) x I'; ;41,6 fori = 1,2. From equation (3.6), it is immediate to infer
diuie = drttiv1,e on (0,7) X it

since
ui et + h) — Ui e(t) = uit1,6(f + h) — Uit1,6(t)

onIjit1forallh > Osuchthatt +h € (0,7).
Combining equation (3.6) and equation (3.5) we get

Wi,eVPie n = Wit1,VPit1,e-n on(0,T) xTiit1e.
Moreover, equation (3.5) also implies
WiePi,eVitie - n = it1ePi+1,eViUitr,e - on(0,T) x [jiyre,
which, combined with equation (3.6) gives also

WieVitie-n = Wit1,eViirre-n on(0,T) X Tyt

(3.5)
(3.6)

3.7

(3.8)

(3.9)

(3.10)
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Now we may come back to the computation of the term §. By equations (3.7), and (3.8)
we directly infer that §; vanishes.
We rewrite the term ¢, as

2
S iepiesien@ )0 (Vs m)

i=1 ii+1,e

— Wit 1,ePit+1,6 518000 Ui 41,6)0; (VUi 41,6 - 1)

2
= Z/ sign(ds14;e)ds (Wie PieVitie - — it 1,e Pit 1,6 Vilit1e - 1)
T

i=1"Lii+t1e

F2.1

2
_Z/ |atpi,8|(ﬂi,avui,e'n_Hvi-i-l,svui-‘rl,a'”),
r
i=1

i+l

F2.2

where we used equation (3.7), which also implies 9; p; s = 0; pi+1, on (0,T) x I i 1.6,
fori = 1,2. The terms ¢»,1 and 2 » vanish thanks to equation (3.9) and equation (3.10),
respectively.

Hence, from equation (3.4), we finally have

3 3
; /
4 90tse] < Gaa / Botrl.
dtl; Szi’s " ; Qi’e "

and, using Gronwall’s inequality, we obtain

3 3
> NOERDY [ e

i=1 i=1

Thanks to the assumptions on the initial data, cf. equation (A-data2), we conclude.

(iii) As known, in the context of a filtration equation, we can recover the pressure
equation upon multiplying the equation on u; ¢, cf. system (1.1), by p'(u; ) = yug';l.
Therefore, we obtain

3¢ Pise — VIki,e PieAPie = Mie|V Piss|® + YDieG(Pie)- (3.11)

Studying the equation on p, rather than the equation on u, turns out to be very useful
in order to prove compactness, since, as it is well-known for the porous medium equation
(PME), the gradient of the pressure can be easily bounded in L2, while the density solution
of the PME can develop jump singularities on the free boundary, see [40].



G. Ciavolella, N. David, and A. Poulain 174

We integrate equation (3.11) on each €; ., and we sum over all i to obtain

3

Z 31191',5
i=1
3
= Z(Vﬂi,a[ PieApie +/ HielV piel® + y/ pi,aG(pi,e))'
&

i=1 is i,e i,

(3.12)

Integration by parts yields

3 3 2
Zui,e/ Pielpie = —Zﬂi,s/ |V piel® + Z/ WiePieV Pie - Miit1
i=1 S im1 Qie r

i=1Yliitle

2
+ Z/ Mi+1,ePi+1.eY Pitle Mit1,i

i=1YTiitLe
3
2
= _E Mi,s/ IV piel”
i=1 Sie

since we have homogeneous Dirichlet boundary conditions on d€2 and the flux continuity
conditions (3.8).
Hence, from equation (3.12), we have

3 3
Z/ 0t Pie = Z(Mz‘,a(l - )’)/ IV piel® + y/ Pi,sG(pi,s))-
i=17 e Qi Qe

i=1
We integrate over time, and we deduce that

3

T
Z(/ e = [ oot mcr-n [ [ |Vpl-,s|2)
Qi,s Qi,s 0 ie

i=1

3 T
= Zy[ / pi,sG(pi,s)~
i=1 70 Qi

Finally, we conclude that

3 T 3 y T 1
S [ wdvme =Y [ peGia [t
i=1 0 Qi,s i=1 )’ - 1 0 ie V - 1 Qiyg

Since we have already proved that p; . is bounded in L*°(27) and by assumption G is
continuous, we finally find that

3 T
Zm,a/ / IV piel® <C, (3.13)
0 Qe

i=1
where C denotes a constant independent of ¢. Since both p1 . and u3 , are bounded from
below away from zero, we conclude that the uniform bound holds in € \ €5 ;. [
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Remark 3.4. Let us also notice that, differently from [38], where the author studies the
linear and uniformly parabolic case, proving weak compactness is not enough. Indeed,
due to the presence of the nonlinear term u'V p, it is necessary to infer strong compactness
of u. For this reason, the L!-uniform estimate on the time derivative proven in Lemma 3.1
is fundamental.

4. The limite — 0

We have now the a priori tools to face the limit &¢ — 0. We need to construct an extension
operator with the aim of controlling uniformly, with respect to ¢, the pressure gradi-
ent in LZ(Q). Indeed, from (3.13), we see that one cannot find a uniform bound for
IVPp2.ellL2(@,,)- The blow-up of estimate (3.13) for i = 2, is in fact the main challenge
in order to find compactness on 2. To this end, following [38], we introduce in Subsec-
tion 4.1 an extension operator which projects the points of 2, . inside €2 ¢ U €23 . Then,
introducing proper test functions such that the variational formulation for ¢ > 0 in (2.2)
and ¢ — 0in (1.5) are well-defined, we can pass to the limit (Subsection 4.2).

4.1. Extension operator and compactness

7\
A
| \
| \
x| x| 'x x’
1: - - 1 _ 1 — - —|—o
1,2, | 1 2,3,&
\ 1.3 ]
1 1
(O
s

Q2,1 Q2.3

Figure 2. Representation of the spatial symmetry used in the definition of the extension operator,
cf. equation (4.1) and of the two subdomains of Q> 1 . and 23 3 ¢.

As mentioned above, in order to be able to pass to the limit ¢ — 0, we first need to define
the following extension operator

P LI0, T; WHP(Q\ Qa0)) — LIO, T; WHP(Q\T13)) for 1< p,q<+oo,
as follows for a general function z € L1(0, T; WP (Q \ Qa.)),

Z([,X) if xe Ql,s U 93,87

“.1)
z(t,x") if x € Qa.,

Pe(z(1,x)) = {
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where x’ is the reflection of x across 'y 2, (or 'z 3,) if x € Q2,1 (respectively, x €
Q23 3.), defined by the function g: x — x’ for x = (x1, x2, x3) € Q23 such that

2(x) = (Xl,xz,xa - 2d(F1,3,a,x)) if x€Qa,,

(x1.x2,x3 +2d(T236.%)) if x € Q3.
where d(I'1,2,¢, x) (respectively, d(I'2,3,¢, X)) denotes the distance between x and the
surface T'1 2 ¢ (respectively, I'2 3 ¢). The point x” is illustrated in Figure 2. It can be easily

seen that the function g and its inverse have uniformly bounded first derivatives. Hence,
we infer that & is linear and bounded, i.e.,

| Pe(2) ”Lq(o,T;Wl,p(sz\f“m)) <C, VzeLl0,T;W"P(Q\ Q) forl < p,q <oo.

Let us notice that the extension operator is well defined also from L!((0,7) x (2 \ 2.))
into L1((0,T) x (2 \ ['1,3)). Hence, we can apply it also on u, and d; p,.
Remark 4.1. Thanks to the properties of the extension operator, the estimates stated in
Lemma 3.1 hold true also upon applying $.(-) on pg, u., and d; pe, namely

0= Pe(pe) < pu. 0= Pel(us) <um,

3:Pe(pe) € L0, T; L' (2 \ T1,3)).

VPs(pe) € L2(0.T: L2(2 \ T1,)),

T V) € 0.7 2@ Fu),

3 (PeX™h)) € L0, T5 LY (2 \ T'1 3)).
The last two bounds hold thanks to the following arguments

#V(?s(%ﬂ)) = Pe(ue)VPe(pe) € LZ(O’ T, LZ(Q \ f1,3)),

and
3;(3’8(%“)) = (Y + D) Pe(pe)0: Pe(ue)

= (y + DPe(pe) Pe(0:ue) € Loo(o’ T, LI(Q \ 1:1,3))-

Lemma 4.2 (Compactness of the extension operator). Let (i, p;) be the solution of Prob-
lem (1.1). There exists a couple (i, p) with

it e L0, T;L®(Q\T13), p e L0, T; H'(Q\ T13) N L=, T; LR\ T1.5)),
such that, up to a subsequence, it holds
1)  Pe(pe) — p stronglyin LP(0,T; LP(Q2\ f‘l,3)), for1l < p < 400,

(i)  Pe(us) — it strongly in LP(0,T; LP(2\ Ty 3)), for 1 < p < 400,
(i) VPs(ps) — Vj weakly in L2(0,T; L2(Q \ T'y3)).
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Proof. (i) Both 8;P,(p,) and VP.(p,) are bounded in L' (0, T; L' (R \ 1:1,3)) uniformly
with respect to &, hence the strong compactness of P (pe) in L1(0,T; L' (2 \ f1,3)).
Notice also that since both u, and p, are uniformly bounded in L*°(0, T'; L*° (2 \ r 1.3))s
the strong convergence holds in any L?(0,T; LP(Q2 \ f1,3)) with 1 < p < o0.

(i1) From (i), we can extract a subsequence of 5 (p,) which converges almost every-
where. Then, remembering that u, = pgl / Y with y > 1 fixed, we have convergence of
Pe(ug) almost everywhere. Thanks to the uniform L°°-bound of 5 (u.), Lebesgue’s the-
orem implies the statement. Let us point out that, in particular, the L -uniform bound is
also valid in the limit.

(iii) The uniform boundedness of VP (pe) in L2(0, T; L2(Q2 \ T} 3)) immediately
implies weak convergence up to a subsequence. ]

4.2. Test function space and passage to the limit ¢ — 0

Since in the limit we expect a discontinuity of the density on f1,3, we need to define a
suitable space of test functions. Therefore, we construct the space E* as follows. Let us
consider a function { € D(R) (i.e., C°(2)). For any ¢ > 0 small enough, we build the
function v, = $¢({), using the extension operator previously defined. The space of all
linear combinations of these functions v, is called E* C H'(Q\ f1,3), namely

o0
E* — {chvs,n st.cn €ER, Ve = Pe(ln), n € Cf°(§2)},

n=1

We stress that the functions of E* are discontinuous on f1,3.

In the weak formulation of the limit problem (1.5), we will make use of piece-wise
C*>°-test functions (discontinuous on f‘l,3) of the type w(t, x) = ¢(t)v(x), where ¢ €
C'([0,T)) with ¢(T) = 0 and v € E*. Therefore, w belongs to C'([0, T); E*). On the
other hand, in the variational formulation (2.2), i.e., for ¢ > 0, H'(0, T; HO1 (2)) test
functions are required. Thus, in order to study the limit ¢ — 0, we need to introduce a
proper sequence of test functions depending on ¢ that converges to w. To this end, we
define the operator L,: C!([0, T); E*) — H'(0, T; H{ (R)) such that

L¢(w) — w, uniformlyas &—0, VYwe C'(0,T);E*).

In this way, L.(w) belongs to H'(0, T; Hy (R2)), therefore, it can be used as test function
in the formulation (2.2).
Following Sanchez-Palencia [38], for all # € [0, T] and x = (x1, x2, x3) € R, we define

w(t, x), it x ¢ Qo
LE(W(I,X)) = %I:w(tvxlvva%)+w(t,X1,X2,—%)]

—i—[w(t,xl, x2,£) —w(t, x1, x2, —%)]%, otherwise.
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It can be easily verified that L.(w) is linear with respect to x3 in 2, ; and is continuous
on 02, .. Let us notice that it holds

dLe(w) < g
oxz |~ ¢
Furthermore, thanks to the mean value theorem, the partial derivatives of L.(w) with
respect to x; and x5 are bounded by a constant (independent of ¢),

'aLs(w) -

dLg(w)
C, — | <C,
8X1 - ’ axz -

and since the measure of €2, . is proportional to &, we have

Ik

Given w € C([0,T); E*), we take L¢(w) as a test function in the variational formulation
of the problem, i.e., equation (2.2), and we have

T 3 T
_/ / usath(w) + Z ,U«i,s/ / ui,svpi,s : VLs(w)
0 Q i=1 0 Qi,e

=Adéwamnmw+éﬁuw% (4.3)

dL¢(w)
3)(?1

2
< Ce. 4.2)

? dL¢(w)
8)(72

Thanks to the a priori estimates already proven, cf. Lemma 3.1, Remark 4.1 and the con-
vergence result on the extension operator, cf. Lemma 4.2, we are now able to pass to the
limit ¢ — 0 and recover the effective interface problem.

Theorem 4.3. For all test functions of the form w(t, x) := @(t)v(x) with ¢ € C1([0, T))
and v € E*, the limit couple (i, p) of Lemma 4.2 satisfies the following equation

T T T
—/ /ﬁa,w+/11/ ﬁﬁVﬁ-Vw+ﬂ3/ ﬁﬁVﬁ-Vw
0 JQ 0 J 0 JQ3

T T
+ﬂm/‘[HHMme—wmﬂﬁ=/‘fﬁamw+/ﬂ%9
0 JI'i3 0 JQ Q

V. o~ Voo~
1] := . 1(lly+1)|x3=o+ - m(“yﬂ)m:o—,
and ()| x;=0- = T1(-) as well as () |x,=o+ = T3(-), with T, T3 the trace operators defined

in Section 2. By definition, this equation is the weak formulation of Problem (1.2).

where

Proof. We may pass to the limit in equation (4.3), computing each term individually.

Step 1. Time derivative integral.
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We split the first integral into two parts
T T T
[ [t == [ [ wdtiw- [ [ wdit).
0 Q 0 Ql,gUQs’g 0 92,5
I1 I2

Since outside 2, . the extension operator coincides with the identity, and L.(w) = w, we
have

T T T
I, = —/ [ j)s(us)atw = _/ [ J)E(Ms)atw +/ / ?s(us)atw'
0 91,5UQ3,5 0 Q 0 Qz,g

Thanks to Remark 4.1, we know that the last integral converges to zero, since both & (1)
and 9;w are bounded in L? and the measure of 2, . tends to zero as ¢ — 0. Then, by
Lemma 4.2, we have

T T
—/ / Pe(ug)oyw — —/ / uo,w, ase—0,
0o Ja 0o Ja

where we used the weak convergence of &P (u,) to 7 in L2(0,T; L?( \ f1,3)). The term
I, vanishes in the limit, since both u, and d;L.(w) are bounded in L? uniformly with
respect to €. Hence, we finally have

T T
—/ / U0 Lo(w) — —/ / uo;,w, ase— 0. “4.4)
0 Q 0 Q

Step 2. Reaction integral.

We use the same argument for the reaction term, namely

&
K] KZ

Using again the convergence result on the extension operator, cf. Lemma 4.2, we obtain

T T
K1 =/ / Pe(Ue)G(Pe(pe))w —>/ / uG(p)w, ase—0,
0 Q1,:UQ3¢ 0 Q

since both P, (i) and G(P(p.)) converge strongly in L2(0, T; L2(Q \ T} 3)). Arguing
as before, it is immediate to see that J, vanishes in the limit. Hence,

/(;T/;ZMSG(pS)Ls(w) —> /OT/QIZG(ﬁ)w, as e — 0. 4.5)

Step 3. Initial data integral.
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From (A-data3), it is easy to see that

/ung(wO)—>/ i°w®, ase—0. (4.6)
Q Q

Step 4. Divergence integral.

Now it remains to treat the divergence term in equation (4.3), from which we recover
the effective interface conditions at the limit.

Since the extension operator & is in fact the identity operator on Q \ €2, ., we can
write

3 T
ZMi,s/ / ui,svpi,s . VL:‘:(w)
i=1 0 Qi,a

T T
= Z Mi,e / / J)fs(”i,e)vj)e(pi,a) Vw + o e / / U2,Vpae- VLg(w).
0 Qe 0 Qo

i=1,3

7, ¥

4.7
We treat the two terms separately. Since we want to use the weak convergence of
V&P (pe) in L2(0,T; L*(Q \ f1,3)) (together with the strong convergence of P (u.) in
L2(0,T; L*(Q \ 1:1,3))), we need to write the term J¢; as an integral over 2. To this end,
let iz, := 1, (x) be a function defined as follows

M1, forx € @y,
He(x): =40 for x € Qq,
U3¢ forx € 9353.

Then, we can write
T
H1 = / / e Pe(ue)VPe(pe) - Vw.
0o Jo

Let us notice that as & goes to 0, [t converges to [l in Q; and 3 in Q3. Therefore, by
Lemma 4.2, we infer

T T
a8 —>/11/ /; ﬁVﬁ-Vw—i—/h/ /; uVp-Vw, as &—0. 4.8)
0 Ql 0 93

Now we treat the term J¢», which can be written as

T
Ho = /1«2,5/ [ u2,evp2,5 . VLs(w)
0 Q¢

/T/ ( dp2.e OLe(w) 0p2.e 3L€(u)))
= /’LZ,E u2,€ + uz’g
0 Qo 8x1 8x1 8)62 3X2

/T / 3P2,s dLg(w)
+ U2 U2 e —
0 Qo

8x3 8x3
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By the Cauchy—Schwarz inequality, the a priori estimate (3.13), and equation (4.2), we
have

/T / Opa.e OLe(w) Opa2.e OLe(w)
M2, Uz e + Uz e
Qe 1 X1 axz axz

9L (w)

dxy LZ((O,T)XS'Zz,g))

ILe(w)
8x2

1/2 0p2.s
2,8 axl

2 H
< /1/ u 0o H
=728 el ((O’T)XQZ’E)( L2((0,T)xQ0,¢)

1/2 0p2.e
2:¢ 3)(2

1/2
+ 152 N2 el oo (0.7)x2a.0) (HM

L2((0,T)xQ2,6) Lz((O,T)Xﬂz,e))

<C//V1/2 12 0.

On the other hand, by Fubini’s theorem, the following equality holds

/T / 0p2.e ILc(w)
H2.e Uz,e
0 Qe 8)(3 3x3

e
2y 1 Qe 3x3 3x3

1
uy-i-

/ /8/2 / 8 9L (w) dod
=u odx
2 14 + 1 e/2 JT13 X3 8-x3 ’
¢/2 a”;—: Wixy=5 — Wix3=—%
= 2,6 / / / 2 dodx;
Y + 1 e/2 Fl 3 2

g/2 auy+1
= H2e / / (Wixs=z — w|x3_,,)/ dxzdo
ey + 1 Fl 3 —8/2 8x3

+1 +1
- . V—I—lf /I‘13 (uy Jxs=5 — (uy )\x3=—*) (w|x3—* w|x3=—%)'

Therefore,

l1m Hor=li
-0

+1 +1
lim = y+1// Uy e Mxa=3 — Uz Dra=—5) (Wiry=§ — Wixs=—3)-

4.9)
In order to conclude the proof, we state the following lemma (whose proof is presented
after the end of the current proof of Theorem 4.3).

Lemma 4.4. The following limit holds uniformly in f1,3
Wixs=5 = Wixz=—5 — Wjxy=0+ — Wjxz=0~, aS& —> 0. (4.10)

Moreover,

((uy-H)\xz—* J/—H)lxs=—£) -

—— (@) gym0+ — @) xy=0-)

y+1 y+1
4.11)

strongly in L?(0, T’; Lz(f‘l,g)), ase — 0.
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We may finally find the limit of the term #», using Assumption (2.1), and applying
Lemma 4.4 to equation (4.9)

T
H2e ¥V y+1 y+1
e y+1 /0 /fl,s( U e Nxa=g — (U )|x3=—%) ‘ (w|x3=% - w|x3=_%)

T

3 % 3 3

—> [i1,3 / /~ (@) gm0+ — @) x3=0-) - (Wixs=0+ — Wixz=0-),
y+1Jo JFi,

as ¢ — 0. Combining the above convergence to equation (4.7) and equation (4.8), we find
the limit of the divergence term as € goes to 0O,

3 T
Zﬂi,s/ / ui,svpi,s : VLs(w)
i=1 0 JQi,

T T
_>/11/ /~ﬁVﬁ-Vw+/13/ /~ﬁVﬁ-Vw
0 Q1 0 Q3

T

- Y - -

. / / (7)ot — (7 )a0-) - (Wpramot — Wiraeoo).
Y + 1 0 F1!3

which, together with equations (4.3), (4.4), (4.5), and (4.6), concludes the proof. ]
We now turn to the proof of Lemma 4.4

Proof of Lemma 4.4. Since by definition w(t, x) = ¢(t)v(x), with ¢ € C'([0, T')) and
v € E*, the uniform convergence in equation (4.10) comes from the piece-wise differen-
tiability of w.

A little trickier is the second convergence, i.e., equation (4.11). We recall that on
{x3 = +¢/2}, u’z':;l coincides with & (u};“), since across the interfaces u, is continuous
and Pe(uie) = u; e, fori =1,3.

Let us recall that from Remark 4.1, we have

H ?E(M«)SH_])”LZ(O,T;HI(Q\f‘l,g)) <C. and [|9,(Pe ™) “Loo(o,T;Ll(sz\f‘l,g)) =C.
Since we have the following embeddings
H'(Q\Ti3) cc HA @\ T15) c L' @\ Tha).
for every % < B < 1, upon applying Aubin-Lions lemma, see [1,27], we obtain
Peu?™h) — @l ase — 0,

strongly in L2(0, T; HB (Q \ f1,3)).
Thanks to the continuity of the trace operators 7: H B(Qq \ I'1.3) = L?(092,), for
% < B < landa = 1,3, we finally recover that

1 ~y+1
” 5)8(”}9/+ )|x3=0i - (uy+ )|963=0:E ||L2(0,T;L2(1:1,3)) (4.12)
+1 ~y+1 ’

< CPel™) =@ o rimp @ Fuay = O
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as ¢ — 0. We recall that the trace vanishes on the external boundary, d€2, therefore we
only consider the L2(0, T; L*(I'; 3))-norm.

Recalling that L is the length of €2, trivially, we find the following estimate

2
H ?s(ué’+l)\x3=:|:5/2 - <7)e('/‘33/_’—1)|x3=o:E ||L2(0,T;L2(f‘1,3))
T +e/2 0P, (ul"H) 2
- 0 /1:1 3 (/ ax?: )
T 9P (u"“) 2
/~ (/ — " 1[o,2e/2] (Xs))
0 I3

- T an(My+1) .
_/0 Fis (/;(8—x3) /L(ﬂ[o,is/z](xg,)) )

— 5—

e
=< E ” :P (u )||L2(0,T;L2(Q\f1’3))
<eC,

and combing it with equation (4.12), we finally obtain equation (4.11). ]

Remark 4.5. Although not relevant from a biological point of view, let us point out that,
in the case of dimension greater than 3, the analysis goes through without major changes.
It is clear that the a priori estimates are not affected by the shape or the dimension of the
domain (although some uniform constants C may depend on the dimension, this does not
change the result in Lemma 3.1). The following methods, and in particular the definition
of the extension operator and the functional space of test functions, clearly depends on
the dimension, but the strategy is analogous for a d -dimensional cylinder with axis {x; =
= Xd—1 = O}

Remark 4.6. We did not consider the case of non-constant mobilities, i.e., (t; ¢ := (i ¢(X),
but continuity and boundedness are the minimal hypothesis to succeed in the proof.

5. Conclusions and perspectives

We proved the convergence of a continuous model of cell invasion through a membrane
when its thickness is converging to zero, hence giving a rigorous derivation of the effective
transmission conditions already conjectured in Chaplain et al., [11]. Our strategy relies on
the methods developed in [38], although we had to handle the difficulties coming from
the nonlinearity and degeneracy of the system. A very interesting direction both from the
biological and mathematical point of view, could be coupling the system to an equation
describing the evolution of the MMP concentration. In fact, as observed in [11], the per-
meability coefficient can depend on the local concentration of MMPs, since it indicates
the level of “aggressiveness” at which the tumour is able to destroy the membrane and
invade the tissue.
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In a recent work [17], a formal derivation of the multi-species effective problem
has been proposed. However, its rigorous proof remains an interesting and challenging
open question. Indeed, introducing multiple species of cells, hence dealing with a cross-
(nonlinear)-diffusion system, adds several challenges to the problem. As it is well-known,
proving the existence of solutions to cross-diffusion systems with different mobilities is
one of the most challenging and still open questions in the field. Nevertheless, even when
dealing with the same constant mobility coefficients, the nature of the multi-species sys-
tem (at least for dimension greater than one) usually requires strong compactness on the
pressure gradient. We refer the reader to [19, 34] for existence results of the two-species
model without membrane conditions.

Another direction of further investigation of the effective transmission problem (1.2)
could be studying the so-called incompressible limit, namely the limit of the system as
y — oo. The study of this limit has a long history of applications to tumour growth models,
and has attracted a lot of interest since it links density-based models to a geometrical (or
free boundary) representation, cf. [22,32].

Moreover, including the heterogeneity of the membrane in the model could not only
be useful in order to improve the biological relevance of the model, but could bring inter-
esting mathematical challenges, forcing to develop new methods or adapt already existent
ones, [30], from the parabolic to the degenerate case.

A. Existence of weak solution of the initial problem

We prove in this appendix the existence of solution for system (1.1). Similarly to diffrac-
tion problems modelled by linear parabolic equations (see Section 3.13 in [23]), this result
follows from the existence of solution for the Porous Medium Equation with discontinu-
ous coefficients. Indeed, using a test function w € C*°(Q27), solutions of the following
weak formulation

/ druw + u(x)uVu? -Vwdx = / uG(p)wdx
Q Q

are actually solutions of the strong form (1.1). This is obtained from the fact that the
interfaces I'; ;41 (for i = 1,2) are continuous and from the interface conditions.

Even though the proof of the existence of weak solutions follow the lines of Section
5.4 in [40], we could not find a proof of this result in the case of discontinuous mobility
coefficients in the literature, hence, for the sake of clarity, we give in this appendix the
idea of the proof.

Theorem A.1 (Existence of weak solutions for the initial problem). Assuming that ; >0
fori =1,2,3, system (1.1) admits a weak solutionu € L' (Qr) and p € L'(0,T; Hj (2)).
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Proof. We first regularize the model to convert it into a non-degenerate parabolic model.
We use a positive parameter n and define a positive initial condition

Ugn = Uy + —.
n

Our regularized problem reads

Otutin — iV UinVPpin) = inG(pin) in(0,7)xQ;, =123,
HikinV Pin - Riit1 = Lit1Ui+1,nV Pit1n - Rii+1 on (0, T7) x Ty, i = 1,2,
Uin =Uitin on (0, T)x ;41,0 =1,2,
Uip = ,ll on (0,T) x 0L2.

(A1)

From results on diffraction problems from [23] we know that in weak form our regularized
problem is only a quasi-linear parabolic PDE. Thus, from standard results on these equa-
tions, we can have the existence of a classical solution u, € C2(Q7) of Problem (A.1).
Then, at this point the rest of the proof is similar to Section 5.4 in [40]. We obtain at
the end the existence of weak solutions u € L!(Q7) and p € L'(0, T; HJ (R)) of Prob-
lem (1.1). [
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