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C 1;˛-regularity for a class of degenerate/singular fully
non-linear elliptic equations

Sumiya Baasandorj, Sun-Sig Byun, Ki-Ahm Lee, and Se-Chan Lee

Abstract. We establish an optimal C 1;˛-regularity for viscosity solutions of degenerate/singular
fully non-linear elliptic equations by finding minimal regularity requirements on the associated oper-
ator.

1. Introduction

In this paper, we study regularity of viscosity solutions to fully non-linear elliptic equa-
tions of the form

F .x;Du;D2u/ D 0 in B1 � Rn; n > 2; (1.1)

where F � F .x; p;M/ W B1 �Rn � �.n/! R is an elliptic operator with respect to the
matrix argumentM (that is,whenever .x;p;M/ 2B1 �Rn � �.n/,N 2 �.n/ andN > 0,

F .x; p;M CN/ 6 F .x; p;M/ (1.2)

is satisfied—see, for instance, [31,54]); whose ellipticity may degenerate or blow-up along
the critical region ¹pD 0º; where �.n/ denotes the set of n� n real symmetric matrices; u
stands for a real-valued continuous unknown function defined on the unit ball B1; and
Du D . @u

@xi
/ and D2u D . @2u

@xi@xj
/ denote, respectively, the gradient and Hessian of u.

Indeed, we are interested in partial differential equations of the form in (1.1) such that
DMF .x; p;M/ � ˆ.x; jpj/.

A primary model example we keep in mind concerns equations of the form

ˆ.x; jDuj/F.D2u/ D f .x/ in B1 (1.3)

for a .�; ƒ/-elliptic operator F and a suitable function ˆ W B1 � .0;1/! .0;1/ sat-
isfying minimal conditions which will be specified in a few lines. In fact, our goal is
to establish differentiability and local Hölder continuity for the gradient of viscosity solu-
tions for such a class of equations. We also aim at a comprehensive regularity theory which
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allows ˆ to impel degenerate and singular characters on the diffusibility of the govern-
ing operator. To be more precise, we now state the main assumptions to be imposed on
equation (1.3) throughout the paper.

(A1) The operator F W �.n/! R in (1.3) is uniformly .�; ƒ/-elliptic in the sense
that

�tr.N / 6 F.M/ � F.M CN/ 6 ƒtr.N /

holds with some constants 0 < � 6 ƒ, whenever M;N 2 �.n/ with N > 0;
and F.0/ D 0.

(A2) The functionˆ W B1 � Œ0;1/! Œ0;1/ in (1.3) is a continuous map satisfying
the following properties:

1. There exist constants s.ˆ/ > i.ˆ/ > �1 such that the map t 7! ˆ.x;t/

t i.ˆ/

is almost non-decreasing with a constant L > 1 in .0;1/ and the map
t 7! ˆ.x;t/

ts.ˆ/
is almost non-increasing with a constant L > 1 in .0;1/ for

all x 2 B1.

2. There exist constants 0< �0 6 �1 such that �0 6ˆ.x;1/6 �1 for all x 2B1.

(A3) The term f on the right-hand side of (1.3) belongs to C.B1/ \ L1.B1/.

Equation (1.3) features an inhomogeneous degenerate or singular term modeled on the
integrand of the functional with Uhlenbeck-type structure; namely,

v 7!

Z
B1

'.x; jDvj/ dx (1.4)

for an integral density ' W B1 � Œ0;1/! Œ0;1/. From a variational point of view, the
functional in (1.4) is a highly general non-autonomous functional including the following
significant model functionals for the regularity theory:

1. p-growth: '.x; t/ D tp for p > 1; see, for instance, [46, 49, 59, 61, 62, 70–72].

2. p.x/-growth: '.x; t/ D tp.x/ for p.�/ > 1; see, for instance, [1, 2, 39, 40]

3. Orlicz growth: '.x; t/ D �.t/; see, for, instance [7, 22, 41, 42, 60].

4. .p; q/-double phase: '.x; t/ D tp C a.x/tq for 1 < p 6 q; see, for instance, [12,
14, 28–30, 37].

5. Variable double phase: '.x; t/ D tp.x/ C a.x/tq.x/ for 1 < p.�/ 6 q.�/; see, for
instance, [23, 27, 69].

6. Borderline case of double phase: '.x; t/ D tp C a.x/tp log.1C t / for 1 < p; see,
for instance, [13, 24].

7. Multi-phase: '.x; t/ D tp C a.x/tq C b.x/t s for 1 < p 6 q; s; see, for instance,
[10, 38].

8. Orlicz multi-phase: '.x; t/ D �.t/ C a.x/ a.t/ C b.x/ b.t/; see, for instance,
[6, 8, 10, 25].
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Over the last several decades, a systematic analysis of the aforementioned function-
als has been an object of intensive studies for the regularity theory. All the examples
of the above-mentioned functionals fall within a realm of functionals with non-standard
growth treated first in a series of papers (see [63–65]); and problems with non-standard
growth conditions have been studied extensively over last decades—see, for instance,
[43–45, 48] and references therein. Hölder continuity for the gradient of local minima of
functional (1.4) under suitable optimal assumptions has been investigated in [50], where
fundamental assumptions on the integral density function ' in (1.4) are that there exist
constants 1 < p; q such that the map t 7! '.x;t/

tp
is almost non-decreasing and the map

t 7! '.x;t/
tq

is almost non-increasing for all x 2 B1; see [50, Definition 3.1]. In this regard,
the assumptions on ˆ in (1.3) described in (A2) are absolutely reasonable.

On the other hand, the non-variational counterparts of the models described above
could be cast as singular or degenerate fully non-linear equations. A first important special
case of equation (1.3) is derived by replacing ˆ.x; t/ D tp with i.ˆ/ D s.ˆ/ D p > �1
in (A2), whose most celebrated type is

jDujpF.D2u/ D f .x/ in B1: (1.5)

Structures of this type often occur in the theory of stochastic games [5, 11] in the set-
ting of viscosity solutions. The fairly comprehensive investigation of these kinds of fully
non-linear elliptic equations has been carried out. Birindelli and Demengel [15] proved
the comparison principle and Liouville-type theorems in singular case .�1 < p 6 0/,
and showed the regularity and uniqueness of the first eigenfunction in [16]. Alexandrov–
Bakelman–Pucci estimates and the Harnack inequality have been also obtained in the
papers [34, 35, 51]. In particular, Imbert and Silvestre [52] proved local Hölder continuity
for the gradient of viscosity solutions of (1.5) in degenerate cases (p > 0). Later, Araújo,
Ricarte, and Teixeira [4] proved the optimality of Hölder regularity for the gradient of vis-
cosity solutions for the same problem in [52] by showing that viscosity solutions are C 1;ˇloc
with ˇ D min¹y̨; 1=.p C 1/º, where y̨ 2 .0; 1/ is the Hölder exponent coming from the
Krylov–Safonov regularity for equation (1.11). It is worth mentioning that in the recent
paper [3], the authors considered a degenerate fully non-linear equation of the type

�.jDuj/F.D2u/ D f .x/ in B1 (1.6)

and proved local C 1 regularity for viscosity solutions of (1.6) under the condition that � W
.0;1/! .0;1/ is a map whose inverse has a Dini-continuous modulus of continuity near
the origin. This equation does not fall into the class of fully non-linear equations under
consideration in general. However, it would be interesting to find an optimal condition
on � which leads toC 1 orC 1;ˇ regularity of viscosity solutions of (1.6). Next, we mention
that De Fillippis [36] introduced the double phase-type degeneracies to the fully non-linear
equation

.jDujp C a.x/jDujq/F.D2u/ D f .x/ in B1; 0 < p 6 q (1.7)
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and proved local Hölder continuity for the gradient of viscosity solutions to equation (1.7).
Moreover, in this degenerate case, the sharpness of the local C 1;ˇ -regularity estimates for
bounded viscosity solutions is shown in [32]. Note that equation (1.7) can be derived
from (1.3) by settingˆ.x; t/D tp C a.x/tq with s.ˆ/Dmax¹p; qº > i.ˆ/Dmin¹p; qº
> �1 in (A2) and 0 6 a.�/ 2 C.B1/. Meanwhile, under rather general conditions, in [21],
it has been shown that viscosity solutions to the fully non-linear elliptic equations having
variable exponent degeneracies,

jDujp.x/F.D2u/ D f .x/ in B1; (1.8)

are locally of class C 1;ˇ for a universal constant ˇ 2 .0; 1/ under the key assumption
that p.�/ W B1 ! R is a continuous function satisfying infx2B1 p.x/ > �1. Again, we
note that equation (1.8) corresponds to the choice of ˆ.x; t/ D tp.x/ in (1.3) with i.ˆ/ D
infx2B1 p.x/ > �1 and s.ˆ/ D supx2B1 p.x/ in (A2). In this paper, we provide a novel
way to prove Hölder continuity for the gradient of viscosity solutions of (1.3) for both
degenerate/singular cases in the full generality. The fully non-linear equation with double
phase type degeneracies having variable exponents

.jDujp.x/ C a.x/jDujq.x//F.D2u/ D f .x/ in B1; 0 6 p.�/ 6 q.�/ (1.9)

has been studied in [47] as a combination of equations (1.7) and (1.8), and local Hölder
continuity for the gradient of viscosity solutions to (1.9) is also proved. It is clear to see
that equation (1.9) can be generated from (1.3) by choosing ˆ.x; t/ D tp.x/ C a.x/tq.x/

with functions 06 a.�/2C.B1/ and�1<p.�/;q.�/ inC.B1/, where the constants in (A2)
are defined by i.ˆ/D infx2B1¹p.x/; q.x/º and s.ˆ/D supx2B1¹p.x/; q.x/º. Finally, we
point out another recent paper [57] dealing with viscosity solutions to the equation

jDujˇ.x;u;Du/F.D2u/ D f .x/ in B1; (1.10)

where ˇ W B1 �R �Rn ! R is a map satisfying 0 < ˇm 6 ˇ.�/ 6 ˇM for some positive
constants ˇm and ˇM . In [57], as a follow-up of the arguments introduced in [68], local
Hölder continuity for the gradient of viscosity solutions of (1.10) is obtained, but the
singular case is not treated due to the methods employed there and equation (1.3) cannot
be represented as (1.10) generally.

Lastly, let us recall a consequence of the classical Krylov–Safonov–Harnack inequal-
ity (see [26])—namely, that viscosity solutions to the homogeneous equation

F.D2h/ D 0 in B1; (1.11)

under the assumption that F W �.n/! R satisfies (A1), are locally of C 1;y̨.B1/ with the
estimate

khkC 1;y̨.B1=2/ 6 c khkL1.B1/ (1.12)

for universal constants y̨ � y̨.n; �; ƒ/ 2 .0; 1/ and c � c.n; �; ƒ/. The main results of
this paper read as follows:
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Theorem 1.1. Let u 2 C.B1/ be a viscosity solution of equation (1.3) under assump-
tions (A1)–(A3). Then, u 2 C 1;ˇloc .B1/ for all ˇ > 0 satisfying

ˇ 2

8<: .0; y̨/ \
�
0; 1
1Cs.ˆ/

i
if i.ˆ/ > 0;

.0; y̨/ \
�
0; 1
1Cs.ˆ/�i.ˆ/

i
if � 1 < i.ˆ/ < 0;

(1.13)

where y̨ is given in (1.12). Moreover, for every ˇ in (1.13), there exists a constant c �
c.n; �;ƒ; i.ˆ/; L; ˇ/ such that

kDukL1.B1=2/ C sup
x¤y2B1=2

jDu.x/ �Du.y/j

jx � yjˇ

6 c
�
1C kukL1.B1/ C

 f
�0

 1
1Ci.ˆ/

L1.B1/

�
: (1.14)

The results of Theorem 1.1 are sharp in view of an example given in [52, Example 1].
As we have discussed above, the results of Theorem 1.1 cover the main results of the
papers [21,36,47,52] for fully non-linear equations having both degenerate/singular terms
in a unified way. Moreover, the results of Theorem 1.1 cover another important examples,
for instance,

1. ˆ.x; t/ D tp C a.x/tp log.1C t / with �1 < p and 0 6 a.�/ 2 C.B1/, where the
constants in (A2) can be defined by i.ˆ/ D p and s.ˆ/ D p C " for any " > 0.

2. ˆ.x; t/ D �.t/

t2
C a.x/ .t/

t2
for suitable N -functions �,  , and 0 6 a.�/ 2 C.B1/.

As we conclude this introduction, let us briefly explain the techniques used in the
proof of Theorem 1.1. While a main idea for getting C 1;ˇ regularity of the viscosity
solution u of (1.3) is showing that the graph of the function u can be approximated by
affine functions with an error bounded by CR1Cˇ in any ball of radius R, as shown in
previous papers [21, 36, 47, 52], there are several difficulties to overcome by means of
new ideas and tools. In fact, for the degenerate case .0 6 i.ˆ//, we show that a viscosity
solution v of the equation

ˆ.x; j� CDvj/F.D2v/ D f .x/ in B1; � 2 Rn is any vector,

is locally Hölder continuous with an exponent ˇ, which is independent of the size of
�, using the method introduced by Ishii and Lions [56] in the case of large scopes and
the Harnack inequality approach of Caffarelli and Cabré [26] employed in [54] for small
scopes. This information is an important step towards the proof of Theorem 1.1 based
on iterative and compactness arguments, in which we show that the graph of u is better
approximated by affine functions in smaller balls. For the singular case .�1 < i.ˆ/ < 0/,
the main result of Theorem 1.1 is an outcome of the degenerate case after showing that
the viscosity solution u of equation (1.3) is Lipschitz continuous; see Lemma 3.1 below.
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Finally, we outline the organization of the paper. In the next section, we provide basic
notations and assumptions to be used, and also smallness regime and basic regularity
results. In Section 3, we prove basic regularity properties of viscosity solutions of (2.5)
depending on the sign of i.ˆ/ and the size of quantity j�j. Section 4 is devoted to the
approximation procedure for viscosity solutions of (1.3). Finally, in last section we provide
the proof of Theorem 1.1.

2. Preliminaries

2.1. Notation

Throughout the paper, we denote by Br .x0/ WD ¹x 2 Rn W jx � x0j < rº the open ball
of Rn with n > 2 centered at x0 with positive radius r . If the center is clear in the context,
we shall omit the center point by writingBr �Br .x0/. Also,B1�B1.0/�Rn denote the
unit ball. We shall always denote by c a generic positive constant, possibly varying line to
line, having dependencies on parameters using brackets; for example, c � c.n; i.ˆ/; �0/
means that c is a positive constant depending only on n; i.ˆ/, and �0. For a measurable
map g W B � B1 ! RN .N > 1/ with ˇ 2 .0; 1� being a given number, we shall use the
notation

Œg�C 0;ˇ .B/ WD sup
x¤y2B

jg.x/ � g.y/j

jx � yjˇ
; Œg�C 0;ˇ WD Œg�C 0;ˇ .B1/:

The Pucci extremal operators P˙
�;ƒ
W �.n/! R are defined as

PC
�;ƒ

.M/ WD ��
X
�k>0

�k �ƒ
X
�k<0

�k (2.1)

and
P��;ƒ.M/ WD �ƒ

X
�k>0

�k � �
X
�k<0

�k ; (2.2)

where ¹�kºnkD1 are the eigenvalues of the matrix M . The .�; ƒ/-ellipticity of the oper-
ator F via the Pucci extremal operators can be formulated as

P��;ƒ.N / 6 F.M CN/ � F.M/ 6 PC
�;ƒ

.N / (2.3)

for allM;N 2 �.n/; see [26, Chapter 2] for detailed discussions. In what follows, for any
vector � 2 Rn, we define maps G� W B1 �Rn � �.n/! R by

G�.x; p;M/ WD ˆ.x; j� C pj/F.M/ � f .x/ (2.4)

under assumptions (A1)–(A3). Note that the map G� in (2.4) satisfies ellipticity condi-
tion (1.2) (monotonicity property), that is,

G�.x; z;M/ 6 G�.x; z;N / whenever M;N 2 �.n/ satisfy M > N:
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Then, we shall focus on viscosity solutions of the equation

G.x;Du;D2u/ WD ˆ.x; jDuj/F.D2u/ � f .x/ D 0 in B1 (2.5)

or
G�.x;Du;D

2u/ D 0 in B1; (2.6)

where � is any vector in Rn.
For the reader’s convenience, we give the definition of a viscosity solution u of equa-

tion (2.5) as defined in [16].

Definition 2.1. A lower semicontinuous function v is called a viscosity supersolution
of (2.5) if for any x0 2 B1, either there exists ı > 0 such that u is constant in Bı.x0/ and
f .x/ 6 0 for all x 2 Bı.x0/; or, for all ' 2 C 2.B1/ such that v � ' has a local minimum
at x0 and D'.x0/ ¤ 0,

G.x0;D'.x0/;D
2'.x0// > 0

holds. An upper semicontinuous function w is called a viscosity subsolution of (2.5) if for
all x0 2 B1, either there exists ı > 0 such that u is constant in Bı.x0/ and f .x/ > 0 for
all x 2 Bı.x0/; or, for all ' 2 C 2.B1/ such that w � ' has a local maximum at x0 and
D'.x0/ ¤ 0,

G.x0;D'.x0/;D
2'.x0// 6 0

holds. We say that u 2 C.B1/ is a viscosity solution of (2.5) if u is a viscosity supersolu-
tion and a subsolution simultaneously.

Remark 2.1. We remark that the above definition is necessary only for the case �1 <
i.ˆ/ < 0, due to the fact that the operator appearing in equation (2.5) may not be defined
when the gradient is zero. In the case i.ˆ/ > 0, the classical definition of a viscosity
solution is equivalent to Definition 2.1; see [31]. We also note that a viscosity solution of
equation (2.6) can be understood as a viscosity solution of equation (2.5), by replacing
u.x/ D v.x/C h�; xi.

Following the proof of [19, Proposition 1.2], one can prove the following assertion:

Proposition 2.1. Suppose that for �1 < i.ˆ/ < 0, u is a viscosity solution of (2.5) in
the sense of Definition 2.1 under assumptions (A1)–(A3). Then, u is a classical viscosity
solution of

jDuj�i.ˆ/ˆ.x; jDuj/F.D2u/ D f .x/jDuj�i.ˆ/: (2.7)

Note that the map ‰ W B1 � Œ0;1/ ! Œ0;1/, given by ‰.x; t/ D t�i.ˆ/ˆ.x; t/,
satisfies condition (A2) for numbers i.‰/ D 0 and s.‰/ D s.ˆ/ � i.ˆ/. Moreover, Pro-
position 2.1 means that if �1 < i.ˆ/ < 0 in (A2), then any viscosity solution u of equa-
tion (2.5) in the sense of Definition 2.1 can be understood as a classical viscosity solution
of equation (2.7).
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2.2. Small regime

Here we verify that, for a viscosity solution u of (2.6), we are able to assume that

oscB1 u 6 1 and kf kL1.B1/ 6 "0 (2.8)

for some constant 0 < "0 < 1 small enough, and also that �0 D �1 D 1, without loss of
generality. In order to consider the problem in a small regime as in (2.8), for a fixed ball
BR.x0/ � B1, we define yu W B1 ! R by

yu.x/ WD
u.x0 CRx/

K
(2.9)

for positive constants K > 1 > R which will be determined in a few lines. It can be seen
that yu is a viscosity solution of

yGy�.x;Dyu;D
2
yu/ WD ŷ .x; jy� CDyuj/ yF .D2

yu/ � yf .x/ D 0; (2.10)

where

ŷ .x; t/ WD
ˆ
�
x0 CRx;

K
R
t
�

ˆ
�
x0 CRx;

K
R

� ;
yF .M/ WD

R2

K
F
� K
R2
M
�
;

yf .x/ WD
R2

ˆ
�
x0 CRx;

K
R

�
K
f .x0 CRx/ and y� WD

R

K
�:

Note that yF is still a uniformly .�;ƒ/-elliptic operator, the map t 7!
ŷ .x;t/

t i.ˆ/
is almost

non-decreasing, and the map t 7!
ŷ .x;t/

ts.ˆ/
is almost non-increasing with the same constant

L > 1 as in assumption (A2); and ŷ .x; 1/ D 1 for all x 2 B1. Moreover, (A2) implies

k yf kL1.B1/ 6
LR2Ci.ˆ/

�0K1Ci.ˆ/
kf kL1.B1/ 6

L

�0K1Ci.ˆ/
kf kL1.B1/ :

By recalling i.ˆ/ > �1 and setting

K WD 2
�
"C kukL1.B1/ C

h L

"0�0
kf kL1.B1/

i 1
1Ci.ˆ/

�
for any " > 1;

we see that yu solves equation (2.10) in the same class as does (2.6) under the small regime
described in (2.8).

2.3. Basic regularity results

In this subsection, we discuss some basic regularity results for (2.6). First, we recall
important notions of superjets and subjets introduced in [31].
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Definition 2.2. Let v W �! R be an upper semicontinuous function and w W �! R be
a lower semicontinuous function. For every x0 2 �, we define the second-order superjet
of v at x0 by

J
2;C
� v.x0/ WD

°
.p;M/ 2 Rn � �.n/ W v.x/ � v.x0/C hp; x � x0i

C
1

2
hM.x � x0/; x � x0i C o.jx � x0j

2/ as x ! x0

±
and the second-order subjet of w at x0 by

J
2;�
� w.x0/ WD

°
.p;M/ 2 Rn � �.n/ W w.x/ � w.x0/C hp; x � x0i

C
1

2
hM.x � x0/; x � x0i C o.jx � x0j

2/ as x ! x0

±
:

We further define a limiting superjet of v and subjet of w, respectively:

(1) A couple .p;M/ 2 Rn � �.n/ is a limiting superjet of v at x0 2 � if there exists
a sequence ¹xk ; pk ;Mkº ! ¹x; p;M º as k !1 in such a way that .pk ;Mk/ 2

J
2;C
� v.xk/ and limk!1 v.xk/D v.x0/. We denote the set of all limiting superjets

of v at x0 2 � by J
2;C

� v.x0/.

(2) A couple .p;M/ 2 Rn � �.n/ is a limiting subjet of w at x0 2 � if there exists
a sequence ¹xk ; pk ;Mkº ! ¹x; p;M º as k !1 in such a way that .pk ;Mk/ 2

J
2;�
� w.xk/ and limk!1w.xk/D w.x0/. We denote the set of all limiting subjets

of w at x0 2 � by J
2;�

� w.x0/.

Using the above concept of superjet and subjet, the notions of viscosity supersolutions,
subsolutions, and solutions of (1.1) are defined as follows (see [31, Definition 2.2]):

Definition 2.3. Let F W B1 �Rn � �.n/! R be a map satisfying (1.2). An upper semi-
continuous function v W B1 ! R is called a viscosity subsolution of equation (1.1) (equi-
valently, a viscosity solution of F 6 0) if

F .x; p;M/ 6 0 (2.11)

holds true for all x 2 B1 and .p; M/ 2 J
2;C
B1

v.x/. Similarly, a lower semicontinuous
function w W B1 ! R is called a viscosity subsolution of equation (1.1) (equivalently, a
viscosity solution of F > 0) if

F .x; p;M/ > 0 (2.12)

holds true for all x 2 B1 and .p; M/ 2 J
2;�
B1

w.x/. Finally, a continuous function u W
B1 ! R is a viscosity solution of equation (1.1) if it is both a viscosity subsolution and a
viscosity supersolution of (1.1).

Remark 2.2. We remark that in the above definition, if the map F WB1 �Rn � �.n/!R
is continuous, then J 2;CB1 can be replaced by J

2;C

B1
for a viscosity subsolution and J 2;�B1 can

be replaced by J
2;�

B1
for a viscosity supersolution, respectively; see [31, Remark 2.4].
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There are some examples and properties of superjets and subjet described in [31, 55],
among which is the following result, which we need as it is useful to our case (see also
[58, Lemma 2.1]):

Lemma 2.1. Let v W �! R be an upper semicontinuous function and w W �! R be a
lower semicontinuous function. Then, for any point x0 2 �, we have

J
2;C
� v.x0/ D

®
.D'.x0/;D

2'.x0// W ' 2 C
2.�/; '.x0/ D v.x0/;

' > v in a neighborhood of x0
¯
;

J
2;�
� w.x0/ D

®
.D'.x0/;D

2'.x0// W ' 2 C
2.�/; '.x0/ D w.x0/;

' 6 v in a neighborhood of x0
¯
:

Remark 2.3. Essentially, Lemma 2.1 tells us that Definitions 2.3 and 2.1 are equivalent
for equation (1.3). Next, we discuss a variation of the celebrated Ishii–Jensen lemma (see
[31, Theorem 3.2]), which will be used afterwards.

Lemma 2.2. Let u be a viscosity solution of (2.6) under assumptions (A1)–(A3), where
� 2Rn is any vector. Suppose that B bB1 is an open subset and  2 C 2.B �B/. Define
a map v W B �B ! R as

v.x; y/ WD u.x/ � u.y/:

Suppose further .yx; yy/ 2 B �B is a local maximum point of v �  in B �B. Then, for
each ı > 0, there exist matrices Xı ; Yı 2 �.n/ such that

G�.yx;Dx .yx; yy/;Xı/ 6 0 6 G�.yy;�Dy .yx; yy/; Yı/ (2.13)

and

�

�1
ı
C kAk

�
I 6

�
Xı 0

0 �Yı

�
6 AC ıA2 (2.14)

with A WD D2 .yx; yy/.

Proof. We are able to apply [31, Theorem 3.2] in our setting. In turn, for each ı > 0, there
exist Xı ; Yı 2 �.n/ such that

.Dx .yx; yy/;Xı/ 2 J
2;C

B u.yx/ and .Dx .yx; yy/;�Yı/ 2 J
2;C

B .�u/.yy/; (2.15)

and the block diagonal matrix with entriesXı and�Yı satisfy (2.14). Since u is a viscosity
solution of (2.6), the validity of (2.13) is immediate by Remarks 2.2 and 2.3.

3. Hölder continuity

In this section, we provide Hölder regularity for solutions of (2.6), where � is any vector,
under the small regime.
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Lemma 3.1 (Hölder continuity). Let u be a viscosity solution of (2.6) under assump-
tions (A1)–(A3) with oscB1 u 6 1, kf kL1.B1/ 6 "0 < 1, and �0 D �1 D 1. Let BR �
BR.x0/ � B1 be any ball. Then, we have the following results:

(R1) If �1 < i.ˆ/ < 0 and j�j D 0, then u is Lipschitz continuous in BR=2 with the
estimate

Œu�C 0;1.BR=2/ 6 Csl (3.1)

for some constant Csl � Csl .n; �;ƒ; i.ˆ/; L;R/.

(R2) If i.ˆ/ > 0 and j�j > A0 with A0 � A0.n; �; ƒ; i.ˆ/; L; R/ > 1, then u is
Lipschitz continuous in BR=2 with the estimate

Œu�C 0;1.BR=2/ 6 Cdl (3.2)

for some constant Cdl � Cdl .n; �;ƒ; i.ˆ/; L;R/.

(R3) If i.ˆ/ > 0 and j�j 6 A0, then u 2 C 0;ˇ .BR=2/ with the estimate

Œu�C 0;ˇ .BR=2/ 6 Cds; (3.3)

where ˇ � ˇ.n; �; ƒ; i.ˆ/; L; R; A0/ 2 .0; 1/ and Cds � Cds.n; �; ƒ; i.ˆ/;

L;R;A0/.

Proof. For the proof of (R1) and (R2), it suffices to show that there exist positive con-
stants L1 and L2 such that

L WD sup
x;y2BR

.u.x/ � u.y/ � L1!.jx � yj/ � L2.jx � z0j
2
C jy � z0j

2// 6 0 (3.4)

for every z0 2 BR=2, where

!.t/ D

8<: t � !0t 32 if t 6 t0 WD
�
2
3!0

�2
;

!.t0/ if t > t0:
(3.5)

We choose !0 2 .0; 2=3/ in such a way that t0 > 1. For instance, we take any constant
!0 6 1=3. By contradiction, suppose that there are no such positive constants L1 and
L2 satisfying (3.4) for every z0 2 BR=2. Then, there exists a point z0 2 BR=2 so that
L > 0 for all numbers L1 > 0 and L2 > 0. Now we define two auxiliary functions �; W
BR � BR ! R given by

 .x; y/ WD L1!.jx � yj/C L2.jx � z0j
2
C jy � z0j

2/ (3.6)

and
�.x; y/ WD u.x/ � u.y/ �  .x; y/: (3.7)

Let .yx; yy/ 2 BR � BR be a maximum point for �. Then, we have

�.yx; yy/ D L > 0
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and
L1!.jyx � yyj/C L2.jyx � z0j

2
C jyy � z0j

2/ 6 oscB1 u 6 1:

Now we select
L2 WD

64

R2
:

This choice of L2 ensures

jyx � z0j C jyy � z0j 6
R

4
and jyx � yyj 6

R

4
: (3.8)

This means that the points yx and yy belong to the open ball BR, and we are able to assume
that yx ¤ yy, otherwise L 6 0 is clear. The rest of the proof is divided into several steps for
simplicity of the presentation.

Step 1. We are in a position to apply Lemma 2.2 in order to ensure the existence of a
limiting subjet .�yx ; Xı/ of u at yx and a limiting superjet .�yy ; Yı/ of u at yy, where

�yx WD Dx .yx; yy/ D L1!
0.jyx � yyj/

yx � yy

jyx � yyj
C 2L2.yx � z0/

and

�yy WD �Dy .yx; yy/ D L1!
0.jyx � yyj/

yx � yy

jyx � yyj
� 2L2.yy � z0/;

such that the matrices Xı and Yı satisfy the matrix inequality�
Xı 0

0 �Yı

�
6
�
Z �Z

�Z Z

�
C .2L2 C ı/I; (3.9)

where

Z WD L1D
2.!.j � j//.yx � yy/

D L1

h!0.jyx � yyj/
jyx � yyj

I C
�
!00.jyx � yyj/ �

!0.jyx � yyj/

jyx � yyj

� .yx � yy/˝ .yx � yy/
jyx � yyj2

i
and the constant ı > 0 only depends on the norm of Z, which can be selected to be
sufficiently small. Applying inequality (3.9) for vectors of the form .z; z/ 2 R2n, we find

h.Xı � Yı/z; zi 6 .4L2 C 2ı/jzj
2:

The last inequality yields that all the eigenvalues of the matrix .Xı � Yı/ are not larger
than 4L2 C 2ı. On the other hand, applying again (3.9) for the vector yz WD . yx�yy

jyx�yyj
; yy�yx
jyx�yyj

/,
we have

h.Xı � Yı/
yx � yy

jyx � yyj
;
yx � yy

jyx � yyj
i 6

�
4L2 C 2ı C 4L1!

00.jyx � yyj/
�ˇ̌̌
yx � yy

jyx � yyj

ˇ̌̌2
D

�
4L2 C 2ı �

6!0L1

jyx � yyj1=2

�ˇ̌̌
yx � yy

jyx � yyj

ˇ̌̌2
6 .4L2 C 2ı � 6!0L1/

ˇ̌̌
yx � yy

jyx � yyj

ˇ̌̌2
;
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where we have used the definition of ! in (3.5) together with jyx � yyj 6 1=4 in (3.8). As
a consequence of the last display, at least one eigenvalue of .Xı � Yı/ is not larger than
4L2 C 2ı � 6!0L1, where this quantity can be negative for large values of L1. By the
definition of the extremal Pucci operator in (2.1)–(2.2), we see that

P��;ƒ.Xı � Yı/ > ��.4L2 C 2ı � 6!0L1/ �ƒ.n � 1/.4L2 C 2ı/

> �.�C .n � 1/ƒ/.4L2 C 2ı/C 6!0�L1:

From the two viscosity inequalities and (2.3), we have

ˆ.yx; j� C �yxj/F.Xı/ 6 f .yx/; ˆ.yy; j� C �yy j/F.Yı/ > f .yy/

and
F.Xı/ > F.Yı/C P

�
�;ƒ.Xı � Yı/:

Combining last three displays, we have

6!0�L1 6 .�C .n � 1/ƒ/.4L2 C 2ı/C
f .yx/

ˆ.yx; j� C �yxj/
�

f .yy/

ˆ.yy; j� C �yy j/
: (3.10)

At this stage, we separate the remaining part of the proof into several cases depending
on the quantity of j�j and the positiveness of i.ˆ/.

Step 2: Proof of (R1). Suppose �1 < i.ˆ/ < 0 and � D 0. By triangle inequality (3.8)2,
we observe that

j�yxj 6 L1

�
1C

3

2
!0

�
C 2L2 6

7

4
L1 (3.11)

and
j�yxj > L1

�
1 �

3!0

2
jyx � yyj

1
2

�
� 3L2 >

3L1

4
� 3L2 > 3L2 (3.12)

for all L1 > 8L2. In exactly the same way, we see

j�yy j 6
7

4
L1 and j�yy j > 2L2 (3.13)

for all L1 > 8L2. Using (A2) and last two displays, we have

f .yx/

ˆ.yx; j�yxj/
6 c
kf kL1.B1/

j�yxj
i.ˆ/

6
c

L
i.ˆ/
1

(3.14)

and
�f .yy/

ˆ.yy; j�yy j/
6 c
kf kL1.B1/

j�yy j
i.ˆ/

6
c

L
i.ˆ/
1

(3.15)

for a constant c � c.i.ˆ/; L/. Using the last two displays in (3.10), we obtain

6!0�L1 6 .�C .n � 1/ƒ/.4L2 C 2ı/C
c

L
i.ˆ/
1

for a constant c � c.n; �;ƒ; i.ˆ/; L;R/. Recalling �1 < i.ˆ/ < 0 and taking L1 large
enough, depending only on n; �;ƒ; i.ˆ/; L and R, we get a contradiction. Thus, the first
part of Lemma 3.1 is proved.
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Step 3: Proof of (R2). We suppose that i.ˆ/ > 0 and j�j > A0 with a constant A0
defined by

A0 WD
35L1

2
(3.16)

for L1 > 1 to be selected soon. This choice of A0 together with (3.11) and (3.14) leads to

j� C �yxj > A0 �
A0

10
D
9A0

10
and j� C �yy j >

9A0

10
:

Therefore, using the last display and (A2), we have

f .yx/

ˆ.yx; j� C �yxj/
6 c
kf kL1.B1/

j� C �yxj
i.ˆ/

6
c

A
i.ˆ/
0

and
�f .yy/

ˆ.yy; j� C �yy j/
6 c
kf kL1.B1/

j� C �yy j
i.ˆ/

6
c

A
i.ˆ/
0

for a constant c � c.i.ˆ/; L/. Again using the last two displays in (3.10), we obtain

6!0�L1 6 .�C .n � 1/ƒ/.4L2 C 2ı/C
c

L
i.ˆ/
1

for a constant c � c.n; �;ƒ; i.ˆ/; L;R/. By choosing L1 large enough, depending only
on n;�;ƒ; i.ˆ/;L andR, we have again a contradiction. Thus, we have proved the second
part of Lemma 3.1.

Step 4: Proof of (R3). Finally, we turn our attention to proving (R3). Suppose j�j 6 A0,
where A0 has been defined in (3.16). We look at an operator G W B1 � Rn � �.n/! R
given by

G .x; p;M/ WD ˆ.x; j� C pj/F.M/ � f .x/:

In fact, for any .x;p;M/2B1 �Rn � �.n/with jpj>2A0 and P�
�;ƒ

.M/> 0, we see that

G .x; p;M/ > ˆ.x; j� C pj/P��;ƒ.M/ � kf kL1.B1/

>
1

L
j� C pji.ˆ/P��;ƒ.M/ � 1

>
A
i.ˆ/
0

L
P��;ƒ.M/ � 1; (3.17)

where we have used (2.3) and (A2) together with the facts that i.ˆ/ > 1 and j� C pj >
jpj � j�j > A0 > 1. In turn, we see that u is a viscosity subsolution of the equation

M�.Du;D2u/ 6 1; (3.18)

where the operator M� W Rn � �.n/! R [ ¹�1º is defined by

M�.p;M/ WD

8<: A
i.ˆ/
0

L
P�
�;ƒ

.M/ if jpj > 2A0;

�1 otherwise.
(3.19)
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Similarly, we show that u is a viscosity supersolution of the equation

MC.Du;D2u/ > �1; (3.20)

where the operator MC W Rn � �.n/! R [ ¹C1º is defined by

MC.p;M/ WD

8<: A
i.ˆ/
0

L
PC
�;ƒ

.M/ if jpj > 2A0;

C1 otherwise.
(3.21)

Therefore, we are in an exact position to apply [53, Theorem 1.1] (see also [67] for
degenerate/singular elliptic equations with unbounded drift) so that we find an exponent
ˇ � ˇ.n; �;ƒ;L;R;A0/ 2 .0; 1/ satisfying (3.3). The proof is complete.

4. Approximation

Now we prove a key approximation lemma, which plays a crucial role in later arguments.

Lemma 4.1. Let u 2 C.B1/ be a viscosity solution of equation (2.6) with oscB1 6 1,
where � 2Rn is arbitrarily given. Suppose assumptions (A1)–(A3) hold true for i.ˆ/> 0

and �0 D �1 D 1. Then, for any � > 0, there exists a constant ı � ı.n; �;ƒ; i.ˆ/;L;�/
such that if

kf kL1.B1/ 6 ı; (4.1)

then one can find h 2 C 1;y̨.B3=4/, with the estimate khkC 1;y̨.B3=4/ 6 c � c.n; �; ƒ/ for
some y̨ 2 .0; 1/ as in (1.12), satisfying

ku � hkL1.B1=2/ 6 �: (4.2)

Proof. We point out that the proof is inspired by the proof of [52, Lemma 6]. By contradic-
tion, we suppose the conclusion of the lemma fails. Then, there exist�0 >0 and sequences
of ¹Fkº1kD1, ¹ˆkº1kD1, ¹fkº1kD1, and ¹ukº1kD1 and a sequence of vectors ¹�kº1kD1 such that

(C1) Fk 2 C.�.n/;R/ is uniformly .�;ƒ/-elliptic;

(C2) ˆk 2 C.B1 � Œ0;1/; Œ0;1// such that the map t 7! ˆk.x;t/

t i.ˆ/
is almost non-

decreasing and the map t 7! ˆk.x;t/

ts.ˆ/
is almost non-increasing with constant

L > 1, and ˆk.x; 1/ D 1 for all x 2 B1;

(C3) fk 2 C.B1/ with kfkkL1.B1/ 6 1=k;

(C4) uk 2 C.B1/ with oscB1 uk 6 1 solves the equation

ˆk.x; j�k CDukj/Fk.D
2uk/ D fk.x/; (4.3)
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but
sup
x2B1=2

juk.x/ � h.x/j > �0 (4.4)

for all h 2 C 1;y̨.B3=4/ and every 0 < y̨ < 1.
Condition (C1) implies that Fk converges to some uniformly .�; ƒ/-elliptic oper-

ator F1 2 C.�.n/;R/. Since uk is a viscosity solution of (4.3) and the map ˆk satis-
fies (C2), we are able to apply Lemma 3.1 to find that uk 2 C

0;ˇ
loc .B1/ \ C.B1/ for some

ˇ 2 .0; 1/. Using estimates (3.2) and (3.3) and the Arzelà–Ascoli theorem, we have that
the sequence ¹ukº1kD1 converges to a function u1, locally uniformly in B1. In particular,
it holds that

u1 2 C.B1/ and oscB1 u1 6 1: (4.5)

Now we prove that the limiting function u1 is a viscosity solution of the homogeneous
equation

F1.D
2u1/ D 0 in B3=4: (4.6)

For this, we first verify that u1 is a viscosity supersolution. Let

p.x/ WD
1

2
hM.x � y/; x � yi C hb; x � yi C u1.y/

be a quadratic polynomial touching u1 from below at a point y 2 B3=4. Note that there is
no need to assume thatDp.y/¤ 0, since i.ˆ/> 0 and we only look at a classical viscosity
solution (see Remark 2.1). Without loss of generality, let us assume jyj D u1.y/ D 0.
Then, there exists a sequence xk ! 0 as k !1 such that uk � ' has a local minimum
at xk . Observe that D'.xk/! b and D2'.xk/! M . Since uk is a viscosity solution
of (4.3), we have

ˆk.xk ; j�k CD'.xk/j/Fk.D
2'.xk// > fk.xk/: (4.7)

For ease of presentation, from now on we shall consider several cases depending on the
boundedness of the sequence ¹�kº1kD1.

Case 1: The sequence ¹�kº1kD1 is unbounded. In this case, we can assume j�kj ! 1 (up
to a subsequence). As a consequence, we can show (up to a subsequence) that

j�k CD'.xk/j > j�kj � jD'.xk/j > j�kj � .jbj C 1/ > 1; (4.8)

where we have used the triangle inequality and the convergence D'.xk/ ! b, which
implies that

F1.M/ D lim
k!1

Fk.D
2'.xk// > lim

k!1

fk.xk/

ˆk.xk ; j�k CD'.xk/j/

> � lim
k!1

L

kj�k CD'.xk/ji.ˆ/
D 0;

where we have used condition (C2) and (4.7).
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Case 2: The sequence ¹�kº1kD1 is bounded. In this case, we may assume �k ! �1 (up to
a subsequence). Therefore, for the case j�1 C bj ¤ 0, in exactly the same way as in (4.8),
we infer that F1.M/ > 0. Then, we focus on the case j�1 C bj D 0. There are two
possibilities, as jbj D j�1j D 0 or b D ��1 with jbj; j�1j > 0. In those scenarios, we
prove that F1.M/ > 0. By contradiction, suppose

F1.M/ < 0: (4.9)

Hence, the matrix M has at least one positive eigenvalue, by the uniformly ellipticity
condition of F1. Let Rn D E ˚Q be an orthogonal sum, where E D span¹e1; : : : ; emº
is the space consisting of those eigenvectors corresponding to positive eigenvalues of M
and Q D ¹v 2 Rn W hv;wi D 0 for all w 2 Eº.

Case 3: b D ��1 with jbj; j�1j > 0. Let  > 0 and set

p .x/ WD p.x/C  jPE .x/j D
1

2
hMx; xi C hb; xi C  jPE .x/j;

where PE stands for the orthogonal projection on E. Since uk ! u1 locally uniformly
in B1 and p.x/ touches u1.x/ from below at the origin, for  small enough, p .x/
touches uk.x/ from below at a point x

k
2 Br (Br is a small neighborhood of the origin).

Moreover, it holds that x
k
! x


1 for some x1 as k !1. At this point we consider two

scenarios: PE .x


k
/D 0 for all k 2 N (up to a subsequence), or PE .x



k
/¤ 0 for all k 2 N

(up to a subsequence).
Scenario 1: PE .x



k
/D 0 for all k 2N (up to a subsequence). In this scenario, we first

note that
yp .x/ WD

1

2
hMx; xi C hb; xi C he; PE .x/i

touches uk from below at x
k

for every e 2 Sn�1. A straightforward computation gives us

D yp .x


k
/ DMx



k
C b C PE .e/ and D2

yp .x


k
/ DM:

Now we select e 2 E \ Sn�1 such that PE .e/ D e. Therefore, by uk being a viscosity
solution of (4.3), we see

ˆk.x


k
; j�k CMx



k
C b C ej/Fk.M/ > fk.x



k
/:

We also notice that if Mx

1 D 0, then for k large enough, we have

j�k CMx


k
C bj 6 =2 and 3=2 > j�k CMx



k
C b C ej > =2:

Therefore, combining the last two displays and using (C2) together with  � 1, we have

Fk.M/ >
fk.x



k
/

ˆk.x


k
; j�k CMx



k
C b C ej/

>
�Ljfk.x



k
/j

j�k CMx


k
C b C ejs.ˆ/

> �
L

k

� 2


�s.ˆ/
:
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Letting k !1 in the last display, we obtain F1.M/ > 0. In the situation jMx

1j > 0,

we first look at the subcase E � Rn and choose e 2 Sn�1 such that

jMx1 C PE .e/j D jMx1 C ej > 0:

Therefore, for k large enough, we have

jMx


k
C ej >

1

2
jMx1 C ej > 0 and j�k C bj 6

1

8
jMx1 C ej: (4.10)

On the other hand, if E 6� Rn, then we can find e 2 Sn�1 \E? so that

jMx1 C PE .e/j D jMx1j > 0:

Again for k large enough, we have

jMx


k
j >

1

2
jMx1j and j�k C bj 6

1

8
jMx1j: (4.11)

As a consequence, using either (4.10) or (4.11), we see

j�k CMx


k
C b C PE .e/j >

1

4
jMx1 C PE .e/j > 0:

Again applying (C2) and taking into account the last display, we have

Fk.M/ >
fk.x



k
/

ˆk.x


k
; j�k CMx



k
C b C PE .e/j/

> �
� L

j�k CMx


k
C b C PE .e/ji.ˆ/

C
L

j�k CMx


k
C b C PE .e/js.ˆ/

�
jfk.x



k
/j

>
�L4s.ˆ/

k

� 1

jMx

1 C PE .e/ji.ˆ/

C
1

jMx

1 C PE .e/js.ˆ/

�
:

Again letting k !1 in the last display, we again arrive at F1.M/ > 0.
Scenario 2: PE .x



k
/¤ 0 for all k 2N (up to a subsequence). In this scenario, we note

that PE .x/ is smooth and convex in a small neighborhood of x
k

. Let us denote

�


k
WD

PE .x


k
/

jPE .x


k
/j
:

A direct computation yields

D.jPE .�/j/.x


k
/ D �



k
and D2.PE .j � j//.x



k
/ D

1

jPE .x


k
/j
.I � �



k
˝ �



k
/:
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Hence, with uk being a viscosity solution of equation (4.3), we have the following viscos-
ity inequality:

ˆk.x


k
; j�k CMx



k
C b C �



k
j/Fk

�
M C

1

jPE .x


k
/j
.I � �



k
˝ �



k
/
�

> fk.x


k
/:

Observing that j�
k
j D 1 and letting e WD �



k
, we can perform the same procedure as in

the first scenario of PE .x


k
/ D 0 by considering the cases of Mx


1 D 0 and Mx


1 ¤ 0.

Finally, we conclude that F1.M/ > 0 when b D ��1 ¤ 0, which contradicts (4.9).

Case 4: b D �1 D 0. This case is much easier to handle. Since 1
2
hMx;xi touches u1.x/

from below at the origin and uk ! u1 locally uniformly, the function

yp .x/ WD
1

2
hMx; xi C  jPE .x/j

touches uk from below at a point yx
k
2 Br (Br is a small neighborhood of the origin) for

 > 0 sufficiently small. Again, the sequence ¹yx
k
º is uniformly bounded. As in Case 3,

we analyze those two scenarios: PE .yx


k
/ D 0 for all k 2 N (up to a subsequence), and

PE .yx


k
/ ¤ 0 for all k 2 N (up to a subsequence). In this case, we conclude F1.M/ > 0.

Finally, taking into account all the cases we have analyzed above, we have shown
that u1 is a viscosity supersolution of (4.6). In order to prove that u1 is a viscosity
subsolution of (4.6), we show that �u1 is a viscosity supersolution of yF1.D2h/ D 0,
where yF1.M/ D �F1.�M/ is a uniformly .�; ƒ/-elliptic operator as well. There-
fore, u1 is a viscosity solution of (4.6). From the regularity results of [26, Chap. 5], we see
u1 2 C

1;y̨
loc .B3=4/ for some y̨ 2 .0; 1/. Moreover, ku1kC 1;y̨.B1=2/ 6 c � c.n; �; ƒ/

via (4.5). So, choosing h WD u1 in (4.4), we get a contradiction. The proof is complete.

5. Proof of Theorem 1.1

Now we provide the proof of Theorem 1.1. Let u 2 C.B1/ be a viscosity solution with
oscB1 u 6 1, kf kL1.B1/ 6 ı� 1 for a constant ı � ı.n; �;ƒ; i.ˆ/;L/ to be determined
in a moment and �0 D �1 D 1. The proof is divided into two main parts, where in the first
part we shall deal with the case i.ˆ/ > 0 and the remaining case �1 < i.ˆ/ < 0 will be
investigated in the second part.

Part 1: i.ˆ/ > 0. Let us first fix a point y 2 B1=2 and an exponent ˇ 2 .0; 1/ such that

ˇ 2 .0; y̨/ \
�
0;

1

1C s.ˆ/

i
: (5.1)

We prove that there exist universal constants 0 < r < 1, C0 > 1 and a sequence of
affine functions

lk.x/ WD ak C hbk ; xi; (5.2)
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where ¹akº1kD1 � R and ¹bkº1kD1 � Rn, such that for every k 2 N:

(E1) supx2B
rk
.y/ ju.x/ � lk.x/j 6 rk.1Cˇ/,

(E2) jak � ak�1j 6 C0r
.k�1/.1Cˇ/,

(E3) jbk � bk�1j 6 C0r
.k�1/ˇ .

We show these estimates by mathematical induction. For ease of presentation, we divide
the remaining part of the proof for Part 1 into several steps.

Step 1. Basis of induction. Without loss of generality, we can assume y D 0 by trans-
lating x 7! y C 1

2
x. Let us set

l1.x/ WD h.0/C hDh.0/; xi;

where h is the approximation function coming from Lemma 4.1 for a certain constant
� > 0, to be determined in a few lines. Note that that there exist constants y̨ � y̨.n; �;ƒ/
2 .0; 1/ and C0 � C0.n; �;ƒ/ > 1 such that

khkC 1;y̨.B3=8/ 6 C0 and sup
x2Br

jh.x/ � l1.x/j 6 C0r
1Cy̨

for every r 6 3=8. The triangle inequality yields

sup
x2Br

ju.x/ � l1.x/j 6 �C C0r
1Cy̨:

First, we select a universal constant 0 < r < 1 satisfying

rˇ 6
1

2
; C0r

1Cy̨ 6
1

2
r1Cˇ and r1�ˇ.1Cs.ˆ// 6 1; (5.3)

which is possible by (5.1). Later in the paper, we select a constant � > 0 as

� WD
1

2
r1Cˇ ; (5.4)

which fixes an arbitrary constant � > 0 in Lemma 4.1. In turn, there exists a constant
ı � ı.n; �; ƒ; i.ˆ/; L; ˇ/ verifying the smallness assumption kf kL1.B1/ 6 ı, but such
a smallness assumption can be assumed without loss of generality. To conclude this step,
we set

a0 WD 0; a1 WD h.0/; b0 D 0; and b1 WD Dh.0/:

These choices with (5.3) and (5.4) verify that estimates (E1)–(E3) are satisfied for k D 1.
Step 2: Induction process. Now we suppose that hypotheses of the induction have been

established for k D 1; 2; : : : ; m for m > 1. We show that estimates (E1)–(E3) hold true
for k D mC 1. For this, we introduce an auxiliary function as

wm.x/ WD
u.rmx/ � lm.r

mx/

rm.1Cˇ/
:
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We note that wm solves the following equation in the viscosity sense:

ˆm.x; jr
�mˇbm CDwmj/Fm.D

2wm/ D fm.x/;

where
Fm.M/ WD rm.1�ˇ/F.r .ˇ�1/mM/

is a uniformly .�;ƒ/-operator, and the function

ˆm.x; t/ WD
ˆ.rmx; rmˇ t /

ˆ.rmx; rmˇ /
.x 2 B1; t > 0/

still satisfies the properties that the map t 7! ˆm.x;t/

t i.ˆ/
is almost non-decreasing, the map

t 7! ˆm.x;t/

ts.ˆ/
is almost non-increasing with the same constant L > 1 andˆm.x; 1/D 1 for

all x 2 B1, and

fm.x/ WD
rm.1�ˇ/f .rmx/

ˆ.rmx; rmˇ /
:

Using (A2) and (5.1), we notice that

kfmkL1.B1/ 6
Lrm.1�ˇ/ kf kL1.B1/

rmˇs.ˆ/
6 Lırm.1�.1Cs.ˆ//ˇ/ 6 Lı:

Therefore, it is possible to apply Lemma 4.1 to wm. In turn, there exists a function yh 2
C 1;y̨.B3=4/ such that

sup
x2Br

jwm.x/ � yh.x/j 6 �:

Arguing as in Step 1, we show that

sup
x2Br

jwm.x/ � yl.x/j 6 r1Cˇ ;

where
yl.x/ WD yaC hyb; xi for some ya 2 R and yb 2 Rn:

Denoting
lmC1 WD lm.x/C r

m.1Cˇ/yl.r�mx/;

we see
sup

x2BrmC1

ju.x/ � lmC1.x/j 6 r .mC1/.1Cˇ/

and
jamC1 � amj C r

m
jbmC1 � bmj 6 C0r

m.1Cˇ/:

Therefore, the .mC 1/-th step of the induction is complete.
Step 3: Conclusion. Once we have the existence of universal constants 0 < r � 1,

C0 > 1, and a sequence of affine functions in (5.2) verifying estimates (E1)–(E3), the
remaining part of the proof is very standard; see, for instance, [36, 52]. Therefore, the
proof of (1.14) is complete when i.ˆ/ > 0.
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Part 2: �1 < i.ˆ/ < 0. Now we focus on the case when �1 < i.ˆ/ < 0. Again, we fix a
point y 2 B1=2. Without loss of generality, we may assume y D 0 by using the translation
x 7! y C 1

2
x. Now we apply (R1) of Lemma 3.1 in order to ensure that

Œu�C 0;1.B3=4/ 6 Csl (5.5)

for a constant Csl � Csl .n;�;ƒ; i.ˆ/;L/. Therefore, using Proposition 2.1, we see that u
is a classical viscosity solution of the equation

ẑ .x; jDvj/F.D2v/ D zf .x/ in B3=4;

where
ẑ .x; t/ WD t�i.ˆ/ˆ.x; t/ .x 2 B1; t > 0/;

which satisfies the properties that the map t 7! ẑ .x; t/ is almost non-decreasing, the map
t 7!

ẑ .x;t/

ts.ˆ/�i.ˆ/
is almost non-increasing with constant L > 1, ẑ .x; 1/ D 1 for all x 2 B1,

and
zf .x/ D jDu.x/j�i.ˆ/f .x/:

Using estimate (5.5) together with kf kL1.B1/ 6 ı � 1, we see

k zf kL1.B3=4/ 6 C
�i.ˆ/

sl
ı:

Therefore, we are able to apply Part 1 of the proof in order to have (E1)–(E3). This means
that we have estimate (1.14) for �1 < i.ˆ/ < 0. The proof is therefore complete.
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