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Qualitative study of a geodynamical rate-and-state model
for elastoplastic shear flows in crustal faults

Alexander Mielke and Tomáš Roubíček

Abstract. The Dieterich–Ruina rate-and-state friction model is transferred to a bulk variant and the
state variable (aging) influencing the dissipation mechanism is here combined also with a damage
influencing standardly the elastic response. As the aging has a separate dynamics, the overall model
does not have a standard variational structure. A one-dimensional model is investigated as far as the
steady-state existence, localization of the cataclastic core, and its time response, too. Computational
experiments with a damage-free variant show stick-slip behavior (i.e. seismic cycles of tectonic
faults) as well as stable slip under very large velocities.

1. Introduction

In the last decades the mathematical interest in geophysical problems was steadily grow-
ing. While there is already a large body of work in atmospheric and oceanographic fluid
flows, the mathematics for geophysical models for solid earth is much less developed.
The latter concerns, in particular, the deformation and motion of lithospheric plates in
the upper crust, especially earthquakes. The difficulties in these models is the complex
behavior of rock that behaves elastically like a solid in the case of seismic waves on short
time scales but behaves like a viscoplastic fluid when considered over centuries. However,
very slow motion of long periods are crucial for building up internal stresses that are then
released in short rupture events triggering earthquakes. Only recently, a new class of peri-
odic motions in the Earth crust was detected by evaluating GPS measurements, namely
the so-called “episodic tremor and slip” (cf. [3, 29]): Here all motions are so slow that
no seismic waves are emitted, but there exist two distinct regimes, one involving inelastic
motions and one involving slow smooth slip. These events are observed in so-called sub-
duction zones and have periods in the range of a few years while the overall shear velocity
rate is in the range of millimeters per year.

In addition to these temporal time scales there are also several spatial scales involved.
For instance, between tectonic plates (or in fractured plates in seismically active areas)
there are formed weak regions, called tectonic faults, that are relatively narrow but may
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accumulate relatively large deformations, in particular, in rapid shearing events. We refer
to [27, 35, 41, 43, 45] for some recent efforts in geodynamical modeling towards a better
understanding of these phenomena. On the mathematical side the work started less than a
decade ago and is still comparably small, see [22, 23, 26, 40, 42, 49]. Moreover, there is a
dichotomy with respect to bulk interface models, where most of the nonlinear effects are
localized in the interface (e.g., by a so-called rate-and-state dependent friction law), and
pure bulk models, where typically only existence results for solutions are obtained, but no
qualitative behavior of the solutions can be deduced.

This work was stimulated by the question of length-scale selection in shearing pro-
cesses. While there is a well established theory of rate-and-state friction on sharp-interface
models, there is no satisfactory bulk theory that allows for the spontaneous formation of
shear banding, i.e., shear localization (cf. [53, Fig. 2]). Another motivation stems from
the fact that it is desirable to replace sharp-interface models by bulk models because only
then it is possible to identify parameters correctly, connect the localized effects with fur-
ther bulk effects, and include all this in standardized software packages, see [24].

In this vein, we present a bulk model, which is one-dimensional and hence simple
enough to address the question of natural selection of length scales, in particular, the width
2h of the plastically active (or cataclastic) zone inside a much wider fault of width 2H .
For the mathematics we first introduce regularization parameters � and � (see below),
but we can show that for a suitable class of steady states the limits �; �! 0 leads to a
plastic zone of finite width proportional to the shear velocity v1 applied to the total fault,
see (3.13). This result relies on subtle properties of our bulk material law, namely the non-
smoothness and the rate dependence of the plastic flow rule and the so-called aging law.
These material laws are constructed in such a way that they mimic the so-called rate-and-
state friction laws for sharp-interface models.

In summary, our work provides a first continuum model that allows for a treatment of
the complex bulk interaction of elasticity, rate-dependent plasticity, and an aging law. We
are able to establish global existence of weak solutions under nontrivial boundary con-
ditions describing an overall shear rate (as induced plate tectonics). Moreover, we give
an extensive discussion of the steady states deriving qualitative features such as length-
scale selection. However, deriving qualitative properties of time-dependent solutions, like
instability of steady states, emergence of time-periodic solutions or propagation laws for
the boundary of the plastic zone, remains beyond the scope of this work; but our numerical
simulations in Section 5.3 indicate that also the full partial differential system allows for
stable time-periodic solutions where the plastic zone is localized spatially as well as tem-
porally, as is expected in so-called episodic aseismic tremor and slip, see [24,38,43,56,57].

To be more specific, we describe our model and comment on the specific results.
Throughout, we confine ourselves to a simplified “stratified” setting where only shear
deformations are considered that depend on a one-dimensional variable x 2 .�H; H/
representing the transverse direction to a straight fault or damage zone between two com-
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pact rocks representing two plates that move with respect to each other, see Figure 2.1.
The continuum model is given in terms of

• the shear velocity v D v.t; x/ 2 R,
• the elastic strain " D ".t; x/,
• the plastic strain p D p.t; x/,
• the internal damage variable ˛ D ˛.t; x/, and
• the internal aging variable � D �.t; x/.

The model to be studied in its simplest form is the following system of five partial
differential equations posed for .t;x/2 .0;1/� .�H;H/ (see (2.13) for the more general
case treated below):

% Pv D
�
C.˛/"

�
x
; P"C Pp D vx ; (1.1a)

@ PpR. Pp; �/ 3 C.˛/"C � Ppxx ; P̨ D �
1

2
C0.˛/"2 C ˇ.1 � ˛/C ˛xx ; (1.1b)

P� D 1 � �=�1 � �j Ppj� C ��xx ; (1.1c)

with the dot-notation .�/P and the notation .�/x for the partial derivatives in time and in
space, respectively. We complete it with boundary conditions

v.t;˙H/ D ˙v1.t/; p.t;˙H/ D 0; ˛.t;˙H/ D 1; �.t;˙H/ D �1: (1.1d)

Here ˇ,  , �, �, and � are positive constants, whereas ˛ 7! C.˛/ > 0 and .�; �/ 7!
R.�; �/ > 0 are general continuous constitutive functions. In particular, the state of dam-
age ˛ may decrease the elastic stiffness C.˛/, and even more importantly the yield stress
�.�; �/may depend on the plastic rate � D Pp as well as on the aging variable � . Thus, we
are able to mimic the commonly used Dieterich–Ruina rate-and-state friction law [21,52]
where now the aging variable can be interpreted as the “state” while the dependence on
� D Pp gives the rate dependence.

Here R. � ; �/WR! R is the plastic dissipation potential depending on the aging vari-
able � , i.e., it is convex and satisfies R.�; �/ � 0 D R.0; �/. The plastic yield stress (or
dry friction coefficient) is encoded by assumingR.�;�/D�.0;�/j�j CO.�2/. Hence, we
obtain a set-valued convex subdifferential, which we assume to have the form @�R.�;�/D

�.�;�/Sign.�/CO.�/, where “Sign” is the set-valued sign function, see (2.6). Thus, the
first equation in (1.1b), involving the nonsmooth convex function R.�; �/, is an inclusion
and gives rise to a free boundary, namely between regions with the purely elastic regime
with � D Pp � 0 where Sign. Pp/ D Œ�1; 1� and the plastic regime where � D Pp ¤ 0 and
Sign. Pp/ D ¹�1º or ¹C1º.

Our paper is organized as follows: In Section 2 we provide the background from geo-
dynamics introducing the rate-and-state friction models with a given interface and our
distributed-parameter model which is slightly more general than (1.1). In particular, Sec-
tion 2.2 discusses the steady-state equation where Pv D P̨ D P� D 0 while the plastic flow
rate � D Pp is independent of time. The full evolutionary model is then introduced in
Section 2.3.
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The analysis of steady states is the content of Section 3. In Theorem 3.1 we provide
an existence theorem for steady states under quite natural assumptions and arbitrary shear
velocities v.˙H/ D ˙v1. The proof relies on a Schauder fix-point argument, and we
cannot infer uniqueness, which is probably false in this general setting. In Proposition 3.4
we show that for steady states the limit �! 0C in (1.1b) can be performed in such a way
that accumulation points are still steady states.

In Section 4 we discuss the full dynamic model, show its thermodynamic consistency,
and derive the natural a priori estimates. For our main existence result we restrict to the
case without damage, i.e., C is independent of ˛ and ˛ � 1 solves (1.1b). The result
of Theorem 4.1 is obtained by time discretization and a staggered incremental scheme
mimicking the solution of the static problem in Theorem 3.1. The analytical aspects are
nontrivial because of the non-variational character of the problem, the non-polynomial
friction law (2.4) leading to usage of Orlicz spaces, and the lack of compactness for the
elastoplastic wave equation.

The final Section 5 is devoted to a numerical exploration of some simplified models
that show the typical behavior expected also for the full model. The simplified model is
obtained from (1.1) by neglecting ˛ as in Section 4 and by further ignoring inertia (i.e.,
setting % D 0 and choosing � D 0), see Section 5.1:

2H

C
P� C

Z H

�H

˘.�; �/ dx D 2v1.t/; P� D 1 �
�

�1
� �˘.�; �/C ��xx ; (1.2)

with �.t;˙H/ D �1, where � D ˘.�; �/ D @�R�.�; �/ is the unique solution of � 2
@�R.�; �/.

In Section 5.2 we discuss the steady states .�stst; �stst/ where �stst D ˘.�stst; �stst/. We
do a parameter study for varying � and v1 and obtain a monotone behavior with respect
to v1, namely �stst is decreasing and �stst is increasing. We always observe some spatial
localization in the sense that �stst is supported on Œ�h�.v1; �/; h�.v1; �/� with a free
boundary positioned at the points ˙h�.v1; �/ with h�.v1; �/ ˆ H and h�.v1; �/ �
0:55
p
� for �; v1 ! 0C. However, there is no total localization in the sense that �stst

degenerates to a Dirac distribution at x D 0, which is a consequence of the rate depend-
ence of our plasticity model (more precisely, the superlinear growth of the dissipation
potential). Thus, our results are parallel to the observations in [36] where it is also stated
that rate dependence prevents total localization in plastic shear bands.

The pure existence of steady states does not say anything about stability in the dynamic
model (1.2). In Section 5.3 we provide a vectorial ODE model with 2 degrees of freedom
possessing a unique steady state that is unstable for small positive v1 and exhibiting
convergence of general solutions to periodic motions. Similarly, Section 5.4 shows sim-
ulations for system (1.2) which shows convergence towards .�stst; �stst/ if v1 is large
but predicts convergence towards time-periodic solutions that also have a clearly defined
plastic zone smaller than .�H;H/, see Figures 5.6 and 5.7.

A surprising effect is that the width 2h of the core of the fault (the active cataclastic
zone) does not tend to be 0 if the plasticity gradient is ignored by setting � D 0, and even
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not if the aging gradient is ignored by setting � D 0. In Proposition 3.5 we show that under
natural assumptions on the rate-and-state friction law one obtains a linear dependence
h D h�.v1; 0/ D jv1j=�� for shear velocities with jv1j < H��, where �� is uniquely
determined by the friction law and the aging law.

Another noteworthy effect is that the length scale of the aging qualitatively influences
the character of response, varying in between the stick-slip and the sliding regimes. In
particular, for very large shear velocities v1 (which are not relevant in usual geophysical
faults in the lithosphere) the fault goes into a continuous sliding mode and no earthquakes
occur. Actually, this is a recognized attribute of this friction model which in [4] has been
compared to the observation of our “everyday life when one often manages to get rid
of door-squeaking by a fast opening”. In contrast, under very slow shear velocities, the
friction threshold is not reached for large time spans after a relaxation. Only when enough
shear stress has build up, the threshold can be overcome. But then not only stresses are
released but also the aging variable is reduced which leads to a much larger stress release
than needed. Hence, another long waiting time is needed until next “earthquake” will start.

2. Setup of the geodynamical model

2.1. Geodynamical background

Earth’s crust (together with lithosphere) is a rather solid rock bulk surrounding the lower,
more viscous parts of the planet. It is subjected to damage typically along thin, usually flat
weak surfaces, called faults, which exist within millions of years. The faults may exhibit
slow sliding (so-called aseismic slip) or fast rupture (causing tectonic earthquakes and
emitting seismic waves) followed by long period or reconstruction (healing) in between
particular earthquakes. The former phenomenon needs some extra creep-type rheology
modeled using a plastic strain variable or some smoothing of the activated character of the
frictional resistance at very small rates (cf. Remark 3.3) and will not be scrutinized in this
article, while the latter phenomenon needs some friction-type rheology. Thus, faults can
be modeled as frictional contact surfaces or as flat narrow stripes.

As for the frictional contact, the original Dieterich–Ruina rate-and-state friction model
[21, 52] prescribes the tangential stress �t on the frictional interface as

�t D �n

�
�0 C a ln

jvj

vref
C b ln

vref�

dc„ ƒ‚ …
D�.v;�/Dfrictional resistance

�
; (2.1)

where the normal stress �n is considered to be given (D a so-called Tresca friction model)
and v is the tangential velocity jump along interface. The (given) parameters a and b are
the direct-effect and the evolution friction parameters, respectively, dc is the characteristic
slip memory length, and vref is the reference velocity. If a� b > 0, we speak about velocity
strengthening, while if a � b < 0, we speak about velocity weakening – the latter case
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may lead to instabilities and is used for earthquake modeling. The friction coefficient
� D �.v; �/ depends in this model on the velocity magnitude jvj and an internal variable
� being interpreted as an aging variable, sometimes also as damage. The evolution of � is
governed by a specific flow rule typically of the form of an ordinary differential equation
at each spot of the fault, say:

P� D f0.�/ � f1.�/jvj (2.2)

with some continuous non-negative functions f0 and f1. More specifically, f0.�/ D 1

and f1.�/D �=dc with dc > 0 is most common, being referred to as the Dieterich law and
considered e.g. in [6–8,14,16,28,44,54]; then for the static case v D 0, the aging variable
� grows linearly in time and has indeed the meaning of an “age” as a time elapsed from
the time when the fault ruptured in the past. The steady state P� D 0 leads to � D dc=jvj so
that � D �0 C .a � b/ ln jv=vrefj. Later, Ruina [52] suggested considering the right-hand
side of (2.2) as dependent nonlinearly on jvj and also on the normal stress and, instead of
one internal variable � in (2.1) and (2.2), considering several variables, which is why such
rate-and-state dependent friction is called the Dieterich–Ruina law; cf. [21] for a historical
survey. Let us still mention that, alternatively, one can consider the flow rule (2.2) with
some other f0:

f0.�/ D max
�
1 �

�

�1
; 0
�

and f1.�/ D
�

dc
; (2.3)

cf. [39], and then � stays bounded and asymptotically approaches �1 in the steady state if
v ! 0, namely � D dc�1=.dc C �1jvj/. This suggests interpreting � rather as a certain
hardening or “gradual locking” of the fault in the “calm” steady state v D 0.

An obvious undesired attribute of (2.1) is, as already noted in [21, p.108], that, “as v or
� approach zero, equation (2.1) yields unacceptably small (or negative) values of sliding
resistance” �. Therefore, (2.1) obviously violates the Clausius–Duhem entropy inequality,
although being used in dozens of geophysical articles relying on that in specific applic-
ations the solutions might not slide into these physically wrong regimes. Nevertheless, a
regularization leading to � > 0 and thus to a physically correct non-negative dissipation
is used, too, typically as in [20], cf. e.g. also [39]:

� D �.v; �/ D �0 C a ln
�
jvj

vref
C 1

�
C b ln

�vref

dc
� C 1

�
: (2.4)

In what follows, we will therefore have in mind rather (2.4) than (2.1). For an analysis
and numerics of the rate-and-state friction in the multidimensional visco-elastic context
we refer to [37, 40–42].

Since the velocity occurs in the aging flow rule (2.2), this nonisothermal friction model
however does not seem consistent with standard thermodynamics as pointed out in [47]
in the sense that the evolution (2.2) does not come from any free energy. On top of it, it
has been known from the beginning of this rate-and-state model that it does not fit well
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some experiments [51], and (rather speculative) modifications, e.g., by using several aging
variables (which naturally opens a space for fitting more experiments) have been devised,
cf. [52].

A rather formal attempt to overcome the mentioned thermodynamical inconsistency
has been done in [42] by introducing two energy potentials. Thermodynamically consist-
ent models have been devised either by using isothermal damage with healing [49] or
by nonisothermal damage when temperature variation was interpreted approximately as a
sliding velocity magnitude v. The latter option uses the idea that the slip of the lithospheric
fault generates heat which increases temperature on the fault. In geophysical literature, the
heat produced during frictional sliding is believed “to produce significant changes in tem-
perature, thus the change of strength of faults during seismic slip will be a function of . . .
also temperature”, cf. [10, p.7260]. The usage of an (effective) interfacial temperature is
discussed in [14,16] following ideas from [32]. In [5,10,11,55] the classical rate-and-state
friction law is also made temperature dependent. Experimentally, even melting of rocks
due to frictional heating is sometimes observed.

A simplified friction model�.v/D�0Ca ln.bjvjC1/ or�.v/D�0C.a�b/ ln jv=vrefj

is sometimes also considered under the name rate-dependent friction [19, 33, 52, 58] and
was analyzed in [34] as far as its stability. In contrast, the above-mentioned variant of
temperature-dependent friction can be called purely state-dependent.

The friction model is sometimes “translated” into a bulk model involving an inelastic
(or a plastic-like) strain and, then, the sliding-friction coefficient � occurs as a threshold (a
so-called yield stress) in the plastic flow rule, cf. [47, Sect. 6], or [15,16,27,33,58]. Such
models are also known under the name shear-transformation-zone. This concept refers to
a (usually narrow) region in an amorphous solid that undergoes plastification when the
material is under a big mechanical load. Instead of velocity dependence (2.4), one should
play with dependence on the strain rate, cf. (2.8) below. These options can be “translated”
into the bulk model by making the yield stress � dependent, beside the strain rate, also
on an aging variable � , or on temperature, or on a damage-type variable, or on various
combination of those. Altogether, one thus get a wide menagerie of friction-type models.

Here we consider, as rather standard in geophysical modeling as (2.4), an isothermal
variant and make � dependent on strain rate and on aging. We consider also damage (or
phase-field) as usual in fracture mechanics to illustrate that it has a different position in
the model. The main phenomena are that aging evolution does not directly contribute to
energetics when influencing only dissipative “friction” �. This is similar to a cam-clay
model [12, 13] where the dissipative response is controlled through an internal variable
whose rate, however, does not explicitly contribute to energetics. On the other hand, dam-
age (or phase-field) influences the elastic response through the elastic response in the
stored energy and is also driven by the resulting driving force from it. Also, we adopt the
(realistic) assumption that the elastic strain (as well as its rate) is small, which makes it
possible to let � dependent on the plastic strain rate rather than on elastic strain rate and to
put it into the standard framework of rate-dependent plasticity. The plasticity is considered
without any hardening which otherwise might dominate with big slips on long time scales
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and would unacceptably corrupt the autonomy of the model. In principle, damage may
also influence friction � like in [49, 50] but we will not consider it.

2.2. The one-dimensional steady-state model

It is generally understood that fracture mechanics and, in particular, fault mechanics is
very complex and difficult to analyze. Therefore, we focus on a very simplified situation:
a flat fault which is perfectly homogeneous in its tangential direction. Thus, all variables
depend only on the position in the normal direction and the problem reduces to be one
dimensional, cf. Figure 2.1.
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Figure 2.1. Schematic geometry: a cross-section through a fault.

We ask a question about the existence of a steady state in the situations where the
sides of the fault move with a constant speed v1 in opposite directions. The model is thus
expressed in rates rather than displacements and plastic strains. Such steady states are also
called aseismic slips (sliding), in contrast to seismic slips which are dynamical phenomena
related with a stick-slip motion and earthquakes. For the relation of the aseismic slip (fault
growth) and orientation of faults see [43]. The aseismic slip can be also understood as
creep, see [56].

The variables of our steady-state model will thus be:
• v velocity (in m=s),
• � plastic strain rate (in 1=s),
• " elastic strain (dimensionless),
• ˛ damage (dimensionless, ranging over Œ0; 1�), and
• � aging (in seconds), and later also
• � a stress (or, in one-dimensional case, rather a force in J=m D N).
These first five variables are to satisfy the following system of five equations (inclusions):

.C.˛/"/x D 0 (momentum equilibrium), (2.5a)

� D vx (plastic shear rate), (2.5b)

�.�; �/Sign.�/ 3 C.˛/"C ��xx (plastic flow rule), (2.5c)
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1

2
C0.˛/"2 CGc

˛ � 1

`2
D Gc`

2˛xx (damage flow rule), (2.5d)

j�jf1.�/ � f0.�/ D ��xx (aging flow rule), (2.5e)

where .�/x denotes the derivative (later also partial derivative) in x. Actually, (2.5c) con-
tains a set-valued term @�R.�; �/ D �.�; �/ Sign.�/ and is thus an inclusion rather than
an equation. There, we have denoted by “Sign” in set-valued sign function, i.e.,

Sign.�/ D

8̂̂<̂
:̂
1 for � > 0;

Œ�1; 1� for � D 0;

�1 for � < 0:

(2.6)

Noteworthy, for a given � > 0, in this scalar-valued case, the plastic dissipation potential
R always exists, specifically

R.�; �/ D �.0; �/j�j C Sign.�/
Z �

0

�
�.z�; �/ � �.0; �/

�
dz�: (2.7)

A crucial assumption will be that � 7!R.�;�/ is convex for all � . Rate-independent would
mean that R.��; �/D�R.�; �/ for all �>0 and �; � 2 R, i.e., R is positively homogen-
eous of degree 1. For our theory, rate-dependent plasticity is essential, in particular, that
� 7! R.�; �/ has superlinear growth for j�j!1, or equivalently that �.�; �/!1 for
j�j ! 1.

The steady-state system (2.5) arises from an evolution model (2.13) below, when look-
ing for steady states. We emphasize that � D Pp is the plastic rate, such that solutions
of (2.5) are steady states but not classical equilibria that minimize a free energy. In par-
ticular, the equation (2.5b) arises from the additive (Green–Naghdi) decomposition of the
total strain into the elastic strain and the plastic strain, cf. (2.13b) below. Written in terms
of rates and taking into account that the rate of the elastic strain is zero in the steady state,
we arrive at (2.5b).

In fact, the velocity v here enters the rest of the system only through the boundary
condition (2.9) below, in contrast to the full evolutionary model later in Section 4 where
velocity acts through the inertial force.

The data (or constitutive relations) in the model (2.5) are
� D .�; ˛/ a yield stress (in the one-dimensional model in N D J=m),
C D C.˛/ elastic modulus (smooth, nondecreasing, in N D J=m),
f0 aging rate (dimensionless),
f1 “contra-aging” coefficient (in seconds),
Gc fracture toughness (in a one-dimensional model in N D J=m),
� > 0 a length scale coefficient for � (i.e., for the cataclastic zone, in W=m),
` > 0 a length scale coefficient for the damage (in meters),
� > 0 a length scale coefficient for the aging (in m2=s),

while f0 and f1 are essentially borrowed from (2.3). Actually, v in (2.4) has the meaning
rather of a difference of velocities across the contact interface than a velocity itself which
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would not be Galilean invariant. In a variant of the bulk model, � should depend rather
on a shear rate and, instead of the coefficient 1=vref, one should consider h=vref with h a
certain characteristic width of the active slip area, likely to be identified with the width of
the cataclastic core zone, cf. Figure 2.1. Thus, we consider

� D �.�; �/ D �0 C a ln
� h

vref
j�j C 1

�
C b ln

�vref

dc
� C 1

�
: (2.8)

In comparison with (2.2), the steady-state equation (2.5e) contains the length-scale
term ��xx . Also, damage equation (2.5e) contains a length-scale term `2˛xx competing
with the driving force 1

2
C0.˛/"2 coming from the ˛-dependence in (2.5a). Note that the

gradient term in (2.5c) applies to plastic rate and no gradient term involves directly the
plastic strain, similarly as in [17, 48]. This eliminates spurious hardening-like effects by
large slips accumulated on faults in large time scales, which would otherwise start dom-
inating and corrupt the autonomous character of the model.

We have to complete the system (2.5) by suitable boundary condition. Specifically, we
choose the boundary conditions

v.˙H/ D ˙v1; �.˙H/ D 0; ˛.˙H/ D 1; �.˙H/ D �1 (2.9)

with �1 from (2.3). Let us mention that we use the mathematical convention that ˛ D 1
means undamaged material while ˛ D 0 means maximally damaged material.

From (2.5a), we can see that C.˛/" is constant on the damage domainD D Œ�H;H�,
sayD � . From this, we can express

".x/ D
�

C.˛.x//
for all x 2 D: (2.10)

If C.�/ is increasing, one can conversely express ˛ as a function of ", but we will eliminate
" rather than ˛. Also, the equation (2.5b) can be eliminated because the velocity v occurs
only in the first boundary condition in (2.9). This condition then turns into an integral side
constraint

R
D
� dx D

R
D
vx dx D v.H/ � v.�H/ D 2v1. We can thus reduce (2.5) to

the system of three elliptic ordinary-differential equations

�.�; �/Sign.�/ 3 � C ��xx ; (2.11a)

C0.˛/

2C2.˛/
�2 CGc

˛ � 1

`2
D Gc`

2˛xx ; (2.11b)

j�jf1.�/ � f0.�/ D ��xx (2.11c)

with the integral and the boundary conditions

�.˙H/ D 0 with
Z
D

� dx D 2v1; (2.12a)

˛.˙H/ D 1; (2.12b)

�.˙H/ D �1: (2.12c)

It is noteworthy that (2.11b) decouples from (2.11a), (2.11c) which arises not from
necessity but rather from our desire for simplicity and for consistency with the standard
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rate-and-state friction as in Section 1: we assumed that �, f0, and f1 are independent
of ˛. The system (2.11a,c)–(2.12a,c) thus represents a nonstandard non-local two-point
boundary-value problem for the functions .�; �/ on D and one scalar variable � . When
solved, the two-point boundary-value problem (2.11b)–(2.12b) can be solved for ˛. Then
" is obtained from (2.10). Eventually, the velocity v can be calculated from (2.5b) when
using also (2.12a).

2.3. The evolutionary model

We will now investigate an evolution version of the steady-state model (2.5), which in par-
ticular explains how (2.5) have arisen. In addition to the variables needed in Section 2.2,
we now will exploit also

• p plastic strain (dimensionless) and
• % mass density (in one-dimensional model kg=m).

An additional ingredient will be a dissipation potential � for damage, which is convex with
subdifferential @� and has physical dimension J=m.

The evolution variant of (2.5) then looks as

% Pv � .C.˛/"/x D 0 (momentum equilibrium); (2.13a)

P"C Pp D vx (additive decomposition); (2.13b)

@�R. Pp; �/ 3 C.˛/"C � Ppxx (plastic flow rule); (2.13c)

@�. P̨ /C
1

2
C0.˛/"2 CGc

˛ � 1

`2
3 Gc`

2˛xx (damage flow rule); (2.13d)

P� D f0.�/ � j Ppjf1.�/C ��xx (aging flow rule): (2.13e)

It is to be completed with boundary conditions as (2.9) with possibly time dependent
boundary velocity v1 D v1.t/, i.e., here

v.˙H/ D ˙v1.t/; p.˙H/ D 0; ˛.˙H/ D 1; �.˙H/ D �1 (2.14)

with �1 constant in time. The (Green–Naghdi’s) additive decomposition is written in
rates, which just gives (2.13b). Obviously, the steady-state variant of (2.13) where all time
derivatives vanish yield just (2.5).

The system (2.13a–d) has a rational physical background while (2.13e) expresses some
extra phenomenology controlling the nonconservative part in (2.13c). For % D 0, the sys-
tem (2.13a–d) represents the so-called Biot equation @ PqR.q; �; Pq/C @qE.q; �/ D 0 for
the state q D .u; p; ˛/ and the aging variable � given via the total dissipation potential
R.q; �; Pq/D

R
D
�tot.�;˛I�; P̨ /dx and the stored energy E.q; �/D

R
D
 .";˛;�/dx, while

for % > 0 it arises from the Hamilton variational principle generalized for the dissipative
systems with internal variables.

The underlying specific stored energy and the dissipation potential (in terms of the
rates of plastic strain p and damage ˛) behind this model are

'."; ˛/ D
1

2
C.˛/"2 CGc

� .1 � ˛/2
2`2

C
`2

2
˛2x

�
(2.15a)
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and

�tot.� I Pp; P̨ / D R. Pp; �/C �. P̨ /C
�

2
Pp2x ; (2.15b)

where often C.˛/ D .`2=`20 C ˛
2/C0 with some `0. The constants ` and `0 are in meters

while the fracture toughness Gc is in J=m2, cf. [31, Eqn. (7.5.35)], or rather in J=m in our
1-dimensional model. Integrating ' over the domain leads to a one-dimensional version
of the so-called Ambrosio–Tortorelli functional [2] that combines elasticity and damage.

3. Analysis of the steady-state model

Further on, we will use the standard notation for the function space. In particular, C.D/
will be the space of continuous functions on D and Lp.D/ will denote the Lebesgue
space of measurable functions on the domain D D Œ�H; H� whose p-power is integ-
rable (or, when p D 1, which are bounded), and W k;p.D/ the Sobolev space of func-
tions in Lp.D/ whose k-th distributional derivative belongs to Lp.D/. We abbreviate
H k.D/ D W k;2.D/. Besides, H 1

0 .D/ will denote a subspace of H 1.D/ of functions
with zero values at x D ˙H . In Section 4, for the time interval I D Œ0; T � and a Banach
space X , we will also use the Bochner spaces Lp.I IX/ of Bochner-measurable func-
tions I ! X whose norm in in Lp.I /, and the Sobolev–Bochner space H 1.I IX/ which
belong, together with their distributional time derivative, into Lp.I IX/.

3.1. Existence of steady states

Let us recall the standard weak formulation of inclusion (2.5c) as a variational inequalityZ
D

�
R.z�; �/ � �.z� � �/C ��x. Q� � �/x

�
dx �

Z
D

R.�; �/ dx (3.1)

to be satisfied for any z� 2 L1.D/, where R is from (2.7). We will prove even existence
of a so-called strong (also called Carathéodory) solution (2.5c), namely, that j�xxj exists
and is integrable (actually, in our case even bounded) and satisfies pointwise a.e. onD the
inequality

8 z� 2 RW R.z�; �/ � �.z� � �/C ��xx.z� � �/ � R.�; �/: (3.2)

As mentioned in Section 1, the rate-and-state friction model lacks standard thermodynam-
ical consistency, which is reflected in the steady-state case by a lack of joint variational
structure. Nevertheless, the two equations (2.5c) and (2.5e) for � and � , respectively, have
an individual variational structure governed by the functionals

A�.�/´

Z
D

j�j'1.�/� '0.�/C
�

2
j�xj

2 dx and B� .�/´

Z
D

R.�;�/C
�

2
j�xj

2 dx;

where '0 and '1 are primitive functions to f0 and f1, respectively. Then, the pair .�; �/
is a desired solution if and only if � minimizes A�.�/ on ¹� 2 H 1.D/I �.˙H/ D �1º
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and � minimizes B� .�/ on ¹� 2 H 1
0 .D/I

R
D
� dx D 2v1º. Since both functionals A�.�/

and B� .�/ are strictly convex, the solution operators � D SA.�/ D argmin A� and � D
SB.�/ D argmin B� .�/ are well-defined. The existence of steady states will be proved by
a Schauder fixed-point theorem applied to SA ı SB .

Theorem 3.1 (Existence of steady states). Let the following assumptions hold:

�WR2 ! R continuous, �.�; �/ non-decreasing on Œ0;C1/

and non-increasing on .�1; 0�; infR �.0; �/ > 0; (3.3a)

CWR! R continuously differentiable, C0.Œ1;1// D 0; infR C.˛/ > 0; (3.3b)

f0; f1 continuous, non-negative, f 01.�/ > 0; f1.0/ D 0;

f 00.�/ < 0; f0.�1/ D 0; (3.3c)

� > 0; ` > 0; � > 0: (3.3d)

Then the following hold.

(i) For all v1 2 R, problem (2.5)–(2.9) has a solution in the classical sense (i.e. (2.5a),
(2.5b), (2.5d), (2.5e) hold everywhere and (3.2) holds a.e. on D) such that " 2
W 1;1.D/, v 2 W 3;1.D/, and �; ˛; � 2 W 2;1.D/.

(ii) Moreover, any solution satisfies 0 � � � �1 and 0 � ˛ � 1 with ˛ convex.

(iii) If v1 ¤ 0, then �v1 > 0 with � D C.˛/" denoting the stress, and if also C0 � 0
with C0.1/ < 0, then ˛.x/ < 1 except at x D ˙H .

(iv) If C, f0, f1, and � are smooth, then ˛; � 2 W 4;1.D/.

Proof. For a given z� , equation (2.11a) with the nonlocal condition in (2.12) is equivalent
to � D SB.z�/D argmin Bz� .�/. The monotonicity of �.�; z�/ assumed in (3.3a) ensures the
uniform convexity of the functional B� .�/. Therefore, the minimizer � D SB.z�/, which
clearly exists by the direct method in the calculus of variations, is uniquely determined.
Moreover, it depends continuously on z� with respect to the weak topology on H 1.D/.
Thanks to (3.3a), for v1 given, B� .�/ is coercive uniformly with respect to z� , and there-
fore the minimizer � D SB.�/ can be a priori bounded in H 1.D/ independently on z� .

With a Lagrange multiplier � for the scalar-valued constraint
R
D
� dx D 2v1, the

Lagrangian for minimizing Bz� reads

L.�; �/ D

Z
D

R.�; z�/C
�

2
�2x C �

�
� �

v1

H

�
dx

and the optimality conditions @�L.�; �/ 3 0 and @�L.�; �/ D 0 with “@” denoting the
partial subdifferentials (in the functional sense) give respectively the inclusion (2.11a)
with z� instead of � and the integral condition

R
D
� dx D 2v1 in (2.12). Also, this mul-

tiplier is determined uniquely and depends continuously on z� . From (2.11a) written as
� 2 �.�; z�/ Sign.�/ � ��xx 2 H 1

0 .D/
�, we can see that also � 2 R is a priori bounded

independently of z� .
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For a given � , equation (2.5e) is equivalent to � D SA.�/ D argmin A�.�/. As f1
is nondecreasing and f0 is nonincreasing, the functional A�.�/ is convex, and it is to
be minimized on the affine manifold ¹� 2 H 1.D/I �.˙H/ D �1º, cf. the boundary
conditions (2.12). Therefore, this boundary-value problem has a unique weak solution
� 2 H 1.D/, which depends continuously on � and can be bounded independently of
z� when taking into account the mentioned a priori bound for � . Furthermore, using
f1.0/D 0, f0.�1/D 0, and �.˙H/D �1, the maximum principle implies 0 � � � �1.

Altogether, we obtain a mapping z� 7! � D SA

�
SB.�/

�
which is continuous with

respect to the weak topology on H 1.D/ and valued in some bounded set (depending
possibly on a given v1). By the Schauder fixed-point theorem, this mapping has a fixed
point � . This thus determines also � D SB.�/ and � .

Having � determined, we can find a unique weak solution ˛ 2 H 1.D/ to the equa-
tion (2.11b) with the boundary conditions (2.12b) and then, from (2.10), we also obtain
" 2 H 1.D/. From v.x/ D

R x
�H

�.zx/ dzx, we also obtain v 2 W 2;2.D/.
The quadruple .�; ˛; �; �/ solves (2.11)–(2.12) in the weak sense. By comparison, we

can also see that �xx ; ˛xx ; �xx 2 L1.D/, so that �; ˛; � 2 W 2;1.D/.
If v1 ¤ 0, then necessarily � ¤ 0. If also C0 � 0with C0.1/ < 0, the (convex) solution

˛ to (2.11b) must be nontrivial, this ˛ < 1 except the end points x D ˙H .
Then, from (2.10) with � already fixed and C.�/ smooth, we obtain " 2 W 2;1.D/.

Eventually, v 2 W 3;1.D/ can be reconstructed from (2.5b) with the boundary condi-
tions (2.9); here we used the constraint

R
D
� dx D 2v1.

We discuss further qualitative properties of solution pairs .�; �/ that arise from the
specific form of the steady state equations (2.5)–(2.9). As our above result does not imply
uniqueness of solutions, our next results states that there are solutions with symmetry and,
under a weak additional condition, these solutions are also monotone on Œ0; H�. For the
latter we use the technique of rearrangements, which strongly relies on the fact that we
have no explicit x-dependence in our material laws. For general function f 2 L1.D/ we
define its even decreasing and even increasing rearrangements fdr and fir via

¹x 2 DI fdr.x/ > rº D .�X.r/; X.r//; where X.r/´
1

2
L1
�
¹x 2 DI f .x/ > rº

�
and fir.x/ D fdr.H � jxj/, see Figure 3.1.

The new condition (3.4) for the following result is satisfied in our adaptation (2.8) of
the classical Dieterich–Ruina friction law (2.1).

Proposition 3.2 (Symmetric and monotone pairs). Let the assumption (3.3) of Theorem
3.1 hold. Then, for all v1 there exists an even solution pair .�; �/, i.e., � and � are even
functions on D D Œ�H;H�. If we additionally assume

�.�; �/ D �.�; 0/C B.�/ with BWR! Œ0;1/ nondecreasing; (3.4)

then there exists an even, monotone pair .�;�/, i.e., it is an even pair such that additionally
Œ0;H� 3 x 7! �.x/ is nondecreasing and Œ0;H� 3 x 7! �.x/ is nonincreasing.
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x

f

�1 C1

x

fdr

�1 C1

x

fir

�1 C1

Figure 3.1. Two examples of functions f and their decreasing and increasing rearrangements fdr
and fir.

Proof. Throughout the proof we will restrict to the case v1 > 0 leading to � > 0 and
� � 0. The case v1 D 0 is trivial with .�; �/ � .�1; 0/, and v1 < 0 follows similarly
with � < 0 and � � 0.

To obtain the evenness we simply restrict the existence theory developed in the proof
of Theorem 3.1 to the closed subspaces of even functions. By the uniqueness of the min-
imizers of A� and B� it is clear that SA and SB map even functions to even functions.
Hence, Schauder’s fixed-point theorem produces an even solution.

For showing the existence of monotone pairs we rely on classical results for rearrange-
ments, see e.g. [30], namely the Pólya–Szegő inequalityZ

D

.fdr/
2
x dx D

Z
D

.fir/
2
x dx �

Z
D

f 2x dx (3.5)

and the Hardy–Littlewood inequality (cf. [25, Ch. 10])Z
D

fdrgir dx D
Z
D

firgdr dx �
Z
D

fg dx �
Z
D

fdrgdr dx D
Z
D

firgir dx: (3.6)

While the upper estimate is classical and works for integration over D D BR.0/ � Rd or
D D Rd , the lower estimate is special to D � R1, see [25, Eqn. (10.2.1)].

To exploit the theory of rearrangements we define the closed convex sets

‚ir ´
®
� 2 H 1.D/I �.x/ 2 Œ0; �1�; �.˙H/ D �1; � D �ir

¯
and

…dr ´

²
� 2 H 1.D/I�.x/ � 0; �.˙H/ D 0; � D �dr;

Z
D

� dx D 2v1

³
and show below the mapping properties SAW…dr ! ‚ir and SB W‚ir ! …dr. Thus,
Schauder’s fixed-point theorem can be restricted to SA ı SB W‚ir ! ‚ir resulting in a
fixed point �� 2 ‚ir. With �� D SB.�

�/, we obtain the desired even, monotone solution
pair .��; ��/, namely �� D ��ir and �� D �dr.

To establish SAW…dr ! ‚ir, we start with � 2 …dr and show A�.�dr/ � A�.�/ for
all � 2 H 1.D/. As � D SA.�/ is the unique minimizer of A�.�/, we obtain � D �dr as
desired.



A. Mielke and T. Roubíček 260

To show A�.�dr/ � A�.�/, we exploit j�j D � D �dr and the rearrangements estim-
ates (3.5) and (3.6) to obtainZ

D

�2x dx
(3.5)
�

Z
D

.�ir/
2
x dx;

Z
D

'0.�/ dx D
Z
D

'0.�ir/ dx;Z
D

j�j'1.�/ dx
(3.6)
�

Z
D

�dr
�
'1.�/

�
dr dx D

Z
D

j�j'1.�dr/ dx:

For the last identity we use
�
'1.�/

�
dr D '1.�dr/ which holds because of '01 D f1.�/ � 0.

Summing the three relations gives A�.�dr/ � A�.�/.
Similarly, we derive SB W‚ir ! …dr from B� .�dr/ � B� .�/ if � 2 ‚ir. For this we

use assumption (3.4), which gives R.�; �/ D R.�; 0/C B.�/j�j, and the three relationsZ
D

�2x dx
(3.5)
�

Z
D

.�dr/
2
x dx;

Z
D

R.�; 0/ dx D
Z
D

R.�dr; 0/ dx;Z
D

j�jB.�/ dx
(3.6)
�

Z
D

�dr
�
B.�/

�
dr dx D

Z
D

j�jB.�dr/ dx;

where we used that B is nondecreasing.
This finishes the proof of existence of even, monotone pairs.

Remark 3.3 (Aseismic-slip regime). Under very low shear velocities jv1j � 1, real
faults may go into so-called aseismic slip (also called aseismic creep), where one observes
pure sliding like predicted by our steady-state solutions constructed above. However, for
our simplified evolutionary model introduced in Section 5 (cf. (5.1)) numerical simula-
tions predict instability of the steady state and the development of stick-slip oscillations,
see Section 5.4. In the former case, stresses remain low and never challenge the plastic
yield stress �.0; �1/ at the core of the faults, a fact which is unfortunately not covered by
our model. One possible modification for modeling this effect would be to replace the set-
valued Sign.�/ in (2.5c) by some monotone smooth approximation, e.g., � 7! tanh.�=ı/
with 0 < ı � 1.

3.2. Asymptotics of the plastic zone for � ! 0 and � ! 0

The gradient term in (2.5c) and in (2.11a) controls in a certain way the width of the cata-
clastic zone where the slip is concentrated. There is an expectation that, when suppressing
it by �! 0, the slip zone will get narrower. It is however a rather contra-intuitive effect
that the zone eventually does not degenerate to a completely flat interface like it would be
in so-called perfect plasticity where the plastic strain rate � would be a measure on D.
Here, in the limit, � only looses its W 2;1-regularity as stated in Theorem 3.1 for � > 0
but remains in L1.D/.

The definition of weak solutions (3.1) remains in its variational form or in its strong
form (3.2) just putting � D 0. It should be emphasized that the boundary conditions
�.˙H/ D 0 are now omitted. It will turn out that in the limit � D 0 the plastic variable
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� becomes a pointwise function of � and � . By the strict convexity of � 7! R.�; �/, the
set-valued mapping � 7! @�.�; �/ D �.�; �/ Sign.�/ is strictly monotone (cf. (3.3a)).
Thus, � in �.�; �/Sign.�/ 2 � can be uniquely determined as a function of � and � .
Specifically,

� D
�
�.�; �/Sign.�/

��1
.�/µ ˘.�; �/; (3.7)

and the mapping ˘ WR2 ! R is continuous.
In this section, let us denote the solution obtained as a Schauder fixed point in the

proof of Theorem 3.1 by ."�; v�; ��; ˛�; ��; ��/.

Proposition 3.4 (Convergence for �! 0). Let assumptions (3.3) hold together with

9˚ WR! Œ0;1/ continuous, superlinear 8 .�; �/W R.�; �/ � ˚.�/ (3.8a)

andˇ̌
�.�; �/��.�; z�/

ˇ̌
� o

�
j��z� j

�
with some oWRC ! RC continuous, o.0/D0: (3.8b)

There is a subsequence such that, for some � 2 L1.D/, v 2 W 1;1.D/, ˛ 2 W 2;1.D/,
" 2 W 1;1.D/, � 2 W 1;1.D/, and � 2 R, it holds

"� ! " weakly* in W 2;1.D/; (3.9a)

v� ! v weakly in W 1;1.D/; (3.9b)

�� ! � weakly in L1.D/; (3.9c)

˛� ! ˛ weakly* in W 2;1.D/; (3.9d)

�� ! � strongly in H 1.D/; (3.9e)

�� ! � in R; (3.9f)

and
�.x/ D ˘.�; �.x// for a.a. x 2 D: (3.9g)

Moreover, ."; v; �; ˛; �; �/ is a classical solution to (2.5)–(2.9) in the sense that (2.5a),
(2.5b), (2.5d), (2.5e), and (3.2) with � D 0 hold pointwise everywhere on D. More spe-
cifically, � 2 C.D/ and v 2 C 1.D/.

Proof. From the proof of Theorem 3.1, we can see that the a priori bounds for

."�; v�; ��; ˛�; ��; ��/ 2 W
2;1.D/�W 1;1.D/2�L1.D/�W 2;1.D/�W 2;1.D/2�R

are independent of � > 0 and k��kH1.D/ D O.1=
p
�/. Moreover, from �� D SB.��/,

we can easily see that even R.��; ��/ is bounded in L1.D/. Using (3.8a) we can apply
the criterion of de la Valleé Poussin [18] and obtain that ¹��º�>0 is weakly compact in
L1.D/.

Then the limit passage in the weak solution to (2.5)–(2.9) for �! 0 is quite easy. The
only nontrivial point is the limit passage in the variational inequality (3.1). We first use
�.��/x D O.

p
�/ in L2.D/ and obtain, for all z� 2 H 1.D/, the relationsZ

D

R.z�; �/ � �.z� � �/ dx D lim
�!0

Z
D

R.z�; ��/ � ��.z� � ��/C �.��/x Q�x dx
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� lim sup
�!0

Z
D

R.z�; ��/���.z����/C �.��/x. Q����/x dx
(3.1)
� lim inf

�!0

Z
D

R.��; ��/ dx

� lim inf
�!0

Z
D

R.��; �/ dx C lim
�!0

Z
D

R.��; ��/ �R.��; �/ dx �
Z
D

R.�; �/ dx C 0:

(3.10)

The liminf estimate follows sinceR.�; �/ is convex and continuous such that
R
D
R.�; �/dx

is weakly lower semicontinuous on L1.D/. The penultimate integral in (3.10) converges
to 0 because �� ! � uniformly on D due to the compact embedding W 2;1.D/ � C.D/.
Hence, we have the estimate

lim
�!0

ˇ̌̌̌Z
D

R.��; ��/ �R.��; �/

ˇ̌̌̌
dx � lim

�!0

Z
D

j��jo.�� � �/ dx

� lim
�!0
k��kL1.D/o.k�� � �kL1.D// D 0;

where the function o is from (3.8b).
The variational inequality (3.10) does not contain any x-derivatives anymore and

hence is equivalent to the pointwise inequalityR.z�;�.x//��.z� ��.x//�R.�.x/;�.x//
a.e. in D. But this is equivalent to � 2 @�R.z�.x/; �.x// and hence (3.9g) holds.

Since the mapping ˘ WR2 ! R from (3.7) is continuous and since � 2 H 1.D/ �

C.D/, we see that x 7! �.x/ D ˘.�; �.x// is continuous as well, i.e., � 2 C.D/.

We are now ready to study the limit � ! 0 as well, which is really surprising because
we are losing all control over spatial derivatives and all the modeling length scales induced
by � and � tend to 0. In such a situation the usual compactness arguments fail and fast
spatial oscillations, i.e., microstructures, may appear. Indeed, we will see in Remark 3.6
that there are indeed many complicated solutions without any length scale. However, it is
surprising that it is possible to show that natural solutions exist, namely even, monotone
pairs .�; �/. The idea is to use for � > 0 and � D 0 the even, monotone pairs .�� ; ��/
obtained from Proposition 3.2 and the subsequent limit � ! 0 in Proposition 3.4. The
monotonicity of the pairs .�� ; ��/ allows us to deduce pointwise convergence, which is
good enough to pass to the limit � ! 0 even in nonlinear functions.

Under the additional assumptions (3.12), which are satisfied by our example treated
in Section 5.1, we then obtain the typical behavior. There is a critical value �� > 0 such
that for small positive v1 the cataclastic zone is .�h; h/ with h D v1=��, where .�; �/
assume constant values .��; ��/ independent of v1, whereas for x with h < jxj < H we
have .�; �/ D .�1; 0/, see (3.13).

Proposition 3.5 (The limit � ! 0 for monotone pairs). Let the assumptions (3.3), (3.4),
and (3.8) hold and let us consider a family

�
.�� ; ��/

�
�>0

of even, monotone solutions
to (2.5) with � D 0 and v1 > 0. Then the following holds.
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(i) There exists a subsequence (not relabeled) and an even, monotone pair .�0; �0/ 2
L1.D/ � L1.D/ such that for � ! 0 we have the convergence

.��.x/; ��.x//!
�
�0.x/; �0.x/

�
for a.a. x 2 D

and that .�0; �0/ solves the minimization problems

A0
�0
.�0/ � A�0.�/´

Z
D

j�0j'0.�/ � '0.�/ dx (3.11a)

and

B0
�0
.�0/ � B�0.�/´

Z
D

R.�; �0/ dx (3.11b)

for all .�; �/ 2 L1.D/�L1.D/ with
R
D
� dx D 2v1.

(ii) Moreover, if we define � D‚f .�/ to be the unique solution of f0.�/D j�jf1.�/, set
z�W Œ0;1/! .0;1/; � 7! �.�; ‚f .�//, and assume that there exists �ı > 0 such
that

z� is strictly decreasing on Œ0; �ı� and z� is strictly increasing on Œ�ı;1/;
(3.12)

then there exists a unique �� > �ı such that
R ��
0
z�.�/d� D �� z�.��/ and the above

solutions .�0; �0/ are uniquely given by

.�0; �0/.x/ D

8̂̂<̂
:̂
�
‚f .��/; ��

�
for jxj < v1=�� � H;

.�1; 0/ for v1=�� < jxj � H;�
‚f .v1=H/; v1=H

�
for v1 � ��H:

(3.13)

In particular, in this case the whole family
�
.�� ; ��/

�
�>0

converges pointwise.

Proof. By Proposition 3.2 and Proposition 3.4 we know that for all � > 0 even, monotone
pairs .�� ; ��/ exist and satisfy �� 2W 1.D/ and �� 2 C.D/. Moreover, we have ��.x/ 2
Œ0; �1� and ��.x/ D ˘.�� ; ��.x// for all x 2 D.

Step 1. Superlinear a priori bound for �� . We again use the uniform superlinearity of
the dissipation potential R.�; �/ from (3.8a). As �� is a minimizer of B�� .�/ we obtain
the uniform bound

R
D
˚.��/ dx � C� < 1. Thus, we have weak compactness (by de

la Valleé Poussin [18]) and along a subsequence (not relabeled) we have �� * �0 and
conclude

R
D
�0 dx D 2v1. Moreover, using �� D ��dr this implies the a priori bound

0 � ��.x/ � R for jxj �
C�

˚.R/
: (3.14)

Step 2. Pointwise convergence. Exploiting the monotonicity and the a priori bounds
�� 2 Œ0; �1� and (3.14), we can apply the classical Helly’s selection principle to obtain
pointwise convergence (everywhere in D). Along a subsequence (not relabeled) we have

�� ! �0; .��.x/; ��.x//! .�0.x/; �0.x// for all x 2 D:
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Here the monotonicities are kept, i.e., �0 D �ir and �0 D �0dr, but the continuity of the
limits might be lost. Moreover, �0.0/ D1 might be possible.

Step 3. Limit passage in the equations. Since ˘ is continuous, the pointwise conver-
gence yields the limit relation

�0.x/ D ˘.�0; �0.x// for all x 2 D: (3.15)

For the equation determining � we can use the a priori estimate �k��k2
L2
� C� and pass

to the limit in the weak form of .���x /x C f0.�
�/D ��f1.�

�/, i.e., in the integral identityZ
D

���x
z�x � f0.�

�/z� C ��f1.�
�/z� dx D 0 for all z� 2 H 1

0 .D/:

This provides the pointwise relation

f0.�
0.x// D �0.x/f1.�

0.x// for a.a. x 2 D: (3.16)

From (3.15) and (3.16) we immediately see that (3.11) holds.
We next observe that � D ‚f .�/ is well-defined by the implicit function theorem

using (3.3c). Thus, the solutions satisfy �0.x/ D ‚f .�0.x// for a.a. x 2 D. Henceforth,
recalling z�.�/ D �.�; ‚f .�//, the two minimization problems (3.11) are equivalent to
� 2 z�.�/Sign.�/ and

R
D
� dx D 2v1. Defining the function R.�/ D

R �
0
z�.s/ ds, this is

equivalent to the following problem:

minimize � 7!

Z
D

R.�.x// dx subject to � � 0 and
Z
D

� dx D 2v1 > 0:

However, this minimization problem is well understood via the convex hull R��, see [9,
Ch. 2]. By our assumption (3.12) we know that R�� has the form

R��.�/ D

´
R.��/�=�� for � 2 Œ0; ���;

R.�/ for � � ��;

and satisfies R��.�/ ˆ R.�/ for � 2 .0; ��/ and R00.�/ > 0 for � � ��, see Figure 3.2.
As our R is superlinear, a minimizer always exists. Moreover, recalling that v1=H > 0

is the average value of � WD ! R, the minimizer is unique if and only if the tangent at
� D v1=H is not in the interior of an interval on which R�� is affine. In the open interval
.0; v1=H/ the minimizers � attain only the values 0 and �� on sets with the corres-
ponding measures to fit the average. However, by constructing the even, nonincreasing
rearrangement, we find a unique minimizer, where only the value at the two jump points
x D ˙h D v1=� are free.

From these uniqueness results we also obtain the convergence of the full family by the
standard contradiction via compactness. With this, Proposition 3.5 is established.

The new condition (3.12) can be checked numerically for our example specified in
(5.4) giving �� � 1:4923 and �ı D 0:6193. Indeed, to see the desired effect of a fixed



Rate-and-state model for elastoplastic shear flows 265

�
�ı ��

z�.�/
�

�ı ��

R.�/

R��.�/

Figure 3.2. The functions z�, R, and R��.

�� leading to a cataclastic zone of width 2hD 2v1=��, our condition (3.12) is sufficient,
but far from being necessary. What we really need is that R�� is affine in an interval
Œ0; ���, which automatically follows if R00.0C/ D limpi&0 R00.�/ < 0. In fact, in general
we can consider the case �.�; �/ D �0 C A.�/ C B.�/ and general f0 and f1. Using
‚f .0/ D �1 following from f0.�1/ D 0, an explicit calculation gives

R00.0C/ D z�0.0C/ D @��.0C; �1/C @��.0C; �1/
f1.�1/

f 00.�1/
;

which may be negative because of f 00.�1/ < 0.

Remark 3.6 (Nonuniqueness of solutions). We want to emphasize that the uniqueness
result for � D �D 0 at the end of Proposition 3.5 concerns only even, monotone solutions.
Because of � D � D 0 there are indeed infinitely many solutions, as we can “rearrange”
the function values of .�; �/ freely. In the case v1 < ��H , we can choose any open set
P � D with

R
D
1P dx D 2v1=�� and the function

�
�.x/; �.x/

�
D

´ �
‚f .��/; ��

�
for x 2 P;

.�1; 0/ for x 2 D n P

is a solution of (3.11) as well.

4. Analysis of the evolutionary model

We now consider the evolutionary model (2.13). The energetics (2.15) behind this model
can be revealed by testing momentum balance (2.13a) by zv D v �w1 with w1.t; x/´
v1.t/x=H , the plastic flow rule (2.13b) by Pp, and the damage rule (2.13c) by P̨ . Using
the Dirichlet boundary condition for the velocity at x D ˙H , we have zv.˙H/ D 0, as
needed. The first test gives, in particular, the termZ

D

C.˛/"
�
vx �

v1

H

�
dx D

Z
D

C.˛/".P"C Pp/ dx �
v1

H

Z
D

C.˛/" dx
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D
d
dt

Z
D

1

2
C.˛/"2 dx C

Z
D

C.˛/" Pp �
1

2
C0.˛/"2 P̨ dx �

v1

H

Z
D

C.˛/" dx;

where also (2.13b) has been used. This test of the inertial form givesZ
D

% Pv
�
v � v1

x

H

�
dx D

d
dt

Z
D

%

2
v2 dx � v1

Z
D

% Pv
x

H
dx:

Combining it with the tests of (2.13b) by Pp and of (2.13c) by P̨ which giveZ
D

C.˛/" Pp dx D
Z
D

�. Pp; �/j Ppj C � Pp2x d (4.1)

andZ
D

�
1

2
C0.˛/"2 P̨ dxD

Z
D

P̨@�. P̨ /C
�1
2

C0.˛/"2CGc
˛ � 1

`2

�
P̨ dxC

d
dt

Z
D

1

2
Gc`

2˛2x dx;

we altogether obtain the energy balance

d
dt

Z
D

%

2
v2 C '."; ˛/C

1

2
Gc`

2˛2x„ ƒ‚ …
kinetic and stored energies

dx C
Z
D

�. Pp; �/j Ppj C P̨@�. P̨ /C � Pp2x„ ƒ‚ …
dissipation rate

dx

D h�; .v1;�v1/i„ ƒ‚ …
power of external load

; (4.2)

where � 2R2 is the traction on the boundary (i.e., here two forces at xD˙H ) defined as a
functional h�; .z.H/; z.�H//i D

R
D
% Pvz CC.˛/"zx dx for any z 2H 1.D/, cf. e.g. [31,

Sect.6.2].
Further on, we will be interested in an initial-value problem. For this, we prescribe

some initial conditions, namely,

v.�; 0/ D v0; ".�; 0/ D "0; ˛.�; 0/ D ˛0; and �.�; 0/ D �0: (4.3)

A definition of the weak solutions of particular equations/inclusions in (2.13) can be
cast by standard way, using convexity of the involved functionals R.�; �/ and �.�/. E.g.,
the weak formulation of inclusion (2.13c) leads, like in (3.1), to the variational inequalityZ T

0

Z
D

R.z�; �/ �C.˛/".z� � Pp/ � � Ppx. Q� � Pp/x dx dt �
Z T

0

Z
D

R. Pp; �/ dx dt (4.4)

to be valid for any z� 2 L1.I��/.
Beside the previous assumptions, we now also assume

v0 2 L
2.D/; "0 2 L

2.D/; ˛0 2 H
1.D/; �0 2 H

1.D/: (4.5)

The definition of weak solutions to (2.13) with (2.14) and (4.3) is standard, and we will not
write it explicitly; the variational inequality (3.1) is to hold integrated over I . Furthermore,
we also exploit the superlinear growth of R.�; �/ from (3.8a), namely

�.�; �/j�j � R.�; �/ � ˚.�/; (4.6)
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which is a standard estimate for z� 2 @ .�/, namely � z� D  .�/C  �.z�/ �  .�/ as
 � � 0. Note that the standard model (2.4) complies with assumption (3.8a).

Relying formally on the tests leading to (4.2), after integration in time on the interval
Œ0; t � when using also the by-part integration, we obtainZ
D

%

2
v2.t/C '

�
".t/; ˛.t/

�
C
1

2
Gc`

2˛2x.t/ dxC
Z t

0

Z
D

�. Pp; �/j PpjC P̨@�. P̨ /C� Pp2x dx dt

D

Z
D

%

2
v20 C '."0; ˛0/C

1

2
Gc`

2Œ˛0�
2
x dx C

Z t

0

Z
D

% Pvw1 CC.˛/"xw
1
x dx dt

D

Z
D

%

2
v20 C '."0; ˛0/C

1

2
Gc`

2Œ˛0�
2
x C %v.t/

�
v1.t/ � v1.0/

� x
H

dx

C

Z t

0

Z
D

C.˛/"x
v1

H
� %v Pv1

x

H
dx dt: (4.7)

Moreover, the aging equation (2.13e) has to be tested separately by using the test
function � � �1, which has zero traces for x D ˙H . Integrating the result over Œ0; t �
leads toZ
D

1

2
�2.t/ dx C

Z t

0

Z
D

��2x dx dt

D

Z
D

.�.t/ � �0/�1 dx C
Z t

0

Z
D

j Ppjf1.�/.� � �1/ � f0.�/.� � �1/ dx: (4.8)

When summing (4.7) and (4.8), we can use the Hölder and a (generalized) Young
inequality to estimate the resulting right-hand side. Actually, the only nontrivial term is
j Ppjf1.�/.� � �1/ in (4.8) and it can be estimated asZ

D

j Ppjf1.�/.� � �1/ dx �
Z
D

1

2
˚
�
j Ppj
�
C
1

2
˚�
�
2f1.�/.� � �1/

�
dx

(4.6)
�

Z
D

1

2
�. Pp; �/j Ppj C

1

2
˚�
�
2f1.�/.� � �1/

�
dx; (4.9)

where ˚� is the Fenchel–Legendre conjugate of ˚ , i.e., ˚�.s/ D sup�2R

�
�s � ˚.�/

�
.

The term 1
2
�. Pp;�/j Ppj in (4.9) can then be absorbed in the left-hand side of (4.7) while

1
2
˚�.2f1.�/.� � �1// is a priori bounded since 0 � � � �1. Eventually, the last term in

(4.7) can be estimated as %.1C jvj2/j Pv1j.
Assuming v1 2 W 1;1.I / and using Gronwall’s inequality, from the left-hand sides

of (4.7) and (4.8) we can read the a priori estimates

kvkL1.I IL2.D// � C; (4.10a)

k"kL1.I IL2.D// � C; (4.10b)

kpkH1.I IH1.D// � C; (4.10c)

k˛kL1.I IH1.D//\H1.I IL2.D// � C; (4.10d)

k�kL1.I IL2.D//\L2.I IH1.D// � C: (4.10e)
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By comparison, we will get also information about Pv D .C.˛/"/x=% 2 L1.I IH 1.D/�/,
about P"D vx � Pp 2 L2.I IH 1.D/�/, and P�Df0.�/�j Ppjf1.�/C��xx2L2.I IH 1.D/�/.

The rigorous existence proof of weak solutions is, however, very nontrivial and seems
even impossible for the full dynamical model (2.13) with damage. Some modifications
by involving some additional dissipative terms or some higher-order conservative terms
seem necessary, cf. [31, Sect.7.5] or also [49] for the model without aging. Consistently
also with the computational experiments in Section 5 below, we thus present the rigorous
proof only for a model without damage, i.e., for C > 0 constant.

Theorem 4.1 (Damage-free case – existence and regularity of solutions). Let (3.3a),
(3.3c), (3.3d) with � smooth, (4.5), and (4.6) hold, and % > 0 be a constant and v1 2
W 1;1.I /. Then

(i) There is a weak solution

.v; "; p; �/2L1.I IL2.D//2�H 1.I IH 1.D//�.L1.I IL2.D//\L2.I IH 1.D///

to the initial-boundary-value problem for the system (2.13a)–(2.13c), (2.13e) with the
boundary conditions (2.14) and the initial conditions (4.3).

(ii) If sup0����1 �.�; �/ does not have a growth more than O.j�js/, then these solu-
tions are, in fact, regular in the sense that p 2 W 1;s.I IH 2.D// and, if s � 2, also
� 2 H 1.I IL2.D// \ L1.I IH 1.D// \ L2.I IH 2.D// and also each such weak
solution satisfies the energy balance (4.2) without ˛-terms integrated over a time
interval Œ0; t � with any t 2 I .

Let us note that the O.j�js/-growth condition in the point (ii) surely covers the model
(2.8) for any 1 � s <1.

Sketch of the proof. Actually, the above formal procedure is to be made first for a suitable
approximation whose solutions exist by some specific arguments, and then to pass to the
limit. Imitating the split for the static problem used in the proof of Theorem 3.1, we choose
a staggered time discretization. We take an equidistant partition of the time interval I by
using the time step � > 0, assuming T=� integer and considering a sequence of such � ’s
converging to 0. Then, recalling @�R.�; �/ D �.�; �/ Sign.�/, we consider a recursive
boundary-value problem for the system

%
vk� � v

k�1
�

�
� .C"k� /x D 0; (4.11a)

"k� � "
k�1
�

�
D .vk� /x � �

k
� ; (4.11b)

�.�k� ; �
k�1
� /�k� D C"k� C �.�

k
� /xx with �k� 2 Sign.�k� /; (4.11c)

�k� � �
k�1
�

�
D f0.�

k
� / � j�

k
� jf1.�

k
� /C �.�

k
� /xx (4.11d)

to be solved for k D 1; 2; : : : ; T=� starting for k D 1 from the initial conditions v0� D v0,
"0� D "0, and �0� D �0. The boundary conditions for (4.11) are like in (2.9) but now with
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time-varying velocity v1, i.e.,

vk� .˙H/ D ˙v
k
1µ

Z k�

.k�1/�

v1.t/

�
dt; �k� .˙H/ D 0; �k� .˙H/ D �1:

The system (4.11a)–(4.11c) has a variational structure with a convex coercive potential

.v; "; �/ 7!

Z
D

%
.v � vk�1� /2

2�
CC".vx � �/CC

." � "k�1� /2

2�
CR.�; �k�1� /C

�

2
�2x dx:

For a sufficiently small � > 0, this potential is convex and coercive on L2.D/2 �H 1.D/.
Minimization of this functional on an affine manifold respecting the boundary conditions
v.˙H/ D ˙vk1, �.˙H/ D 0, and �.˙H/ D �1 gives by the standard direct-method
argument existence of an (even unique) minimizer, let us denote it by .vk� ; "

k
� ; �

k
� / 2

L2.D/2 �H 1.D/. This minimizer satisfies (4.11a), (4.11b) in the weak sense and also
the inclusion @�R.�k� ; �

k�1
� / 3 C"k� C �.�

k
� /xx . Therefore, there exists �k� 2 Sign.�k� /�

H 1.D/� such that �.�k� ; �
k�1
� /�k� D C"k� C �.�

k
� /xx in the weak sense. Then we can

solve (4.11d) by minimization of the convex functional

� 7!

Z
D

.� � �k�1� /

2�
C j�k� j'1.�/ � '0.�/C

�

2
�2x dx;

where 'i are the primitive functions to fi , i D 0; 1. This functional is coercive on a linear
manifold of the space H 1.D/ respecting the boundary condition (2.9). Let us denote its
unique minimizer by �k� .

We introduce the piecewise affine continuous and the piecewise constant interpolants.
Having ¹vk� º

T=�

kD0
, we define

v� .t/´ vk� ; v� .t/´ vk�1� ; and v� .t/´
� t
�
� k C 1

�
vk� C

�
k �

t

�

�
vk�1�

for .k � 1/� < t � k� with k D 0; 1; : : : ; T=� . Analogously, we define also "� , or � � , etc.
This allows us to write the system (4.11) in a “compact” form:

% Pv� � .C"� /x D 0; (4.12a)

P"� D .v� /x � �� ; (4.12b)

�.�� ; � � /�� D C"� C �.�� /xx with �� 2 Sign.�� /; (4.12c)
P�� D f0.� � / � j�� jf1.� � /C �.� � /xx : (4.12d)

By modifying appropriately the procedure which led to the a priori estimates (4.10a)–
(4.10c), (4.10e), we obtain here

kv�kL1.I IL2.D// � C; (4.13a)

k"�kL1.I IL2.D// � C; (4.13b)

k��kL2.I IH1.D// � C; (4.13c)

k� �kL1.I�D/\L2.I IH1.D// � C; (4.13d)
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and here also

k��kL1.I�D/\L2.I IH1.D/�/ � C: (4.13e)

All these estimates hold also for the piecewise affine interpolants, and (4.13d) holds also
for � � . The last estimate is obtained by comparison from ��D.C"�C�.�� /xx/=�.�� ; � � /
when testing it by functions in L2.I IH 1.D// and using the smoothness of 1=�.�� ; � � /.

Then, by the Banach selection principle, we obtain subsequences, indexed again by �
for simplicity, weakly* converging in the topologies indicated in (4.13), and we pass to a
limit for � ! 0 and are to show that such limit (let us denote it by .v; "; �; �; �/) solve the
continuous problem with � D Pp. For this, one uses the Aubin–Lions compactness theorem
adapted for the time-discretization method as in [46, Sect. 8.2]. Thus, we can rely on that

� � ! � strongly in Lc.I�D/ for any 1 � c <1: (4.14)

The limit passage in the linear hyperbolic equation (2.13a) is due to a weak convergence
of both v and " and also the limit passage in the linear equation (2.13b) is easy via weak
convergence. Yet, there is one peculiarity in the limit passage in the nonlinearity in (2.13c)
for which a strong convergence of " is needed, but we do not have any information about
space gradient of ". The other peculiarity is a need of the strong convergence of Pp which is
needed for (2.13e), but we do not have any information about P� , so that mere compactness
arguments cannot be used. This can be obtained from the momentum equation (2.13a) and
from (2.13c) when using the strong monotonicity of the operators in (2.13a) and (2.13c)
simultaneously. As for (2.13c), note that �.�; �/ Sign.�/ D @�R.�; �/ and that R.�; �/
is convex, to that @�R.�; �/ is monotone. In particular, for any �� 2 Sign.�� / and � 2
Sign.�/, we have

R t
0
h�� � �; �� � �i dt � 0, where h�; �i denotes the duality pairing

between H 1.D/� and H 1.D/.
The usage of this monotonicity of the set-valued mapping @�R.�; �/ should be done

carefully. The time-discrete approximation of (4.4) gives some �� 2 L2.I IH 1.D// and
�� 2 L

2.I IH 1.D/�/ satisfying (4.12c) together with the boundary conditions p.˙H/D
0 in the weak form. From the mentioned monotonicity and by using (4.12a) and (4.12c)
tested by v� � v and �� � � and integrated over a time interval Œ0; t � and the domain D,
we obtainZ
D

%

2

�
v� .t/ � v.t/

�2
C
1

2
C
�
"� .t/ � ".t/

�2 dx C
Z t

0

Z
D

�.�� � �/
2
x dx dt

�

Z t

0

�
h% Pv� � % Pv; v� � vi C hP"� � P";C"� �C"i C

˝
�.�� ; � � /�� � �.�; � � /�; �� � �

˛
C h% Pv; v� � v� i C hP";C"� �C"� i C

Z
D

�.�� � �/
2
x dx

�
dt

D �

Z t

0

�
h% Pv; v� � vi C hP"� � P";C"i C h�.�; � � /�; �� � �i

� h% Pv; v� � v� i � hP";C"� �C"� i C

Z
D

��x.�� � �/x dx
�

dt ! 0; (4.15)
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where h�; �i again denotes the duality pairing between H 1.D/� and H 1.D/. The meaning
of h�.�� ; � � /�� ; �� � �i for �� valued in H 1.D/� is rather h�� ; �.�� ; � � /.�� � �/i,
using that �.�� ; � � /.�� � �/ is valued in H 1.D/. Here we need smooth functions
� such that .�.�� ; � � /.�� � �//x D �.�� ; � � /.�� � �/x C .�0�.�� ; � � /.�� /x C

�0
�
.�� ; � � /.� � /x/.�� � �/ is valued in L2.D/. Similarly, it applies also for

h�.�; � � /�; �� � �i. For the inequality in (4.15) see [46, Remark 8.11]. For the equality
in (4.15), we used (4.12b) together with its limit obtained by the weak convergence, i.e.,
P" D vx � � , and also (4.12a), (4.12c) for the identity

hP"� � P";C"� �C"i D h.v� � v/x ;C"� i � h�� � �;C"� i � hP"� � P";C"i

D �h% Pv� ; v� � vi �
˝
�.�� ; � � /�� ; �� � �

˛
�

Z
D

�.�� /x.�� � �/x dx � hP"� � P";C"i:

It is important, that (4.15) holds for any � 2 Sign.�/ and, at this moment, we do not
assume that � comes as a limit from the (sub)sequence ¹��º�>0.

To the convergence in (4.15), we used that Pv 2 L2.I IH 1.D/�/ while v� � v ! 0

weakly L2.I IH 1.D//, and that P"� � P"! 0 weakly in L2.I IH 1.D/�/, and eventually
that �.�; � � / converges (to a limit which is not important here) strongly in Lc.I�D/ due
to (4.14) while �� � � ! 0 weakly in L2.I IH 1.D// so that also �.�; � � /.�� � �/! 0

weakly in L2.I IH 1.D//. Therefore, considering (4.15) integrated over I , we obtain

v� ! v strongly in L2.I�D/; (4.16a)

"� ! " strongly in L2.I�D/; (4.16b)

�� ! � strongly in L2.I IH 1.D//: (4.16c)

In fact, by interpolation, (4.16a), (4.16b) holds even in Lc.I IL2.D// for any 1 � c <1.
For (4.16c), we used the strong convergence of gradients of Ppk and the fixed boundary
conditions, so that we do not need to rely on the monotonicity of @�R.�; �/ which may not
be strong.

Having the strong convergence (4.16) at disposal, the limit passage is then easy, show-
ing that the previously obtained weak limit .v; "; �; �/ is a weak solution to the sys-
tem (2.13). In particular, from the inclusion in (4.12c) one obtains � 2 Sign.�/ by using
maximal monotonicity of the graph of the set-valued mapping SignWL2.I IH 1.D//�
L2.I IH 1.D/�/ and the strong convergence (4.16c). Thus (i) is proved.

As to (ii), if �.�; �/ � O.j�js/, then ��xx 2 C" � �.�; �/ Sign.�/ is bounded in
Ls.I IL2.D/ so that � 2 Ls.I IH 2.D//.

If s � 2, the procedure which led to the energy balance (4.2) considered here without
˛-terms but integrated over a time interval Œ0; t � was indeed rigorous. This is because
v 2 L2.I IH 1.D//, as can be seen by comparison from (2.13b), is in duality with % Pv 2
L2.I IH 1.D/�/ and with .C"/x 2 L2.I IH 1.D/�/, so that testing the momentum equa-
tion (2.13a) and the related by-part integration is legitimate. Similar arguments concern
also the aging rule (2.13e). Since ��xx 2 L2.I�D/ if s � 2, also the test of the plastic
rate equation (2.13c) by � 2 Ls.I�D/ is legitimate together with the related by-part
integrations.
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In this case when s � 2, also (4.12d) can be tested by P�� , which gives the regularity
� 2 H 1.I IL2.D// \ L1.I IH 1.D//. By comparison ��xx D P� C j�jf1.�/ � f0.�/ 2
L2.I�D/, we obtain also � 2 L2.I IH 2.D//.

Remark 4.2 (Stability and time-periodic solutions). In geodynamics the phenomenon
called episodic tremor and slip describes time-periodic motions in subduction zones where
shorter periods of plastic slips alternate with longer periods with slow slip events. Hence,
it would be interesting to complement our existence result for “transient events” governed
by the above initial-value problem by a theory for time-periodic solutions. The aim would
be to show that there is a period t� > 0 and a solution of the system (2.13) with the
boundary conditions (2.9) satisfying . Pv; P"; P̨ ; P�/ 6� 0 and

v.�; t�/ D v.�; 0/; ".�; t�/ D ".�; 0/; ˛.�; t�/ D ˛.�; 0/; and �.�; t�/ D �.�; 0/

instead of (4.3). Of course, a general question is that of stability of the steady-state
solutions .�; �/ obtained in Section 3 or potentially of such time-periodic solutions as
described here. As we will see in the following section, one indication of the existence of
time-periodic solutions is the loss of stability of the steady state solution. But because of
the complexity of the model, these questions are beyond the scope of this paper.

Remark 4.3 (Asymptotics for � ! 0 and � ! 0). Unlike to the case for steady solu-
tions for (2.5) as in Section 3.2, it is not possible in the evolutionary model (2.13) to
pass to the limit for � ! 0. In particular, a limit passage in the term C"�.z�� � Pp�/
occurring in (4.4) seems to be out of reach. The substitution (4.1) by a convex term in
Pp could not help, being not weakly upper-semicontinuous. If also (3.8a) holds, then like

in Propositions 3.4 and 3.5, we can at least obtain some uniform bounds, in particular
for the plastic strain rate � D Pp in the Orlicz space L˚ .I�D/ with ˚ from (3.8a), i.e.,R
I

R
D
˚.�.t; x// dx dt <1. Yet, the limit passage for �! 0, even while keeping � > 0

fixed, remains intractable.

5. Illustrative numerical simulations

We illustrate the response of the evolutionary model in Section 4 by a simplified model
derived in Section 5.1. This model still has exactly the same steady states as the full model,
such that all the theory of Section 3 applies to it, when ignoring statements about the
damage variable ˛. We expect that the simplified model is still relevant as far as usually
observed dynamical features concern. Moreover, it also displays the effect of the free
boundary occurring between the elastic zone and the plastic zone. In Section 5.2 we show
by numerical simulations that the steady states localize for v1 ! 0 in such a way that
�stst has support (i.e., the so-called cataclastic zone) in Œ�h�.v1; �/; h�.v1; �/� with
h�.v1; �/ �

p
� for � ! 0C. Moreover, we show that, when keeping v1 ¤ 0 fixed but

sufficiently small, we obtain a support with h�.v1; �/! v1=�� for � ! 0C.
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In Section 5.3 we study an ODE model for scalars �.t/ and �.t/ which displays the
effect of oscillatory behavior for jv1j< vcrit while solutions converge to the unique steady
state for jv1j > vcrit. Finally, Section 5.4 presents simulations for the simplified evolu-
tionary model. In particular, we observe again that for small nontrivial values of jv1j
we have oscillatory behavior, where the plastic zone is spatially and temporarily local-
ized in the sense that the support of �.t; �/ is compactly contained in D D Œ�H;H� for
all t 2 Œ0; Tper� and that �.t; x/ D 0 for all x 2 D and all t 2 Œt1; t2� for a nontrivial
interval Œt1; t2� � Œ0; Tper�. For jv1j large, we find convergence into a steady state with a
nontrivial plastic (cataclastic) zone. All the following results are derived from numerical
experiments only.

5.1. The simplified model without damage

To display the main features of our rate-and-state friction model we reduce the full evolu-
tionary model (2.13) by making the following simplifications:

• we neglect inertial effects (i.e., we set % D 0 in (2.13a)), thus making the system
quasistatic but still keeping a rate-and-state dependent plasticity;

• we choose � D 0 for the length-scale parameter in (2.13c) as analyzed in Section 3.2
for the steady-state solutions;

• we neglect all damage effects through ˛ and omit (2.13d) as we did in Theorem 4.1.

Because of % D 0, the momentum balance leads to a spatially constant stress �.t/ D C".
As now C is constant, also ".t/ is spatially constant. Integrating (2.13b) over x 2 D D
Œ�H;H� and using the boundary condition for v from (2.14) gives the following coupled
system for � , � D Pp, and � :

2H

C
P� C

Z
D

� dx D 2v1.t/; (5.1a)

�.�; �/Sign.�/ 3 �; (5.1b)
P� D f0.�/ � j�jf1.�/C ��xx ; �.t;˙H/ D �1: (5.1c)

Throughout this section we assume that � has the form

�.�; �/ D �0 C A.�/C B.�/ with A.�/; B.�/ � 0 and A.��/ D A.�/I

cf. also (2.8). Assuming further A0.�/ > 0 for � > 0 we can solve (5.1b) in the form

� D˘.�; �/ with ˘.�; �/D

8̂̂<̂
:̂
0 for j� j � �0 C B.�/;

A�1
�
� � �0 � B.�/

�
for � > �0 C B.�/;

�A�1
�
j� � �0 � B.�/j

�
for � < ��0 � B.�/:

(5.2)

Thus, we obtain our final coupled system of a scalar ODE for � with a non-locally coupled
scalar parabolic PDE for � , namely

P� D
C

H
v1.t/ �

C

2H

Z
D

˘.�; �/ dx; (5.3a)
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P� D f0.�/ � j˘.�; �/jf1.�/C ��xx ; �.t;˙H/ D �1: (5.3b)

Here the nonsmoothness due to the plastic behavior is realized by the nonsmooth function
� D ˘.�; �/ defined in (5.2).

For all the following simulation we choose the following parameters and functions:

H D 1; C D 1; �1 D 10; �0 D 1; f0.�/ D 1 � �=�1;

f1.�/ D 10�; A.�/ D ln.j�j C 1/; B.�/ D ln.4� C 1/: (5.4)

Subsequently, we will only vary the coefficient � > 0 and the shear velocity v1.

5.2. Steady states

We first discuss the steady states for (5.3), which are indeed a special case of the steady
states obtained in Proposition 3.4. Numerically, we always found exactly one steady state
�stst D ‚.v1; �/, but were unable to prove its uniqueness rigorously. When varying the
parameters v1 and � we can easily observe clear trends for .�stst; �stst/, where the associ-
ated plastic flow rate is given by �stst D P.�stst; �stst/, see Figure 5.1. We first observe that
for fixed � the functions �stst and �stst depend monotonically on v1 in the expected way,
namely �stst decreases with the shear velocity v1, while �stst increases, which fits to the
relation 2v1 D

R
D
�stst.v1; �I x/ dx.

Stationary profiles �stst of the aging variable
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Stationary profiles �stst of the plastic strain rate
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Figure 5.1. Each picture shows ten curves that correspond to the shear velocities v1 2 ¹0:005; 0:01;
0:02; 0:05; 0:1; 0:2; 0:5; 1:0; 2:0; 5:0º, respectively. The upper row shows �stst (decreasing with v1)
and the lower row shows �stst (growing v1).

Moreover, for v1! 0C the scaled plastic rate �stst=v1 converges to a nontrivial limit
with localized support, while �stst converges uniformly to �1. For larger and larger v1
the plastic zone occupies more and more of the domainD D Œ�1; 1� and �stst is very small
in most of the plastic zone, namely � � ‚f .�/ D �1=.1C 10��1/ � 1=.10�/.
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When reducing the size of � we also see that the size of the plastic zone shrinks.
For small v1 it can be seen that the support of �stst is Œ�h�.v1; �/; h�.v1; �/� with
h�.v1; �/ �

p
�, see Figure 5.2.

Rescaled stationary profiles �stst=v1 of the plastic strain rate
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Figure 5.2. The figures display the rescaled plastic strain rates �stst=v1 for shear velocities v1 2
¹0:005; 0:01; 0:02; 0:05; 0:1; 0:2; 0:5; 1:0; 2:0; 5:0º, respectively. For v1! 0 one sees convergence
to a limit shape with minimal support Œ�h�.�/; h�.�/� where �.0:01/ � 0:055, �.0:04/ � 0:11,
�.0:16/ � 0:21, and �.0:64/ � 0:41. Effectively, we can see a free boundary between active cata-
clastic core zone and the rest of the fault.

Finally, we want to study the case corresponding to Proposition 3.5, where v1 is kept
fixed and the limit � ! 0 is performed. In Figure 5.3 we show plots of the steady states
.��stst; �

�
stst/ for three different values of v1 for a sequence of decreasing �. We clearly

see the predicted development of convergence against towards the limit .�0stst; �
0
stst/ taking

only two different values. Moreover, the values are roughly independent of v1, where the
active plastic zone .�h; h/ behaves like h D v1=��, as proved in Proposition 3.5.
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Figure 5.3. A study for the limit � ! 0C of the steady-state solutions .�stst; �stst/. For v1 2
¹0:4; 0:8; 1:2º the profiles are plotted for � 2 ¹0:03; 0:01; 0:003; 0:001; 0:0003; 0:0001º. Conver-
gence to rectangular profiles is observed.



A. Mielke and T. Roubíček 276

5.3. An ODE model showing oscillations in time

Oscillatory behavior is most easily seen in a simple finite dimensional model, consisting
only of �.t/ and �.t/, where we may consider �.t/ as the average of �.t; x/ over the crit-
ical plasticity region where �.t/ D P.�.t/; �.t// is positive. We also refer to the analysis
of a spring-slider model in [34] as well as the geophysical paper [1].

Thus, our simplified model (5.3) is even more simplified to the ODE system

2H

C
P� D 2v1 � 2h˘.�; �/ and P

� D 1 �
�

�1
� 10˘.�; �/�: (5.5)

Here h 2 �0;HŒ represents the width of the plastic zone, which has to be adapted accord-
ingly. We may consider (5.5) as an evolutionary lumped-parameter system, which in
geophysical literature is often referred to as a 1-degree-of-freedom slider and is considered
as a basic test of every new friction model.

The nice feature of this ODE model is that the steady states can be calculated explicitly,
and even a stability analysis can be performed. Indeed, there is exactly one steady state,
namely

� stst D
�1

1C 10.v1=h/�1
and �stst D �0 C A

�v1
h

�
C B.� stst/:

Instead of performing a rigorous analysis, we simply display the solution behavior of this
ODE by a few numerical results. We find that for small positive v1 we obtain oscillatory
behavior, while for larger v1 the solutions converge to the steady state, see Figure 5.4.
Indeed, the oscillations can be interpreted physically in terms of geophysical processes as
seismic cycles.

During the oscillatory behavior there is a large part of the interval where there is no
plastic slip (i.e., �.t/ D 0). In these intervals the stress is growing linearly with a slope
that is proportional to v1, and the aging variable � is relaxing exponentially back to
its equilibrium value �1. However, if the stress reaches a critical value, then the plastic
strain rate is triggered, which leads to reduction of the aging variable. This leads to a
simultaneous weakening of the plastic yields stress �.�; �/ such that � can grow even
more. As a result the stress is drastically reduced in a rather short time interval, and �
is reduced almost down to 0 (refreshing). If the inertial term would be included, then
this fast rupture-like processes could emit elastic waves, i.e., earthquakes. Because of the
stress release the plastic strain rate reduces to 0, and the process starts again by a slow
aging and building up the stress.

In fact, choosing h D 0:3 a closer analysis of the system shows that the steady states
are stable if and only if v > v.1/1 � 0:17462. However, stable oscillations are already seen
for v < v.2/1 � 0:175452. A careful analysis of the trajectories in the phase plane for .�;�/
reveals that for v1 2 .v

.1/
1 ; v

.2/
1 / there are two periodic solutions, as smaller unstable one

that encircles the stable fixed point and a larger stable one that encircles the unstable one,
see Figure 5.5. Thus, in the small parameter interval .v.1/1 ; v

.2/
1 / we have coexistence of a

stable fixed point and a stable periodic orbit.
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Figure 5.4. Solutions .�.t/;�.t// together with �.t/DP.�.t/; �.t// for hD 0:3 and three different
values of v1. In the first two cases the solutions start very close to the unstable steady state. In the
third case the solution starts far away but soon returns to the stable fixed point.
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Figure 5.5. The .�; �/ phase plane for h D 0:3 and v1 D 0:175, where all trajectories rotate clock-
wise around the fixed point .�stst; � stst/ � .1:973; 0:168/. There are two periodic solutions. The
outer one is stable and is approached by the blue trajectories from inside and outside. The unstable
periodic orbit lies between the orange and the brown trajectory.

5.4. Convergence to steady states versus oscillations for (5.3)

The behavior of the evolutionary coupled system (5.3) coupling the parabolic PDE for the
aging variable �.t; x/ to the ODE for the stress �.t/ displays roughly a similar behavior
as the lumped ODE system (5.5). For large jv1j one observes convergence into the steady
states analyzed in Section 3 and displayed numerically in Section 5.2. For small nontrivial
values of v1 one observes oscillatory behavior. Of course, the new feature is the spatial
distribution of the plastic rate �.t; x/D˘.�.t/; �.t; x// and the aging variable �.t; x/. In
most cases one observes that �.t; x/ has a nontrivial support in the sense that the support
of �.t; �/ is compactly contained in .�H;H/. Moreover, in the oscillatory case, we also
observe that there are large parts of the periodicity interval, in which there is no plastic flow
at all (i.e., � D Pp D 0), but there is aging and slow building up of stress. Then, in sudden
plastic bursts there is a strong plastic flow that leads to stress release and refreshing, i.e.,
reduction of � almost down to 0 inside the cataclastic zone.
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Figure 5.6 displays two simulation results featuring convergence into steady state.

� D 0:16; v1 D 0:6 � D 0:004; v1 D 0:2

Figure 5.6. Simulation of the solution � (left) and � D ˘.�; �/ (right) for (5.3). Convergence to a
steady state can be observed in both cases.

In the case � D 0:04 and the smaller shear rate v1 D 0:15 one observes oscillatory
behavior. In fact, we start the solution very close to the steady state and the solution needs
some time to develop the instability, but then it switches quickly into a periodically looking
regime, see Figure 5.7.

time t

�.t; x/

time t

�.t; x/

Figure 5.7. Simulation of the solution � (top) and � D ˘.�; �/ (bottom) for (5.3) with � D 0:04
and v1 D 0:15. Convergence to a periodic behavior where � is localized in space and time can be
observed.
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Mathematical Institute, Charles University, Sokolovská 83, 186 75 Prague; Institute of
Thermomechanics, Czech Academy of Sciences, Dolejškova 5, 182 00 Prague, Czechia;
tomas.roubicek@mff.cuni.cz

https://doi.org/10.1038/34097
https://doi.org/10.1017/cbo9780511818516
https://doi.org/10.1016/b978-044452748-6.00076-6
https://doi.org/10.1038/nature04931
https://doi.org/10.1038/nature04931
https://doi.org/10.1038/s41467-018-06390-z
https://doi.org/10.1038/s41467-018-06390-z
mailto:alexander.mielke@wias-berlin.de
mailto:tomas.roubicek@mff.cuni.cz

	1. Introduction
	2. Setup of the geodynamical model
	2.1. Geodynamical background
	2.2. The one-dimensional steady-state model
	2.3. The evolutionary model

	3. Analysis of the steady-state model
	3.1. Existence of steady states
	3.2. Asymptotics of the plastic zone for η→0 and κ→0

	4. Analysis of the evolutionary model
	5. Illustrative numerical simulations
	5.1. The simplified model without damage
	5.2. Steady states
	5.3. An ODE model showing oscillations in time
	5.4. Convergence to steady states versus oscillations for eq:SM

	References

