Nuclear operators on the space $C_{\rm rc}(X,E)$ of vector-valued continuous functions

Marian Nowak

Abstract. Let X be a completely regular Hausdorff space and E and F be Banach spaces. Let $C_{\rm rc}(X,E)$ denote the Banach space of all continuous functions $f:X\to E$ such that f(X) is a relatively compact set in E. Let β_{σ} be the strict topology on $C_{\rm rc}(X,E)$. We characterize the nuclearity of a $(\beta_{\sigma},\|\cdot\|_F)$ -continuous operator $T:C_{\rm rc}(X,E)\to F$ in terms of its representing operator-valued Baire measure. As an application, we establish the relationship between the nuclearity of a $(\beta_{\sigma},\|\cdot\|_F)$ -continuous operator $T:C_{\rm rc}(X,E)\to F$ and the nuclearity of its conjugate operator T'.

1. Introduction and terminology

Throughout the paper, let $(E, \|\cdot\|_E)$ and $(F, \|\cdot\|_F)$ be real Banach spaces and E' and F' denote the Banach duals of E and F, respectively. By $\mathcal{L}(E, F)$ we denote the Banach space of all bounded linear operators $U: E \to F$, equipped with the operator norm $\|\cdot\|$. Given a locally convex space (L, ξ) , by $(L, \xi)'$ we denote its topological dual.

Now, we recall terminology concerning operator-valued measures (see [5,6]). Assume that \mathcal{F} is an algebra of subsets of a set X and $m: \mathcal{F} \to \mathcal{L}(E, F)$ is a finitely additive measure. By $\tilde{m}(A)$ we denote the *semivariation* of m on $A \in \mathcal{F}$; that is,

$$\tilde{m}(A) := \sup \left\| \sum m(A_i)(x_i) \right\|_F,$$

where the supremum is taken over all finite \mathcal{F} -partitions (A_i) of A and $x_i \in E$, $||x_i||_E \le 1$, for each i. By |m|(A) we denote the *variation* of m on $A \in \mathcal{F}$; that is, $|m|(A) := \sup \Sigma ||m(A_i)||$, where the supremum is taken over all finite \mathcal{F} -partitions (A_i) of A. For $y' \in F'$, let $m_{y'} : \mathcal{F} \to E'$ be the measure defined by

$$m_{y'}(A)(x) := y'(m(A)(x))$$
 for all $A \in \mathcal{F}, x \in E$.

Note that, for a finitely additive measure $\mu : \mathcal{F} \to E'$, we have $\widetilde{\mu}(A) = |\mu|(A)$ for $A \in \mathcal{F}$ (see [5, Section 4, Proposition 4, p. 54]). For $x \in E$, let

$$\mu_x(A) := \mu(A)(x) \text{ for } A \in \mathcal{F}.$$

Mathematics Subject Classification 2020: 47B10 (primary); 46G10, 46A70 (secondary). Keywords: spaces of vector-valued continuous functions, strict topologies, operator-valued Baire measures, Radon–Nikodym property, nuclear operators, tensor products.

The concept of a nuclear operator between Banach spaces is due to Ruston [29] (see also [40, p. 279], [4, 7, 21, 22, 30] for more details). Grothendieck [8, 9] carried over the concept of a nuclear operator to locally convex spaces (see also [40, p. 289], [21], [33, Chapter 3, Section 7], [11, 38]).

In particular, for X a compact Hausdorff space, nuclear operators $T:C(X)\to F$ have been studied intensively (see [4,10,21,22,30,37]). According to Tong [37, Theorem 1.2], a linear operator $T:C(X)\to F$ is nuclear if and only if T is Bochner representable (see also [4], Theorem 4, pp. 173–174], [30], Proposition 5.30]). Nuclear operators $T:C(X,E)\to F$ have been studied intensively by Alexander [1], Bilyeu and Lewis [3], Saab and Smith [32], Smith [34], Saab [31], and Popa [24,25,27,28]. The study of nuclear operators $T:C(X,E)\to F$ was initiated by Alexander [1], where some of the known results in scalar case, we extended. Bilyeu and Lewis [3] showed that if $T:C(X,E)\to F$ is nuclear, then its representing measure M takes values in the Banach space M(E,F) of all nuclear operators from E to F. Saab and Smith [32] and Popa [24] established the relationship between nuclear operators $T:C(X,E)\to F$ and their representing operator-valued Borel measures.

From now on, we assume that X is a completely regular Hausdorff space. Let $C_{\rm rc}(X,E)$ stand for the Banach space of all continuous functions $f:X\to E$ such that f(X) is a relatively compact set in E, equipped with the topology τ_u of the supremum norm $\|\cdot\|$. By $C_{\rm rc}(X,E)'$ and $C_{\rm rc}(X,E)''$ we denote the Banach dual and the Banach bidual of $C_{\rm rc}(X,E)$, respectively. We write $C_b(X)$ instead of $C_{\rm rc}(X,\mathbb{R})$.

A subset H of $C_{rc}(X, E)$ is said to be *solid* whenever $||f_1(t)||_E \le ||f_2(t)||_E$ for all $t \in X$, $f_1 \in C_{rc}(X, E)$, $f_2 \in H$ imply $f_1 \in H$. A linear topology τ on $C_{rc}(X, E)$ is said to be *locally solid* if it has a local base at 0 consisting of solid sets (see [18, Definition 2.1], [17, Section 8]).

The *strict topology* β_{σ} (denoted also by β_1) on the space $C_{\rm rc}(X, E)$ plays an important role in the topological measure theory (see [13–18] for definitions and more details).

Now, we recall a definition of the strict topology β_{σ} on $C_{\rm rc}(X,E)$. Let βX stand for the Stone-Čech compactification of X and \mathcal{C}_{σ} denote the family of all the zero sets of continuous functions on $\beta X \setminus X$. For a set $Q \in \mathcal{C}_{\sigma}$, let $C_Q(X) := \{v \in C_b(X) : \bar{v}|_Q \equiv 0\}$, where \bar{v} denotes the unique extension of $v \in C_b(X)$ on βX . For each $v \in C_Q(X)$, let us define

$$\rho_v(f) := \sup_{t \in X} |v(t)| \|f(t)\|_E \quad \text{for } f \in C_{rc}(X, E).$$

By β_Q we denote the locally convex Hausdorff topology on $C_{\rm rc}(X,E)$ defined by the family of seminorms $\{\rho_v:v\in C_Q(X)\}$. The strict topology β_σ on $C_{\rm rc}(X,E)$, defined by \mathcal{C}_σ , is the greatest lower bound (in the class of all locally convex Hausdorff topologies on $C_{\rm rc}(X,E)$) of the topologies β_Q as Q runs over \mathcal{C}_σ (see [18, p. 181], [13, p. 322]). Then, β_σ is a locally convex-solid topology on $C_{\rm rc}(X,E)$ (see [18, Proposition 2.7]).

It is known that $\beta_{\sigma} \subset \tau_u$ and $\beta_{\sigma} = \tau_u$ if X is pseudocompact (see [13, Theorem 4.3]). The strict topology β_{σ} is a σ -Dini topology; that is, $f_n \to 0$ in β_{σ} whenever (f_n) is a sequence $C_{rc}(X, E)$ such that $||f_n(t)||_E \downarrow_n 0$ for all $t \in X$; and β_{σ} is the finest locally

convex-solid topology on $C_{rc}(X, E)$ with this property (see [18, Corollary 2.9], [39, Corollary 11.16]).

Recall that a linear operator $T: C_{rc}(X, E) \to F$ is said to be *nuclear* between the Banach spaces $C_{rc}(X, E)$ and F if there exist a bounded sequence (Φ_n) in $C_{rc}(X, E)'$, a bounded sequence (y_n) in F, and a sequence $(\alpha_n) \in \ell^1$ so that

$$T(f) = \sum_{n=1}^{\infty} \alpha_n \Phi_n(f) y_n \quad \text{for } f \in C_{rc}(X, E)$$
 (1.1)

(see [40, p. 279] and [35]). The nuclear norm $||T||_{\text{nuc}}$ of T is defined by

$$||T||_{\text{nuc}} := \inf \left\{ \sum_{n=1}^{\infty} |\alpha_n| ||\Phi_n|| ||y_n||_F \right\},$$

where the infimum is taken over all sequences (Φ_n) in $C_{rc}(X, E)'$ and (y_n) in F and $(\alpha_n) \in \ell^1$ such that T admits a representation (1.1). Every nuclear operator

$$T: C_{\rm rc}(X,E) \to F$$

is compact.

Let $\mathcal{N}(E, F)$ denote the Banach space of all nuclear operators $U: E \to F$, equipped with the nuclear norm $\|\cdot\|_{\text{nuc}}$ (see [21, Proposition, p. 51]). Then, we have $\|U\| \leq \|U\|_{\text{nuc}}$ for $U \in \mathcal{N}(E, F)$.

A linear operator $T: C_{rc}(X, E) \to F$ is called a *nuclear operator* between the locally convex space $(C_{rc}(X, E), \beta_{\sigma})$ and the Banach space F if there exist a β_{σ} -equicontinuous sequence (Φ_n) in $(C_{rc}(X, E), \beta_{\sigma})'$, a bounded sequence (y_n) in F, and a sequence $(\alpha_n) \in \ell^1$ so that

$$T(f) = \sum_{n=1}^{\infty} \alpha_n \Phi_n(f) y_n \quad \text{for } f \in C_{rc}(X, E)$$

(see [40, p. 289] and [35, 38] for more details). Every $(\beta_{\sigma}, \|\cdot\|_F)$ -nuclear operator is $(\beta_{\sigma}, \|\cdot\|_F)$ -compact and hence T is $(\beta_{\sigma}, \|\cdot\|_F)$ -continuous.

The problem of integral representation of different classes of linear operators $T: C_{rc}(X, E) \to F$ has been studied by Katsaras and Liu [15] and Nowak [18, 19]. The aim of this paper is to establish the relationship between the nuclearity of $(\beta_{\sigma}, \|\cdot\|_F)$ -continuous nuclear operators $T: C_{rc}(X, E) \to F$ and their representing operator-valued Baire measures (see Theorem 4.3, Theorem 4.5, and Corollary 4.6 below). Moreover, as an application, we establish the relationship between the nuclearity of a $(\beta_{\sigma}, \|\cdot\|_F)$ -continuous operator $T: C_{rc}(X, E) \to F$ and the nuclearity of its conjugate operator T' (see Corollary 4.11 below).

Remark 1.1. Let $C_b(X, E)$ be the space of all bounded continuous functions $f: X \to E$, equipped with the tight strict topology β . Then, the nuclear operators

$$T: C_b(X, E) \to F$$

between the locally convex space $(C_b(X, E), \beta)$ and the Banach space F have been studied by Nowak and Stochmal [20] and Stochmal [36].

2. Integration in the space $C_{rc}(X, E)$

We recall the terminology concerning spaces of Baire measures and study the problem of integration of functions in $C_{rc}(X, E)$ with respect to Baire vector measures (see [12, 14–16] for more details).

Recall that a zero set in X is of the form $Z = \{t \in X : u(t) = 0\}$, where $u \in C_b(X)$. Let \mathcal{B} (resp., $\mathcal{B}a$) be the algebra (resp., σ -algebra) of Baire sets in X, which is the algebra (resp., σ -algebra) generated by the class \mathcal{Z} of all zero sets in X.

Let M(X) stand for the space of all finitely additive real-valued zero-set regular measures on \mathcal{B} , that is, $\nu \in M(X)$, if for every $A \in \mathcal{B}$ and $\varepsilon > 0$ there exists $Z \in \mathcal{Z}$ with $Z \subset A$ such that $|\nu|(A \setminus Z) \le \varepsilon$. Then, M(X) with the norm $||\nu|| := |\nu|(X)$ is a Dedekind complete Banach lattice (see [39, p. 114]).

Following [13], by M(X, E') we denote the set of all finitely additive measures $\mu : \mathcal{B} \to E'$ with $|\mu|(X) < \infty$ and such that $\mu_x \in M(X)$ for each $x \in E$.

Note that if $\mu \in M(X, E')$, then $|\mu| \in M(X)$ (see [13, p. 314]).

Let $A \in \mathcal{B}$ and $\mu \in M(X, E')$. Following [12], for $f \in C_{rc}(X, E)$, one can define a *Riemann–Stieltjes-type integral* on $A \in \mathcal{B}$ with respect to μ by

$$(RS) \int_{A} f(t) d\mu := \lim \sum \mu(A_i) f(t_i),$$

where the limit is taken over the directed set of all finite \mathcal{B} -partitions (A_i) of A and $t_i \in A_i$ (see also [13–16] for more details).

According to Katsaras [12, Theorem 2.5], $C_{rc}(X, E)'$ can be identified with M(X, E') through the linear mapping $M(X, E') \ni \mu \mapsto \Phi_{\mu} \in C_{rc}(X, E)'$, where

$$\Phi_{\mu}(f) = (RS) \int_{X} f(t) d\mu \quad \text{for } f \in C_{rc}(X, E) \text{ and } \|\Phi_{\mu}\| = |\mu|(X).$$

It follows that M(X, E'), equipped with the norm $\|\mu\| := |\mu|(X)$, is a Banach space.

By $B(\mathcal{B}, E)$ we denote the Banach space of totally \mathcal{B} -measurable functions $g: X \to E$ (= the uniform limits of sequences of E-valued \mathcal{B} -simple functions on X), equipped with the uniform norm $\|\cdot\|$ (see [5,6]). Then, we have (see [17, p. 196])

$$C_b(X) \otimes E \subset C_{rc}(X, E) \subset B(\mathcal{B}, E).$$
 (2.1)

Recall that $C_b(X) \otimes E$ is the linear span of all functions $u \otimes x$, where $u \in C_b(X)$ and $x \in E$ and $(u \otimes x)(t) = u(t)x$ for all $t \in X$.

Since $C_b(X) \otimes E$ is a dense subset of the Banach space $C_{rc}(X, E)$ (see [12, Lemma 2.2]), one can easily show that, for each $\mu \in M(X, E')$, we have

$$(RS)\int_X f(t) d\mu = \int_X f(t) d\mu \quad \text{for } f \in C_{rc}(X, E),$$

where $\int_X f(t)d\mu$ denotes the so-called *immediate integral* of f with respect to μ (see [5, Section 9] for more details).

Let $M_{\sigma}(X)$ denote the subspace of M(X) of all σ -additive Baire measures ν , that is, $\nu(Z_n) \to 0$ if $Z_n \downarrow \emptyset$, $Z_n \in \mathbb{Z}$. It is known that, for $\nu \in M(X)$, $\nu \in M_{\sigma}(X)$ if and only if ν is countably additive on the algebra \mathcal{B} (see [39, Section 6.2, pp. 117–118]).

Let

$$M_{\sigma}(X, E') := \{ \mu \in M(X, E') : \mu_x \in M_{\sigma}(X) \text{ for each } x \in E \}.$$

According to [13, Theorem 4.7], we have the following result.

Theorem 2.1. For $\mu \in M(X, E')$, the following statements are equivalent.

- (i) $\mu \in M_{\sigma}(X, E')$.
- (ii) $\Phi_{\mu} \in (C_{rc}(X, E), \beta_{\sigma})'$.

It follows that $M_{\sigma}(X, E')$ is a Banach space because $(C_{rc}(X, E), \beta_{\sigma})'$ is a closed subspace of the Banach space $C_{rc}(X, E)'$ (see [14, Corollary 2.5]).

In view of [18, Corollary 3.2 and Proposition 3.5] and [39, Theorem 11.14, p. 142], we get the following result.

Theorem 2.2. Let \mathcal{M} be a subset of $M_{\sigma}(X, E')$. Then, the following statements are equivalent.

- (i) $\{\Phi_{\mu} : \mu \in \mathcal{M}\}\ is\ \beta_{\sigma}$ -equicontinuous.
- (ii) $\sup_{\mu \in \mathcal{M}} |\mu|(X) < \infty \text{ and } \sup_{\mu \in \mathcal{M}} |\mu|(Z_n) \to 0 \text{ if } Z_n \downarrow \emptyset, Z_n \in \mathcal{Z}.$

By $M_{\sigma}(X, \mathcal{L}(E, F))$ we denote the space of all finitely additive measures $m : \mathcal{B} \to \mathcal{L}(E, F)$ with $\tilde{m}(X) < \infty$ such that $m_{v'} \in M_{\sigma}(X, E')$ for each $y' \in F'$.

Following [13, 15], by $M_{\sigma}(\mathcal{B}a)$ we denote the space of all countably additive real-valued zero-set regular measures on $\mathcal{B}a$.

Remark 2.3. Note that every real-valued countably additive measure ν on $\mathcal{B}a$ must be zero-set regular; that is, $\nu \in M_{\sigma}(\mathcal{B}a)$ (see [39, p. 118]).

By $M_{\sigma}(\mathcal{B}a, E')$ we denote the space of all finitely additive measures $\mu : \mathcal{B}a \to E'$ with $|\mu|(X) < \infty$ such that $\mu_X \in M_{\sigma}(\mathcal{B}a)$ for each $X \in E$.

The following result will be needed.

Proposition 2.4. The following statements hold.

- (i) If $\mu \in M_{\sigma}(\mathcal{B}a, E')$, then $|\mu| \in M_{\sigma}(\mathcal{B}a)^+$.
- (ii) If $\mu \in M_{\sigma}(X, E')$, then μ possesses a unique extension $\overline{\mu} \in M_{\sigma}(\mathcal{B}a, E')$ and $|\overline{\mu}|(A) = |\mu|(A)$ for $A \in \mathcal{B}$.

Proof. (i) See [13, Lemma 2.1].

(ii) In view of [13, Theorem 2.5], μ possesses a unique extension $\overline{\mu} \in M_{\sigma}(\mathcal{B}a, E')$ and $|\overline{\mu}|(X) = |\mu|(X)$. According to [4, Corollary 10, p. 4], we have $|\overline{\mu}|(A) = |\mu|(A)$ for $A \in \mathcal{B}$.

By $M_{\sigma}(\mathcal{B}a, \mathcal{L}(E, F))$ we denote the space of all measures $m : \mathcal{B}a \to \mathcal{L}(E, F)$ with $\tilde{m}(X) < \infty$ such that $m_{y'} \in M_{\sigma}(\mathcal{B}a, E')$ for each $y' \in F'$.

3. Integral representation of operators on $C_{\rm rc}(X,E)$

In this section, we collect basic results concerning integral representation of weakly compact operators $T: C_{rc}(X, E) \to F$ (see [15, 18, 19]).

Since $C_{rc}(X, E) \subset B(\mathcal{B}, E)$, one can embed $B(\mathcal{B}, E)$ into $C_{rc}(X, E)''$ by the mapping $\pi : B(\mathcal{B}, E) \to C_{rc}(X, E)''$, where, for $g \in B(\mathcal{B}, E)$,

$$\pi(g)(\Phi_{\mu}) = \int_X g(t) d\mu \quad \text{for } \mu \in M(X, E').$$

Then, for $g \in B(\mathcal{B}, E)$ and $\mu \in M(X, E')$, we have

$$|\pi(g)(\Phi_{\mu})| = \left| \int_X g(t) d\mu \right| \le ||g|| ||\mu|(X)| = ||g|| ||\Phi_{\mu}||,$$

and hence, π is bounded and $\|\pi(g)\| \leq \|g\|$; that is, $\|g\| \leq 1$.

Let $i_F : F \to F''$ stand for the canonical embedding, i.e., $i_F(y)(y') = y'(y)$ for $y \in F$, $y' \in F'$. Moreover, let $j_F : i_F(F) \to F$ denote the left inverse of i_F ; that is,

$$j_F \circ i_F = i d_F$$
.

Now, assume that $T: C_{rc}(X, E) \to F$ is a weakly compact linear operator. Let

$$T': F' \to C_{rc}(X, E)'$$
 and $T'': C_{rc}(X, E)'' \to F''$

stand for the conjugate and biconjugate operators of T, respectively. Then, $T'(y') := y' \circ T$ for $y' \in F'$ and $T''(\varphi)(y') := \varphi(y' \circ T)$ for $\varphi \in C_{rc}(X, E)''$. Due to the Gantmacher theorem (see [2, Theorem 17.2]), we have that $T''(C_{rc}(X, E)'') \subset i_F(F)$. Let us define

$$\widehat{T} := j_E \circ T'' \circ \pi : B(\mathcal{B}, E) \to F.$$

Then, \hat{T} is a weakly compact operator, and we define its *representing measure* $m:\mathcal{B}\to\mathcal{L}(E,F)$ by

$$m(A)(x) := \hat{T}(\mathbb{1}_A \otimes x) \quad \text{for } A \in \mathcal{B} \text{ and } x \in E.$$
 (3.1)

Thus, it follows that, for $g \in B(\mathcal{B}, E)$, we have

$$\widehat{T}(g) = \int_X g(t) dm$$
 and $\|\widehat{T}\| = \widetilde{m}(X)$,

where $\int_X g(t) dm$ denotes the so-called *immediate integral* of g with respect to m (see [5, Section 9], [6, Section 1, pp. 10–11]). Then, for $f \in C_{rc}(X, E)$, we have

$$T(f) = \int_{Y} f(t) dm$$
 and $||T|| = \tilde{m}(X)$,

and, for each $y' \in F'$, $y'(T(f)) = \int_X f(t) dm_{y'}$.

The following result will be of importance.

Theorem 3.1. Assume that $T:C_{rc}(X,E) \to F$ is a weakly compact $(\beta_{\sigma}, \|\cdot\|_F)$ -continuous operator and $m: \mathcal{B} \to \mathcal{L}(E,F)$ is its representing measure. Then, the following statements hold.

- (i) $m \in M_{\sigma}(X, \mathcal{L}(E, F)).$
- (ii) m has a unique extension $\bar{m} \in M_{\sigma}(\mathcal{B}a, \mathcal{L}(E, F))$ such that $\tilde{\tilde{m}}(X) = \tilde{m}(X) = \|T\|$.

Proof. (i) It follows from Theorem 2.1 because $y' \circ T \in (C_{rc}(X, E), \beta_{\sigma})'$.

(ii) Since $\hat{T}: B(\mathcal{B}, E) \to F$ is weakly compact, we have that, for every $x \in E$, the set $\{m(A)(x): A \in \mathcal{B}\}$ is weakly compact in F. Hence, in view of [15, Theorem 7], m has a unique extension $\bar{m} \in M_{\sigma}(\mathcal{B}a, \mathcal{L}(E, F))$ with $\tilde{m}(X) = \tilde{m}(X) = ||T||$.

4. Nuclear operators on $C_{\rm rc}(X,E)$

In this section, we establish the relationship between the nuclearity of weakly compact $(\beta_{\sigma}, \|\cdot\|_F)$ -continuous operators $T: C_{rc}(X, E) \to F$ and the properties of their representing measures $m: \mathcal{B} \to \mathcal{L}(E, F)$.

For $v \in ca(\mathcal{B}a)^+$ and a Banach space $(G, \|\cdot\|_G)$, let $L^1(v, G)$ be the Banach space of v-equivalence classes of all v-Bochner integrable functions $g: X \to G$, equipped with the norm

$$||g||_1 := \int_Y ||g(t)||_G dv.$$

We will need the following lemma.

Lemma 4.1. For $v \in M_{\sigma}(\mathcal{B}a)^+$ and $g \in L^1(v, E')$, let $\mu(B) = \int_B g(t) dv$ for $B \in \mathcal{B}a$. Then, $\mu \in M_{\sigma}(\mathcal{B}a, E')$ and $\int_X f(t) d\mu = \int_X g(t)(f(t)) dv$ for $f \in C_{rc}(X, E)$.

Proof. Note that $\mu: \mathcal{B}a \to E'$ is a countably additive measure and

$$|\mu|(X) = \int_X \|g(t)\|_{E'} d\nu < \infty$$

(see [4, Theorem 4, p. 46]). Hence, $|\mu|$ is countably additive and $|\mu| \in M_{\sigma}(\mathcal{B}a)^+$ (see Remark 2.3). It follows that $\mu \in M_{\sigma}(\mathcal{B}a, E')$.

Assume that $f \in C_{rc}(X, E)$. Since $C_{rc}(X, E) \subset B(\mathcal{B}, E)$ (see (2.1)), we can choose a sequence (s_n) of E-valued \mathcal{B} -simple functions on X such that $||f - s_n|| \stackrel{n}{\to} 0$. Note that

$$\int_X s_n(t) d\mu = \int_X g(t)(s_n(t)) d\nu.$$

Then, we have

$$\int_X f(t) d\mu = \lim_n \int_X s_n(t) d\mu = \lim_n \int_X g(t)(s_n(t)) d\nu.$$

On the other hand, we have

$$\left| \int_{X} g(t)(f(t)) dv - \int_{X} g(t)(s_{n}(t)) dv \right| \leq \int_{X} |g(t)(f(t) - s_{n}(t))| dv$$

$$\leq \int_{X} ||g(t)||_{E'} ||f(t) - s_{n}(t)||_{E} dv$$

$$\leq ||f - s_{n}|| \int_{X} ||g(t)||_{E'} dv \xrightarrow{n} 0.$$

Thus, it follows that $\int_X f(t) d\mu = \int_X g(t)(f(t)) d\nu$.

Remark 4.2. A similar result as in Lemma 4.1 appears in the proof of Theorem 2 in [26] and in [23].

Now, we can state our main result.

Theorem 4.3. Let $T: C_{rc}(X, E) \to F$ be a weakly compact $(\beta_{\sigma}, \|\cdot\|_F)$ -continuous operator, and let $m: \mathcal{B} \to \mathcal{L}(E, F)$ be its representing measure. Assume that $\bar{m}(B) \in \mathcal{N}(E, F)$ for each $B \in \mathcal{B}a$ and $\bar{m}: \mathcal{B}a \to \mathcal{N}(E, F)$ is a countably additive measure and $|\bar{m}|_{nuc}(X) < \infty$ (with respect to the norm $\|\cdot\|_{nuc}$).

If there exists $H \in L^1(|\bar{m}|_{\text{nuc}}, \mathcal{N}(E, F))$ so that

$$\bar{m}(B) = \int_{B} H(t) d|\bar{m}|_{\text{nuc}} \quad \text{for } B \in \mathcal{B}a,$$

then the following statements hold.

- (i) $T(f) = \int_X H(t)(f(t)) d|\bar{m}|_{\text{nuc}} \text{ for } f \in C_{\text{rc}}(X, E).$
- (ii) T is a nuclear operator between the locally convex space $(C_{rc}(X, E), \beta_{\sigma})$ and the Banach space F.
- (iii) T is a nuclear operator between the Banach spaces $C_{rc}(X, E)$ and F, and

$$||T||_{\text{nuc}} \le |m|_{\text{nuc}}(X) = |\bar{m}|_{\text{nuc}}(X) = \int_X ||H(t)||_{\text{nuc}} d|\bar{m}|_{\text{nuc}}.$$

Proof. (i) Let $f \in C_{rc}(X, F) \subset B(\mathcal{B}, E)$. Then, there exists a sequence (s_n) of E-valued \mathcal{B} -simple functions on X such that $||f - s_n|| \stackrel{n}{\to} 0$. Note that, for $n \in \mathbb{N}$, we have

$$\int_X s_n(t) d\bar{m} = \int_X H(t)(s_n(t)) d|\bar{m}|_{\text{nuc}}.$$

Hence,

$$\left\| \int_{X} H(t)(f(t)) d |\bar{m}|_{\text{nuc}} - \int_{X} H(t)(s_{n}(t)) d |\bar{m}|_{\text{nuc}} \right\|_{F}$$

$$\leq \int_{X} \|H(t)(f(t)) - H(t)(s_{n}(t))\|_{F} d |\bar{m}|_{\text{nuc}} \leq \int_{X} \|H(t)\|_{\text{nuc}} \|f(t) - s_{n}(t)\|_{E} d |\bar{m}|_{\text{nuc}}$$

$$\leq \|f - s_{n}\| \int_{X} \|H(t)\|_{\text{nuc}} d |\bar{m}|_{\text{nuc}} \xrightarrow{n} 0.$$

On the other hand, we get

$$T(f) = \int_X f(t) dm = \lim_n \int_X s_n(t) dm = \lim_n \int_X s_n(t) d\bar{m} = \lim_n \int_X H(t)(s_n(t)) d|\bar{m}|_{\text{nuc}}.$$

Thus, it follows that

$$T(f) = \int_X H(t)(f(t)) d|\bar{m}|_{\text{nuc}}.$$

(ii) Let $L^1(|\bar{m}|_{\text{nuc}}) \hat{\otimes}_{\gamma} \mathcal{N}(E, F)$ denote the projective tensor product of the Banach spaces $L^1(|\bar{m}|_{\text{nuc}})$ and $\mathcal{N}(E, F)$, equipped with the complete projective norm γ (see [4, p. 227]). Note that, for $z \in L^1(|\bar{m}|_{\text{nuc}}) \hat{\otimes}_{\gamma} \mathcal{N}(E, F)$, we have

$$\gamma(z) = \inf \left\{ \sum_{n=1}^{\infty} |\alpha_n| \|v_n\|_1 \|U_n\|_{\text{nuc}} \right\},\,$$

where the infimum is taken over all sequences (v_n) in $L^1(|\bar{m}|_{\text{nuc}})$ and (U_n) in $\mathcal{N}(E, F)$ with $\lim \|v_n\|_1 = 0 = \lim \|U_n\|_{\text{nuc}}$ and $(\alpha_n) \in \ell^1$ such that

$$z = \sum_{n=1}^{\infty} \alpha_n v_n \otimes U_n$$

in γ -norm (see [30, Proposition 2.8, pp. 21–22]).

It is known that $L^1(|\bar{m}|_{\text{nuc}}) \hat{\otimes}_{\gamma} \mathcal{N}(E, F)$ is isometrically isomorphic to the Banach space $L^1(|\bar{m}|_{\text{nuc}}, \mathcal{N}(E, F))$ by the isometry

$$J: L^1(|\bar{m}|_{\text{nuc}}) \widehat{\otimes}_{\gamma} \mathcal{N}(E, F) \to L^1(|\bar{m}|_{\text{nuc}}, \mathcal{N}(E, F)),$$

defined by $J(v \otimes U) := v(\cdot)U$ for $v \in L^1(|\bar{m}|_{\text{nuc}})$ and $U \in \mathcal{N}(E, F)$ (see [4, Example 10, p. 228], [30, Example 2.19, p. 29]).

Let $\varepsilon > 0$ be given. Then, there exist sequences (v_n) in $L^1(|\bar{m}|_{\text{nuc}})$ and (U_n) in $\mathcal{N}(E,F)$ with $\lim_n \|v_n\|_1 = 0 = \lim_n \|U_n\|_{\text{nuc}}$ and $(\alpha_n) \in \ell^1$ so that

$$J^{-1}(H) = \sum_{n=1}^{\infty} \alpha_n v_n \otimes U_n \quad \text{in } L^1(|m|_{\text{nuc}}) \widehat{\otimes}_{\gamma} \mathcal{N}(X, Y)$$

and

$$\sum_{n=1}^{\infty} |\alpha_n| \|v_n\|_1 \|U_n\|_{\text{nuc}} \le \gamma (J^{-1}(H)) + \frac{\varepsilon}{2} = \|H\|_1 + \frac{\varepsilon}{2}. \tag{4.1}$$

Thus, it follows that

$$H = J\left(\sum_{n=1}^{\infty} \alpha_n v_n \otimes U_n\right) = \sum_{n=1}^{\infty} \alpha_n v_n(\cdot) U_n \quad \text{in } L^1(|\bar{m}|_{\text{nuc}}, \, \mathcal{N}(X, Y)).$$

Note that for $f \in C_{rc}(X, E)$, $T(f) = \sum_{n=1}^{\infty} \alpha_n \int_X v_n(t) U_n(f(t)) d|\bar{m}|_{nuc}$. Indeed, using (i), we have

$$\begin{split} & \left\| T(f) - \sum_{i=1}^{n} \alpha_{i} \int_{X} v_{i}(t) U_{i}(f(t)) d |\bar{m}|_{\text{nuc}} \right\|_{F} \\ & \leq \int_{X} \left\| H(t)(f(t)) - \left(\sum_{i=1}^{n} \alpha_{i} v_{i}(t) U_{i} \right) (f(t)) \right\|_{F} d |\bar{m}|_{\text{nuc}} \\ & \leq \int_{X} \left\| H(t) - \sum_{i=1}^{n} \alpha_{i} v_{i}(t) U_{i} \right\|_{\text{nuc}} \| f(t) \|_{E} d |\bar{m}|_{\text{nuc}} \\ & \leq \| f \| \int_{X} \left\| H(t) - \sum_{i=1}^{n} \alpha_{i} v_{i}(t) U_{i} \right\|_{\text{nuc}} \| d |\bar{m}|_{\text{nuc}} \stackrel{n}{\to} 0. \end{split}$$

For every $n \in \mathbb{N}$, we can choose bounded sequences $(x'_{n,k})$ in E' and $(y_{n,k})$ in F and a sequence $(\alpha_{n,k}) \in \ell^1$ so that $U_n(x) = \sum_{k=1}^{\infty} \alpha_{n,k} x'_{n,k}(x) y_{n,k}$ for $x \in E$ and

$$\sum_{k=1}^{\infty} |\alpha_{n,k}| \|x'_{n,k}\|_{E'} \|y_{n,k}\|_{F} \le \|U_{n}\|_{\text{nuc}} + \frac{\varepsilon}{2(\sum_{j=1}^{\infty} |\alpha_{j}| \|v_{j}\|_{1})}.$$
 (4.2)

Then, we have

$$\begin{split} T(f) &= \sum_{n=1}^{\infty} \alpha_n \int_X v_n(t) U_n(f(t)) \, d \, |\bar{m}|_{\text{nuc}} \\ &= \sum_{n=1}^{\infty} \alpha_n \int_X v_n(t) \Bigg(\sum_{k=1}^{\infty} \alpha_{n,k} x'_{n,k}(f(t)) y_{n,k} \Bigg) d \, |\bar{m}|_{\text{nuc}} \\ &= \sum_{n=1}^{\infty} \alpha_n \sum_{k=1}^{\infty} \alpha_{n,k} \|x'_{n,k}\|_{E'} \|y_{n,k}\|_F \Bigg(\int_X v_n(t) \frac{x'_{n,k}(f(t))}{\|x'_{n,k}\|_{E'}} \, d \, |\bar{m}|_{\text{nuc}} \Bigg) \frac{y_{n,k}}{\|y_{n,k}\|_F}. \end{split}$$

For $n, k \in \mathbb{N}$, let us define

$$g_{n,k}(t) := v_n(t) \frac{x'_{n,k}}{\|x'_{n,k}\|_{E'}} \quad \text{for } t \in X.$$

Then, $g_{n,k} \in L^1(|\bar{m}|_{\text{nuc}}, E')$ and $||g_{n,k}(t)||_{E'} = |v_n(t)|$ for $t \in X$. Let

$$\mu_{n,k}(B) := \int_B g_{n,k}(t) d|\bar{m}|_{\text{nuc}} \text{ for } B \in \mathcal{B}a.$$

Then,

$$|\mu_{n,k}|(B) = \int_B \|g_{n,k}(t)\|_{E'} d|\bar{m}|_{\text{nuc}} = \int_B |v_n(t)| d|\bar{m}|_{\text{nuc}}.$$

Since $|\bar{m}|_{\text{nuc}} \in M_{\sigma}(\mathcal{B}a)^+$ (see Remark 2.3), in view of Lemma 4.1, we get

$$\mu_{n,k} \in M_{\sigma}(\mathcal{B}a, E').$$

For $n, k \in \mathbb{N}$, let us define

$$\Phi_{n,k}(f) := \int_X f(t) \, d\mu_{n,k} \quad \text{for } f \in C_{rc}(X, E).$$

Then, $\Phi_{n,k} \in (C_{rc}(X, E), \beta_{\sigma})'$, and in view of Lemma 4.1, we have

$$\Phi_{n,k}(f) = \int_X g_{n,k}(t)(f(t)) d|\bar{m}|_{\text{nuc}} \quad \text{for } f \in C_{\text{rc}}(X, E).$$

Note that $\sup\{|\mu_{n,k}|(X): n, k \in \mathbb{N}\} = \sup_n \|v_n\|_1 < \infty$, and since

$$\lim_{n} \|v_{n}\|_{1} = \lim_{n} \int_{X} |v_{n}(t)| \, d \, |\bar{m}|_{\text{nuc}} = 0,$$

the set $\{v_n : n \in \mathbb{N}\}$ is uniformly integrable in $L^1(|\bar{m}|_{nuc})$.

Assume that $\eta > 0$ and $Z_i \downarrow \emptyset$, $Z_i \in \mathbb{Z}$. Then, there exists $\delta > 0$ such that

$$\sup_{n} \int_{R} |v_n(t)| \, d \, |\bar{m}|_{\text{nuc}} \le \eta$$

for all $B \in \mathcal{B}a$ with $|\bar{m}|_{\text{nuc}}(B) \leq \delta$. Choose $i_0 \in \mathbb{N}$ such that $|\bar{m}|_{\text{nuc}}(Z_i) \leq \delta$ for $i \geq i_0$. Hence, for $i \geq i_0$, we get

$$\sup_{n,k\in\mathbb{N}} |\mu_{n,k}|(Z_i) = \sup_n \int_{Z_i} |v_n(t)| \, d\, |\bar{m}|_{\text{nuc}} \le \eta.$$

Hence, in view of Theorem 2.2, the set $\{\Phi_{n,k}: n, k \in \mathbb{N}\}\$ is β_{σ} -equicontinuous. Note that

$$\begin{split} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} |\alpha_{n}| |\alpha_{n,k}| \|x_{n,k}'\|_{E'} \|y_{n,k}\|_{F} &= \sum_{n=1}^{\infty} |\alpha_{n}| \left(\sum_{k=1}^{\infty} |\alpha_{n,k}| \|x_{n,k}'\|_{E'} \|y_{n,k}\|_{F} \right) \\ &\leq \sum_{n=1}^{\infty} |\alpha_{n}| \left(\|U_{n}\|_{\text{nuc}} + \frac{\varepsilon}{2\left(\sum_{j=1}^{\infty} |\alpha_{j}| \|v_{j}\|_{1}\right)} \right) \\ &\leq \sum_{n=1}^{\infty} |\alpha_{n}| \left(\sup_{j \in \mathbb{N}} \|U_{j}\|_{\text{nuc}} + \frac{\varepsilon}{2\left(\sum_{j=1}^{\infty} |\alpha_{j}| \|v_{j}\|_{1}\right)} \right) \\ &< \infty. \end{split}$$

This means that (ii) holds.

(iii) Since $\beta_{\sigma} \subset \tau_{u}$, by (ii), we have that T is a nuclear operator between the Banach spaces $C_{rc}(X, E)$ and F. Moreover, in view of (ii), for $f \in C_{rc}(X, E)$, we have

$$= \sum_{n=1}^{\infty} \alpha_n \|v_n\|_1 \sum_{k=1}^{\infty} \alpha_{n,k} \|x_{n,k}'\|_{E'} \|y_{n,k}\|_F \bigg(\int_X \frac{v_n(t)}{\|v_n\|_1} \frac{x_{n,k}'(f(t))}{\|x_{n,k}'\|_{E'}} \, d\, |\bar{m}|_{\mathrm{nuc}} \bigg) \frac{y_{n,k}}{\|y_{n,k}\|_F}.$$

Note that by (4.1) and (4.2) we have

$$\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} |\alpha_{n}| \|v_{n}\|_{1} |\alpha_{n,k}| \|x'_{n,k}\|_{E'} \|y_{n,k}\|_{F}$$

$$= \sum_{n=1}^{\infty} |\alpha_{n}| \|v_{n}\|_{1} \left(\sum_{k=1}^{\infty} |\alpha_{n,k}| \|x'_{n,k}\|_{E'} \|y_{n,k}\|_{F} \right)$$

$$\leq \sum_{n=1}^{\infty} |\alpha_{n}| \|v_{n}\|_{1} \left(\|U_{n}\|_{\text{nuc}} + \frac{\varepsilon}{2\left(\sum_{j=1}^{\infty} |\alpha_{j}| \|v_{j}\|_{1}\right)} \right)$$

$$\leq \|H\|_{1} + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \|H\|_{1} + \varepsilon. \tag{4.3}$$

For $n, k \in \mathbb{N}$, let us define

$$F_{n,k}(f) := \int_X \frac{v_n(t)}{\|v_n\|_1} \frac{x'_{n,k}(f(t))}{\|x'_{n,k}\|_{E'}} d|\bar{m}|_{\text{nuc}} \quad \text{for } f \in C_{\text{rc}}(X, E).$$

Then, $|F_{n,k}(f)| \le ||f||$; that is, $F_{n,k} \in C_{rc}(X, E)'$ and $||F_{n,k}|| \le 1$ for all $n, k \in \mathbb{N}$. In view of (4.3), we get $||T||_{nuc} \le ||H||_1 + \varepsilon$, and since $\varepsilon > 0$ is arbitrary, we have

$$||T||_{\text{nuc}} \le ||H||_1 = \int_X ||H(t)||_{\text{nuc}} d|\bar{m}|_{\text{nuc}} = |\bar{m}|_{\text{nuc}}(X).$$

Since $|m|_{\text{nuc}}(X) = |\bar{m}|_{\text{nuc}}(X)$ (see [4, Corollary 10, p. 4]), the proof is complete.

We will need the following lemma.

Lemma 4.4. Assume that (λ_n) is a bounded sequence in M(X, E'), (y_n) is a bounded sequence in F, and $(\alpha_n) \in \ell^1$. Then, for $y' \in F'$, we have that

$$\sum_{n=1}^{\infty} \alpha_n y'(y_n) \lambda_n \in M(X, E')$$

and

$$\left(\sum_{n=1}^{\infty} \alpha_n y'(y_n) \lambda_n\right) (A)(x) = \sum_{n=1}^{\infty} \alpha_n \lambda_n(A)(x) y'(y_n) \quad \text{for } A \in \mathcal{B}, x \in E.$$

Proof. Since for $y' \in F'$ we have

$$\sum_{n=1}^{\infty} |\alpha_n| |y'(y_n)| |\lambda_n|(X) < \infty$$

and M(X, E') is a Banach space, we get

$$\sum_{n=1}^{\infty} \alpha_n y'(y_n) \lambda_n \in M(X, E').$$

Then, for $A \in \mathcal{B}$, $x \in E$, we have

$$\left| \left(\sum_{n=1}^{\infty} \alpha_n y'(y_n) \lambda_n \right) (A)(x) - \sum_{i=1}^{n} \alpha_i \lambda_i (A)(x) y'(y_i) \right|$$

$$= \left| \left(\sum_{n=1}^{\infty} \alpha_n y'(y_n) \lambda_n - \sum_{i=1}^{n} \alpha_i y'(y_i) \lambda_i \right) (A)(x) \right|$$

$$\leq \left\| \left(\sum_{n=1}^{\infty} \alpha_n y'(y_n) \lambda_n - \sum_{i=1}^{n} \alpha_i y'(y_i) \lambda_i \right) (A) \right\|_{E'} \|x\|_{E}$$

$$\leq \left| \sum_{n=1}^{\infty} \alpha_n y'(y_n) \lambda_n - \sum_{i=1}^{n} \alpha_i y'(y_i) \lambda_i \right| (X) \|x\|_{E} \xrightarrow{n} 0.$$

Now, we can derive the properties of the representing measure m of a nuclear $(\beta_{\sigma}, \| \cdot \|_F)$ -continuous operator

$$T: C_{rc}(X, E) \to F$$
.

Theorem 4.5. Assume that $T: C_{rc}(X, E) \to F$ is a $(\beta_{\sigma}, \|\cdot\|_F)$ -continuous nuclear operator between the Banach spaces $C_{rc}(X, E)$ and F and $m: \mathcal{B} \to \mathcal{L}(E, F)$ is its representing measure. Then, the following statements hold.

(i) $\bar{m}(B) \in \mathcal{N}(E, F)$ for $B \in \mathcal{B}a$ and $\bar{m} : \mathcal{B}a \to \mathcal{N}(E, F)$ is a countably additive measure with

$$|\bar{m}|_{\text{nuc}}(X) \leq ||T||_{\text{nuc}}$$

(ii) If, in particular, E' has the Radon–Nikodym property, then there exists

$$H \in L^1(|\bar{m}|_{\text{nuc}}, \mathcal{N}(E, F))$$

so that

$$\bar{m}(B) = \int_{B} H(t) d|\bar{m}|_{\text{nuc}} \quad \text{for } B \in \mathcal{B}a$$

and

$$T(f) = \int_X H(t)(f(t)) d|\bar{m}|_{\text{nuc}} \quad for \ f \in C_{\text{rc}}(X, E).$$

Proof. (i) Let $\varepsilon > 0$ be given. There exist a bounded sequence (λ_n) in M(X, E'), a bounded sequence (γ_n) in F, and a sequence $(\alpha_n) \in \ell^1$ so that

$$T(f) = \sum_{n=1}^{\infty} \alpha_n \left(\int_X f(t) \, d\lambda_n \right) y_n \quad \text{for } f \in C_{rc}(X, E)$$

and

$$\sum_{n=1}^{\infty} |\alpha_n| |\lambda_n|(X) ||y_n||_F \le ||T||_{\text{nuc}} + \varepsilon.$$

Let $A \in \mathcal{B}$. Then, using (3.1), for each $x \in E$ and $y' \in F'$, we have

$$y'(m(A)(x)) = ((T'' \circ \pi)(\mathbb{1}_A \otimes x))(y') = \pi(\mathbb{1}_A \otimes x)(y' \circ T)$$

$$= \sum_{n=1}^{\infty} \alpha_n y'(y_n) \pi(\mathbb{1}_A \otimes x)(\Phi_{\lambda_n}) = \sum_{n=1}^{\infty} \alpha_n y'(y_n) \int_X (\mathbb{1}_A \otimes x)(t) d\lambda_n$$

$$= \sum_{n=1}^{\infty} \alpha_n y'(y_n) \lambda_n(A)(x) = y' \left(\sum_{n=1}^{\infty} \alpha_n \lambda_n(A)(x) y_n\right).$$

Hence, $m(A)(x) = \sum_{n=1}^{\infty} \alpha_n \lambda_n(A)(x) y_n$. This means that $m(A) \in \mathcal{N}(E, F)$.

Note that $M(X, E') \subset \text{bva}(\mathcal{B}, E')$, where $\text{bva}(\mathcal{B}, E')$ denotes the Banach space of all finitely additive measures $\lambda : \mathcal{B} \to E'$ of finite variation, equipped with the norm $\|\lambda\| = |\lambda|(X)$. Let $\text{bvca}(\mathcal{B}, E')$ (resp., $\text{bvpfa}(\mathcal{B}, E')$) denote the linear subspaces of $\text{bva}(\mathcal{B}, E')$ consisting of all countably additive measures (resp., purely finitely additive measures). Note that $M_{\sigma}(X, E') \subset \text{bva}(\mathcal{B}, E')$.

Due to the Yosida–Hewitt decomposition theorem (see [4, Theorem 8, p. 30]) for every $n \in \mathbb{N}$, there exist uniquely $\lambda_{n,c} \in \text{bvca}(\mathcal{B}, E')$ and $\lambda_{n,p} \in \text{bvpfa}(\mathcal{B}, E')$ so that

$$\lambda_n = \lambda_{n,c} + \lambda_{n,p}, \quad |\lambda_n| = |\lambda_{n,c}| + |\lambda_{n,p}|,$$

where $\lambda_{n,c}$ and $\lambda_{n,p}$ are mutually singular.

We will show that $\lambda_{n,c} \in M_{\sigma}(X, E')$ for $n \in \mathbb{N}$. Indeed, since $|\lambda_{n,c}| \leq |\lambda_n|$ and $|\lambda_n| \in M(X)$ (see [13, p. 314]), we get $|\lambda_{n,c}| \in M(X)$, and it follows that $\lambda_{n,c} \in M(X, E')$. Note that $|\lambda_{n,c}| \in ca(\mathcal{B})$ because $\lambda_{n,c} \in bvca(\mathcal{B}, E')$, and hence, $|\lambda_{n,c}| \in M_{\sigma}(X)$ (see [39, pp. 117–118]). This means that $\lambda_{n,c} \in M_{\sigma}(X, E')$, as desired.

Note that $bvca(\mathcal{B}, E')$ and $bvpfa(\mathcal{B}, E')$ are closed subspaces of the Banach space $bva(\mathcal{B}, E')$. It follows that, for $y' \in F'$, we have

$$\sum_{n=1}^{\infty} \alpha_n y'(y_n) \lambda_{n,c} \in \text{bvca}(\mathcal{B}, E') \quad \text{and} \quad \sum_{n=1}^{\infty} \alpha_n y'(y_n) \lambda_{n,p} \in \text{bvpfa}(\mathcal{B}, E').$$

For $A \in \mathcal{B}$ and $x \in E$, let us put

$$m_c(A)(x) := \sum_{n=1}^{\infty} \alpha_n \lambda_{n,c}(A)(x) y_n$$
 and $m_p(A)(x) := \sum_{n=1}^{\infty} \alpha_n \lambda_{n,p}(A)(x) y_n$.

Then, for every $y' \in F'$, in view of Lemma 4.4, we have

$$y'(m_c(A)(x)) := \sum_{n=1}^{\infty} \alpha_n \lambda_{n,c}(A)(x) y'(y_n) = \left(\sum_{n=1}^{\infty} \alpha_n y'(y_n) \lambda_{n,c}\right) (A)(x),$$

$$y'(m_p(A)(x)) := \sum_{n=1}^{\infty} \alpha_n \lambda_{n,p}(A)(x) y'(y_n) = \left(\sum_{n=1}^{\infty} \alpha_n y'(y_n) \lambda_{n,p}\right) (A)(x).$$

Hence,

$$m_{c,y'} = \sum_{n=1}^{\infty} \alpha_n y'(y_n) \lambda_{n,c}$$
 and $m_{p,y'} = \sum_{n=1}^{\infty} \alpha_n y'(y_n) \lambda_{n,p}$,

where $m_{c,y'} \in \text{bvca}(\mathcal{B}, E')$, $m_{p,y'} \in \text{bvpfa}(\mathcal{B}, E')$, and $m_{y'} = m_{c,y'} + m_{p,y'}$. Since $m_{y'} \in M_{\sigma}(X, E')$ (see Theorem 3.1) and $M_{\sigma}(X, E') \subset \text{bvca}(\mathcal{B}, E')$, we get $m_{y'} - m_{c,y'} \in \text{bvca}(\mathcal{B}, E') \cap \text{bvpfa}(\mathcal{B}, E') = \{0\}$, and hence, $m = m_c$; that is,

$$m(A)(x) = \sum_{n=1}^{\infty} \alpha_n \lambda_{n,c}(A)(x) y_n.$$

Let $\overline{\lambda_{n,c}} \in M_{\sigma}(\mathcal{B}a, E')$ stand for the unique extension of $\lambda_{n,c} \in M_{\sigma}(X, E')$, where $|\overline{\lambda_{n,c}}|(A) = |\lambda_{n,c}|(A)$ for $A \in \mathcal{B}$ (see Proposition 2.4). Let us set

$$m_0(B)(x) := \sum_{n=1}^{\infty} \alpha_n \overline{\lambda_{n,c}}(B)(x) y_n \text{ for } B \in \mathcal{B}a, \ x \in E.$$

Note that $m_0(B) \in \mathcal{N}(E, F)$ for $B \in \mathcal{B}a$. We will show that $m_0 : \mathcal{B}a \to \mathcal{N}(E, F)$ is a countably additive measure. Indeed, let (B_k) be a pairwise disjoint sequence in $\mathcal{B}a$, and let $\varepsilon > 0$ be given. Since $\sum_{n=1}^{\infty} |\alpha_n| |\overline{\lambda_{n,c}}|(X) < \infty$, for $a = \sup_n \|y_n\|_F$, we can choose $n_{\varepsilon} \in \mathbb{N}$ such that

$$\sum_{n=c+1}^{\infty} |\alpha_n| |\overline{\lambda_{n,c}}|(X) \le \frac{\varepsilon}{2(a+1)}.$$

Since $|\overline{\lambda_{n,c}}| \in M_{\sigma}(\mathcal{B}a)^+$ (see Proposition 2.4), there exists $k_{\varepsilon} \in \mathbb{N}$ such that

$$|\alpha_n||\overline{\lambda_{n,c}}|\left(\bigcup_{k=k_c}^{\infty}B_k\right)\leq \frac{\varepsilon}{2n_{\varepsilon}(a+1)}$$
 for $n=1,\ldots,n_{\varepsilon}$.

Hence, we get

$$\left\| m_0 \left(\bigcup_{k=1}^{\infty} B_k \right) - \sum_{k=1}^{k_{\varepsilon}-1} m_0(B_k) \right\|_{\text{nuc}} = \left\| m_0 \left(\bigcup_{k=k_{\varepsilon}}^{\infty} B_k \right) \right\|_{\text{nuc}}$$

$$\leq \sum_{n=1}^{\infty} |\alpha_n| |\overline{\lambda_{n,c}}| \left(\bigcup_{k=k_{\varepsilon}}^{\infty} B_k \right) \|y_n\|_F$$

$$\leq \sum_{n=1}^{n_{\varepsilon}} |\alpha_n| |\overline{\lambda_{n,c}}| \left(\bigcup_{k=k_{\varepsilon}}^{\infty} B_k \right) \|y_n\|_F + \sum_{n=n_{\varepsilon}+1}^{\infty} |\alpha_n| |\overline{\lambda_{n,c}}| \left(\bigcup_{k=k_{\varepsilon}}^{\infty} B_k \right) \|y_n\|_F$$

$$\leq a \sum_{n=1}^{n_{\varepsilon}} |\alpha_n| |\overline{\lambda_{n,c}}| \left(\bigcup_{k=k_{\varepsilon}}^{\infty} B_k \right) + a \sum_{n=n_{\varepsilon}+1}^{\infty} |\alpha_n| |\overline{\lambda_{n,c}}| \left(\bigcup_{k=k_{\varepsilon}}^{\infty} B_k \right)$$

$$\leq a \frac{\varepsilon}{2(a+1)} + a \frac{\varepsilon}{2(a+1)} \leq \varepsilon.$$

This means that $m_0: \mathcal{B}a \to \mathcal{N}(E, F)$ is countably additive.

Now, we will show that $|m_0|_{\text{nuc}}(X) \leq ||T||_{\text{nuc}}$. Indeed, let $(B_i)_{i=1}^k$ be a $\mathcal{B}a$ -partition of X. Then, we get

$$\begin{split} \sum_{i=1}^{k} \|m_{0}(B_{i})\|_{\text{nuc}} &\leq \sum_{i=1}^{k} \left(\sum_{n=1}^{\infty} |\alpha_{n}| \|\overline{\lambda_{n,c}}(B_{i})\|_{E'} \|y_{n}\|_{F} \right) \\ &\leq \sum_{n=1}^{\infty} |\alpha_{n}| \|y_{n}\|_{F} \left(\sum_{i=1}^{k} |\overline{\lambda_{n,c}}|(B_{i}) \right) = \sum_{n=1}^{\infty} |\alpha_{n}| \|y_{n}\|_{F} |\overline{\lambda_{n,c}}|(X) \\ &\leq \sum_{n=1}^{\infty} |\alpha_{n}| |\lambda_{n}|(X) \|y_{n}\|_{F} \leq \|T\|_{\text{nuc}} + \varepsilon. \end{split}$$

Hence, $|m_0|_{\text{nuc}}(X) \leq ||T||_{\text{nuc}} + \varepsilon$, and since $\varepsilon > 0$ is arbitrary, we get $|m_0|_{\text{nuc}}(X) \leq ||T||_{\text{nuc}}$, as desired. Since $|m_0|(X) \leq |m_0|_{\text{nuc}}(X) < \infty$, in view of Theorem 3.1, we have $m_0(B) = \bar{m}(B)$ for all $B \in \mathcal{B}a$. It follows that the measure $\bar{m} : \mathcal{B}a \to \mathcal{N}(E, F)$ is countably additive with $|\bar{m}|_{\text{nuc}}(X) < \infty$ and

$$\bar{m}(B)(x) = \sum_{n=1}^{\infty} \alpha_n \overline{\lambda_{n,c}}(B)(x) y_n \text{ for } B \in \mathcal{B}a, \ x \in E.$$

(ii) Let $bvca(\mathcal{B}a, E')$ denote the Banach space of all countably additive measures $\lambda : \mathcal{B}a \to E'$ of finite variation, equipped with the norm $\|\lambda\| := |\lambda|(X)$.

Since $|\overline{\lambda_{n,c}}| \in M_{\sigma}(\mathcal{B}a)$ for $n \in \mathbb{N}$, we get $\overline{\lambda_{n,c}} \in \text{bvca}(\mathcal{B}a, E')$. In view of the Lebesgue decomposition theorem, for every $n \in \mathbb{N}$, we have

$$\overline{\lambda_{n,c}} = \mu_{n,a} + \mu_{n,s}, \quad |\overline{\lambda_{n,c}}| = |\mu_{n,a}| + |\mu_{n,s}|,$$

where $\mu_{n,a} \in \text{bvca}(\mathcal{B}a, E')$ and $\mu_{n,a}$ is $|\bar{m}|_{\text{nuc}}$ -absolutely continuous $(\mu_{n,a} \ll |\bar{m}|_{\text{nuc}})$ and $\mu_{n,s} \in \text{bvca}(\mathcal{B}a, E')$ and $\mu_{n,s}$ and $|\bar{m}|_{\text{nuc}}$ are mutually singular (see [4, Theorem 9, p. 31]).

Since E' is supposed to have the Radon–Nikodym property, for each $n \in \mathbb{N}$, there exists $\psi_n \in L^1(|\bar{m}|_{\text{nuc}}, E')$ such that, for each $B \in \mathcal{B}a$, we have

$$\mu_{n,a}(B) = \int_{B} \psi_n(t) \, d|\bar{m}|_{\text{nuc}} \quad \text{and} \quad |\mu_{n,a}|(B) = \int_{B} \|\psi_n(t)\|_{E'} \, d|\bar{m}|_{\text{nuc}}. \tag{4.4}$$

Moreover, note that, for each $n \in \mathbb{N}$, there exist sets $B_n \in \mathcal{B}a$ and $C_n \in \mathcal{B}a$ with $B_n \cap C_n = \emptyset$ such that $|\bar{m}|_{\text{nuc}}$ is concentrated on B_n and $|\mu_{n,s}|$ is concentrated on C_n ; that is, for each $B \in \mathcal{B}a$, $|\bar{m}|_{\text{nuc}}(B) = |\bar{m}|_{\text{nuc}}(B \cap B_n)$ and $|\mu_{n,s}|(B) = |\mu_{n,s}|(B \cap C_n)$. Hence, for each $n \in \mathbb{N}$,

$$|\mu_{n,s}|(B_n) = 0$$
 and $|\bar{m}|_{\text{nuc}}(X \setminus B_n) = 0$.

Let $D_0 = \bigcap_{n=1}^{\infty} B_n$ and $B \in \mathcal{B}a$ be given. Then, we have

$$\|\bar{m}(B \cap (X \setminus D_0))\|_{\text{nuc}} \le |\bar{m}|_{\text{nuc}}(B \cap (X \setminus D_0)) \le |\bar{m}|_{\text{nuc}}(X \setminus D_0)$$

$$= |\bar{m}|_{\text{nuc}}\left(\bigcup_{n=1}^{\infty} (X \setminus B_n)\right) \le \sum_{n=1}^{\infty} |\bar{m}|_{\text{nuc}}(X \setminus B_n) = 0. \quad (4.5)$$

Since $\|\mu_{n,s}(B \cap D_0)\|_{E'} \le |\mu_{n,s}|(B \cap D_0) \le |\mu_{n,s}|(B_n) = 0$, we get $\mu_{n,s}(B \cap D_0) = 0$ for $n \in \mathbb{N}$. Hence, in view of (4.5), for each $x \in E$, we have

$$\bar{m}(B)(x) = \bar{m}(B \cap D_0)(x) + \bar{m}(B \cap (X \setminus D_0))(x) = \bar{m}(B \cap D_0)(x)$$
$$= \sum_{n=1}^{\infty} \alpha_n \mu_{n,a}(B \cap D_0)(x) y_n.$$

But $|\bar{m}|_{\text{nuc}}(B \cap (X \setminus D_0)) = 0$ and $\mu_{n,a} \ll |\bar{m}|_{\text{nuc}}$, so $\mu_{n,a}(B \cap (X \setminus D_0)) = 0$, and hence,

$$\mu_{n,a}(B) = \mu_{n,a}(B \cap (D_0 \cup (X \setminus D_0)))$$

= $\mu_{n,a}(B \cap D_0) + \mu_{n,a}(B \cap (X \setminus D_0))$
= $\mu_{n,a}(B \cap D_0)(x)$.

Thus, we have $\bar{m}(B)(x) = \sum_{n=1}^{\infty} \alpha_n \mu_{n,a}(B)(x) y_n$, and using (4.4), we get

$$\bar{m}(B)(x) = \sum_{n=1}^{\infty} \alpha_n \int_B \psi_n(t) \, d \, |\bar{m}|_{\text{nuc}}(x) y_n. \tag{4.6}$$

For $n \in \mathbb{N}$, let us put $H_n(t) := \sum_{i=1}^n \alpha_i \psi_i(t) \otimes y_i$ for $t \in X$, where $(\alpha_i \psi_i(t) \otimes y_i)(x) := \alpha_i \psi_i(t)(x)y_i$ for $x \in E$. Then, $H_n(t) \in \mathcal{N}(E, F)$ for $t \in X$. For $n_1, n_2 \in \mathbb{N}$ with $n_2 > n_1$, we have

$$\int_{X} \|H_{n_{2}}(t) - H_{n_{1}}(t)\|_{\text{nuc}} d|\bar{m}|_{\text{nuc}} \leq \int_{X} \left(\sum_{i=n_{1}+1}^{n_{2}} |\alpha_{i}| \|\psi_{i}(t)\|_{E'} \|y_{i}\|_{F} \right) d|\bar{m}|_{\text{nuc}}$$

$$= \sum_{i=n_{1}+1}^{n_{2}} |\alpha_{i}| \left(\int_{X} \|\psi_{i}(t)\|_{E'} d|\bar{m}|_{\text{nuc}} \right) \|y_{i}\|_{F}$$

$$\leq \sum_{i=n_{1}+1}^{n_{2}} |\alpha_{i}| |\mu_{i,a}|(X) \|y_{i}\|_{F}$$

$$\leq \sup_{j \in \mathbb{N}} |\mu_{j,a}|(X) \sup_{j \in \mathbb{N}} \|y_{j}\|_{F} \sum_{i=n_{2}+1}^{n_{2}} |\alpha_{i}|.$$

It follows that (H_n) is a Cauchy sequence in $L^1(|\bar{m}|_{\text{nuc}}, \mathcal{N}(E, F))$, so there exists $H \in L^1(|\bar{m}|_{\text{nuc}}, \mathcal{N}(E, F))$ so that $\int_X \|H_n(t) - H(t)\|_{\text{nuc}} d|\bar{m}|_{\text{nuc}} \stackrel{n}{\to} 0$.

One can show that, for each $x \in E$, a linear operator $S_x : \mathcal{N}(E, F) \to F$ defined by $S_x(U) := U(x)$ for $U \in \mathcal{N}(E, F)$ is $(\|\cdot\|_{\text{nuc}}, \|\cdot\|_F)$ -bounded. Hence, using Hille's theorem (see [6, Section 1, Theorem 36, p. 16]), for $B \in \mathcal{B}a$, we have

$$\int_{B} H(t) d|\bar{m}|_{\text{nuc}}(x) = \int_{B} S_{x}(H(t)) d|\bar{m}|_{\text{nuc}} = \int_{B} H(t)(x) d|\bar{m}|_{\text{nuc}}.$$

Then, we have

$$\begin{split} & \left\| \sum_{i=1}^{n} \alpha_{i} \int_{B} \psi_{i}(t) \, d \, |\bar{m}|_{\text{nuc}}(x) y_{i} - \int_{B} H(t)(x) \, d \, |\bar{m}|_{\text{nuc}} \right\|_{F} \\ & = \left\| \int_{B} \left(\left(\sum_{i=1}^{n} \alpha_{i} \psi_{i}(t) \otimes y_{i} \right) - H(t) \right)(x) \, d \, |\bar{m}|_{\text{nuc}} \right\|_{F} \\ & \leq \|x\|_{E} \int_{B} \|H_{n}(t) - H(t)\|_{\text{nuc}} \, d \, |\bar{m}|_{\text{nuc}} \xrightarrow{n} 0. \end{split}$$

In view of (4.6), we get $\bar{m}(B)(x) = \int_B H(t)(x) d|\bar{m}|_{\text{nuc}} = \int_B H(t) d|\bar{m}|_{\text{nuc}}(x)$, and hence, $\bar{m}(B) = \int_B H(t) d|\bar{m}|_{\text{nuc}}$, and using Theorem 4.3, we get

$$T(f) = \int_X H(t)(f(t)) d|\bar{m}|_{\text{nuc}} \quad \text{for } f \in C_{\text{rc}}(X, E).$$

As a consequence of Theorems 4.3 and 4.5, we have the following characterization of $(\beta_{\sigma}, \|\cdot\|_F)$ -continuous nuclear operators $T: C_{rc}(X, E) \to F$.

Corollary 4.6. Let $T: C_{rc}(X, E) \to F$ be a weakly compact $(\beta_{\sigma}, \|\cdot\|_F)$ -continuous operator and $m: \mathcal{B} \to \mathcal{L}(E, F)$ its representing measure. If E' has the Radon–Nikodym property, then the following statements are equivalent.

(i) $\bar{m}(B) \in \mathcal{N}(E, F)$ for $B \in \mathcal{B}a$ and $\bar{m} : \mathcal{B}a \to \mathcal{N}(E, F)$ is a countably additive measure with $|\bar{m}|_{\text{nuc}}(X) < \infty$, and there exists $H \in L^1(|\bar{m}|_{\text{nuc}}, \mathcal{N}(E, F))$ so that

$$\bar{m}(B) = \int_{B} H(t) d|\bar{m}|_{\text{nuc}} \text{ for } B \in \mathcal{B}a.$$

- (ii) T is a nuclear operator between the locally convex space $(C_{rc}(X, E), \beta_{\sigma})$ and the Banach space F.
- (iii) T is a nuclear operator between the Banach spaces $C_{rc}(X, E)$ and F.
- (iv) $\bar{m}(B) \in \mathcal{N}(E, F)$ for $B \in \mathcal{B}a$ and $\bar{m} : \mathcal{B}a \to \mathcal{N}(E, F)$ is a countably additive measure with $|\bar{m}|_{\text{nuc}}(X) < \infty$, and there exists $H \in L^1(|\bar{m}|_{\text{nuc}}, \mathcal{N}(E, F))$ so that

$$T(f) = \int_X H(t)(f(t)) d|\bar{m}|_{\text{nuc}} \quad for \ f \in C_{\text{rc}}(X, E).$$

In this case, $||T||_{\text{nuc}} = |\bar{m}|_{\text{nuc}}(X) = |m|_{\text{nuc}}(X) = \int_X ||H(t)||_{\text{nuc}} d|\bar{m}|_{\text{nuc}}$.

Proof. (i) \Rightarrow (ii). It follows from Theorem 4.3. (ii) \Rightarrow (iii). It is obvious because $\beta_{\sigma} \subset \tau_{u}$. (iii) \Rightarrow (iv). It follows from Theorem 4.5. (iv) \Rightarrow (i). Assume that (iv) holds.

For each $y' \in F'$, the linear operator $R_{y'} : \mathcal{N}(E, F) \to E'$ defined by

$$R_{y'}(U) := y' \circ U$$

for $U \in \mathcal{N}(E, F)$ is $(\|\cdot\|_{\text{nuc}}, \|\cdot\|_{E'})$ -bounded. Hence, according to Hille's theorem (see [6, Section 1, Theorem 36, p. 16]), we have

$$y' \circ \int_{X} H(t) d|\bar{m}|_{\text{nuc}} = R_{y'} \left(\int_{X} H(t) d|\bar{m}|_{\text{nuc}} \right) = \int_{X} R_{y'}(H(t)) d|\bar{m}|_{\text{nuc}}$$
$$= \int_{X} y' \circ H(t) d|\bar{m}|_{\text{nuc}},$$

and the function $X \ni t \mapsto y' \circ H(t) \in E'$ belongs to $L^1(|\bar{m}|_{\text{nuc}}, E')$.

Let

$$\mu_{y'}(B) := \int_{B} y' \circ H(t) \, d|\bar{m}|_{\text{nuc}}$$

for $B \in \mathcal{B}a$. Then, by Lemma 4.1 $\mu_{y'} \in M_{\sigma}(\mathcal{B}a, E')$ and, for $f \in C_{rc}(X, E)$, we have

$$\int_{X} f(t) d\mu_{y'} = \int_{X} y'(H(t)(f(t))) d|\bar{m}|_{\text{nuc}} = y'(T(f)).$$

Assume now that $A \in \mathcal{B}$. Then, for $y' \in F'$, $x \in E$, we have

$$y'(m(A)(x)) = ((T'' \circ \pi)(\mathbb{1}_A \otimes x))(y') = \pi(\mathbb{1}_A \otimes x)(y' \circ T)$$

$$= \int_X (\mathbb{1}_A \otimes x)(t) \, d\mu_{y'} = \mu_{y'}(A)(x) = y' \bigg(\int_A H(t) \, d|\bar{m}|_{\text{nuc}}(x) \bigg),$$

and it follows that $m(A) = \int_A H(t) d|\bar{m}|_{\text{nuc}}$.

For $B \in \mathcal{B}a$, let us put $m_0(B) := \int_B H(t) \, d|\bar{m}|_{\text{nuc}}$. One can observe that $m_0 \in M_{\sigma}(\mathcal{B}a, \mathcal{L}(E, F))$, and hence, in view of Theorem 3.1, $\bar{m}(B) = m_0(B) = \int_B H(t) \, d|\bar{m}|_{\text{nuc}}$ for $B \in \mathcal{B}a$. Moreover, in view of Theorems 4.3 and 4.5, we have

$$||T||_{\text{nuc}} = |\bar{m}|_{\text{nuc}}(X) = |m|_{\text{nuc}}(X) = \int_X ||H(t)||_{\text{nuc}} d|\bar{m}|_{\text{nuc}}.$$

Remark 4.7. The result of Corollary 4.6 extends to the setting of completely regular Hausdorff spaces, the classical results of Diestel and Uhl (see [4, p. 173]) and Popa (see [24, Theorem 1]), where X is a compact Hausdorff space.

We will need the following lemma. (The proof is similar to the proof of Lemma 4.4 and will be omitted.)

Lemma 4.8. Assume that (μ_n) is a bounded sequence in $M_{\sigma}(\mathcal{B}a, E')$, (y_n) is a bounded sequence in F, and $(\alpha_n) \in \ell^1$. Then, for $y' \in F'$, we have that

$$\sum_{n=1}^{\infty} \alpha_n y'(y_n) \mu_n \in M_{\sigma}(\mathcal{B}a, E')$$

and

$$\left(\sum_{n=1}^{\infty} \alpha_n y'(y_n) \mu_n\right)(B)(x) = \sum_{n=1}^{\infty} \alpha_n \mu_n(B)(x) y'(y_n) \quad \text{for } B \in \mathcal{B}a, \ x \in E.$$

Assume that $T: C_{rc}(X, E) \to F$ is a $(\beta_{\sigma}, \|\cdot\|_F)$ -continuous linear operator. Then, we can consider the conjugate mapping

$$T': F' \ni y' \mapsto \bar{m}_{y'} \in M_{\sigma}(\mathcal{B}a, E').$$

Now, as a consequence of Theorems 4.3 and 4.5, we establish the relationship between the nuclearity of a $(\beta_{\sigma}, \|\cdot\|_F)$ -continuous linear operator $T: C_{rc}(X, E) \to F$ and the nuclearity of its conjugate operator $T': F' \to M_{\sigma}(\mathcal{B}a, E')$.

Corollary 4.9. Assume that $T: C_{rc}(X, E) \to F$ is a $(\beta_{\sigma}, \|\cdot\|_F)$ -continuous nuclear operator between the Banach spaces $C_{rc}(X, F)$ and F. Then, the mapping

$$T': F' \to M_{\sigma}(\mathcal{B}a, E')$$

is a nuclear operator and $||T'||_{nuc} \le ||T||_{nuc}$.

Proof. Let $\varepsilon > 0$ be given. Then, in view of the proof of Theorem 4.5, there exist a bounded sequence (μ_n) in $M_{\sigma}(\mathcal{B}a, E')$, a bounded sequence (y_n) in F, and a sequence $(\alpha_n) \in \ell^1$ so that

$$\bar{m}(B)(x) = \sum_{n=1}^{\infty} \alpha_n \mu_n(B)(x) y_n \text{ for } B \in \mathcal{B}a, \ x \in E$$

and

$$\sum_{n=1}^{\infty} |\alpha_n| |\mu_n|(X) ||y_n||_F \le ||T||_{\text{nuc}} + \varepsilon.$$

Then, according to Lemma 4.8, for $y' \in F'$, we have $\sum_{n=1}^{\infty} \alpha_n y'(y_n) \mu_n \in M_{\sigma}(\mathcal{B}a, E')$, and for any $B \in \mathcal{B}a$, $x \in E$, we get

$$T'(y')(B)(x) = \bar{m}_{y'}(B)(x) = \sum_{n=1}^{\infty} \alpha_n \mu_n(B)(x) y'(y_n) = \left(\sum_{n=1}^{\infty} \alpha_n y'(y_n) \mu_n\right)(B)(x).$$

Thus, it follows that

$$T'(y') = \sum_{n=1}^{\infty} \alpha_n y'(y_n) \mu_n = \sum_{n=1}^{\infty} \alpha_n i_F(y_n)(y') \mu_n \quad \text{for } y' \in F'.$$

This means that T' is a nuclear operator and

$$||T'||_{\text{nuc}} \le \sum_{n=1}^{\infty} |\alpha_n| ||y_n||_F |\mu_n|(X) \le ||T||_{\text{nuc}} + \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we get $||T'||_{\text{nuc}} \le ||T||_{\text{nuc}}$.

Corollary 4.10. Let $T: C_{rc}(X, E) \to F$ be a weakly compact $(\beta_{\sigma}, \|\cdot\|_F)$ -continuous linear operator. Assume that E' has the Radon–Nikodym property and F is reflexive. If the mapping $T': F' \to M_{\sigma}(\mathcal{B}a, E')$ is a nuclear operator, then T is a nuclear operator between the Banach spaces $C_{rc}(X, E)$ and F and $\|T\|_{nuc} \leq \|T'\|_{nuc}$.

Proof. Let $\varepsilon > 0$ be given. Then, there exist a bounded sequence (y_n'') in F'', a bounded sequence (μ_n) in $M_{\sigma}(\mathcal{B}a, E')$, and $(\alpha_n) \in \ell^1$ so that

$$T'(y') = \sum_{n=1}^{\infty} \alpha_n y_n''(y') \mu_n \quad \text{for } y' \in F'$$

and

$$\sum_{n=1}^{\infty} |\alpha_n| \|y_n''\|_{F''} |\mu_n|(X) \le \|T'\|_{\text{nuc}} + \varepsilon.$$

Since F is supposed to be reflexive, we can choose a sequence (y_n) in F such that $y_n'' = i_F(y_n)$ for $n \in \mathbb{N}$. Then, for each $y' \in F'$ and $B \in \mathcal{B}a$, $x \in E$, we get (see Lemma 4.8)

$$y'(\bar{m}(B)(x)) = T'(y')(B)(x) = \left(\sum_{n=1}^{\infty} \alpha_n i_F(y_n)(y')\mu_n\right)(B)(x)$$
$$= \left(\sum_{n=1}^{\infty} \alpha_n y'(y_n)\mu_n\right)(B)(x) = \sum_{n=1}^{\infty} \alpha_n \mu_n(B)(x)y'(y_n)$$
$$= y'\left(\sum_{n=1}^{\infty} \alpha_n \mu_n(B)(x)y_n\right).$$

Hence, $\bar{m}(B)(x) = \sum_{n=1}^{\infty} \alpha_n \mu_n(B)(x) y_n$, and this means that $\bar{m}(B) : E \to F$ is a nuclear operator.

To show that $|\bar{m}|(X) \leq ||T'||_{\text{nuc}}$, assume that $(B_i)_{i=1}^k$ is a $\mathcal{B}a$ -partition of X. Then, we have

$$\begin{split} \sum_{i=1}^{k} \|\bar{m}(B_i)\|_{\text{nuc}} &\leq \sum_{i=1}^{k} \left(\sum_{n=1}^{\infty} |\alpha_n| \|\mu_n(B_i)\|_{E'} \|y_n''\|_{F''} \right) \\ &= \sum_{n=1}^{\infty} |\alpha_n| \|y_n''\|_{F''} \left(\sum_{n=1}^{\infty} \|\mu_n(B_i)\|_{E'} \right) \\ &\leq \sum_{n=1}^{\infty} |\alpha_n| \|y_n''\|_{F''} |\mu_n|(X) \leq \|T'\|_{\text{nuc}} + \varepsilon. \end{split}$$

Hence, $|\bar{m}|_{\text{nuc}}(X) \leq \|T'\|_{\text{nuc}} + \varepsilon$, and since $\varepsilon > 0$ is arbitrary, we get $|\bar{m}|_{\text{nuc}}(X) \leq \|T'\|_{\text{nuc}}$. Arguing as in the proof of (i) of Theorem 4.5, we can show that the measure $\bar{m}: \mathcal{B}a \to \mathcal{N}(E,F)$ is countably additive. Since E' is supposed to have the Radon–Nikodym property, arguing as in the proof of (ii) of Theorem 4.5, we obtain that there exists $H \in L^1(|\bar{m}|_{\text{nuc}},\mathcal{N}(E,F))$ so that

$$\bar{m}(B) = \int_{B} H(t) d|\bar{m}|_{\text{nuc}} \text{ for } B \in \mathcal{B}a.$$

Hence, by Theorem 4.3, T is nuclear, and we get $||T||_{\text{nuc}} = |\bar{m}|_{\text{nuc}}(X) \le ||T'||_{\text{nuc}}$.

As a consequence of Corollaries 4.9 and 4.10, we have the following result.

Corollary 4.11. Let $T: C_{rc}(X, E) \to F$ be a weakly compact $(\beta_{\sigma}, \|\cdot\|_F)$ -continuous linear operator. Assume that E' has the Radon–Nikodym property and F is reflexive. Then, the following statements are equivalent.

- (i) T is a nuclear operator between the Banach spaces $C_{rc}(X, E)$ and F.
- (ii) The mapping $T': F' \to M_{\sigma}(\mathcal{B}a, E')$ is a nuclear operator. In this case, $||T||_{\text{nuc}} = ||T'||_{\text{nuc}}$.

Acknowledgments. The author wishes to express his thanks to the referees for valuable remarks and suggestions leading to an improvement of the paper.

Funding. The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

References

- [1] G. Alexander, *Linear operators on the space of vector-valued continuous functions*. Ph.D. thesis, New Mexico State University, Las Cruces, New Mexico, 1976
- [2] C. D. Aliprantis and O. Burkinshaw, *Positive operators*. Pure Appl. Math. 119, Academic Press, Orlando, FL, 1985 Zbl 0608.47039 MR 0809372
- [3] R. Bilyeu and P. Lewis, Some mapping properties of representing measures. Ann. Mat. Pura Appl. (4) 109 (1976), 273–287 Zbl 0336.46048 MR 0425609
- [4] J. Diestel and J. J. Uhl, Jr., Vector measures. Math. Surveys 15, American Mathematical Society, Providence, RI, 1977 Zbl 0369.46039 MR 0453964
- [5] N. Dinculeanu, Vector measures. Int. Ser. Monogr. Pure Appl. Math. 95, Pergamon Press, Oxford; VEB Deutscher Verlag der Wissenschaften, Berlin, 1967 MR 0206190
- [6] N. Dinculeanu, Vector integration and stochastic integration in Banach spaces. Pure Appl. Math. (New York), Wiley-Interscience, New York, 2000 Zbl 0974.28006 MR 1782432
- [7] I. Gohberg, S. Goldberg, and N. Krupnik, *Traces and determinants of linear operators*. Oper. Theory Adv. Appl. 116, Birkhäuser, Basel, 2000 Zbl 0946.47013 MR 1744872
- [8] A. Grothendieck, Sur les espaces (*F*) et (*DF*). Summa Brasil. Math. **3** (1954), 57–123 Zbl 0058.09803 MR 0075542
- [9] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 Zbl 0064.35501 MR 0075539
- [10] A. Grothendieck, La théorie de Fredholm. Bull. Soc. Math. France 84 (1956), 319–384 Zbl 0073.10101 MR 0088665
- [11] H. Jarchow, Locally convex spaces. Mathematische Leitfäden., B. G. Teubner, Stuttgart, 1981 Zbl 0466,46001 MR 0632257
- [12] A. Katsaras, Continuous linear functionals on spaces of vector-valued functions. Bull. Soc. Math. Grèce (N.S.) 15 (1974), 13–19 Zbl 0308.46039 MR 0629982
- [13] A. Katsaras, Spaces of vector measures. Trans. Amer. Math. Soc. 206 (1975), 313–328 Zbl 0275.46029 MR 0365111

- [14] A. Katsaras, Some locally convex spaces of continuous vector-valued functions over a completely regular space and their duals. *Trans. Amer. Math. Soc.* 216 (1976), 367–387 Zbl 0317.46031 MR 0390733
- [15] A. Katsaras and D. B. Liu, Integral representations of weakly compact operators. *Pacific J. Math.* 56 (1975), no. 2, 547–556 Zbl 0272.47016 MR 0374980
- [16] A. K. Katsaras, Locally convex topologies on spaces of continuous vector functions. *Math. Nachr.* 71 (1976), 211–226 Zbl 0281.46032 MR 0458143
- [17] S. S. Khurana, Topologies on spaces of vector-valued continuous functions. Trans. Amer. Math. Soc. 241 (1978), 195–211 Zbl 0335.46017 MR 0492297
- [18] M. Nowak, Strict topologies and operators on spaces of vector-valued continuous functions. J. Korean Math. Soc. 52 (2015), no. 1, 177–190 Zbl 1321,46046 MR 3299377
- [19] M. Nowak, Strongly bounded operators on $C_{rc}(X, E)$ with the strict topology β_{σ} . Indag. Math. (N.S.) 27 (2016), no. 4, 972–984 Zbl 1354.46042 MR 3542950
- [20] M. Nowak and J. Stochmal, Nuclear operators on $C_b(X, E)$ and the strict topology. *Math. Slovaca* **68** (2018), no. 1, 135–146 Zbl 1465.46045 MR 3764322
- [21] A. Pietsch, Nuclear locally convex spaces. Ergeb. Math. Grenzgeb. 66, Springer, New York, 1972 MR 0350360
- [22] A. Pietsch, Eigenvalues and s-numbers. Math. Anwend. Phys. Tech. 43, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1987 Zbl 0615.47019 MR 0917067
- [23] D. Popa, Bochner integrability, weakly compact, compact and nuclear operators. *Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.)* 34(82) (1990), no. 1, 55–60 Zbl 0764.46043 MR 1086923
- [24] D. Popa, Nuclear operators on C(T, X). Stud. Cerc. Mat. 42 (1990), no. 1, 47–50 Zbl 0713.47017 MR 1076606
- [25] D. Popa, Pietsch integral operators defined on injective tensor products of spaces and applications. Glasgow Math. J. 39 (1997), no. 2, 227–230 Zbl 0897.47013 MR 1460638
- [26] D. Popa, Measures with bounded variation with respect to a normed ideal of operators and applications. *Positivity* 10 (2006), no. 1, 87–94 Zbl 1116.46013 MR 2223586
- [27] D. Popa, Examples of summing, integral and nuclear operators on the space C([0, 1], X) with values in c_0 , J. Math. Anal. Appl. 331 (2007), no. 2, 850–865 Zbl 1116.47019 MR 2313685
- [28] D. Popa, Integral and nuclear operators on the space $C(\Omega, c_0)$. Rocky Mountain J. Math. 38 (2008), no. 1, 253–265 Zbl 1173,46009 MR 2397034
- [29] A. F. Ruston, On the Fredholm theory of integral equations for operators belonging to the trace class of a general Banach space. *Proc. London Math. Soc.* (2) 53 (1951), 109–124 Zbl 0054.04906 MR 0042612
- [30] R. A. Ryan, Introduction to tensor products of Banach spaces. Springer Monogr. Math., Springer London, London, 2002 Zbl 1090.46001 MR 1888309
- [31] P. Saab, Integral operators on spaces of continuous vector-valued functions. *Proc. Amer. Math. Soc.* 111 (1991), no. 4, 1003–1013 Zbl 0744.46016 MR 1039263
- [32] P. Saab and B. Smith, Nuclear operators on spaces of continuous vector-valued functions. Glasgow Math. J. 33 (1991), no. 2, 223–230 Zbl 0823.47023 MR 1108746
- [33] H. H. Schaefer, Topological vector spaces. Grad. Texts in Math. 3, Springer, New York, 1971 Zbl 0217.16002 MR 0342978
- [34] B. C. Smith, Some bounded linear operations on the spaces $C(\Omega, E)$ and A(K, E). Ph.D. thesis, Columbia, 1989 MR 2638013
- [35] M. A. Sofi, Vector measures and nuclear operators. *Illinois J. Math.* 49 (2005), no. 2, 369–383 Zbl 1083.46025 MR 2163940

- [36] J. Stochmal, A characterization of nuclear operators on spaces of vector-valued continuous functions with the strict topology. To appear in *Proc. Amer. Math. Soc.*
- [37] A. E. Tong, Nuclear mappings on C(X). Math. Ann. 194 (1971), 213–224 Zbl 0211.15002 MR 0295136
- [38] F. Trèves, Topological vector spaces, distributions and kernels. Academic Press, New York, 1967 Zbl 0171.10402 MR 0225131
- [39] R. F. Wheeler, A survey of Baire measures and strict topologies. Exposition. Math. 1 (1983), no. 2, 97–190 Zbl 0522.28009 MR 0710569
- [40] K. Yosida, Functional analysis. 4th edn., Grundlehren Math. Wiss. 123, Springer, New York, 1974 Zbl 0286.46002 MR 0350358

Received 11 November 2023; revised 25 February 2024.

Marian Nowak

Institute of Mathematics, University of Zielona Góra, ulica Szafrana 4A, 65-516 Zielona Góra, Poland; m.nowak@wmie.uz.zgora.pl