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1 Introduction

It is known (e.g., [3] (1923) and [1] (1954), and proved in Section 2) that a polynomial of
degree n with nonnegative coefficients cannot have zeros in a sector around the real axis
with an angle of 2�=n. Simple examples of such polynomials are the cyclotomic polyno-
mials of prime order n (a cyclotomic polynomial ˆn of order n is a divisor of xn � 1, but
not of xm � 1 for any m < n), e.g., ˆ7.x/ D x6 C x5 C x4 C x3 C x2 C x C 1.

However, when polynomials with nonnegative coefficients are lacunary, i.e., when they
have many consecutive zero coefficients, there can be several additional zero exclusion
sectors that are not captured by the aforementioned result. Our purpose here is to derive
such exclusion sectors. As an illustration, consider first the polynomial

2z10 C 3z9 C z8 C 4z7 C 5z6 C 3z5 C z4 C 2z3 C 8z2 C z C 4

with positive coefficients and no gaps between its powers. Its zeros are given by�1:4384˙
0:1939i , �0:6686˙ 0:8906i , 0:5230˙ 1:1272i , 0:8559˙ 0:5747i , �0:0220˙ 0:6826i ,

Ein Polynom mit nichtnegativen Koeffizienten kann keine positiven Nullstellen haben,
aber auch keine Nullstellen in einem gewissen Sektor um die positive reelle Achse.
Wenn ein solches Polynom jedoch grosse Lücken zwischen aufeinanderfolgenden Po-
tenzen aufweist, dann lassen sich zusätzliche nullstellenfreie Sektoren finden. In der
vorliegenden Arbeit wird gezeigt, wie man solche Sektoren erhält und wie man die An-
zahl der Nullstellen bestimmt, die zwischen diesen Sektoren liegen. Die geometrische
Natur des Ansatzes liefert zudem Schranken für den Betrag der Nullstellen in einem
gegebenen Sektor, die tendenziell besser sind als die Schranken, die für alle Nullstellen
gelten.
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Figure 1. Zero exclusion sectors for polynomials of the form
P10
jD0 aj z

j , with aj > 0.

which are excluded from the shaded sector on the top in Figure 1, where the black dots
represent the zeros. This sector only depends on the nonnegativity of the coefficients, i.e.,
it is unaffected by the magnitude of the coefficients. This is shown on the bottom in Fig-
ure 1, where the zeros of 1000 polynomials of the form

P10
jD0 aj z

j , with coefficients aj
uniformly randomly distributed in .0; 10/, are plotted as black dots, clearly showing that
they are excluded from the shaded exclusion sector.

Now consider the lacunary polynomial 2z10 C 3z9 C 5, having a large gap in its
powers between the constant term and z9. Its zeros are �1:3591˙ 0:0676i , �0:7742˙
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Figure 2. Zero exclusion sectors for polynomials of the form a2z
10 C a1z

9 C a0, with aj > 0.

0:7805i , �0:1076˙ 1:0358i , 0:9460˙ 0:3285i , and 0:5448˙ 0:8546i , which, as will be
shown later, must be excluded from several (shaded) sectors shown on the top in Figure 2,
where, as before, the black dots represent the zeros. That these sectors are independent of
the magnitudes of the coefficients is demonstrated on the bottom in Figure 2, where the
zeros of 1000 polynomials of the form a2z

10 C a1z
9 C a0, with coefficients aj uniformly

randomly distributed in .0; 10/, plotted as black dots, are shown to be excluded from the
shaded sectors. In contrast, the aforementioned result from [1, 3] would only yield the
single exclusion sector shaded in lighter grey.
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In the next section, we derive exclusion sectors for lacunary polynomials with nonneg-
ative coefficients, and determine the number of zeros in between exclusion sectors, as well
as bounds on the magnitudes of such zeros.

To avoid trivial situations, we will assume that all polynomials are simple, i.e., that
their powers are not multiples of the same integer q � 2. Polynomials that are not simple
can easily be simplified since

a0 C

kX
jD1

aj z
qmj D a0 C

kX
jD1

ajy
mj ;

where y D zq . Throughout, the convex hull of the points s1; : : : ; sm, which is the smal-
lest convex set containing these points, is denoted by Conv¹s1; : : : ; smº. The argument of
a complex number z is denoted by arg.z/.

2 Exclusion sectors

For future reference, we begin by formally stating and proving that a polynomial of degree
n with nonnegative coefficients cannot have zeros in a sector around the real axis with an
angle of 2�=n. Of the several ways to prove this result, the geometric approach in [2] is
preferable as it will also be useful further on.

Theorem 2.1 (Obrechkoff 1923, Cowling and Thorn 1954). The zeros of the polynomial
p.z/ D akz

nk C ak�1z
nk�1 C � � � C a1z

n1 C a0, with nk > nk�1 > � � � > n1 > n0 D 0,
aj > 0, and k � 2, are excluded from the sector°

z 2 C W jarg.z/j �
�

nk

±
:

Proof. (See [2].) Let � be a zero of p with � D �ei' , � > 0, and 0 < ' � � . WithˆD ei'

and � D
Pk
jD0 aj�

nj , we have

p.�/ D 0 ”
1

�
p.�/ D

a0

�
C

kX
jD1

aj�
nj

�
ˆnj D 0:

This equation is of the form 
0 � 1 C 
1 � ˆ
n1 C � � � C 
k�1 � ˆ

nk�1 C 
k � ˆ
nk , where


j > 0 and
Pk
jD0 
j D 1, which shows that, for � to be a zero of p, the origin has to lie in

the relative interior of Conv.S/, where S D ¹1;ˆn1 ; : : : ; ˆnk º, illustrated in Figure 3 for
k D 4, which is clearly impossible when 0 < nk' � � or 0 < ' � �=nk . The rest of the
theorem follows because the zeros of p occur in complex conjugate pairs.

We now consider zero exclusion sectors for a polynomial with nonnegative coeffi-
cients, exhibiting a large gap between two consecutive powers of the variable. The follow-
ing theorem quantifies the meaning of “large” and derives the resulting exclusion sectors.
Subsequent theorems derive results about the number of zeros in a sector and bounds on
the magnitudes of zeros in a sector.
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n4'
1

0

ˆn1

ˆn2

ˆn3

ˆn4 Conv.S/

Figure 3. Convex hull of powers of a zero.

Theorem 2.2. Let p.z/D a0C
Pk
jD1 aj z

nj , with aj >0, nk >nk�1 > � � �>n1 >n0D 0,
and positive integer k, be simple, let ` be a nonnegative integer, and let 0 < ˛ � 1.

(1) If k � 2, then the following holds.

(a) If n1 �
.2`C1/nk
2.`C1/

, then p has no nonreal zeros in each of the two sectors

.2`C 1/�

n1
� j'j � min

° �

nk � n1
;
2.`C 1/�

n1

±
:

(b) If n1 �
.2`C1/nk
2`C˛C1

, then p has no nonreal zeros in each of the two sectors

.2`C ˛ C 1/�

nk
� j'j � min

° ˛�

nk � n1
;
.2`C ˛ C 2/�

nk

±
:

(2) If k � 3, 1 � s � k � 2, then the following holds.

(a) If nsC1 �max¹2.`C 1/ns;
.2`C1/nkCns

2.`C1/
º, then p has no nonreal zeros in each

of the two sectors

.2`C 1/�

nsC1 � ns
� j'j � min

°2.`C 1/�
nsC1

;
�

nk � nsC1

±
:

(b) If nsC1 �max¹ .2`C˛C1/ns
˛

;
.2`C˛C1/nk
2`C˛C2

º, then p has no nonreal zeros in each
of the two sectors

.2`C ˛ C 1/�

nsC1
� j'j � min

°˛�
ns
;
.2`C ˛ C 2/�

nk

±
:

(3) If k � 2, then the following holds.

(a) If nk � 2.`C 1/nk�1, then p has no nonreal zeros in each of the two sectors

.2`C 1/�

nk � nk�1
� j'j � min

° �

nk�1
;
2.`C 1/�

nk � nk�1

±
:

(b) If nk �
.2`C˛C1/nk�1

˛
, then p has no nonreal zeros in each of the two sectors

.2`C ˛ C 1/�

nk
� j'j � min

° ˛�
nk�1

;
.2`C ˛ C 2/�

nk

±
:



A. Melman 6

ˆnsC1

ˆn1

ˆns ˆnj

1

0

ˆnk ˆnj

ˆnk

1

0

ˆnsC1

ˆn1

ˆns

Figure 4. Convex hull of powers of a zero for Theorem 2.2.

Proof. Let � be a zero of p with � D �ei' , � > 0, and 0 < ' � � . As in the proof of
Theorem 2.1, with ˆ D ei' , we have that p.�/ D 0 is equivalent to requiring that the
origin lies in the relative interior of Conv¹1; ˆn1 ; : : : ; ˆnk º. We consider only ' > 0, as
the corresponding results for ' < 0 follow from the fact that the zeros occur in complex
conjugate pairs.

We start with the proof of part (2) of the theorem. We distinguish two cases that pre-
clude � from being a nonreal zero of p, illustrated by Figure 4.

The first case (left side of Figure 4) corresponds to a situation where ns' � � and
nsC1' is much larger, namely, at least as large as ns' C � , but less than 2� , so that
the origin cannot lie in the interior of the convex hull depicted on the left in Figure 4
as long as nk' � nsC1' C � . In other words, and taking into account that angles are
determined up to a multiple of 2� , � cannot be a zero of p, i.e., the origin cannot strictly
lie in Conv¹1;ˆn1 ; : : : ; ˆnk º, if

ns' � �;

nsC1' � ns' C � C 2`�;

nsC1' � 2� C 2`�;

nk' � nsC1' C �;

where ` is a nonnegative integer, unless all the vertices of the convex hull lie at 1 and �1,
which is only possible when ' D � since p is simple. This means that there can be no
nonreal zeros of p in the sector

.2`C 1/�

nsC1 � ns
� ' � min

° �
ns
;
2.`C 1/�

nsC1
;

�

nk � nsC1

±
; (1)

provided that the upper bound is not smaller than the lower bound. We now show that this
follows immediately from the assumptions of the theorem. We have

.2`C 1/�

nsC1 � ns
�
2.`C 1/�

nsC1
” nsC1 � 2.`C 1/ns;
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.2`C 1/�

nsC1 � ns
�

�

nk � nsC1
” nsC1 �

.2`C 1/nk C ns

2.`C 1/
:

The requirement nsC1 � 2.`C 1/ns implies that

�

ns
�
2.`C 1/�

nsC1

so that �=ns in (1) is superfluous. The conditions on ns , nsC1, and nk therefore ensure
that the sector in (1) is well defined, and part (2) (a) of the theorem follows.

In the second case (right side of Figure 4), for similar reasons as in the first case, �
cannot be a zero of p if

ns' � ˛�;

nsC1' � ˛� C � C 2`�;

nk' � ˛� C 2� C 2`�;

unless, as in the previous case, ' D � . The polynomial p can therefore not have nonreal
zeros in the sector

.2`C ˛ C 1/�

nsC1
� ' � min

°˛�
ns
;
.2`C ˛ C 2/�

nk

±
;

provided, once again, that the upper bound is not smaller than the lower bound. That this
is indeed the case follows directly from the assumptions of the theorem, analogously as
before.

For part (3), corresponding to s D k � 1, the two cases illustrated in Figure 4 are
similar, but simpler. In the first case (on the left in Figure 4), the polynomial p cannot have
nonreal zeros if

nk�1' � �;

nk' � nk�1' C � C 2`�;

nk' � nk�1' C 2� C 2`�;

i.e., if
.2`C 1/�

nk � nk�1
� ' � min

° �

nk�1
;
2.`C 1/�

nk � nk�1

±
:

Part (3) (a) then follows since the sector is well defined under the assumptions of the the-
orem. For the second case (on the right in Figure 4), we have that p cannot have nonreal
zeros if

nk�1' � ˛�;

nk' � ˛� C � C 2`�;

nk' � ˛� C 2� C 2`�;

i.e., if
.2`C ˛ C 1/�

nk
� ' � min

° ˛�
nk�1

;
.2`C ˛ C 2/�

nk

±
;

which is well defined, as before, under the assumptions of the theorem. Part (3) (b) then
follows.
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For part (1), corresponding to s D 0, we consider the reverse polynomial

p#.�/ D �nkp.1=�/ D a0�
nk C a1�

nk�n1 C � � � C ak�1z
nk�nk�1 C ak ;

whose zeros are the reciprocals of those of p, and we exploit the fact that these zeros are
excluded from the same sectors. We can therefore apply part (3) of the theorem to the
polynomial

ak C

kX
jD1

ak�j �
�j ; with �j D nk � nk�j and s D k � 1;

which directly leads to the exclusion sectors in part (1). This completes the proof.

To summarize, Theorem 2.2 derives exclusion sectors when a large gap exists between
ns and nsC1, where s ranges from 0 to nk�1. Part (1) of the theorem deals with s D 0,
part (2) deals with 1 � s � k � 2, and part (3) treats the case s D k � 1. The sectors are
independent of the magnitudes of the coefficients.

The conditions on the powers of the polynomial in Theorem 2.2 impose obvious upper
bounds on the nonnegative integer `. As just one example, let us take the case (2) (a) of
Theorem 2.2:

nsC1 � 2.`C 1/ns H) ` �
nsC1

2ns
� 1:

Similar upper bounds on ` can be obtained for the other cases of the theorem.
Determining the exclusion sectors requires almost no computational effort and, in fact,

could even be determined by hand. Although beyond our scope here, possible extensions
of Theorem 2.2 could be to incorporate more than one gap in the powers of the variable, or
to allow different sign restrictions on the coefficients, or to consider complex coefficients.

The converse of the Theorem 2.2 is not true, namely, zeros being excluded from cer-
tain sectors does not imply that the polynomial is lacunary. Consider, e.g., the polynomials
4z6C 5z5C 3z4C z3C z2C zC 4, with zeros�1:0377˙ 0:5171i ,�0:2402˙ 0:9751i ,
and 0:6529˙ 0:5580i , and 4z6 C 5z5 C 4, with zeros �1:1890˙ 0:3402i , �0:1614˙
0:9177i , and 0:7254˙ 0:4763i . In both cases, the zeros are very similar with wide exclu-
sion sectors separating them. However, one polynomial is lacunary and the other is not.
It is possible that a converse could be formulated stating that, given certain sectors, there
must exist a lacunary polynomial whose zeros are excluded from them. However, proving
such a converse, if true, requires a separate study.

Example 1. Consider the polynomial

a5z
15
C a4z

14
C a3z

3
C a2z

2
C a1z C a0; where aj > 0;

exhibiting a significant gap in its powers between z3 and z14. On the top in Figure 5
are shown the zero exclusion sectors (shaded regions) for this polynomial, along with the
zeros (black dots) of 1000 such polynomials whose coefficients are uniformly randomly
distributed in .0; 10/ as a test of the theory, namely, to demonstrate that these sectors are
truly exclusion sectors, and that they only depend on the sign of the coefficients. The sector
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Figure 5. Exclusion sectors for Example 1.

centred around the positive real axis, shaded in lighter grey, is obtained from Theorem 2.1,
while the four additional sectors are obtained from Theorem 2.2 with s D 3 and ˛ D 1. On
the bottom in Figure 5, the same is done for the polynomial

a5z
14
C a4z

9
C a3z

3
C a2z

2
C a1z C a0;

for which the result is clearly less satisfactory, due to the relatively large difference be-
tween the two leading powers, creating a second gap between the powers.
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Knowledge about exclusion sectors allows one to easily determine the number of zeros
in certain sectors, as shown in the next theorem. We call a sector degenerate if its defining
upper and lower limits coincide.

Theorem 2.3. Let p.z/ D
Pk
jD0 aj z

nj , with aj > 0, nk > nk�1 > � � � > n1 > n0 D 0,
and integer k � 2, be simple, and let � be the lower limit of a nondegenerate exclusion
sector from Theorem 2.2 with �=nk < � < � . Then p hasjnk� � �

2�

k
C 1

zeros in each of the two open sectors defined by
�

nk
< j'j < �: (2)

Proof. The proof relies on the fact that the zeros of a polynomial are continuous functions
of its coefficients. Define q".z/ D akznk C a0 C "

Pk�1
jD1 aj z

nj so that q1 D p. The poly-
nomials p and q" have the same exclusion sectors defined by Theorems 2.1 and 2.2 for
" > 0. The zeros of q0 are given by�a0

ak

�1=nk
ei.2jC1/�=nk ; j D 0; 1; : : : ; nk � 1;

and when " continuously increases from 0 to 1, the set S comprised of the zeros of q" that
lie in the closure of the sector defined in (2) change continuously into those zeros of p that
lie in the open sector, since the two exclusion sectors with upper and lower limits �=nk
and � , respectively, cannot contain any zeros. As a result, the zeros in S that are changing
with increasing " cannot migrate outside this sector, nor can zeros that are not in S migrate
into the sector.

We now determine the number of zeros of q0 that lie in the closure of the sector defined
in (2). Other than ei�=nk , that sector contains j zeros of q0, all of which are complex
because � < � , where j is the largest number satisfying

.2j C 1/�

nk
� � H) j �

nk� � �

2�
;

from which the proof follows since j is an integer.

We remark that the sectors defined in (2) can contain additional zero exclusion sectors,
and we also observe that exclusion sectors for the nonreal zeros of p, which are also exclu-
sion sectors for the nonreal zeros of q" with " > 0 (as defined in the above proof), cannot
contain any nonreal zeros of q0 D anz

nk C a0 in their interior since such zeros would
not be able to continuously migrate out of such an exclusion sector when " continuously
increases from 0. As a result, the width (in radians) of an exclusion sector for nonreal zeros
can never exceed 2�=nk (the angle between consecutive zeros of q0), unless q0 has a real
negative zero and the exclusion sector terminates at ' D � , in which case the sectors in
the upper and lower complex plane are joined.

In the following theorem, we derive a lower bound on the magnitudes of the zeros in
a sector.
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Theorem 2.4. Let p.z/ D
Pk
jD0 aj z

nk , with aj > 0, nk > nk�1 > � � � > n1 > n0 D 0,
and positive integer k � 2, be simple, and let � 2 R with � � �=ns , where 0 � s � k � 1
with the convention that �=n0 DC1. Then a lower bound on the magnitudes of the zeros
of p in the sectors

�

nk
< j'j � � (3)

is given by the unique positive solution of

kX
jDsC1

aj z
nj � cos

�ns�
2

�
�

sX
jD0

aj z
nj D 0: (4)

Proof. Let �=nk < ' � � , which implies that ns' � � . As before, one only needs to
consider ' > 0. We begin with the case s ¤ 0 and define

�1 D

sX
jD0

aj�
nj ; S1 D Conv¹1;ˆn1 ; : : : ; ˆns º;

�2 D

kX
jDsC1

aj�
nj ; S2 D Conv¹ˆnsC1 ; : : : ; ˆnk º;

where ˆ D ei' . Let � D �ei' be a zero of p with argument ', where ' satisfies (3). Then
the equation p.�/ D 0 can be written as

�
�2

�1

 
kX

jDsC1

aj�
nj

�2
ˆnj

!
D

sX
jD0

aj�
nj

�1
ˆnj 2 S1;

i.e., for � to be a zero of p, it must be possible for a point x 2 S2 to be multiplied by
a negative number so that the result lies in S1. With the help of Figure 6, one observes that
this is only possible if x lies in the bottom unit semidisk and if �2jxj=�1 � �, where � is
the minimal distance between the origin and S1.

Since jxj � 1, a necessary condition for � to be a zero of p is that �2=�1 � �, which
is equivalent to requiring that � satisfies

kX
jDsC1

aj�
nj ��

sX
jD0

aj�
nj � 0: (5)

In other words, � cannot be smaller than the unique positive root of (5), which is therefore
a lower bound on the magnitude of �.

Figure 6 shows that � is the height of an isosceles triangle whose equal sides are
of length 1. Since the triangle’s interior angle at the origin is ns', we have that � D
cos .ns'=2/. The smaller the value of�, the smaller the unique root of (5), and this smaller
value is obtained for the largest value of ', given by the upper bound in (3). Since we are
obtaining a lower bound, we need to consider the worst case possible so that the proof
follows by substituting this upper bound for ' in the expression for �.
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ˆnsC1

ˆn1

ˆns ˆni

1

0

ˆnj

ˆnsC2

ˆnk

�

Figure 6. Convex hull of powers of a zero for Theorem 2.4.

When s D 0, equation (4) becomes

�a0 C

kX
jD1

aj z
nj D 0:

This is a well-known result, usually attributed to Cauchy, namely, that the unique positive
root of this equation is a lower bound on the magnitude of all the zeros of p. This completes
the proof.

Remarks. An upper bound can be obtained by applying Theorem 2.4 to the reverse
polynomial p#.z/ D znkp.1=z/, whose zeros are the reciprocals of those of p. The real
polynomial equation (4) that produces the bound can easily be solved for its unique pos-
itive root using a simple iterative method such as, e.g., Newton’s method, which, in this
case, is guaranteed to converge from any point to the right of that root.

Example 2. Consider the polynomial 5z26 C 5z24 C 9z23 C 10z5 C 10z2 C 2z C 9. On
the top in Figure 7 are shown the exclusion sector from Theorem 2.1 in lighter grey, and
the exclusion sectors from Theorem 2.2 with s D 3 and ˛ D 1 in darker grey. The black
dots represent the zeros of the polynomial. The disjoint sectors H1 and H2 in between the
exclusion sectors from Theorem 2.2 are defined by

H1 D ¹' W 0:1208 < ' < 0:1745º and H2 D ¹' W 0:3625 < ' < 0:5236º:

According to Theorem 2.3, there are two zeros inH1 [H2 and a single zero inH1, which
means that H2 also contains a single zero. The lower bounds on the magnitudes of the
zeros that lie inH1 andH2 from Theorem 2.4 (the zeros 1:0109C 0:1409i with magnitude
1:0207, and 0:9252C 0:4070i with magnitude 1:0108, respectively) are given by 1:0022
and 0:9462, respectively. The lower bound from Cauchy’s result, mentioned at the end
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Figure 7. Exclusion sectors and bounds for Example 2.

of the proof of Theorem 2.4, which is valid for the magnitudes of all zeros, is 0:73406,
a worse bound. The corresponding upper bounds obtained by applying Theorem 2.4 to the
reverse polynomial are given by 1:0393 and 1:0245, respectively, which is significantly
better than the Cauchy bound (see [4, Definition 8.1.2]), given by 1:4872. The latter is an
upper bound on all the zeros of p, optimal over all bounds dependent only on the moduli
of the coefficients. The exclusion region that takes into consideration the aforementioned
bounds is shown on the bottom in Figure 7, shaded in lighter grey to make the zeros more
visible.
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Conclusion

We have derived zero exclusion regions for lacunary polynomials with positive coeffi-
cients, as well as results about the number of zeros in between such regions and bounds
on their magnitudes. The geometric approach used here could conceivably be extended to
obtain similar results for real polynomials with different sign restrictions on their coef-
ficients, as well as polynomials with complex coefficients. We also mention that it is
sometimes possible to cast a polynomial into a desired form with an appropriate trans-
formation of the variable.
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