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Tangential contact between free and fixed boundaries
for variational solutions to variable-coefficient

Bernoulli-type free boundary problems

Diego Moreira and Harish Shrivastava

Abstract. In this paper, we show that, given appropriate boundary data, the free boundaries of min-
imizers of functionals of type J.vIA; �C; ��; �/ D

�
�.hA.x/rv;rvi Cƒ.v// dx and the fixed

boundary touch each other in a tangential fashion. We extend the results of Karakhanyan, Kenig,
and Shahgholian [Calc. Var. Partial Differential Equations 28 (2007), 15–31] to the case of variable
coefficients. We prove this result via classification of the global profiles, as per Karakhanyan, Kenig,
and Shahgholian [Calc. Var. Partial Differential Equations 28 (2007), 15–31].

1. Introduction

The objective of this paper is to study the behavior of free boundary near the fixed bound-
ary of domain for minimizers of Bernoulli-type functionals with Hölder continuous coef-
ficients

J.vIA; �C; ��; �/ D

�
�

�
hA.x/rv;rvi Cƒ.v/

�
dx; (1.1)

where A is an elliptic matrix with Hölder continuous entries, and ƒ.v/ D �C�¹v>0º C

���¹v�0º. We prove that if the value of boundary data and its derivative at a point are
equal to zero (i.e., it satisfies the (DPT) condition mentioned below), then the contact of
free boundary and the fixed boundary is tangential.

Several authors have extended the works of Alt, Caffarelli, and Friedman [2] on free
boundary problems with constant coefficients to the case of variable coefficients. For
example, the works of Argiolas and Ferrari [4, 14] which extend the seminal works [8, 9]
to the case of x dependent coefficients. See also the recent work of Ferrari and Leder-
man [15] for the case of variable exponents. For the non-homogenous case with constant
coefficients, one can refer to the work of De Silva, Ferrari, and Salsa [10].

Boundary interactions of free boundaries have gained significant attention in recent
years. Whenever there are two media involved, the interactions of their respective diffu-
sions can be modeled by free boundary problems. Often, free boundary of solution and
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fixed boundary of set come in contact. In applications, the dam problem [3] and jets,
wakes, and cavities [5] model phenomena which involve understanding of free boundary
and fixed boundary.

Very recently, the works of Indrei [19, 20] study the interactions of free boundaries
and fixed boundaries for fully non-linear obstacle problems. We refer to [17], where the
authors shed more light into the angle of contact between fixed boundary and free bound-
ary for one-phase Bernoulli problem.

We refer the reader to the work of Kenig, Karakhanyan, and Shahgholian [22, 23]
where they deal with constant-coefficient Bernoulli-type free boundary problems. The
case of variable coefficients in this paper brings forward some new difficulties (for exam-
ple, the proof of Proposition 3.9). As it is common by now, our strategy in this article is to
classify blowups of minimizers. We prove that the blowups and also their positivity sets
converge to a global solution in P1 (cf. Definition 2.5). In Section 2, we list the assump-
tions and set some notations, and then in Section 3, we prove that blowups of minimizers
converge to those of global solutions (cf. Definition 2.6). In the last section, we prove our
main result.

2. Setting up the problem

We consider the following class of functions which we denote as Pr .˛; M; �;D ; �/.
Before definition, we set the following notations:

BCR WD
®
x 2 BR such that xN > 0

¯
;

B 0R WD
®
x 2 BR such that xN D 0

¯
:

For x 2 RN , we denote x0 2 RN�1 as the projection of x on the plane ¹xN D 0º; we
denote the tangential gradient r 0 as follows:

r
0u WD

�
@u

@x1
; : : : ;

@u

@xN�1

�
:

We define the affine space set H 1
� .B

C

R / as follows:

H 1
� .B

C

R / D
®
v 2 H 1.BCR / W v � � 2 H

1
0 .B

C

R /
¯
:

For a given function v 2 H 1.BC2 /, we denote F.v/ as

F.v/ WD @¹v > 0º;

and Id is the notation for N �N identity matrix. For a given function v, we define v˙ as

vC WD max.0; v/;

v� WD max.0;�v/:
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Definition 2.1. A function u2H 1.BC
2=r
/ is said to belong to the class Pr .˛;M;�˙;D ;�/

if there exist symmetric matrix coefficients A 2 C1.BC
2=r
/N�N , � 2 C 1;˛.BC

2=r
/,

�˙ > 0, 0 < � < 1, and D > 0 such that the following hold:

(P1) kAkL1.BC
2=r
/ �M , kr�kL1.BC

2=r
/ �M , ŒA�C˛.BC

2=r
/; Œr��C 1;˛.BC

2=r
/ � r

˛M , and

j�.x0/j �Mr1C˛jx0j1C˛ .x0 2B 0
2=r
/. � satisfies the following Degenerate Phase

Transition condition (DPT):

8x0 2 B 02=r such that �.x0/ D 0; then jr 0�.x0/j D 0: (DPT)

(P2) A.0/ D Id, �j�j2 � hA.x/�; �i � 1
�
j�j2 for all x 2 BC

2=r
and � 2 RN .

(P3) 0 < �� < �C.

(P4) uminimizes J.�IA;�C;��;BC2=r / (cf. (1.1)); that is, for every u� v2H 1
0 .B

C

2=r
/,

�
BC
2=r

�
hA.x/ru;rui Cƒ.u/

�
dx �

�
BC
2=r

�
hA.x/rv;rvi Cƒ.v/

�
dx

.ƒ.s/ D �C�¹s>0º C ���¹s�0º/ and 0 2 F.u/ \ BC
2=r
:

(P5) u 2 H 1
� .B

C

2=r
/.

(P6) There exists 0 < r0 such that for all 0 < � � r0 we have

jBC� .0/ \ ¹u > 0ºj

jBC� .0/j
> D : (2.1)

Remark 2.2. In fact, the functions u 2 Pr .˛;M; �˙;D ; �/ carry more regularity than
being only a Sobolev function. They are Hölder continuous in BC

2=r
(cf. Lemma 3.2).

Remark 2.3. We have assumed the coefficient matrices A to be of the class C1.BC2 /.
However, all the estimates in this paper depend only on the C ˛ norms of A. Primarily, the
reason we imposed the assumption A 2 C1.BC2 /

N�N is to ensure that we can represent
solutions to PDEs � div.A.s/ru/ D 0 in terms of co-normal derivatives of Green’s func-
tion (cf. (3.26) and (3.35)) which follows from [21, equation (1.12)]. This representation
(in (3.26) and (3.35)) is also true for the case A 2 C ˛.BC2 /

N�N ; a formal proof of this
fact will be present in our forthcoming articles. This way, one can replace the assumption
A 2 C1.BC2 /

N�N (in Definition 2.1) by A 2 C ˛.BC2 /
N�N .

Remark 2.4. The assumption (P2), i.e., A.0/ D Id, does not compromise the generality
of the problem. Indeed, assume that A.0/ ¤ Id. Since A.x/ is a symmetric matrix for all
x 2 BCR , we have

J.uIBCR / D

�
BCR

�
hA.x/ru;rui Cƒ.u/

�
dx

D

�
BCR

�
jA1=2.x/ru.x/j2 Cƒ.u/.x/

�
dx:
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Under the change of variables y ! A.0/�1=2x, the functional J.�IBCR / is transformed
into

J.uIBCR / D jdet.A.0//j1=2
�

BCR

�
jA1=2.y/rvj2 Cƒ.v/

�
dy;

where

A1=2.y/ WD A1=2.A.0/1=2y/A.0/�1=2 (note that A.0/ D Id);

v.y/ WD u.A.0/1=2y/;

BCR WD A.0/
�1=2BCR :

Then, we can reformulate the minimization problem to minimize the functional

J.vIBCR / WD

�
BCR

�
jA1=2.y/rvj2 Cƒ.v/

�
dy D

�
BCR

�
hA.y/rv;rvi Cƒ.v/

�
dy:

Moreover, under the (linear) transformation x ! A.0/�1=2x, all the assumptions (P1)–
(P6) remain structurally unchanged.

In the absence of ambiguity on values of ˛,M , �˙, D , and �, we use the notation Pr
in place of Pr .˛;M;�˙;D ; �/. If � 2 C 1;˛.BC2 / satisfies (DPT), from [7, Lemma 10.1],
we know that �˙jB 02 2 C

1;˛.B 02/ and also

k�˙kC 1;˛.B 02/ � k�kC 1;˛.B
0
2/
:

Given v 2 H 1.BCR / and r > 0, we define the blowup vr 2 H 1.BC
R=r

/ as follows:

vr .x/ WD
1

r
v.rx/: (2.2)

For the coefficient matrix A, Ar .x/ is defined as follows:

Ar .x/ WD A.rx/:

One can check that if u 2 P1.˛;M; �˙;D ; �/, then ur 2 Pr .˛;M; �˙;D ; �/. Indeed if
u 2 P1 and u is a minimizer of the functional J (cf. (P4))

J.vIA; �C; ��; B
C
2 / WD

�
BC2

�
hA.x/rv;rvi Cƒ.v/

�
dx;

.ƒ.s/ D �C�¹s>0º C ���¹s�0º/

with boundary data � 2 C 1;˛.BC2 / (i.e., u 2 H 1
� .B

C
2 /), then, by simple change of vari-

ables, we can check that ur 2 H 1
�r
.BC
2=r
/ (this verifies (P5)) and ur minimizes

J.vIAr ; �C; ��; B
C

2=r
/ WD

�
BC
2=r

�
hAr .x/rv;rvi Cƒ.v/

�
dx;

.ƒ.s/ D �C�¹s>0º C ���¹s�0º/:
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Moreover, ifA and � satisfy conditions (P1) and (P2) for r D 1, thenAr and �r satisfy (P1)
and (P2) for r . (P3) and (P6) remain invariant under the change of variables. Therefore,
ur 2 Pr .

In order to study the blowup limits (limr!0 ur ) of functions u 2 P1.˛;M;�˙;D ; �/,
we define a class of global solutions P1.C; �˙/. Let us set the following notation before
giving the definition:

… WD
®
x 2 RN W xN D 0

¯
:

Definition 2.5 (Global solution). We say that u 2 H 1.RNC / belongs to the class of func-
tions P1.C; �˙/; that is, u is a global solution if there exist C > 0 and 0 < �C < ��
such that

(G1) ju.x/j � C jxj for all x 2 RNC ,

(G2) u is continuous up to the boundary …,

(G3) u D 0 on …,

(G4) and for every ball Br .x0/, u is a minimizer of J.�I Id; �C; ��; Br .x0/ \RNC /
(cf. (1.1)); that is,

�
Br .x0/\RN

C

�
jruj2 Cƒ.u/

�
dx �

�
Br .x0/\RN

C

�
jrvj2 Cƒ.v/

�
dx:

Here, .ƒ.s/ D �C�¹s>0º C ���¹s�0º/ and for every v 2 H 1.Br .x0/ \ RNC /
such that u � v 2 H 1

0 .Br .x0/ \RNC /.

Our main result intends to show that for a minimizer u of J.�IA;�C; ��; BC2 / with A,
�˙, and u satisfying the properties (P1)–(P6), the free boundary of every such minimizer
touches the flat part of fixed boundary tangentially at the origin. For this, we prove that as
we approach closer and closer to the origin, the free boundary points cannot lie completely
inside any cone which is perpendicular to the flat boundary and has its tip at the origin.
The main result in this paper is stated below.

Theorem 2.6. There exist a constant �0 and a modulus of continuity � such that if

u 2 P1.˛;M; �˙;D ; �/;

then
F.u/ \ BC�0 � ¹x W xN � �.jxj/jxjº:

Here, � depends only on ˛, M , �˙, D , �.

3. Blowup analysis

The following is a classical result (cf. [1, Remark 4.2]); we present the proof for the case
of variable coefficients.
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Lemma 3.1. Given a bounded and strictly elliptic matrix A.x/ and a non-negative con-
tinuous function w such that div.A.x/rw/ D 0 in ¹w > 0º \ BC2 in weak sense (i.e.,
in the distributional sense in the context of Sobolev spaces), then w 2 H 1

loc.B
C
2 / and

div.A.x/rw/ � 0 in weak sense in BC2 .

Proof. Let D b BC2 and � 2 C1c .B
C
2 / be cutoff function for D. That is, � 2 C1c .B

C
2 /

be such that

�.x/ D

´
1 in D;

0 on @BC2 :

Since div.A.x/rw/ D 0 in ¹w > 0º \ BC2 , we have

0 D

�
BC2

hA.x/rw;r..w � "/C�2/i dx

D

�
BC2 \¹w>"º

�2hA.x/rw;rwi dx C

�
BC2 \¹w>"º

whA.x/rw;r�2i dx

� "

�
BC2 \¹w>"º

hA.x/rw;r�2i dx

which implies
�
BC2 \¹w>"º

hA.x/rw;rwi�2 dx �

�
BC2 \¹w>"º

ˇ̌
whA.x/rw;r�2i

ˇ̌
dx

C "

�
BC2 \¹w>"º

ˇ̌
hA.x/rw;r�2i

ˇ̌
dx:

By the choice of � and ellipticity of the matrix A, we obtain, using Young’s inequality,

�

�
BC2 \¹w>"º

jrwj2�2 dx

�
1

�

ˇ̌̌̌�
BC2 \¹w>"º

�wjrwjjr�j dx

ˇ̌̌̌
C
"

�

ˇ̌̌̌�
BC2 \¹w>"º

�jrwjjr�j dx

ˇ̌̌̌
� C1.�/

�
1

ı

�
BC2 \¹w>"º

w2jr�j2 dx C ı

�
BC2 \¹w>"º

�2jrwj2 dx

C ı"

�
BC2 \¹w>"º

�2jrwj2 dx C
"

ı

�
BC2 \¹w>"º

jr�j2 dx

�
:

After choosing ı > 0 very small and rearranging the terms in the equation above, since
� D 1 in D, we finally get

�
D\¹w>"º

jrwj2 dx �

�
BC2 \¹w>"º

jrwj2�2 dx

� C.�/

� �
BC2 \¹w>"º

w2jr�j2 dx C

�
BC2 \¹w>"º

jr�j2 dx

�
:
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As "! 0, we obtain�
D

jrwj2 dx D

�
¹w>0º\D

jrwj2 dx D lim
"!0

�
¹w>"º\D

jrwj2

� C.�/ lim
"!0

� �
BC2 \¹w>"º

w2jr�j2 dx C

�
BC2 \¹w>"º

jr�j2 dx

�
� C.�;D/

� �
BC2 \supp.�/

w2 dx C 1

�
:

Since w 2 C.BC2 /, therefore w is uniformly bounded in supp.�/, and therefore,�
D

�
jrwj2 C jw2j

�
dx � C.�;D/

��
BC2 \supp.�/

w2 dx C 1

�
� C.�;D; kwkL1.supp.�///:

Now, for 0 � ' 2 C1c .B
C
2 /, consider the test function

v D '
�
1 �

�
min

�
2 �

w

"
; 1
��C�

�
BC2

hA.x/rw;r'i dx D

�
BC2

D
A.x/rw;r

�
'
��
2 �

w

"

�
^ 1

�C�E
dx:

We can easily check that v � 0 in BC2 and v 2 H 1
0 .B

C
2 /; in particular,

'
��
2 �

w

"

�
^ 1

�C
D

8̂̂<̂
:̂
'; x 2 ¹w � "º;

' �
�
2 � w

"

�
; x 2 ¹" < w � 2"º;

0; x 2 ¹w > 2"º:

Therefore, we have�
BC2

hA.x/rw;r'i dx

D

�
BC2

D
A.x/rw;r

�
'
��
2 �

w

"

�
^ 1

�C�E
dx

D

�
BC2 \¹w�"º

hA.x/rw;r'i dx C

�
BC2 \¹"<w�2"º

D
A.x/rw;r

�
'
�
2 �

w

"

��E
dx

D

�
BC2 \¹w�"º

hA.x/rw;r'i dx C 2

�
BC2 \¹"<w�2"º

hA.x/rw;r'i dx

�
2

"

�
BC2 \¹"<w�2"º

hA.x/rw;r.w'/i dx

� C.�/

�
BC2 \¹"<u�2"º

jrwjjr'j dx C
2

"

�
BC2 \¹"<w�2"º

whA.x/rw;r'i dx

�
2

"

�
BC2 \¹"<w�2"º

'hA.x/rw;rwi dx

� C.�/

�
BC2 \¹"<w�2"º

jrwjjr'j dx:
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The last term goes to zero as "! 0. Therefore, we can say that
�
BC2

hA.x/rw;r'i dx � 0:

We conclude the proof from [13, Theorem 1.39] (see also [24, Theorem 6.22]).

Lemma 3.2 (Hölder continuity). If u 2 P1, then u 2 C 0;˛0.BC2 / for some 0 < ˛0 < 1. In
fact,

kukC˛0 .BC2 /
� C.�; �˙/kukL1.BC2 /

:

Proof. The functional J.�IA; �C; ��; BC2 / satisfies the hypothesis of [16, Theorem 7.3]

and � 2C 1;˛.BC2 /; therefore, Lemma 3.2 follows from the arguments in [16, Section 7.8],
where the boundary regularity is treated.

Remark 3.3. Since every function u 2 P1 is continuous, therefore the positivity set
¹u > 0º is an open set.

Corollary 3.4. If u 2 P1, then u˙ are A-subharmonic.

Proof. The claim follows directly from Lemmas 3.2 and 3.1.

Lemma 3.5. If u 2 P1, then

ju.x/j � C.�; ŒA�C˛.BC2 /
; N /M jxj in BC1 . (3.1)

Proof. Let w be such that ´
div.A.x/w/ D 0 in BC2 ;

w D �C in @BC2 :

Since u is A-subharmonic in BC2 (cf. Corollary 3.4), by maximum principle, if x 2 BC1
we have

uC.x/ � w.x/ � w.x/ � w.x0/C w.x0/

� krwkL1.BC1 /
jx � x0j C j�C.x0/j

D krwkL1.BC1 /
xN C j�

C.x0/j

� .krwkL1.BC1 /
CM/jxj 8x 2 BC1 : (3.2)

In the last inequality, we have used (P1). Now, we prove that the term krwkL1.BC1 / is
uniformly bounded.

From [6, Theorem 2], we have

krwkL1.BC1 /
� C

�
�; ŒA�C˛.BC2 /

; N
��
kwkL1.BC2 /

C k�CkC 1;˛.B 02/
�
: (3.3)
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By comparison principle,

kwkL1.BC2 /
D kwkL1.@BC2 /

D k�CkL1.@BC2 /
�M:

Plugging this information in (3.3), we get

krwkL1.BC1 /
� C.�; ŒA�C˛.BC2 /

; N /M;

and then using (3.2), we obtain

uC.x/ � C.�; ŒA�C˛.BC2 /
; N /M jxj 8x 2 BC1 : (3.4)

And analogously,

u�.x/ � C.�; ŒA�C˛.BC2 /
; N /M jxj 8x 2 BC1 : (3.5)

By adding (3.4) and (3.5), we prove (3.1).

Remark 3.6. We can check that, for every u 2 P1, ur 2 Pr and ur is Ar -subharmonic
and satisfies (3.1) in BC

1=r
. That is,

jur .x/j � C.�; ŒA�C˛.BC2 /
; N /M jxj; x 2 BC

1=r
:

Lemma 3.7 (Uniform H 1 bounds). Let u 2 P1. Then, for R > 0 such that 2R � 2
r

, we
have �

BCR

jrur j
2 dx � C.N; �; �;R;M/:

Proof. Since ur 2 Pr , from (P4), we can say that ur is a minimizer of J.�IAr ; �˙; BC2R/
with boundary data �r . Here, Ar and �r satisfy conditions (P1) and (P2). Precisely speak-
ing, ur is the minimizer of the following functional:

J.vIAr ; �˙; B
C

2R/ WD

�
BC2R

�
hAr .x/rv;rvi Cƒ.v/

�
dx:

Here, .ƒ.v/ D �C�¹v>0º C ���¹v�0º/. Consider h 2 H 1.BC2R/ as a harmonic replace-
ment ´

div.Ar .x/rh/ D 0 in BC2R
h � ur 2 H

1
0 .B

C

2R/:

In other words, h is the minimizer of
�
BC2R
hAr .x/rh;rhi dx in the set H 1

ur
.BC2R/.

From the minimality of ur and the choice of h, we have
�
BC2R

hAr .x/r.ur � h/;r.ur � h/i dx

D

�
BC2R

hAr .x/r.ur � h/;r.ur C h � 2h/i dx
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D

�
BC2R

hAr .x/r.ur � h/;r.ur C h/i dx � 2

�
BC2R

hAr .x/r.ur � h/;rhi dx

D

�
BC2R

�
hAr .x/rur ;ruri � hA

r .x/rh;rhi
�
dx (since h is Ar -harmonic in BCR )

�

�
BC2R

.ƒ.h/ �ƒ.ur // dx � C.N; �;R/:

Using the ellipticity of A, we get�
BCR

jr.ur � h/j
2 dx �

�
BC2R

jr.ur � h/j
2 dx � C.N; �; �;R/:

Expanding the left-hand side, we get�
BCR

jrur j
2 dx �

�
BCR

jrur j
2 dx C

�
BCR

jrhj2 dx

� C.N; �; �;R/C 2

�
BCR

rur � rh dx

� C.N; �; �;R/C "

�
BCR

jrur j
2 dx C

1

"

�
BCR

jrhj2 dx:

By choosing " D 1
8

, we are left with
�
BCR

jrur j
2 dx � C.N; �; �;R/

�
1C

�
BCR

jrhj2 dx

�
:

To close the argument, we need to show that
�
BCR
jrhj2 dx is uniformly bounded, indeed

from [6, Theorem 2], krhkL1.BCR / � C.�;M/.

Lemma 3.8 (Compactness). Let rj ! 0C, and a sequence ¹vj º 2 P1. Then, the blowups
uj WD .vj /rj (as defined in (2.2)) converge (up to subsequence) uniformly in BCR and
weakly in H 1.BCR / to some limit for any R > 0. Moreover, if u0 is such a limit of uj in
the above-mentioned topologies, then u0 belongs to P1.

Proof. We fix R > 0; since vj 2 P1, therefore uj 2 Prj , and as argued in the proof of
previous lemma, the functions uj are minimizers of the functional J.�IAj ; �˙; BCR / for j
sufficiently large that R < 1

rj
. We set the notation for the functional Jj as

Jj .v/ WD J.vIAj ; �˙; B
C

R / D

�
BCR

.hAj .x/rv;rvi Cƒ.v// dx; v 2 H 1
uj
.BCR /:

We require to rescale the boundary data in the same way as we do to vj , we also denote

the boundary values for uj 2 Prj as �j . Here, the sequences Aj 2 C ˛.BC2=rj /
N�N

and

�j 2 C
1;˛.B2=rj / satisfy conditions (P1) and (P2) with

r D rj ; ƒ.v/ WD �C�¹v>0º C ���¹v�0º:
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We set the following notation for the functional J0:

J0.vIB
C

R / WD

�
BCR

�
jrvj2 Cƒ.v/

�
dx: (3.6)

From Lemma 3.2, we know that uj 2 C ˛0.BC2=rj / which implies C ˛0.BCR /. In partic-
ular, kuj kC 0;˛0 .BCR / � C.�; �˙/. Hence, uj is a uniformly bounded and equicontinuous

sequence in BCR ; we can apply Arzela–Ascoli theorem to show that uj uniformly con-

verges to a function u0 2 C 0;˛0.BCR /.
Since uj D �j on B 0R, from (P1), we have j�j .x/j � Mr1C˛j jxj1C˛ for x 2 B 0R;

therefore, j�j .x/j � C.M; ˛/r1C˛j R1C˛ . Hence, �j ! 0 uniformly on B 0R. We have

u0 D lim
j!1

uj D lim
j!1

�j D 0 on B 0R.

Thus, u0 satisfies (G2) and (G3) inside the domain BCR . Also, from Lemma 3.7, we have
�
BCR

jruj j
2 dx � C.N; �˙; �;R;M; ˛/: (3.7)

Then, by the linear growth condition (cf. Remark 3.6), uj also satisfies

juj .x/j � C.�; ˛/M jxj x 2 BCR :

Hence, passing to the limit, we have ju0.x/j � C.�; ˛/M jxj, 8x 2 BCR . In other words,

u0 satisfies (G1) in BCR . Moreover, we have
�
BCR

juj j
2 dx � C.�; ˛;M/

�
BCR

jxj2 dx � C.�; ˛;M;N;R/: (3.8)

Thus, (3.7) and (3.8) imply that uj is a bounded sequence in H 1.BCR /. Hence, up to a
subsequence, uj * u0 weakly in H 1.BCR /. We rename the subsequence again as uj .

We have found a blowup limit up to a subsequence u0 and have shown that u0 satisfies
(G1), (G2), and (G3) in BCR . In order to show that u0 2 P1, it only remains to verify that
u0 satisfies (G4); i.e., u0 is a local minimizer of J0.�IBCR / for all R > 0 (cf. (3.6)). For
that, we first claim that

�
BCR

�
jru0j

2
Cƒ.u0/

�
dx � lim inf

j!1

�
BCR

�
hAj .x/ruj ;ruj i Cƒ.uj /

�
dx: (3.9)

Indeed, let us look separately at the term Jj .uj / on the right-hand side of the above equa-
tion

Jj .uj / D

�
BCR

�
hAj .x/ruj ;ruj i C �C�¹uj>0º C ���¹uj�0º

�
dx:
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We rewrite the first term as follows:
�
BCR

hAj .x/ruj ;ruj idx D

�
BCR

h.Aj .x/� Id/ruj ;ruj idx C
�
BCR

jruj j
2 dx: (3.10)

From (P1) and (P2), we have for all x 2 BCR

kAj .x/ � Id kL1.BCR / �Mr˛j jxj
˛
� C.M;R; ˛/r˛j ! 0 as j !1:

Therefore, Aj ! Id uniformly and kruj kL2.BC2 / is bounded (cf. (3.7)). Hence, the first
term on the right-hand side of (3.10) tends to zero as j !1. Thus, from (3.10) and by
weak lower semi-continuity of H 1 norm, we have
�
BCR

jru0j
2 dx � lim inf

j!1

�
BCR

jruj j
2 dx D lim inf

j!1

�
BCR

hAj .x/ruj ;ruj i dx: (3.11)

For the second term, we claim that
�
BCR

�C�¹u0>0º C ���¹u0�0º dx � lim inf
j!1

�
BCR

�C�¹uj>0º C ���¹uj�0º dx: (3.12)

To see this, we first show that, for almost every x 2 BCR , we have

�C�¹u0>0º.x/C ���¹u0�0º.x/ � lim inf
j!1

.�C�¹uj>0º.x/C ���¹uj�0º.x//: (3.13)

Indeed, let x0 2 BCR \ .¹u0 > 0º [ ¹u0 < 0º/. Then, by the uniform convergence of uj
to u0, we can easily see that uj .x0/ attains the sign of u0.x0/ for sufficiently large value
of j . Hence, (3.13) holds in ¹u0 > 0º [ ¹u0 < 0º.

Now, assume that x0 2 BCR \ ¹u0 D 0º. Then, the left-hand side of (3.13) is equal to

�C�¹u0>0º.x0/C ���¹u0�0º.x0/ D ��:

Regarding the right-hand side of (3.13), we see that

�C�¹uj>0º.x0/C ���¹uj�0º.x0/ D

´
�C if uj .x0/ > 0;

�� if uj .x0/ � 0:

Since �� < �C (cf. (P3)), the right-hand side in the equation above is always greater than
or equal to ��. Then,

�C�¹u0>0º.x0/C ���¹u0�0º.x0/ D �� � lim inf
j!1

.�C�¹uj>0º.x0/C ���¹uj�0º.x0//:

Thus, (3.13) is proven for all x 2 BCR , and hence, (3.12) holds by Fatou’s lemma.
By adding (3.11) and (3.12) and [12, Theorem 3.127], we obtain (3.9). Now, we will

use (3.9) to prove the minimality of u0 for the functional J0.�IBCR / (cf. 3.6).
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R

dj

ı

@¹w>0º�j D0

�ıD1
wıj Dw

�j;ı

Figure 1. Curvy line represents the free boundary of w.

Pick any w 2 H 1.BCR / such that u0 � w 2 H 1
0 .B

C

R /. We construct an admissible
competitor wıj to compare the minimality of uj for the functional Jj .�IBCR /. Then, we
intend to use (3.9).

In this direction, we define two cutoff functions �ı W RN ! R and � W R ! R as
follows:

�ı.x/ WD

´
1; x 2 BR�ı ;

0; x 2 RN n BR;
�.t/ WD

´
1; jt j � 1=2;

0; jt j � 1:

We can take jr�ı j �
C.N/
ı

. We define �j .x/ D �.xNdj / for a sequence dj ! 0, which will

be suitably chosen in later steps of the proof. Let wıj be a test function defined as

wıj WD w C .1 � �ı/.uj � u0/C �ı�j�j :

Since the function wıj � uj is continuous in BCR and is pointwise equal to zero on @BCR ,
which is a Lipschitz surface in RN , therefore uj � wıj 2 H

1
0 .B

C

R /. For further steps, the
reader can refer to Figure 1.

Let �ı;j D BCR \ ¹�j D 0º \ ¹�ı D 1º, and Rı;j D B
C

R n �ı;j ; by observing that
wıj D w on �ı;j , we see that

j¹wıj > 0º \ B
C

R j D j¹w
ı
j > 0º \�ı;j j C j¹w

ı
j > 0º \Rı;j j

D j¹w > 0º \�ı;j j C j¹w
ı
j > 0º \Rı;j j

D j¹w > 0º \ .BCR nRı;j /j C j¹w
ı
j > 0º \Rı;j j

D j¹w > 0º \ BCR j � j¹w > 0º \Rı;j j C j¹w
ı
j > 0º \Rı;j j:

From the above discussions, we have

j¹w > 0º \ BCR j � jRı;j j � j¹w
ı
j > 0º \ B

C

R j � j¹w > 0º \ B
C

R j C jRı;j j:

Since we know that limı!0.limj!0 jRı;j j/ D 0, we have

lim
ı!0

�
lim
j!1

j¹wıj > 0º \ B
C

R j
�
D j¹w > 0º \ BCR j; (3.14)
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and similarly,
lim
ı!0

�
lim
j!1

j¹wıj � 0º \ B
C

R j
�
D j¹w � 0º \ BCR j: (3.15)

Given uj 2 Prj and wıj � uj 2H
1
0 .B

C

R /, from the minimality of uj for the functional Jj ,
we have

�
BCR

�
hAj .x/ruj ;ruj i C �C�¹uj>0º C ���¹uj�0º

�
dx

�

�
BCR

�
hAj .x/rw

ı
j ;rw

ı
j i C �C�¹wıj >0º

C ���¹wıj �0º
�
dx;

and from (3.9), we obtain
�
BCR

�
jru0j

2
C �C�¹u0>0º C ���¹u0�0º

�
dx

� lim inf
j!1

�
BCR

�
hAj .x/rw

ı
j ;rw

ı
j i C �C�¹wıj >0º

C ���¹wıj �0º
�
dx

� lim sup
j!1

�
BCR

�
hAj .x/rw

ı
j ;rw

ı
j i C �C�¹wıj >0º

C ���¹wıj �0º
�
dx: (3.16)

From the same reasoning as for the justification of (3.11), we have

lim sup
j!1

�
BCR

hAj .x/rw
ı
j ;rw

ı
j i dx D lim sup

j!1

�
BCR

jrwıj j
2 dx:

Therefore, rewriting (3.16) as
�
BCR

�
jru0j

2
C �C�¹u0>0º C ���¹u0�0º

�
dx

� lim sup
j!1

�
BCR

�
jrwıj j

2 dx C �C�¹wıj >0º
C ���¹wıj �0º

�
dx; (3.17)

we claim that

lim
ı!0

�
lim sup
j!1

�
BCR

jrwıj j
2 dx

�
D

�
BCR

jrwj2 dx: (3.18)

To obtain the claim above, we prove that

lim
ı!0

�
lim sup
j!1

�
BCR

jr.wıj � w/j
2 dx

�
D 0:

From the definition of wıj , we know that

wıj � w D .1 � �ı/.uj � u0/C �ı�j�j :



Tangential contact between free and fixed boundaries 231

Therefore, we have
�
BCR

jr.wıj � w/j
2 dx

� C

��
BCR

jr..1��ı/.uj�u0//j
2 dxC

�
BCR

jr.�j�ı�j /j
2 dx

�
� C.N/

��
BCR

.1��ı/
2
jr.uj�u0/j

2 dx C
1

ı2

�
BCR

juj�u0j
2 dx

C

�
BCR

jr.�j�ı�j /j
2 dx

�
: (3.19)

Let us consider the first term on the right-hand side. We know that
�
BCR
jr.uj � u0/j

2 dx

is uniformly bounded in j 2 N (cf. (3.7)). Therefore,

lim
ı!0

�
lim sup
j!1

�
BCR

.1 � �ı/
2
jr.uj � u0/j

2 dx

�
D
�

lim
ı!0
k1 � �ık

2

L1.BCR /

��
lim sup
j!1

�
BCR

jr.uj � u0/j
2 dx

�
� C.N; �; �;R;M; ˛/ lim

ı!0
k1 � �ıkL1.BCR /

D 0: (3.20)

Regarding the second term, since juj � u0j tends to zero in L2.BCR / as j !1, therefore
the second term also tends to zero as j !1. We write

lim
ı!0

�
lim
j!1

1

ı2

�
BCR

juj � u0j
2 dx

�
D 0: (3.21)

Lastly, we claim that

lim
j!1

�
BCR

jr.�j�ı�j /j
2 dx D 0: (3.22)

Indeed, we have
�
BCR

jr.�j�ı�j /j
2 dx � C

��
BCR

jr�ı j
2.�j�j /

2 dx C

�
BCR

jr�j j
2.�ı�j /

2 dx

C

�
BCR

jr�j j
2.�ı�j /

2 dx

�
: (3.23)

Since �ı ; �j � 1, jr�ı j �
C.N/
ı

, and kr�j kL1.BCR / �M (cf. (P1)), we obtain

�
BCR

jr�ı j
2.�j�j /

2 dx C

�
BCR

jr�j j
2.�ı�j /

2 dx

� C.N/
ˇ̌
¹�j ¤ 0º \ B

C

R

ˇ̌� 1
ı2
CM 2

�
: (3.24)
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We know that j¹�j ¤ 0º \ BCR j ! 0 as j !1; hence, from (3.24), the first and second
terms in (3.23) tend to zero as j !1. The last term in (3.23) also tends to zero as j !1;
indeed from (P1), we have

Œr�j �C˛.BCR /
� r˛j M:

Since �j .0/D 0, therefore we have j�j j �R˛Œr�j �BCR �R
˛r˛j M inBCR . Also, observing

that jr�j j � 1
dj

, �ı � 1 in BCR , we have

�
BCR

jr�j j
2.�ı�j /

2 dx �MR2˛
r2˛j

d2j
jBCR j:

If we choose a sequence dj ! 0C such that we also have

r˛j

dj
! 0;

the third term in (3.23) tends to zero as j !1. Plugging in the estimates above (3.20),
(3.21), and (3.22) in (3.19), we obtain the claim (3.18).

From equations (3.14), (3.15), and (3.18), we obtain that the right-hand side of (3.17)
is equal to J0.wIBCR /; therefore, u0 is a minimizer of J0.�IBCR /. That is,

J0.u0IB
C

R / � J0.wIB
C

R /

for every w 2 H 1.BCR / such that u0 � w 2 H 1
0 .B

C

R /. Since the inequality above (which
corresponds to (G4)) and other verified properties of u0 (i.e., (G1), (G2), and (G3) in BCR )
hold for everyR> 0, therefore u0 2H 1

loc.R
N
C / satisfies all the properties in Definition 2.5.

Hence, u0 2 P1.

After proving that the (subsequential) limits of blowups are global solutions, we pro-
ceed to show that the positivity sets (and hence the free boundaries) of blowups converge
in certain sense to that of blowup limit. For this, we will need to establish that the min-
imizers u 2 Pr are non-degenerate near the free boundary. In the proof below, we adapt
the ideas from [2].

Proposition 3.9 (Non-degeneracy near the free boundary). Let u 2 Pr0 for some r0 > 0
and x0 2 BC2=r0 . Then, for every 0 < � < 1, there exists a constant c.�;N;�;�˙/ > 0 such
that, for all Br .x0/ � BC2

r0

, we have

1

r

 
@Br .x0/

uC dHN�1.x/ < c.�;N; �; �˙/ H) uC D 0 in B�r .x0/:

Proof. We fix x0 2 ¹u > 0º \ BC2 and r > 0 such that Br .x0/ � BC2 . We denote  WD
1
r

�
Br .x0/

uC dx. We know from Lemma 3.2 that the set ¹u > 0º is open. Also, since
u 2 Pr0 , there exists A 2 C1.BC

2=r0
/N�N , ' 2 C 1;˛.BC

2=r0
/, �˙ satisfying (P1)–(P6).



Tangential contact between free and fixed boundaries 233

¹u � "º

v"Du
B�r

v"D"
div.A.x/rv"/D0

@¹u>"º

@¹u>0º

Figure 2. Graph of v".

Therefore, u solves the PDE div.A.x/ru/ D 0 in ¹u > 0º \ BC
2=r0

. By elliptic regular-

ity theory, u is locally smooth, (C 1;˛loc .¹u > 0º \ B
C

2=r0
/). Then, for almost every " > 0,

(smooth) Br \ @¹u > "º is a C 1;˛ surface. Pick one such small " > 0, and we consider the
test function v" given by8̂̂̂̂

<̂
ˆ̂̂:

div.A.x/rv"/ D 0 in .Br .x0/ n B�r .x0// \ ¹u > "º;

v" D u in Br .x0/ \ ¹u � "º;

v" D " in B�r .x0/ \ ¹u > "º;

v" D u on @Br .x0/.

Refer to Figure 2 for a pictorial understanding of definition v". The function v" defined
above belongs to H 1.Br .x0//; thanks to [11, Theorem 3.44] ([11, Theorem 3.44] is
proven forC 1 domains, but the proof can also be adapted for Lipschitz domains [13, Theo-
rem 4.6]). We intend to show that v" is bounded inH 1.Br .x0//. This ensures the existence
of limit lim"!0 v" exists in weak sense in H 1.Br .x0// and strong sense in L2.Br .x0//.
LetG be the Green function forL.v/D div.A.x/rv/ in the ringBr .x0/ nB�r .x0/. Then,
if there is a function w such that8̂̂<̂

:̂
div.A.x/rw/ D 0 in Br .x0/ n B�r .x0/;

w D u on @Br .x0/ \ ¹u > "º;

w D " elsewhere on @.Br .x0/ n B�r .x0//;

(3.25)

we can also write that w � " D .u � "/C on @Br .x0/ and w � " D 0 on @B�r .x0/. From
boundary elliptic regularity (cf. [6, Theorem 2]), .w � "/ 2 C 1;˛.Br��.x0/ n B�r .x0//
for every � 2 .0; .1 � �/r/. Consider Nx 2 @B�r .x0/ and any sequence ¹xkº � Br .x0/ n
B�r .x0/ such that xk ! Nx 2 @B�r .x0/. We have

r.w � "/. Nx/ D lim
k!1

r.w � "/.xk/:



D. Moreira and H. Shrivastava 234

By Green representation formulae for w � " in (3.25) (cf. [21, equation (1.12)]), we have

.w � "/.xk/ D

�
@.Br .x0/nB�r .x0//

.u � "/C.y/.A.y/ryG.xk ; y// � �y d�.y/: (3.26)

Therefore,

r.w � "/. Nx/

D lim
k!1

r.w � "/.xk/

D lim
k!1

rx

��
@.Br .x0/nB�r .x0//

.u � "/C.y/.A.y/ryG.x; y// � �y d�.y/

�ˇ̌̌̌
xDxk

D lim
k!1

�
@Br .x0/\¹u>"º

.u � "/C.y/.A.y/rxryG.xk ; y// � �y d�.y/ 8 Nx 2 @B�r .x0/;

(3.27)

where �y is the unit outer normal vector at a point y on the boundary. Computations
in (3.27) are justified by the regularity and estimates given in [26, Theorem 3] (see also
the classical paper by Grüter and Widman [18, Theorem 3.3 (vi)]). As a matter of fact, we
can proceed further to obtain for Nx 2 @B�r .x0/

jrw. Nx/j

� C.�;N / lim
k!1

�
@Br .x0/\¹u>"º

.u � "/C.y/jrxryG.xk ; y/j dHN�1.y/

�
C.�;N /

.1 � �/N
1

r

 
@Br

.u � "/C dHN�1.y/ � C.�;N; �/ on @B�r .x0/: (3.28)

We can easily check by the respective definitions that w � v" on @.Br .x0/ n B�r .x0//.
Moreover, since w 2 C.Br .x0/ n B�r .x0// and w � " on @.Br .x0/ n B�r .x0// by the
maximum principle (recall div.A.x/rw/ D 0 in Br .x0/ n B�r .x0/), we conclude that
w � v" in Br .x0/ n B�r .x0/. In particular, w � v" on @D", where

D" WD .Br .x0/ n B�r .x0// \ ¹u > "º:

By comparison principle, we know thatw� v" inD", and sincewD v"D " on @B�r .x0/\
¹u > "º, hence from (3.28)

jrv"j � jrwj � C.�;N; �/ on @B�r .x0/ \ ¹u > "º: (3.29)

Given that div.A.x/rv"/ D 0 in D", we have, by divergence theorem and (3.29),�
D"

.A.x/rv"/ � r.v" � u/ dx D

�
@B�r .x0/\¹u>"º

.u � v"/.A.x/rv"/ � �.y/ dHN�1.y/

� C.�/

�
@B�r .x0/\¹u>"º

ju � "jjrv"j dHN�1.y/

� C.�;N; �/

�
@B�r .x0/\¹u>"º

ju � "j dHN�1.y/

DWM0.u/:
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The justification for the use of divergence theorem in D" can be found in [2, equation
(3.4)]. From the calculations above, we can write�

D"

.A.x/rv"/ � r.v" � u/ dx �M0

)

�
D"

.A.x/rv"/ � rv" dx �M0 C

�
D"

.A.x/rv"/ � rudx

) �

�
D"

jrv"j
2 dx �M0 C

1

�

�
D"

jrv"jjruj dx

) �

�
D"

jrv"j
2 dx �M0 C

"0

2�

�
D"

jrv"j
2 dx C

1

2"0�

�
D"

jruj2 dx:

Putting very small "0 > 0 in the last inequality, we have�
D"

jrv"j
2 dx �M0 C C.�/

�
D"

jruj2 dx DWM1.u/:

Since v" D " in B�r .x0/\ ¹u > "º which implies that rv" D 0 in B�r .x0/\ ¹u > "º and
v" D u in Br .x0/ nD",�

Br .x0/

jrv"j
2 dx D

�
D"

jrv"j
2 dx C

�
Br .x0/nD"

jruj2 dx DWM2.u/: (3.30)

By the definition of v", 0 < v" � u on @D" and div.A.x/rv"/ D div.A.x/ru/ D 0 in
D", therefore, by comparison principle, 0 < v" < u in D". In the set B�r .x0/ \ ¹u > "º,
we have v" D " < u and v" D u in Br .x0/ \ ¹u � "º. Overall, we have 0 < v" � u in
Br .x0/ \ ¹u > "º. Therefore,�

Br .x0/

jv"j
2 dx �

�
Br .x0/\¹u�"º

juj2 dx C

�
Br .x0/\¹u>"º

juj2 dx

D

�
Br .x0/

juj2 dx: (3.31)

Hence, from (3.30) and (3.31), v" is bounded in H 1.Br .x0//. Therefore, up to a sub-
sequence, there exists a limit v D lim"!0 v" in weak H 1 sense such that v satisfies the
following: 8̂̂̂̂

<̂
ˆ̂̂:

div.A.x/rv/ D 0 in .Br .x0/ n B�r .x0// \ ¹u > 0º;

v D u in Br .x0/ \ ¹u � 0º;

v D 0 in B�r .x0/ \ ¹u > 0º;

v D u on @Br .x0/:

(3.32)

We verify the above properties (3.32) of v at the end of this proof.
Let us use the function v as a test function with respect to minimality condition on u

in Br .x0/; we have�
Br .x0/

.hA.x/ru;rui Cƒ.u// dx �

�
Br .x0/

.hA.x/rv;rvi Cƒ.v// dx:
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Since v D u in ¹u � 0º and ¹v > 0º � ¹u > 0º, the integration in the set ¹u � 0º gets
canceled from both sides, and we are left with the terms mentioned below.

Setting D0 WD .Br .x0/ n B�r .x0// \ ¹u > 0º, we have
�
Br .x0/\¹u>0º

�
hA.x/ru;rui � hA.x/rv;rvi

�
dx

�

�
Br .x0/\¹u>0º

.ƒ.v/ �ƒ.u// dx

D

�
B�r.x0/\¹u>0º

.ƒ.v/ �ƒ.u// dx

D �0jB�r .x0/ \ ¹u > 0ºj .�0 WD �.�C � ��//:

We have the second equality above because

�¹v>0º D �¹u>0º in D0:

Since v D 0 in ¹u > 0º \ B�r , we have
�
B�r .x0/\¹u>0º

hA.x/ru;rui dx

C

�
D0

.hA.x/ru;rui � hA.x/rv;rvi/ dx � �0jB�r .x0/ \ ¹u > 0ºj:

Using the ellipticity of A and shuffling the terms in the above equation, we obtain
�
B�r .x0/\¹u>0º

.�jruj2 � �0/ dx

�

�
D0

.hA.x/rv;rvi � hA.x/ru;rui/ dx

D

�
D0

.hA.x/r.v � u/;r.v C u/i/ dx

D

�
D0

.hA.x/r.v � u/;r.u � v C 2v/i/ dx

� 2

�
D0

hA.x/rv;r.v � u/i dx

� 2 lim inf
"!0

�
D0

hA.x/rv";r.v" � u/i

D 2 lim inf
"!0

�
D"

hA.x/rv";r.v" � u/i dx (since v" D u in D" nD0)

D 2 lim inf
"!0

�
@B�r .x0/\¹u>"º

.u � "/.A.x/rv"/ � � dx

�
2

�
lim inf
"!0

�
@B�r .x0/\¹u>"º

.u � "/
ˇ̌
� � rv"

ˇ̌
dx WDM: (3.33)



Tangential contact between free and fixed boundaries 237

The second-to-last equality in the above calculation is obtained from integration by parts;
its justification can be found in [2, equation (3.4)]. From (3.33) and (3.29), and using the
trace inequality in H 1.B�r /, we have (for some different constant C.�/)

M � C.�;N; �/

�
@B�r.x0/

uC dHN�1.x/

� C.�;N; �/

�
B�r.x0/

�
jruCj C

1

r
uC
�
dx

� C.�;N; �/

�
jB�r.x0/ \ ¹u > 0ºj

1=2

��
B�r.x0/

jruCj2 dx

�1=2
C
1

r
sup

B�r .x0/

.uC/
ˇ̌
¹B�r .x0/ \ ¹u > 0ºº

ˇ̌�
� C.�;N; �/

�
1

2
p
��0

�
B�r .x0/\¹u>0º

jruCj2 dx

C

p
��0

2
jB�r.x0/ \ ¹u > 0ºj C

1

r
sup

B�r .x0/

.uC/

�
B�r .x0/\¹u>0º

1 dx

�
D
C.�;N; �/

2
p
��0

� �
B�r .x0/\¹u>0º

jruCj2 � �0 dx

�
C
C.�;N; �/

�0r
sup

B�r .x0/

.uC/

�
B�r .x0/\¹u>0º

�0 dx: (3.34)

We have used Hölder’s inequality and then Young’s inequality above. From Lemma 3.1,
uC is A-subharmonic in Br .x0/. If G0 is the Green’s function for

L0.v/ D div.A.x/rv/ in Br .x0/;

then by comparison principle and Green’s representation (cf. [21, equation (1.12)])

uC.x/ �

�
@Br .x0/

uC.y/.A.y/ryG
0.x; y// � �y dHN�1.y/ 8x 2 B�r .x0/: (3.35)

Since for all y 2 @Br .x0/ and x 2 B�r .x0/, we have

1

jx � yjN�1
�
C.�/

rN�1
;

then, using the Green’s function estimates (cf. [18, Theorem 3.3 (v)]), we get

sup
B�r .x0/

uC � C.�/

�
@Br .x0/

uC.y/

jx � yjN�1
dHN�1.y/

� C.�; �;N /

 
@Br .x0/

uC dHN�1.y/ D C.�; �;N /r: (3.36)
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Using (3.33) and (3.36) in (3.34), we have

�

�
B�r .x0/\¹u>0º

�
jruj2 � �0

�
dx

�
C.�; �;N /

2
p
��0

�
B�r .x0/\¹u>0º

�
jruCj2 � �0

�
dx

C
C.�; �;N /

�0r
sup

B�r .x0/

.uC/

�
B�r .x0/\¹u>0º

�0 dx

�
C.�; �;N /

�
p
��0

�
1C

C.�/
p
��0

�
�

�
B�r .x0/\¹u>0º

�
jruj2 � �0

�
dx:

If  is small enough, then
�
B�r .x0/\¹u>0º

�
jruj2 � �0

�
dx D 0:

In particular, j¹u > 0º \ B�r.x0/j D 0, that is, uC D 0 almost everywhere in B�r .x0/.
It remains to verify the properties of v in (3.32). Before looking at the proof, we

observe that, for a given ' 2 C1c .D0/, there exists "0 > 0 such that ' 2 C1c .D"/ for
all " < "0. Indeed, since supp.'/ is a compact set and

S
">0D" is a cover of supp.'/,

then for a finite set ¹"1; : : : ; "nº we have supp.'/ �
Sn
iD1D"i � D"max , where "max D

max."1; : : : ; "n/. Therefore, ' 2 C1c .D"/ for all " < "max.
Let us first verify that div.A.x/rv/ D 0 in D0. For this, let ' 2 C1c .D0/; then from

the continuity of u, there exists a "0 > 0 such that supp.'/ � D" for all " < "0; also, we
have �

D0

hArv;r'i dx D

�
supp.'/

hArv;r'i dx (3.37)

since supp.'/ � D"; from the definition of v", we have
�

supp.'/
hArv";r'i dx D 0;

and we know that v is a weak limit of v" in H 1.Br .x0//; therefore, from (3.37), we have
�
D0

hArv;r'i dx D

�
supp.'/

hArv;r'i dx D lim
"!0

�
supp.'/

hrv";r'i dx D 0:

Hence, we show that div.A.x/rv/ D 0 in D0. To show that v D 0 in B�r .x0/\ ¹u > 0º,
we now take the function ' 2C1c .B�r .x0/\ ¹u> 0º/. From the same reasoning as above,
we know that there exists an "0 > 0 such that supp.'/� B�r .x0/\ ¹u > "º for all " < "0.
From the definition of v", we have

�
supp.'/

v"' dx D

�
¹u>"º\B�r .x0/

v"' dx D "

�
¹u>"º\B�r .x0/

' dx;
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and in limit "! 0, from the above equation, we have�
supp.'/

v' dx D lim
"!0

�
supp.'/

v"' dx D 0;

and therefore, vD 0 a.e. inB�r .x0/\ ¹u > 0º. To prove that vD u in ¹u� 0º, we observe
that ¹u � 0º � ¹u � "º; hence, from the definition of v", we have

v" D u in ¹u � 0º:

Since the weak limits maintain the equality (cf. [25, Lemma 3.14]), the claim follows in
the limit "! 0. Apart from that, since v"D u on @Br .x0/, therefore, from the conservation
of traces in weak convergence, it follows that v D u on @Br .x0/. This completes the proof
of Proposition 3.9.

Remark 3.10. In the proposition above, the constant is local in nature; this means that the
value of the constant depends on the choice of compact set K �� BC2 , where x0 2 K.

Lemma 3.11. Let u0 and uj be as in Lemma 3.8. Then, for a subsequence of uj , for any
R > 0, we have

�
¹uk>0º\B

C
R
! �

¹u0>0º\B
C
R

a.e. in BCR : (3.38)

This in turn implies

�
¹uj>0º\B

C
R
! �

¹u0>0º\B
C
R

in L1.BCR /: (3.39)

Proof. From Lemma 3.8, we can consider a subsequence of uj such that uj ! u0 in
L1.BCR /. Let x 2 BCR . If x 2 ¹u0 > 0º \ BCR (or �

¹u0>0º\B
C
R
.x/ D 1), then uj .x/ >

u.x/
2
> 0 (or �

¹uj>0º\B
C
R
.x/ D 1) for k sufficiently large. Thus, we conclude that

�
¹uj>0º\B

C
R
.x/! �

¹u0>0º\B
C
R
.x/ as j !1 for all x 2 ¹u0 > 0º \ BCR :

If x 2 ¹u0 � 0ºo \ BCR (or �
¹u0>0º\B

C
R
.x/ D 0), then there exists ı > 0 such that

Bı.x/ � ¹u0 � 0º \ B
C

R :

Thus, we have
1

ı

 
@Bı .x/

uC0 dHN�1
D 0:

Again, by the uniform convergence of uj to u0 in BCR (cf. Lemma 3.8), we obtain

1

ı

 
@Bı .x/

uCj dHN�1
�
1

2
c.�;N; �˙/ for j sufficiently large. (3.40)

Here, c.�;N; �˙/ is as in Proposition 3.9. This implies that uj � 0 in B ı
2
.x/ (cf. Propo-

sition 3.9). In particular, �¹uj .x/�0º.x/ D 0 for j sufficiently large. This way, we obtain

�
¹uj>0º\B

C
R
.x/! �

¹u0>0º\B
C
R
.x/ as j !1 for all x 2 ¹u0 � 0º \ BCR : (3.41)



D. Moreira and H. Shrivastava 240

From the representation theorem [2, Theorem 7.3], we know that

j@¹u0 > 0º \ B
C

R j D 0:

From (3.40), (3.41), and the fact that

j@¹u0 > 0º \ B
C

R j D 0;

we obtain the claim (3.38). Since

j�
¹uj>0º\B

C
R
j � 1;

the claim (3.39) follows from Lebesgue’s dominated convergence theorem.

4. The main result

We rephrase the notion of the tangential touch of the free boundary to the fixed bound-
ary, which is equivalent to the tangential touch condition mentioned in the statement of
Theorem 2.6.

In the proof of our main result, we will show that, given u 2 P1, for every " > 0 there
exists �" > 0 such that

@¹u > 0º \ BC� � B
C
� nK" 80 < � � �";

where
K" WD

®
x 2 RNC W xN � "

q
x21 C � � � C x

2
N�1

¯
:

Proof of Theorem 2.6. We assume, by contradiction, that the free boundaries of functions
in P1 do not touch the origin in a tangential fashion to the plane. Then, there exist " > 0
and sequences vj 2P1 and xj 2 F.vj /\K" such that jxj j ! 0 as j !1. Let rj D jxj j,
and we consider the blowups uj WD .vj /rj .

Let u0 WD limj!1 uj as in Lemma 3.8. Also, let x0 2 @BC1 \ K" be a limit up to a
subsequence (still called xj ) such that

x0 D lim
j!1

xj

jxj j
:

Since xj 2 F.vj /, we have vj .xj / D 0. Therefore, on rescaling,

uj

�
xj

rj

�
D
1

rj
vj .xj / D 0:

In the limit as j !1, we have

u0.x0/ D lim
j!1

uj

�
xj

rj

�
D 0:
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From the density assumption that uj satisfy condition (2.1) and Lemma 3.11, we have for
any given R > 0

j¹u0 > 0º \ B
C

R j

jBCR j
D

 
BCR

�¹u0>0º dx D lim
j!1

 
BCR

�¹uj>0º dx

D lim
j!1

1

jBCRrj j

�
BCRrj

�¹vj>0º dx

D lim
j!1

j¹vj > 0º \ B
C

Rrj
j

jBCRrj j
> D : (4.1)

We can see that the computations done in (4.1), in fact, show that the density property
remains invariant under the blowup of any function v. This way, we conclude that the
function .u0/0 which is the blowup limit of .u0/ (in particular, .u0/0 WD limr!0.u0/r )
also satisfies

j¹.u0/0 > 0º \ B
C

R j

jBCR j
> D 8R > 0: (4.2)

Now, we note that from Lemma 3.8 u0 2 P1. Moreover, from (4.1), u0 6� 0, and
from [22, Theorem 4.2, Lemma 4.3], we have u0 � 0; also, from (4.2), we conclude that
.u0/0 6� 0. This way, again by [22, Theorem 4.9], we have u0.x/ D c xCN for all x 2 RNC
for some constant c > 0.

Hence, the function u0 cannot be equal to zero at any point in RNC . But we have
x0 2 @B

C
1 \K" and u0.x0/ D 0. This leads to a contradiction. In order to construct the

modulus of continuity � , for x 2 RNC , we assign the value �.jxj/ to be the maximum
opening � of cone K� such that F.u/ \ BCr � K

c
� for all r � jxj. In other words,

�.jxj/ D inf
®
� j F.u/ \ BCr � K

c
� ; r � jxj

¯
D sup

²
xN

jx0j
j x 2 F.u/ \ BCr n ¹0º; r � jxj

³
:
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